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Abstract. We consider diffeomorphism invariance of symplectic data on submanifolds of sym-

plectic manifolds. We prove that for the canonical restrictions for toruses or general submani-

folds of compact symplectic manifold they still exist as the symplectic submanifolds or isotropic
toruses. Let (X, ωX) and (Y, ωY ) be symplectic manifolds or compact symplectic manifolds of

dimension 2n > 2. Let us fix a number s with 0 < s < n and assume that a diffeomorphism
Φ : X → Y maps all 2s-dimensional symplectic submanifolds of X to symplectic submanifolds

of Y or it maps all isotropic k-dimensional toruses of X to isotropic toruses of Y (1 < k ≤ n).

We prove that in these both cases (symplectic and isotropic ones) Φ is a conformal symplecto-
morphism, i.e., there is a constant c 6= 0 such that Φ∗ωY = cωX .

1. Introduction and main results.

Let (X, ω0) be the standard symplectic vector space over R of dimension 2n, i.e., X ∼= R2n

and ω0 =
∑

i dxi ∧ dyi is the standard non-degenerate skew-symmetric form on X. The group of

automorphisms of (X, ω0) is called the symplectic group and is denoted by Sp(X).

Our first result shows that any element of Sp(X) can be finitely decomposed into elements of

the family of elementary automorphisms.

Theorem 1. The symplectic group Sp(X) is generated by the family of elementary symplectic

automorphisms:

{Li(ci), Lij(cij), Ri(di), Rij(dij) : 0 < i < j ≤ n, ci, cij , di, dij ∈ R}

defined by

1) Li(ci)(x1, ..., xn, y1, ..., yn) = (x1, ..., xn, y1, ..., yi−1, yi + cixi, yi+1, ..., yn),

2) Lij(cij)(x1, ..., xn, y1, ..., yn) = (x1, ..., xn, y1, ..., yi−1, yi + cijxj , yi+1, ..., yj−1,

yj + cijxi, yj+1, ..., yn),

3) Ri(di)(x1, ..., xn, y1, ..., yn) = (x1, ..., xi−1, xi + diyi, xi+1, ..., xn, y1, ..., yn),

4) Rij(dij)(x1, ..., xn, y1, ..., yn) = (x1, ..., xi−1, xi + dijyj , xi+1, ..., xj−1, xj + dijyi,

xj+1, ..., xn, y1, ..., yn).
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Let H : X × R 3 (z, t) 7→ R be a smooth function and consider system of differential equations

(Hamiltonian system)
d

dt
φ(t, z) = J0(∇zH)(φ(t, x), t), φ(0, z) = z,

where z = (x1, . . . , xn, y1, . . . , yn) and J0 is the 2n×2n matrix of ω0. Then for the smooth solution

φ(t, z) we have that Φ(z) = φ(1, z) is a diffeomorphism preserving ω0, i.e. symplectomorphism,

which is called hamiltonian symplectomorphism with Hamiltonian H (cf. [10]). The next basic

result we get is

Theorem 2. For any linear symplectomorphism L : (R2n, ω0) → (R2n, ω0) there exists a polyno-

mial Hamiltonian

HL(z, t) =
2n∑

i,j=1

ai,j(t)zizj ,

where ai,j(t) ∈ R[t] are polynomials of one variable t. Moreover HL can be computed effectively.

The purpose of this article is twofold: First we provide the new results in still basic linear

symplectic geometry which were already formulated. Second we characterize general symplectic

manifolds and their structure groups through family of isotropic or symplectic submanifolds and

their basic invariance. This leads to a complete geometric characterization of symplectomorphisms

and to a reinterpretation of symplectomorphisms as diffeomorphisms acting purely on isotropic or

symplectic submanifolds (cf. [2],[8]).

Recall that a submanifold Z ⊂ X is isotropic if ωX |TZ = 0. We will call Z a symplectic

submanifold of X if it is closed and the pair (Z, ωX |TZ) is a symplectic manifold. Existence

of isotropic or symplectic submanifolds with the fixed prescribed data in a compact symplectic

manifold is a very fundamental geometric property of symplectic structures. The main result in

this direction we prove specifies the canonical restrictions for toruses or general submanifolds of

compact symplectic manifold which may exist still as the symplectic submanifolds or isotropic

toruses.

Theorem 3. Let (X, ω) be a symplectic manifold of dimension 2n (compact symplectic manifold

of dimension 2n). Let a1, ..., am be a family of points of X. Take 0 < k ≤ n (0 < s ≤ n). For every

i = 1, ...,m choose a linear k-dimensional isotropic subspace (2s-dimensional symplectic subspace)

Hi ⊂ TaiX. Then there is a closed isotropic k−dimensional torus (closed symplectic 2s-dimensional

submanifold) Y ⊂ X such that

1) ai ∈ Y,

2) TaiY = Hi.

Linear symplectomorphisms of (X, ω0) are characterized in [5] as linear automorphisms of X

preserving some minimal, complete data defined by ω0 on systems of linear subspaces. In this way

the linear symplectic group Sp(X) may be characterized geometrically together with its natural

conformal and anti-symplectic extensions. It is the natural task to put the linear considerations

of symplectic invariants into a more general context (cf. [4], [7]). Let (X, ωX) and (Y, ωY ) be
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symplectic manifolds of dimension 2n (all manifolds in this paper are assumed to be connected).

We say that a diffeomorphism F : X → Y is a conformal symplectomorphism (cf. [9]) if there is a

non-zero constant c ∈ R such that F ∗ωY = cωX .

Theorem 4. Let (X, ωX) and (Y, ωY ) be symplectic manifolds of dimension 2n > 2 (compact

symplectic manifolds of dimension 2n > 2). Fix a number 1 < k ≤ n (0 < s < n). Assume that

Φ : X → Y is a diffeomorphism which transforms all k−dimensional isotropic toruses of X (2s-

dimensional symplectic, closed submanifolds of X) onto isotropic toruses of Y (symplectic, closed

submanifolds of Y ). Then Φ is a conformal symplectomorphism.

In other words, for any fixed k (or s) as above, the conformal symplectic structure on X is

uniquely determined by the family of all k−dimensional isotropic toruses (2s-dimensional, closed

symplectic submanifolds) of X.

2. Generators of the group Sp(2n)

Here we recall some basic facts about the linear symplectic group. Let (X, ω) be a symplectic

vector space. There exists a basis of X, called a symplectic basis, u1, . . . , un, v1, . . . , vn, such that

ω(ui, uj) = ω(vi, vj) = 0, ω(ui, vj) = δij .

Let (X, ωX) and (Y, ωY ) be symplectic vector spaces. We say that a linear isomorphism F : X →
Y is a symplectomorphism (or is symplectic on X) if F ∗ωY = ωX , i.e., ωX(x, y) = ωY (F (x), F (y))

for every x, y ∈ X. The group of automorphisms of (X, ω) is called the symplectic group and is

denoted by Sp(X, ω). Via a symplectic basis, X can be identified with the standard symplectic

space (R2n, ω0) and Sp(X, ω) can be identified with the group of 2n × 2n real matrices A which

satisfy AT J0A = J0, where J0 is the 2n× 2n matrix of ω0 (in the standard basis), i.e.,

J0 =



0 . . . 0 −1 . . . 0
...

...
...

...
0 . . . 0 0 . . . −1
1 . . . 0 0 . . . 0
...

...
...

...
0 . . . 1 0 . . . 0


.

We can define the following ”elementary” symplectomorphisms:

1) Li(ci)(x1, ..., xn, y1, ..., yn) = (x1, ..., xn, y1, ..., yi−1, yi + cixi, yi+1, ..., yn),

2) Lij(cij)(x1, ..., xn, y1, ..., yn) = (x1, ..., xn, y1, ..., yi−1, yi+cijxj , yi+1, ..., yj−1, yj+cijxi, yj+1, ..., yn),

3) Ri(di)(x1, ..., xn, y1, ..., yn) = (x1, ..., xi−1, xi + diyi, xi+1, ..., xn, y1, ..., yn),

4) Rij(dij)(x1, ..., xn, y1, ..., yn) = (x1, ..., xi−1, xi+dijyj , xi+1, ..., xj−1, xj+dijyi, xj+1, ..., xn, y1, ..., yn),

where ci, cij , di, dij are real numbers and 1 ≤ i < j ≤ n.
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We have the following basic result:

Theorem 2.1. Let X = (R2n, ω0) be the standard symplectic vector space. Then the group Sp(X)

is generated by the following family of elementary symplectomorphisms:

{Li(ci), Lij(cij), Ri(di), Rij(dij) : 0 < i < j ≤ n and ci, cij , di, dij ∈ R},

i.e. if g ∈ Sp(X) then g =
∏m

i=1 ei, where ei is one of the elementary symplectomorphisms and

m ∈ N.

Proof. We reason by induction. For n = 1 we have Sp(R2) = SL(2) and the result is well known

from linear algebra. Assume n > 1.

Let S : R2n → R2n be a linear symplectomorphism. Denote coordinates by x1, y1, ...., xn, yn

(where ω0 =
∑

i dxi ∧ dyi ). We have

S(x1, y1, ..., xn, yn) = (
∑

i

a1,ixi +
∑

j

b1,jyj , . . . ,
∑

i

a2n,ixi +
∑

j

b2n,jyj).

Observe how the rows of the matrix of S are transformed under composition S ◦ L with an el-

ementary symplectomorphism L (for simplicity we consider only the first row and we take the

coordinates x1, ..., xn, y1, ..., yn). After composition

with Li(c) we have:

1) (a11, ..., a1n, b11, ..., b1n) → (a11, ..., a1i + cb1i, ..., a1n, b11, ..., b1n),

with Lij(c) we have:

2) (a11, ..., a1n, b11, ..., b1n) → (a11, ..., a1i + cb1j , ..., a1j + cb1i, ..., a1n, b11, ..., b1n),

with Ri(c) we have:

3) (a11, ..., a1n, b11, ..., b1n) → (a11, ..., a1n, b11, ..., b1i + ca1i, ..., b1n),

with Rij(c) we have:

4) (a11, ..., a1n, b11, ..., b1n) → (a11, ..., a1n, b11, ..., b1i + ca1j , ..., b1j + ca1i, ..., b1n).

Transformations 1) - 4) will be called elementary operations. Now we show that using only elemen-

tary operations we can transform the first row of S to (1, 0, ..., 0) and the second to (0, ..., 0, 1, 0, ..., 0)

(here the unit corresponds to b1n).

First note that rows r1, ..., r2n of the matrix S form a symplectic basis. Now, consider the

first row. Of course it has a non-zero element, say b1s. Using Ls(c) we can assume that also

a1s 6= 0. Now using Lis(c) and Rjs(d) for sufficiently general c and d we can assume that all

elements of the first row are non-zero. Again applying Ri(c) for i > 1 we can now transform the

first row to (a11, ..., a1n, 1, 0, ..., 0). Using L1j(c) we can transform this row to (1, 0, ..., 0, 1, 0, ..., 0)

and finally using R1(−1) we obtain (1, 0, ...., 0). Now consider the row rn+1 (after these trans-

formations): rn+1 = (an+11, ..., an+1n, bn+11, ..., bn+1n). We can apply our method to the subrow

(an+12, ..., an+1n, bn+12, ..., bn+1n) (if it is non-zero) and obtain finally the row (an+11, 1, 0, ...., 0, bn+11, 0, ..., 0)
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(or (an+11, 0, ...., 0, bn+11, 0, ..., 0)). Since the value of ω0 on these two rows is 1 we conclude that

bn+11 = 1. Now (in the first case) we can use L12(−1) to obtain a row of the form (an+11, 0, ..., 0, 1, 0, ..., 0).

Finally applying L1(−a12) we get (0, ..., 0, 1, 0, ..., 0).

Thus under all these compositions the matrix of S has the form

1 0 0 . . . 0 . . . 0
a21 a22 a23 . . . b21 . . . b2n

a31 a32 a33 . . . b31 . . . b3n

...
...

...
...

...
...

...
0 0 0 . . . 1 . . . 0

an+11 an+12 an+13 . . . bn+11 . . . bn+1n

an+21 an+22 bn+22 . . . bn+21 . . . b4n

...
...

...
...

...
...

...
a2n1 a2n2 a2n3 . . . b2n1 . . . b2nn


.

For j 6= 1, n + 1 we have ω0(r1, rj) = 0 and ω0(rn+1, rj) = 0. We can easily conclude that for all

such j elements aj1 and bj1 in the matrix of S are 0. This implies that the matrix

a22 a23 . . . b21 . . . b2n

a32 a33 . . . b31 . . . b3n

...
...

...
...

...
...

an2 an3 . . . bn1 . . . bnn

an+22 an+23 . . . bn+21 . . . bn+2n

...
...

...
...

...
...

a2n2 a2n3 . . . b2n1 . . . b2nn


is a symplectic matrix we can apply the induction hypothesis. �

We conclude this section by recalling (and extending) some result from [5].

Definition 2.2. Let Al,2r ⊂ G(l, 2n) denote the set of all l-dimensional linear subspaces of X on

which the form ω has rank ≤ 2r.

Of course Al,2r ⊂ Al,2r+2 if 2r + 2 ≤ l. We have the following important (see [5], Theorem 6.2):

Theorem 2.3. Let (X, ω) be a symplectic vector space of dimension 2n and let F : X → X be a

linear automorphism. Let 0 < 2r < 2n. Assume F transforms A2r,2r−2 into A2r,2r−2. Then there

is a non-zero constant c such that F ∗ω = cω.

From Theorem 2.3 we can deduce the following interesting facts:

Proposition 2.4. Let (X, ωX) and (Y, ωY ) be symplectic vector spaces of dimension 2n and let

F : X → Y be a linear isomorphism. Fix a number s : 0 < s < n and assume that F transforms all

2s-dimensional symplectic subspaces of X onto symplectic subspaces of Y. Then there is a non-zero

constant c such that F ∗ωY = cωX .
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Proof. Via a symplectic basis we can assume that (X, ωX) ∼= (R2n, ω0) ∼= (Y, ωY ). By assumption

the mapping F ∗ induced by F transforms the set A = A2s,2s \ A2s,2s−2 into the same set A. Of

course F ∗ : A → A is an injection. Since A is a smooth algebraic variety and F ∗ is regular, the

Borel Theorem (see [1]) implies that F ∗ is a bijection. This means that F transforms A2s,2s−2 into

the same set, and we conclude the proof by applying Theorem 2.3. �

Proposition 2.5. Let (X, ωX) and (Y, ωY ) be symplectic vector spaces of dimension 2n and let

F : X → Y be a linear isomorphism. Fix a number k : 1 < k ≤ n and assume that F transforms

all k-dimensional isotropic subspaces of X onto isotropic subspaces of Y. Then there is a non-zero

constant c such that F ∗ωY = cωX .

Proof. For k = 2 it follows immediately from Theorem 2.3. Assume that k > 2. Take a plane H

belonging to A2,0. Since H is isotropic then we can extend H to k−dimensional isotropic subspace

L. By assumption L is transformed onto isotropic subspace F (L). Observe that F (H) is contained

in F (L) then F (H) is also isotropic. In particular F (H) ∈ A2,0. Then on the basis of Theorem 2.3

we have the thesis. �

We end this section by:

Proposition 2.6. Let X be a vector space of dimension 2n and let ω1, ω2 be two symplectic forms

on X. If Sp(X, ω1) ⊂ Sp(X, ω2), then there exists a non-zero constant c such that ω2 = cω1.

Proof. If n = 1, then theorem is obvious. Assume that n > 1. Let A1 (A2) be a set of all ω1

(ω2) symplectic 2 dimensional subspaces of X. These sets are open and dense in the Grassmannian

G(2, 2n). Hence A1∩A2 6= ∅. Take H ∈ A1∩A2. We have A1 = Sp(X, ω1)H ⊂ Sp(X, ω2)H = A2.

Now apply Proposition 2.4 to X = (X, ω1), Y = (X, ω2) and F = identity. �

3. Hamiltonian symplectomorphisms

Let X = (R2n, ω0) be the standard symplectic vector space. In X we consider the norm

‖(a1, . . . , a2n)‖ = max2n
i=1|ai|. Take a smooth function H : X × R 3 (z, t) → R and consider a

system of differential equations (cf. [3])

d

dt
φ(t, z) = J0(∇zH)(φ(t, z), t), φ(0, z) = z.

Assume that this system has a solution φ(t, z) for every z and every t (this is satisfied, e.g., if

supports of all functions Ht, t ∈ R are contained in a compact set). Then we can define the

diffeomorphism

(3.1) Φ(z) = φ(1, z)

It is not difficult to check that Φ is a symplectomorphism.
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Definition 3.1. Let Φ : X → X be a symplectomorphism. We say that Φ is a hamiltonian

symplectomorphism if it is given by the formula (3.1) for some smooth function H. We also say

that H is a Hamiltonian of Φ.

Lemma 3.2. All elementary linear symplectomorphisms are hamiltonian symplectomorphisms.

Proof. Indeed, we have:

1) Li(c) is given by the Hamiltonian H(x, y) = (c/2)x2
i ,

2) Lij(c) is given by the Hamiltonian H(x, y) = cxixj ,

3) Ri(c) is given by the Hamiltonian H(x, y) = −(c/2)y2
i ,

4) Rij(c) is given by the Hamiltonian H(x, y) = −cyiyj . �

Now we show how to compute a Hamiltonian of a linear symplectomorphism:

Theorem 3.3. Let L : R2n → R2n be a linear symplectomorphism. Then L has a polynomial

Hamiltonian

(3.2) HL(z, t) =
2n∑

i,j=1

ai,j(t)zizj ,

where ai,j(t) ∈ R[t] are polynomials of one variable t. Moreover, we can compute HL effectively.

Proof. Let L = Lm ◦ · · · ◦ L1 where Li are elementary symplectomorphisms. We proceed by

induction with respect to m. If m = 1 then we can use Lemma 3.2. In this case the flow L1(t)

depends linearly on t.

Now consider L′ = Lm−1 ◦ · · · ◦ L1. By the induction hypothesis L′(t) = Lm−1(t) ◦ · · · ◦ L1(t)

is given by the Hamiltonian H ′ of the form 3.2. Let H ′′ be the Hamiltonian of Lm (as in Lemma

3.2). Now the flow L(t) = Lm(t) ◦ L′(t) is given by the Hamiltonian

H(z, t) = H ′′(z) + H ′(Lm(t)−1(z), t).

Of course it has also the form 3.2. Since we can decompose L into the product L = Lm ◦ · · · ◦ L1

effectively (see the proof of Theorem 2.1), we can also compute H in effective way. �

Proposition 3.4. Let L : R2n → R2n be a hamiltonian symplectomorphism given by the flow

z → φ(t, z); t ∈ R. Assume that φ(t, 0) = 0 for t ∈ [0, 1]. For every η > 0 there is an ε > 0 and a

hamiltonian symplectomorphism Φ : R2n → R2n such that

1) Φ(z) = L(z) for all z with ‖z‖ ≤ ε,

2) Φ(z) = z for all z with ‖z‖ ≥ η.

Proof. We know that L(z) = φ(1, z), where φ(t, z) is the solution of some differential equation

d

dt
φ(t, z) = J0(∇zH)(φ(t, z), t); φ(0, z) = z.
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Since φ(t, 0) = 0 for every t ∈ [0, 1], we can find ε > 0 so small, that all trajectories {φ(t, z), 0 ≤
t ≤ 1}, which start from the ball B(0, ε) are contained in the ball B(0, η/2). Let σ : R2n → R be

a smooth function such that

σ(z) =

{
1 if ‖z‖ ≤ η/2,

0 if ‖z‖ ≥ η.

Take S = σH. The hamiltonian symplectomorphism Φ given by the differential equation

d

dt
φ(t, z) = J0(∇zS)(φ(t, z), t), φ(0, z) = z,

is well defined on the whole of R2n and

Φ(z) =

{
L(z) if ||z|| ≤ ε,

z if ‖z‖ ≥ η.

�

Now Theorem 3.3 easily yields the following:

Corollary 3.5. Let L : R2n → R2n be a linear symplectomorphism. For every η > 0 there is an

ε > 0 and a hamiltonian symplectomorphism Φ : R2n → R2n such that

1) Φ(z) = L(z) for all z with ‖z‖ ≤ ε,

2) Φ(z) = z for all z with ‖z‖ ≥ η.

4. Characterization of symplectomorphisms.

Before we formulate our next result we need the following (well-known):

Lemma 4.1. Let X = (R2n, ω0) be the standard symplectic vector space. Fix η > 0 and let

a, b ∈ B(0, η). Then there exists a symplectomorphism Φ : X → X such that

Φ(a) = b and Φ(z) = z for ‖z‖ ≥ 2η.

Proof. Let c = (c1, . . . , c2n) = b− a. Define a sequence of points as follows:

1) a0 = a,

2) ai = ai−1 + (0, . . . , 0, ci, 0, . . . , 0).

Of course ai ∈ B(0, η) and a2n = b. Now consider the translation

Ti : R2n 3 (x, y) 7→ (x, y) + (0, . . . , 0, ci, 0, . . . , 0) ∈ R2n.

We have Ti(ai−1) = ai for i = 1, ..., 2n.

The translation Ti is a hamiltonian symplectomorphism given by the Hamiltonian

Hi(x, y) =

{
−ciyi if i ≤ n,

cixi−n if i > n.

Let Vi be the symplectic vector field which is determined by the Hamiltonian Hi. Since the ball

B(0, r) is a convex set, all trajectories φ(t), 0 ≤ t ≤ 1, of the symplectic vector fields Vi, which
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begin at ai lie in the ball B(0, η). Let σ : R2n → R be a smooth function such that

σ(z) =

{
1 if ‖z‖ ≤ η,

0 if ‖z‖ ≥ 2η.

Now let Fi : R2n → R2n be the hamiltonian symplectomorphism given by the Hamiltonian Gi =

σHi. Then

Gi(ai−1) = ai and Gi(z) = z if ‖z‖ ≥ 2η.

Now it is enough to take Φ = G2n ◦G2n−1 ◦ · · · ◦G1. �

We apply Proposition 3.4 to the general case:

Theorem 4.2. Let (X, ω) be a symplectic manifold. Let a1, ..., am and b1, ..., bm be two families

of points of X. For every i = 1, ..., n choose a linear symplectomorphism Li : Tai
X → Tbi

X. Then

there is a symplectomorphism Φ : X → X such that

1) Φ(ai) = bi,

2) dai
Φ = Li

for every i = 1, ...,m.

Proof. By the Darboux Theorem every point z ∈ X has an open neighborhood Vz which is symplec-

tically isomorphic to the ball B(0, rz) in the standard vector space (R2n, ω0). Denote by Uz ⊂ Vz

the open set which corresponds to the ball B(0, rz/3).

Since dim X ≥ 2 the manifold X \ {a2, ..., am} is also connected. Hence there exists a smooth

path γ : I → X such that γ(0) = a1, γ(1) = b1 and {a2, ..., am} ∩ γ(I) = ∅. Additionally we can

assume that the sets Vz which cover γ(I) are also disjoint from {a2, ..., am}.

Let ε be a Lebesgue number for the function γ : I → X with respect to the cover {Uz}z∈X and

choose an integer N with 1/N < ε. If Ik := [k/N, (k + 1)/N ], then γ(Ik) is contained in some {Uz};
denote it by Uk, the set Vz by Vk, and rz by rk. Let Ak := γ(k/N), in particular A0 = a1, AN = b1.

Since Vk
∼= B(0, rk) and Ak, Ak+1 ∈ B(0, rk/3) we can apply Lemma 4.1 to obtain a symplec-

tomorphism Φ : B(0, rk) → B(0, rk) such that

Φ(Ak) = Ak+1 and Φ(z) = z for ‖z‖ ≥ (2/3)rk.

We can extend Φ to the whole of X (we glue it with the identity); denote this extension by Φk.

Put

Ψ = ΦN ◦ ΦN−1 ◦ · · · ◦ Φ0.

Then Ψ(a1) = b1 and Ψ(ai) = ai for i > 1. Repeating this process, we finally arrive at a symplec-

tomorphism Σ : X → X such that Σ(ai) = bi for i = 1, . . . ,m. In a similar way using Proposition

3.5 we can construct a symplectomorphism Π : X → X such that

1) Π(bi) = bi,

2) dbi
Π = Li ◦ (dai

Σ)−1.
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Now it is enough to take Φ = Π ◦ Σ. �

Remark 4.3. The point ”1)” of in the thesis of Theorem 4.2 is well known, however the new

ingredient is given by the point ”2)” of this theorem.

Since for compact symplectic manifold (X, ω) of dimension 2n it is well known (cf. [6]) that for

a fixed number 0 < s ≤ n there exists a closed 2s−dimensional symplectic submanifold Z ⊂ X, we

can use Theorem 4.2 to obtain:

Corollary 4.4. Let (X, ω) be a compact symplectic manifold of dimension 2n. Let a1, ..., am be

a family of points of X. Take 0 < s ≤ n. For every i = 1, ...,m choose a linear 2s-dimensional

symplectic subspace Hi ⊂ Tai
X. Then there is a closed symplectic 2s-dimensional submanifold

Y ⊂ X such that

1) ai ∈ Y,

2) Tai
Y = Hi.

In a similar way we get:

Corollary 4.5. Let (X, ω) be a symplectic manifold of dimension 2n. Let a1, ..., am be a family

of points of X. Take 0 < k ≤ n. For every i = 1, ...,m choose a linear k-dimensional isotropic

subspace Hi ⊂ TaiX. Then there is a closed isotropic k-dimensional torus Y ⊂ X such that

1) ai ∈ Y,

2) Tai
Y = Hi.

5. Diffeomorphisms that are symplectomorphisms

Finally we show that a symplectomorphism can be described as a diffeomorphism which pre-

serves symplectic or isotropic submanifolds of given fixed dimension.

Theorem 5.1. Let (X, ωX) and (Y, ωY ) be compact symplectic manifolds of dimension 2n > 2.

Fix a number 0 < s < n. Assume that Φ : X → Y is a diffeomorphism which transforms all

2s-dimensional symplectic submanifolds of X onto symplectic submanifolds of Y. Then Φ is a

conformal symplectomorphism, i.e., there exists a non-zero number c ∈ R such that

Φ∗ωY = cωX .

Proof. Fix z ∈ X and let H ⊂ TzX be a 2s-dimensional symplectic subspace of TzX. By Propo-

sition 4.4 (applied for m = 1, a1 = z and H1 = H) there exists a 2s-dimensional symplectic

submanifold M of X such that z ∈ M and TzM = H.

Let Φ(M) = M ′, z′ = Φ(z). By assumption the submanifold M ′ ⊂ Y is symplectic. This

means that the space dzΦ(H) = Tz′M ′ is symplectic. Hence the mapping dzΦ transforms all linear
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2s-dimensional symplectic subspaces of TzX onto subspaces of the same type. By Proposition 2.4

this implies that dzΦ is a conformal symplectomorphism. i.e.,

(dzΦ)∗ωY = λ(z)ωX ,

where λ(z) 6= 0. This means that there is a smooth function λ : X → R∗ (= R \ {0}) such that

Φ∗ωY = λωX .

But since the form ωX is closed, so is Φ∗ωY . Since n > 1 this implies that the derivative dλ

vanishes, i.e., the function λ is constant. �

Theorem 5.2. Let (X, ωX) and (Y, ωY ) be symplectic manifolds of dimension 2n > 2. Fix a num-

ber 1 < k ≤ n. Assume that Φ : X → Y is a diffeomorphism which transforms all k-dimensional

isotropic tori of X onto isotropic tori of Y. Then Φ is a conformal symplectomorphism, i.e., there

exists a non-zero constant c ∈ R such that

Φ∗ωY = cωX .

Proof. Fix z ∈ X and let H ⊂ TzX be a k-dimensional isotropic subspace of TzX. By Theorem

4.5 (applied for m = 1, a1 = z and H1 = H) there exists a k-dimensional isotropic torus M of X

such that z ∈ M and TzM = H.

Let Φ(M) = M ′, z′ = Φ(z). By assumption the torus M ′ ⊂ Y is isotropic. This means that the

space dzΦ(H) = Tz′M ′ is isotropic. Hence the mapping dzΦ transforms all linear k-dimensional

isotropic subspaces of TzX onto subspaces of the same type. By Proposition 2.5 this implies that

dzΦ is a conformal symplectomorphism. The rest of the proof is the same as in the case of Theorem

5.1 above. �

Remark 5.3. Let us note that in particular if Φ maps Lagrangian tori onto tori of the same type

then Φ is a conformal symplectomorphism.

Corollary 5.4. Let X be a compact manifold of dimension 2n > 2. Let ω1 and ω2 be two symplectic

forms on X. Fix a number 1 < k < n. Assume that the family of all 2k-dimensional ω1-symplectic

submanifolds of X is contained in the family of all 2k-dimensional ω2-symplectic submanifolds of

X. Then there exists a non-zero number c ∈ R such that

ω1 = cω2.

Proof. It is enough to apply Theorem 5.1 to X = (X, ω1), Y = (X, ω2) and Φ = identity. �

Corollary 5.5. Let (X, ω) be a compact symplectic manifold of dimension 2n > 2. Fix a number

1 < k < n. Assume that Φ : X → X is a diffeomorphism which transforms all 2k-dimensional

symplectic submanifolds of X onto submanifolds of the same type. Then Φ is a symplectomorphism

or antisymplectomorphism, i.e., Φ∗ω = ±ω. If Φ preserves an orientation and n is odd, then Φ is

a symplectomorphism. Moreover, if n is even, then Φ has to preserve the orientation.
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Proof. Indeed, we have Φ∗ω = cω. And we can write

(5.1) vol(X) =
∫

X

ωn = ±
∫

X

Φ∗ωn = ±cn

∫
X

ωn

hence c = ±1. Moreover, if Φ preserves an orientation and n is odd, then we get that c = 1. If n

is even then (−ω)n = ωn and Φ has to preserve the orientation. �

Remark 5.6. The same corollaries like Corollary 5.4 and Corollary 5.5 are true for compact

symplectic manifold X in the case of isotropic tori. Also the similar concept of geometric charac-

terization of symplectomorphisms was already used for diffeomorphisms preserving capacity, which

imply symplectic and antisymplectic diffeomorphisms (cf. [4],[6]).

Example 5.7. We show that in the general case Φ need not to be a symplectomorphism. Let

Y = (S2, ω) (where ω is a standard volume form on the sphere) and let (Xn, ωn) =
∏n

i=1 Y be

a standard symplectic product. Further let σ : S2 3 (x, y, z) → (x, y,−z) ∈ S2 be a mirror

symmetry. Of course σ∗ω = −ω. More general if Σ =
∏n

i=1 σ : Xn → Xn, then Σ∗ωn = −ωn.

Hence it is possible that Φ from Corollary 5.5 is an antisymplectomorphism.

However, in any case either Φ or Φ ◦ Φ is a symplectomorphism.

Now let (X, ω) be a symplectic manifold and let us denote by Symp(X, ω) the group of symplec-

tomorphisms of X. At the end of this note we show that this group also determine a conformal

symplectic structure on X:

Theorem 5.8. Let X be a smooth manifold of dimension 2n > 2 and let ω1, ω2 be two symplectic

forms on X. If Symp(X, ω1) ⊂ Symp(X, ω2), then there exists a non-zero constant c such that

ω2 = cω1.

Proof. Take z ∈ X and consider symplectic vector spaces V1 = (TzX, ω1) and V2 = (TzX, ω2). By

Theorem 4.2 we have that for every linear symplectomorphism S of V1, there is a symplectomor-

phism ΦS ∈ Symp(X, ω1), such that

a) ΦS(z) = z,

b) dzΦS = S.

Since Symp(X, ω1) ⊂ Symp(X, ω2) we easily obtain that Sp(V1) ⊂ Sp(V2). Consequently by

Proposition 2.6 there exist a non-zero number λ(z) such that ω2(z) = λ(z)ω1(z). Now we finish

the proof as in the proof of Theorem 5.1. �



DIFFEOMORPHISMS THAT ARE SYMPLECTOMORPHISMS 13

References

[1] A. Borel Injective endomorphisms of algebraic Nash varieties, Arch. Math. 20, 531-537, (1969).
[2] E. Calabi, On the group of automorphisms of a symplectic manifold. In Problems in analysis, (ed. R. Gunning),

Princeton Univ. Press (1970), 1-26.

[3] I. Ekeland, H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Zeitschrift 200,(1989),355-378.
[4] H. Hofer, Dynamics, Topology and Holomorphic Curves, Documenta Mathematica, Extra volume ICM,

Vol II, (1998), 443-452.

[5] S. Janeczko, Z. Jelonek, Linear automorphisms that are symplectomorphisms , J. London Math. Soc. 69,
503-517, (2004).

[6] D. McDuff, D. Salamon, Introduction to Symplectic Topology,2nd edition, Oxford University Press (1998).
[7] D. McDuff, A survey of topological properties of groups of symplectomorphisms, in Toplogy, Geometry and

Quantum Field Theory, Proc. of 2002 Symposium in honor of G.B. Segal, ed. U.L. Tillmann, Cambridge Univ.

Press (2004), 173-193.
[8] L. Polterovich, The Geometry of the Group of Symplectic Transformations, Lecture Notes in Math. ETH
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