Stanistaw Janeczko (Warszawa)

On Arnold's singularities of type B_{k}, C_{k}, F_{4}

Abstract

It is shown that using Tougeron's version of the Implicit Function Theorem (cf.

 [4]) the classification theorem of Arnold [1] can be completely proved.1. Definitions. Let E_{n} denote the ring of germs at $0 \in \boldsymbol{R}^{n}$ of C^{∞}-functions, $f: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ and m_{n} the ideal consisting of all f with $f(0)=0 . \mathrm{m}_{n}$ is the unique maximal ideal in E_{n} and $m_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the ideal generated by x_{1}, \ldots, x_{n} (see [3]). Let L be a smooth submanifold of $R^{n}, \operatorname{dim} L=n-1$, and $0 \in L$.

Two germs $f, g \in \mathrm{~m}_{n}$ are called G_{L}-right equivalent if there exists a C^{∞}. diffeomorphism $\Phi:\left(R^{n} ; 0\right) \rightarrow\left(R^{n}, 0\right)$ such that $f=g \circ \Phi$ and $\Phi(L)=L$. Notation: $f{ }^{G_{L}} g$.

We choose a local chart in $\left(R^{n}, 0\right),\left\{x_{1}, \ldots, x_{n}\right\}$ such that the submanifold L has a form $L=\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n} ; x_{1}=0\right\}$. For $f \in \mathfrak{m}_{n}^{2}$ (such f is called a singularity), we define:

The G_{L}-right codimension of $f, \operatorname{codim}_{L}(f)=\operatorname{dim}_{R} m_{n} / I(f)-1$, where the ideal $I(f)$ is defined as follows

$$
I(f)=\left\langle x_{1} \frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle,
$$

i.e., $I(f)$ is the ideal of E_{n} generated by $x_{1} \frac{\partial f}{\partial x_{1}}$ and remaining partial derivatives of f (cf. for example [4]). The G_{L}-right codimension of f is equal to the codimension of the orbit of f in m_{n}^{2} under the right-action of the group of all diffeomorphisms of $\left(\boldsymbol{R}^{n}, 0\right)$ preserving L. Examples: Direct computations gives us, $\operatorname{codim}_{L}\left(\pm x_{1}^{k}+x_{2}^{2}\right)=k-2, \operatorname{codim}_{L}\left(x_{1} x_{2} \pm x_{2}^{k}\right)=k-2$, $\operatorname{codim}_{L}\left(\pm x_{1}^{2}+x_{2}^{3}\right)=2$.

The quotient space $J^{k}=E_{n} / m_{n}^{k+1}$ is called the jet space. Let j^{k} be the canonical projection $j^{k}: E_{n} \rightarrow J^{k}$. By $j^{k} f$ we denote the k-jet of the germ f. A germ f is called $G_{L}-r i g h t$ determined by its k-jet or $G_{L}-k$ determined if $j^{k} f=j^{k} g \Rightarrow f \stackrel{G_{L}}{\sim} g$ for all $g \in E_{n}$. Let $\operatorname{det}_{L}(f)$ be the smallest integer such
that f is G_{L}-right determined by its k-jet. If no such integer exists we write $\operatorname{det}_{L}(f)=\infty$.

Let $F: M^{k} \times G_{L}^{k} \rightarrow M^{k}$, be a right C^{∞}-action of the group of k-jets of diffeomorphisms belonging to G_{L}, acting on a C^{∞}-manifold M^{k} $=\mathrm{m}_{n} / \mathrm{m}_{n}^{k+1} \subset J^{k} . F:(u, s) \rightarrow F(u, s):=j^{k}(f \circ g)$, where f and g are two representants of $u \in M^{k}$ and $s \in G_{L}^{k}$ respectively. For each open subset U of M^{k} we denote by $\eta(U)$ the number of G_{L}^{k}-orbits of this action which meets U (the intersection of the orbit and the set U is not empty). Let $f \in \mathfrak{m}_{n}^{2}$ and $\eta(f, k)$: $=\inf _{U \ni j_{k_{f}}} \eta(U)$. If there exists $K, N \in N$ such that for all $k \geqslant K, \eta(f, k) \leqslant N$, then f is called simple.
2. Right G_{L}-equivalence, simple singularities B_{k}, C_{k}, F_{4}. First of all we have an important restriction.

Proposition 2.1. If $f \in \mathfrak{m}_{n}^{3}$, where $n \geqslant 3$, then f is not simple.
Proof. As we know $\eta(f, 3)=\infty$ for the group G of the germs of diffeomorphisms preserving zero (see e.g. [2]). The function $\eta(f, 3)$ for the group G_{L} is greater or equal than the function $\eta(f, 3)$ for the group G. Thus $f \in \mathfrak{m}_{n}^{3}, n \geqslant 3$, is not simple.

For further considerations we assume that $f \in \mathfrak{m}_{n}^{2}$. Let us consider the restriction of f to $L=\left\{x_{1}=0\right\}$, i.e., $\tilde{f}:\left(x_{2}, \ldots, x_{n}\right) \rightarrow f\left(0, x_{2}, \ldots, x_{n}\right)$. Let ϱ denote the rank of the Hessian matrix $\left(\partial^{2} \tilde{f} / \partial x_{i} \partial x_{j}(0)\right), 2 \leqslant i, j \leqslant n$. As we know, one can diagonalize the Hessian to put \tilde{f} into the form, that $j^{2} \tilde{f}$ $=\sum_{i=n-\varrho+1}^{n} \varepsilon_{i} x_{i}^{2}$, where ε_{i} is 1 or -1 .

Proposition 2.2. If $f \in \mathrm{~m}_{n}^{2}$ and ϱ is as above, then there exists $\Phi \in G_{L}$ such that:

$$
f \circ \Phi=\zeta+\sum_{i=n-\varrho+1}^{n} \varepsilon_{i} x_{i}^{2}
$$

where ζ has a representative which depends only on $x_{1}, x_{2}, \ldots, x_{n-\varrho}, 1 \leqslant \varrho$ $\leqslant n-1$.

Proof. We can write $f=g+\sum_{i=n-\rho+1}^{n} \varepsilon_{i} x_{i}^{2}$ in some coordinate system, where $g \in m_{n}^{2}$ and $j^{2} g$ is a quadratic form in the variables $x_{1}, x_{2}, \ldots, x_{n-\rho}$. We treat $f_{y}(x)=f(y, x), \quad x=\left(x_{n-e+1}, \ldots, x_{n}\right), \quad y=\left(x_{1}, \ldots, x_{n-\varrho}\right)$ as a function of x parametrized by $y . x_{0}$ is a critical point of $f_{y_{0}}$ if and only if $d f_{y_{0}}\left(x_{0}\right)=d_{x} f\left(y_{0}, x_{0}\right)=0, \quad$ i.e., $\quad d_{x}\left(g\left(y_{0}, x_{0}\right)+\sum_{i=n-\rho+1}^{n} \varepsilon_{i} x_{i}^{2}\right)=0 . \quad$ By the Implicit Function Theorem we can solve the last equation for x in terms of y, say $x=\varphi(y)$, near $0, \varphi(0)=0$. Hence, there exists a neighbourhood U of 0
in $R^{n-\varrho}$ such that the critical point $(y, \varphi(y))$ of f_{y} is non-degenerated for $y \in U$.

Let $\quad G_{L} \ni \Phi_{1}:(y, x) \rightarrow(Y, X)=(y, x-\varphi(y))$. Then, there exists a neighbourhood V of 0 in R^{n} such that if $(Y, X) \in V$, then the only critical point of $f_{y}(\cdot):=f \circ \Phi_{1}^{-1}(y, \cdot)$ is at $x=0$. Thus by Taylor's Theorem we have $f(y, x)=f(y, 0)+B(y, x) \cdot x^{2}$, where $B(y, x)$ is a bilinear form depending smoothly on (y, x). By the generalized Morse Lemma we have a local diffeomorphism $\Phi_{2}, G_{L} \ni \Phi_{2}:(y, x) \rightarrow(Y, X)=(y, Q(y, x))$, such that $f(y, x)=f(Y, 0)+B(0,0) \cdot X^{2}$. Thus taking ζ to be the germ of $Y \rightarrow f(Y, 0)$ we have the required result.

Corollary 2.3. The germ ζ in Proposition 2.2 has the form:

$$
\zeta\left(x_{1}, \ldots, x_{n-\varrho}\right)=x_{1} P\left(x_{1}, \ldots, x_{n-\varrho}\right)+\varrho\left(x_{2}, \ldots, x_{n-\varrho}\right),
$$

where $P \in \mathrm{~m}_{n-\varrho}, \varrho \in \mathrm{m}_{n-\varrho-1}^{3}$.
Definition 2.4. A germ $f \in \mathrm{~m}_{n}^{2}$ is said to be stable G_{L}-equivalent to the germ $\zeta \in m_{n-\varrho}^{2}$ if there exists $\Phi \in G_{L}$ such that

$$
f \circ \Phi=\zeta+\sum_{i=n-\rho+1}^{n} \varepsilon_{i} x_{i}^{2}, \quad \varepsilon_{i}= \pm 1
$$

Theorem 2.5 ([1]). The complete list of simple singularities up to the stable G_{L}-equivalence is as follows:

$$
\begin{aligned}
& B_{k}^{ \pm}: f= \pm x_{1}^{k}+x_{2}^{2} \quad(k \geqslant 2) \\
& C_{k}^{ \pm}: f=x_{1} x_{2} \pm x_{2}^{k} \\
& F_{4}^{ \pm}: f= \pm x_{1}^{2}+x_{2}^{3}
\end{aligned}
$$

Before we proceed to the proof of this theorem we will prove a few results:

Lemma 2.6. Let Q be the quadratic form, $Q(y)=\sum_{i=n-\varrho+1}^{n} \varepsilon_{i} y_{i}^{2}$ and x $=\left(x_{1}, \ldots, x_{n-\varrho}\right), y=\left(y_{n-\varrho+1}, \ldots, y_{n}\right)$. The germ $f(x)+Q(y) \in m_{n}^{2}$ is simple if and only if $f \in \mathrm{~m}_{n-e}^{2}$ is simple.

Proof. (A) Let $k \geqslant 3$. At the first step we show the following equivalence

$$
f(x)+Q(y) \in(g(x)+Q(y)) G_{L}^{k} \Leftrightarrow f \in g G_{\pi(L)}^{k},
$$

where π is the projection, $\pi: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n-\varrho}, g \in \mathrm{~m}_{n-\boldsymbol{e}}^{2}$.
We prove " \Rightarrow " only, because " \Leftarrow " is trivial.
By the assumption, there exists a diffeomorphism $\Phi \in G_{L}$ such that

$$
\begin{equation*}
j^{k}(f+Q)=j^{k}((g+Q) \circ \Phi) \tag{i}
\end{equation*}
$$

$\Phi:(x, y) \rightarrow(X(x, y), Y(x, y))=\left(A_{1} x+A_{2} y\left(\bmod m_{n}^{2}\right), B_{1} x+B_{2} y\left(\bmod m_{n}^{2}\right)\right)$, where $A_{1}, A_{2}, B_{1}, B_{2}$ are the matrices.

On the basis of (i) and Corollary 2.3

$$
\left(x_{1} P_{1}(x)+Q(y)\right)\left(\bmod \mathfrak{m}_{n}^{3}\right)=\left(x_{1} P_{2}(X(x, y))+Q(Y(x, y))\right)\left(\bmod \mathfrak{m}_{n}^{3}\right) .
$$

From this relation it follows that

$$
B_{2}=I \text { (identity), } \quad B_{1}=\left(b_{i j}\right), \quad b_{i j}=0 \quad \text { if } j \neq 1 .
$$

$\Phi \in G_{L}$ implies: $A_{1}=\left(a_{i j}^{1}\right), \quad a_{1 j}^{1}=0, \quad 2 \leqslant j \leqslant n-\varrho ; \quad A_{2}=\left(a_{i j}^{2}\right), \quad a_{i j}^{2}=0$, $1 \leqslant j \leqslant \varrho$. Now we solve the following equation:

$$
Q(Y(\cdot, \varphi(\cdot)))-Q(\varphi(\cdot))=0, \quad \varphi: \boldsymbol{R}^{n-\varrho} \rightarrow \boldsymbol{R}^{e} .
$$

After the substitution $Y(x, y)=y+\beta(x, y), \beta(x, y)=B_{1} x\left(\bmod \mathfrak{m}_{n}^{2}\right)$ we get

$$
\sum_{i=n-\varrho+1}^{n} \varepsilon_{i} \beta_{i}(x, y)\left(2 y_{i}+\beta_{i}(x, y)\right)=0, \quad \beta=\left(\beta_{n-\Omega+1}, \ldots, \beta_{n}\right) .
$$

Thus, in the end, we obtain the equation $2 \varphi(\cdot)+\beta(\cdot, \varphi(\cdot))=0$, which satisfies the assumptions of the Implicit Function Theorem. In some neighbourhood of $0 \in \boldsymbol{R}^{n-e}, Q(Y(x, \varphi(x)))=Q(\varphi(x))$.

Let $h(x):=g(X(x, \varphi(x)))$, so we have: $j^{k} f=j^{k} h$. It is easily seen that $\boldsymbol{R}^{n-e} \ni x \rightarrow X(x, \varphi(x)) \in \boldsymbol{R}^{n-e}$ belongs to $G_{\pi(L)}$.
(B) As we know (see e.g. [4]) the tangent space to the G_{L}^{k}-orbit of σ $=j^{k} \eta \in J^{k}$ has a form

$$
T_{\sigma}\left(\sigma G_{L}^{k}\right)=j^{k} J(\eta),
$$

where

$$
J(\eta)=\left\langle x_{1} \frac{\partial \eta}{\partial x_{1}}\right\rangle+\mathfrak{m}_{n}\left\langle\frac{\partial \eta}{\partial x_{2}}, \ldots, \frac{\partial \eta}{\partial x_{n}}\right\rangle .
$$

We denote $W=\left\{\eta \in \mathrm{m}_{n}^{2}: \eta(x, 0)=0\right\}$. It is easy to see that $W \subset J(f+Q)$. In this way the space $V \subset \mathrm{~m}_{n}^{2} / \mathrm{m}_{n}^{k+1}$ generated by all monomials of variables x $=\left(x_{1}, \ldots, x_{n-\ell}\right)$ is complementary to $j^{k} J(f+Q)$ in $\mathrm{m}_{n}^{2} / \mathrm{m}_{n}^{k+1}$. Therefore V^{\prime} : $=j^{k}(f+Q)+V$ is transversal to the orbit $(f+Q) G_{L}^{k}$.

Let \mathbb{C} be an open neighbourhood of $(f+Q)$ in m_{n}^{2} such that, for every η in $\mathcal{U},\left(D_{y}^{2} \eta\right) \|_{0} \neq 0$. So, for every $\eta \in \mathbb{C}$ we have $J(\eta) \supset W$, i.e., every orbit in J^{k} intersecting $j^{k}\left(c\right.$ is transversal to V^{\prime}. Now we are ready to construct the following mapping $H: V^{\prime} \rightarrow \mathrm{m}_{n-\varrho}^{2} / \mathrm{m}_{n-e}^{k+1}, \quad H\left(j^{k}(f+Q)+\sigma\right):=j^{k} f+\sigma, \quad H$ is an isomorphism, $D H=$ id. If $f+Q$ is simple, then f is simple because $\eta(f+Q, k) \underset{k}{<} \infty$ implies $\eta(f, k) \underset{k}{<} \infty$ by isomorphism H. The converse is true by the same argument and transversality of all orbits in $j^{k} \mathscr{O}$ to V^{\prime}, q.e.d.

Proposition 2.7. Let $f \in \mathfrak{m}_{n}^{2}$ and $L=\left\{x_{1}=0\right\}$; then: if f is simple, then there exists $\Phi \in G_{L}$ such that $f \circ \Phi=g\left(x_{1}, x_{2}\right)+Q$ and $g \in m_{2}^{2} \backslash m_{2}^{3}, Q$ is nondegenerated quadratic form in the remaining variables x_{3}, \ldots, x_{n}.

Proof. At three steps.
Let corank $\left.f\right|_{x_{1}=0}=2$; then on the basis of Proposition 2.2 there exists $\Phi^{\prime} \in G_{L}$ that $f \circ \Phi^{\prime}=g^{\prime}\left(x_{1}, x_{2}, x_{3}\right)+Q$, and $g^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} P\left(x_{1}, x_{2}, x_{3}\right)+$ $+\varrho\left(x_{2}, x_{3}\right), \varrho \in \mathfrak{m}_{2}^{3}, P \in \mathfrak{m}_{3}$. Proposition 2.1 excludes the case $P \in \mathfrak{m}_{3}^{2}$. Hence we have the two forms to which g^{\prime} can be reduced: either

$$
\begin{equation*}
x_{1} x_{2}+\varrho_{1}\left(x_{2}, x_{3}\right), \quad \varrho_{1} \in m_{2}^{3} \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}^{2}+\varrho_{2}\left(x_{1}, x_{2}, x_{3}\right), \quad \varrho_{2} \in m_{3}^{3} \tag{ii}
\end{equation*}
$$

Step A. Let us consider case (i).
One can notice that (i) reduces to the form

$$
\begin{equation*}
f_{1}=x_{1} x_{2}+\alpha x_{2}^{3}+\beta x_{2}^{2} x_{3}+\gamma x_{3}^{3}\left(\bmod m_{3}^{4}\right) . \tag{iii}
\end{equation*}
$$

So, we confine our considerations to such germs and show that at every open neighbourhood of (iii) there exists the germ

$$
\begin{equation*}
f_{2}=x_{1} x_{2}+\alpha^{\prime} x_{2}^{3}+\beta^{\prime} x_{2}^{2} x_{3}+\gamma^{\prime} x_{3}^{3}\left(\bmod m_{3}^{4}\right) \tag{iv}
\end{equation*}
$$

which is not equivalent to (iii):
Let us take
$p:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}\left(1+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right)\left(\bmod m_{3}^{3}\right)\right.$,

$$
\begin{array}{r}
x_{2}+b_{1} x_{1}^{2}+b_{2} x_{2}^{2}+b_{3} x_{3}^{2}+b_{4} x_{1} x_{2}+b_{5} x_{1} x_{3}+b_{6} x_{2} x_{3}\left(\bmod \mathrm{~m}_{3}^{3}\right) \\
\left.c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\left(\bmod \mathrm{~m}_{3}^{2}\right)\right)
\end{array}
$$

It is easy to verify that the condition $f_{1} \circ p=f_{2}$ gives the following necessary conditions on the coefficients of the diffeomorphism $p, \gamma c_{2}=0, \alpha+\beta c_{2}=\alpha^{\prime}$, $\beta c_{3}=\beta^{\prime}, \quad \gamma c_{3}^{3}=\gamma^{\prime}$, where $c_{3} \neq 0$. By the first condition we have two possibilities:
(a) $\gamma=0$ then the neighbouring germ: $\alpha^{\prime}=\alpha, \beta^{\prime}=\beta, \gamma^{\prime} \neq 0$ is not equivalent to f_{1}.
(b) $c_{2}=0$, then it suffices to take $\gamma^{\prime}=\gamma, \beta^{\prime}=\beta$ and α neighbouring to α^{\prime}. In this case the germ f_{2} is not equivalent to f_{1}.

Step B. For case (ii) we consider the following subspace of $m_{3}^{2}: V$ $=\left\{b x_{1}^{2}+\sum_{i+j+k=3} x_{1}^{i} x_{2}^{j} x_{3}^{k} a_{i j k}\right\} \subset J^{3}$. It is easy to see that the orbits of G_{L}^{3} intersect V along the submanifolds of codimension $\geqslant 1$ and these submanifolds can be parametrized by $d, a_{i}, b_{i}, c_{i}, i=1,2,3$, provided with the diffeomorphisms preserving V :

$$
\begin{aligned}
& G_{L} \ni \Phi_{(d, \bar{a}, \bar{b}, \bar{c}}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}\left(d+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right)\left(\bmod m_{3}^{3}\right)\right. \\
& \left.b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\left(\bmod m_{3}^{3}\right), c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\left(\bmod m_{3}^{3}\right)\right) .
\end{aligned}
$$

Thus their dimensions are not greater than 10 . On the other hand, $\operatorname{dim} V$ $=11$, so these facts prove non-simplicity of (ii).

Step C. In the previous steps we proved that: if $f \in \mathfrak{m}_{n}^{2}$ is simple, then f is equivalent to $g\left(x_{1}, x_{2}\right)+Q$.

Let $g \in \mathfrak{m}_{2}^{3}$, we consider the right action: $\mathfrak{m}_{2}^{3} / \mathfrak{m}_{2}^{4} \times G_{L} \rightarrow \mathfrak{m}_{2}^{3} / \mathfrak{m}_{2}^{4}$. It is easy to see that every open subset of $\mathfrak{m}_{2}^{3} / \mathfrak{m}_{2}^{4}$ intersects infinitely many orbits, namely: The above defined action reduces to the action $m_{2}^{3} / m_{2}^{4} \times G_{L}^{1}$ $\rightarrow \mathfrak{m}_{2}^{3} / \mathrm{m}_{2}^{4}$, because for every $g \in \mathfrak{m}_{2}^{3}$ and $\Phi \in G_{L} j^{3}(g \circ \Phi)=j^{3} g \cdot j^{1} \Phi$. As we know $\operatorname{dim} G_{L}^{1}=3$, and $\operatorname{dim} \mathfrak{m}_{2}^{3} / m_{2}^{4}=4$. Hence, every orbit of G_{L}^{3} in m_{2}^{3} / m_{2}^{4} has the codimension $\geqslant 1$, q.e.d.

On the basis of Proposition 2.7 we are interested in germs depending only in two variables.

Corollary 2.8. The set of non-simple germs in m_{2}^{2} has the codimension 3. Proof of Theorem 2.5 .
Lemma 2.9. If $f \in \mathfrak{m}_{2}^{2}$, corank $\left.f\right|_{x_{1}=0}=0$ and f is simple, then there exists $\Phi \in G_{L}$ such that: $f \circ \Phi= \pm x_{1}^{k} \pm x_{2}^{2}, k \geqslant 2$.

These singularities are denoted by B_{k} (according to Arnold [1]).
Proof. At first we shall show that the k-jets $\pm x_{1}^{k} \pm x_{2}^{2}$ are sufficient. As is well known (e.g. [4]) the sufficient condition for the k-determinacy as follows

$$
\begin{equation*}
\mathrm{m}^{k+1} \subset \mathrm{~m} J(f) \Rightarrow f \text { is } k \text {-determined } . \tag{*}
\end{equation*}
$$

In our case $J\left(\pm x_{1}^{k} \pm x_{2}^{2}\right)=\left\langle x_{1}^{k}\right\rangle E+m\left\langle x_{2}\right\rangle$. For proving (*) we must verify that for every monomial $x_{1}^{i} x_{2}^{j}, i+j=k+1$ there is a decomposition: $x_{1}^{i} x_{2}^{j}$ $=x_{1}^{k} h_{1}+x_{2} h_{2}, h_{1} \in \mathfrak{m}, h_{2} \in \mathfrak{m}^{2}$. It is true because for $i<k, i=k, i=k+1$ we can take respectively $h_{1}=0, h_{2}=x_{1}^{i} x_{2}^{j-1} ; h_{1}=x_{2}, h_{2}=0 ; h_{1}=x_{1}, h_{2}=0$.

If corank $\left.f\right|_{x_{1}=0}=0$ we can reduce f to the form

$$
f=x_{1} P_{1}\left(x_{1}, x_{2}\right) \pm x_{2}^{2}, \quad P_{1}\left(x_{1}, x_{2}\right)=a_{1} x_{1}+a_{2} x_{2}\left(\bmod m^{2}\right) .
$$

Let us consider the following cases:
$1^{\circ} a_{1} \neq 0, a_{1} \mp \frac{1}{4} a_{2}^{2} \neq 0$, then

$$
a_{1} x_{1}^{2}+a_{2} x_{1} x_{2} \pm x_{2}^{2}\left(\bmod \mathrm{~m}^{3}\right)= \pm\left(x_{2} \pm \frac{1}{2} a_{2} x_{1}\right)^{2}+\left(a_{1} \mp \frac{1}{4} a_{2}^{2}\right) x_{1}^{2}\left(\bmod \mathfrak{m}^{3}\right)
$$

is equivalent to $\pm x_{2}^{2} \pm x_{1}^{2}\left(\bmod \mathrm{~m}^{3}\right) \in B_{2}$.

$$
2^{\circ} a_{1}=0, a_{2} \neq 0 \text {, then }
$$

$$
a_{2} x_{1} x_{2} \pm x_{2}^{2}\left(\bmod \mathfrak{m}^{3}\right)= \pm\left(x_{2} \pm \frac{1}{2} a_{2} x_{1}\right)^{2} \mp \frac{1}{4} a_{2}^{2} x_{1}^{2}\left(\bmod \mathfrak{m}^{3}\right) \in B_{2} .
$$

$3^{\circ} a_{1} \neq 0, a_{1} \mp \frac{1}{4} a_{2}^{2}=0$ and $a_{1}=0, a_{2}=0$, then
$x_{1} P_{1}\left(x_{1}, x_{2}\right) \pm x_{2}^{2} \sim x_{1} P_{2}\left(x_{1}, x_{2}\right) \pm x_{2}^{2}, \quad P_{2} \in \mathrm{~m}^{2} \quad$ (\sim, equivalency).
Let $P_{2}\left(x_{1}, x_{2}\right)=b_{1} x_{1}^{2}+x_{2} Q_{1}\left(x_{1}, x_{2}\right)\left(\bmod m^{3}\right)$ and

$$
b_{1} \neq 0
$$

then

$$
\begin{gathered}
x_{1} P_{2}\left(x_{1}, x_{2}\right) \pm x_{2}^{2}=b_{1} x_{1}^{3} \pm\left(x_{2} \pm \frac{1}{2} x_{1} Q_{1}\right)^{2}\left(\bmod m^{4}\right) \in B_{3} \\
b_{1}=0
\end{gathered}
$$

then

$$
x_{1} P_{2}\left(x_{1}, x_{2}\right) \pm x_{2}^{2} \sim x_{1} P_{3}\left(x_{1}, x_{2}\right) \pm x_{2}^{2}
$$

$$
\text { where } P_{3} \in \mathfrak{m}^{3}, P_{3}\left(x_{1}, x_{2}\right)=b_{2} x_{1}^{3}+x_{2} Q_{2}\left(x_{1}, x_{2}\right)\left(\bmod m^{4}\right)
$$

If $b_{2} \neq 0$, then $x_{1} P_{3} \pm x_{2}^{2} \in B_{4}$.
If $b_{2}=0, b_{3}=0, \ldots, b_{k-1} \neq 0$, then $x_{1} P_{k}\left(x_{1}, x_{2}\right) \pm x_{2}^{2} \in B_{k+1}$.
Thus we obtain the singularities of type B_{k}.
Corollary 2.10. The codimension of the singularity B_{k} in m^{2} is equal to $k-2$.

If corank $\left.f\right|_{x_{1}}=1$, then, by Proposition 2.7, $f \in \mathfrak{m}_{2}^{2} \backslash \mathrm{~m}_{2}^{3}$ and we can reduce f to the form:

$$
f=x_{1} P\left(x_{1}, x_{2}\right) \pm x_{2}^{k}, \quad k \geqslant 3, \quad \text { where } P \in \mathfrak{m}_{2}^{1} \backslash \mathfrak{m}_{2}^{2} .
$$

There are two cases for $P\left(x_{1}, x_{2}\right)=a_{1} x_{1}+a_{2} x_{2}+\left(\bmod m_{2}^{2}\right)$,
(a)

$$
a_{1}=0
$$

It is easy to see that the k-jet $x_{1} x_{2} \pm x_{2}^{k}$ is sufficient. Thus we have the singularities of type C_{k}.
(b)

$$
a_{2}=0
$$

In this case f is equivalent to such germ that the k-jet of f has the form

$$
\begin{equation*}
\pm x_{1}^{2}+x_{1} \sum_{i=2}^{k-2} c_{i} x_{2}^{i} \pm x_{2}^{k} \tag{*}
\end{equation*}
$$

It is easy to verify that this jet is k-determined. By the calculation method of Arnold [2] we see that germ (*) is not simple for $k \geqslant 4$, namely the equation
(**) $\quad\left(\pm 2 x_{1}^{2}+x_{1} \sum_{i=2}^{k-2} c_{i} x_{2}^{i}\right) h_{1}+$

$$
+\left(x_{1} \sum_{i=1}^{k-3}(i+1) x_{2}^{i} c_{i+1} \pm k x_{2}^{k-1}\right) h_{2}=x_{1} x_{2}^{2}\left(\bmod m^{k+1}\right)
$$

has no solutions for $h_{1}, h_{2} \in \mathrm{~m}$ if we assume the existence of the solutions h_{1} and $h_{2}\left(x_{1}, x_{2}\right)=A_{1} x_{1}+A_{2} x_{2}\left(\bmod \mathrm{~m}^{2}\right)$, then by simple calculations on ($* *$) we get the contradiction:

$$
2 c_{2} A_{2}=1 \quad \text { and } \quad \pm k A_{2}=0
$$

Hence, in case (b) the only simple singularity is $F_{4}: \pm x_{1}^{2}+x_{2}^{3}$, q.e.d.

References

[1] V. I. Arnold, Critical points of functions on manifolds with boundaries, simple Lie groups B_{k}, C_{k}, F_{4} and singularities of involutes, Uspekhi Mat. Nauk 33 (1978), 91-105.
[2] -, Normal forms of functions with simple critical points, the Weyl groups A_{k}, D_{k}, E_{k} and Lagrange manifolds, Functional Anal. Appl. 6 (1972), 3-25.
[3] M. Golubitsky, V. Guillemin, Stable mappings and their singularities, Springer Verlag, Berlin 1973.
[4] S. Janeczko, On algebraic criteria for k-determinacy of germs of smooth functions on manifold with boundary, Demonstratio Matematica 4 (1982) (in preparation).
[5] D. Siersma, Singularities of functions on boundaries, corners etc., Quart. J. Math., Oxford (2) 32 (1981), 119-127.

INSTYTUT MATEMATYCZNY
POLITECHNIKI WARSZAWSKIEJ
WARSAW, POLAND

