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TechnicalUniversity ofWarsaw
P1. Jedn6sciRobotniczej1,00 661 Warsaw,Poland

Abstract. Classificationof singular lagrangiansubmanifoldswhichappearas images
of a regularoneundera symplecticrelation, is consideredfrom thepointof viewof
standardsingularity theory. Theclassificationis carried outin smalldimensionsand
restricted to special types of symplecticobjects.Normal formsfor singular pull-
backs and pushforwards are given using an appropriate symplecticequivalence
group. It is shown that thegeneralclassificationproblem reducesto theclassifica-
tion problem for appropriate mapping diagrams. An approach to the classical
theoriesof phasetransition is given basedon thegeometryof singular lagrangian
images. The variational open swallowtails andregularly intersectingpairs of holo-
nomiccomponentsare resolvedusingan appropriate reductionrelation.Examples
are givenof singularitiesencounteredin physics.

1. INTRODUCTION

Let (T*X, wi), (T*Y, w~)be cotangentbundlesendowedwith thecanonical

symplecticstructure[1]. Theproduct

~=(T*Yx T*X,pr~wy_pr~w~),

where pry T* Yx T*X -+ T* Y, pry, T” Y x T*X ~ T*X arethe natural projec-
tions, is a symplecticmanifold. Let f : X -÷ Y be a smoothmapping.We consider

the canonicallift T*f of the graphof f to a lagrangiansubmanifoldof~[see[6],

[23]]. In more generalcontext [cf. [17], [141], the lagrangiansubmanifold T*f C

C ~2 is called a symplectic relation from (T*Y, w~)to (T*X, w1). Let L be a
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lagrangiansubmanifoldof T* Y, we call the set

T*f(L) ={p2E T*X; thereexistsp1 E L:(p1,p2)E T*f}

the image [pullback] of L by the relation T*f. In particular if we definet(T*f) =

= { (PP p1) E T~Xx T~’Y; (p1,p2) E T*f } and take a lagrangian submanifold
N C T~Xthen the inverse image [pushforward] of N by the relation T*f is

definedas t(r*f)(N) [cf. [5], [10]].

It is well known that if the appropriatetransversality [10] [clean intersection

[22]] conditionsare fulfilled then T*f(L) is animmersedlagrangiansubmanifold

of (T*X, wi). It turns out [see [19], [11], [4]] that thegeneralsituation, when

T*f(L) is not even a submanifold, is important for applicationsof symplectic

geometryto physics. Most of the motivating examplesfor this subject areintro-

duced in [19], [4]. [12]. A very interestingthermodynamicalexampleof singular

image [cf. [liii was also suggestedby W.M. Tulczyjew. In a different physical

context singular lagrangiansubmanifoldshaveappearedin [4]. where they form

the setsof raystangentto thegeodesicflows on a hypersurface.This is connected

to the theory of nestedhypersurfacesin a symplecticmanifold describingthe

geodesicson a Riemannianmanifold with boundaryas well as to theproblemof

the shortestbypassingof an obstaclerepresentedby a smoothhypersurface[4]. It

turned out that thegeneric singularities in theseproblems,so-calledopen swall-

owtails, can be conveniently obtained as images from the regular lagrangian

submanifoldsby anappropriatesymplecticrelation.
The next motivation, for investigationspresentedhere,comesfrom thermody-

namics of phase transitions [11]. Let us consider the simple one-component

thermodynamicalsystem [cf. [18]] and admit the calss of deformationsonto

two isolatedsubsystemsof the samesample.The phasespacefor suchdeforma-

tions is the following

(T*Y~x T*1,_S1d7j_pidr~+1zidNi_52d7~_p2dJ~+p2wv2),

where T* Y~, { J~,lj, N1, — p1, — S1,~ T* }~, { I~,7, N~.— p2. -— S2. p2 } are

the phasespacesof the respectivesubsystemsand t’~.7~,N~.p1., S~.p~are the

standardthermodynamicalcoordinates.Let a lagrangiansubmanifold x L2 C

C T* x T* be a spaceof equilibrium statesof a compositeisolatedsystem.
After removing[chemical, thermal and mechanical]constraintsthe virtual states

of the system are defined by the coisotropicsubmanifold C cT* Y x T* Y2 [cf.

[5]],

C={Ij = l~,p1=p2, p1=p2,N1+N2=N= const.,N1> O.N2>O~.

C providesthe canonicalcharacteristicsubmersion,say p, onto the phasespaceof
the compositesystem (T*Y, —SdT—pdV) [cf. [18]], p : C—s.T*Y,p(~,lj,N1,
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p1,S1,p~,~, ~, N2,P2~S2, p2) = (V~+ ~, ~, p1, S1 + S2). Hence the space of

equilibrium statesof the compositesystem is an imagep(L1 x L2), which for

the Van der Waalsgas forms a singularlagrangiansubmanifold in T~KY [see Fig.

1] well known in thermodynamicsof coexistencestates[11]. It is obvious that

the symplecticrelation [reduction relation [5]] associatedtop canbe represented

as an appropriatelifting [cf. §3]. This examplesuggestesthat the very singular

constitutive sets in thermodynamicscan be derived as the symplectic imagesof
constitutive setsfor sufficiently deformedcompositesystems.The otherexamples

of singular lagrangian images coming from microlocal analysis of holonomic

systems[13], [16] and control of static mechanicalsystemswe presentin the

next sections.

The aim of this paperis to setup a methodof formalizingandgeneralizingthe

above observationsand derive the first results for further applications.We now

outline the organizationof the paper. In section 2 we introducesomeknown but

perhapsunfamiliar results of symplectic geometry, which we shall need later.

Section 3 is devotedto the more precisesymplectic treatmentof the thermody-

namic phasetransitions.Then, in Sections4. 5. 6, we formulatethe problemof

classification of images of lagrangiansubmanifoldsby meansof special classes

of symplecticrelations, namely these onesmost frequently encounteredin phy-

sics, i.e., pushforwardsandpulibacks of smooth stablemappings.Herewe obtain

a classificationof normal forms for pullbacksandpushforwardsof regularlagran-
gian submanifoldsin the casewhen dim X = dim Y‘~ 3, the mappingf is stable

and L hasa fold singularity.The main point of the techniqueis that we reduce

the classification of normal forms of pullbacksand pushforwardsto the classifi-
cationof normal forms of an appropriatemappingdiagram:

f
X )Y~g

~

x ~

for puilbacks,and

f g kY~—X >IR xIR

4 ~(id,id+~of)

x g >1R
1’xfl~

for pushforwards,where ~1, ~ are diffeomorphisms,~ is a smooth function and

rankDg is maximal.
One of the purposesof this paperis to give an effectiveapproachto the resolu-

tion problem for singularconstitutive sets[see [19]]. Theresolution or prepresen-
tation as an imageby meansof smoothsumplecticobjectsmeansthat all informa-
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tion aboutsingularitystructureis containedin the appropriatesmoothparametric
potential. So the classificationpresentedhere can be used to characterizethe
typical propertiesof resolving singularities. In §6 we show that the holonomic

regularinteractions[15] and openswallowtails [4] can be resolvedin the canoni-
calway.

2. DEFINITIONS AND PRELIMINARIES

Let (F, w) be a symplecticmanifold. A submanifoldL of Psuchthat w IL = 0
and dim P = 2 dim L is called a lagrangiansubmanifold of (F, w). Let (Fj, w1)
and (F2, w2) be symplectic manifolds and let and ~2 denote the canonical

projections of P2 x .F~onto and F2 respectively.The two-form w2ew1 =

= ~ — is clearly a symplectic form on P2 x Pj. A symplectic relation
from a symplectic manifold (F2, w2) to (Fr, w1) is a lagrangiansubmanifold of
the symplecticmanifold (P2 x F1, w2 ew1) [cf. [17], [6]]. For examplethe graph

of a symplecticdiffeomorphismCF of (Fi, w1) onto (P2, w2) is a symplecticrela-

tion [for more detaileddescriptionof the propertiesof symplecticrelationsand
their applicationsseee.g.[6], [5], [12], [14], [17], [23]].

Let R ~ (P2 x Pj, w2ew1) be a symplectic relation and let L C (F2, w2) be a

lagrangian submanifold of F2, the set R(L) ={p1 E1~there existsp~EL such

that (p2,p1) ER } is called the image of L under the symplecticrelation R [cf.
[5]]. If the transversalityconditions [or clean intersection conditions [22]]

betweenR and L x’P1 are fulfilled then this image is an immersedlagrangian

submanifold of (F1, w1) [see [10] p. 147]. If the transversalityconditionsare
not fulfilled then the imageof L can be singular,i.e. R(L) in this caseis a subset

of Pj but not a smooth submanifold.We limit all considerationsto locally alge-

braic [semi-algebraic] subsetsof .F~.For such subsetsthere exist [not unique]

partition-stratifications[see [9]] into smooth submanifoldsof .f~[called the
strata] which satisfy the local finiteness condition, i.e. every point in R(L) has

a neighbourhoodin whichmeetsonly finitely many strata.
Let us assumethat R fl L fl is an algebraic[or semi-algebraic]subsetof

P2 x .P~then R(L) = ir1(R fl L fl .F~) is also a semi-algebraicsubsetof J~[cf.

[9]]. We show that all strataof this subsetare isotropic submanifoldsof(P1,w1).

A submanifoldK C P~is called an isotropic submanifoldof (F1, w1) if K =

cf. [23]. Let X be a stratumof Rn L xI~ andlet xEX, then for all ~ T~X

we have 0 = (~A ~ ~r2w2 — = (~ ~ ir2 w2) —~ A s~,7rj
1’w~,where (~A

A~,ir~w
2)= 0 becauseof ~, i~E TX(L x Pj), thus we obtain

0 = (~A r~,ir~w1)= (Tsr1~A T7r1 77, w1),

but this is theconditionfor isotropyof the imageof the stratumX by the projec-
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tion 7T
1.

We considera typical exampleof a symplecticmanifold namelythecotangent

bundle [symplectic manifolds found in most applicationsare isomorphic to
cotangenbundles[14], [11], [19]] (T*X, d~~)where X is a smoothmanifold
and i~. is the Liouville form [cf. [1]]. The structureand propertiesof linear
symplectic relations havebeen thoroughlyinvestigatedin [6]; however,it turns
out that in physical applicationsnonlinearsymplectic relationsare important.In
this paper we shall not consider the categorialaspectof symplectic formalism

but rather we shall concentrateon a concreteclassof relations[defined below]
and develop a classificationof imagesof lagrangiansubmanifoldsunderrelations

belongingto this class.
Let X, Y be smoothmanifolds.Then (T* Yx T*X, d ~d ~ is a symplectic

manifold. Iff:X-+ Yis a differentiablemappingthenthe set

(1) T*f={((y,77),(x,~))ET*YxT*X;y=f(x),T~*f77=~}

is a symplectic relation from T*Y to T”X [cf. [23], [10]]. It is well knownthat

the relation T*f operateson certain lagrangiansubmanifoldsof (T* Y, wi,) to
give lagrangiansubmanifoldsof(T*X, wi). In particularif L C T*Yhas a genera-

ting function S : Y —s. JR then T*f(L) C T*X hasS of as its generatingfunction

[see [10]]. Let F : Yx IR”—s. JR be a Morse family [see [23], p. 25] generating
L C T* Y locally, then

aF aF
L = (y, 17) E T” Y; 77 = — (y, X), 0 = — (y, X)

ay ax

By using(1) andmatrix notationwe obtain for T*f the formula

(2) =

tDf(x)’q.

Insertingy = f(x) into equationsof L and substitutingtheseinto (2) we obtain

for T*f(L) the equations

aF 3
~=tDf(x) — (f(x),x)= —F(f(x),X)

0= — (f(x),X).

ax

Thus a generatingfamily for the imageof L underT*f hasthe form

(3) G(x, ~)= F(f(x), x).
If f is a submersionthen any lagrangiansubmanifoldof T’~’Y may be operated
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upon by T*f providing a lagrangiansubmanifoldof T*X. 1ff is not a submersion
then the respectivetransversalitycondition is not fulfilled for some class of

lagrangiansubmanifoldsand singularitiesof T*f(L) can appear.In this paperwe
proposean approachwhich would allow us to describesomegenericclassesof

singularitiesof theseimages.We considerthespaceof pairs(L, T*f) [rather than

the spaceof images T*f(L)]. In this spacewe introducean equivalencerelation
and then reducethe problem of finding local models for singularities of images

to the well known problem in the theoryof singularitiesof compositemapping
[see [2], [7]]. Similarly, we search the normal forms for the inverse images

t(T*f)(N) [calledpushforwards].

3. COEXISTENCE OF PHASES IN THERMODYNAMICAL COMPOSITE
SYSTEMS

Now we give the physically simple model [continuation of the one started in

Introduction], which can form the partial motivation for investigationof singular

lagrangian submanifolds, as well as the respectiveimages. This section is an

accountof someresearchsuggestedby W.M. Tulczyjew.
Let us considerthe one-componentsimplethermodynamicalsystemof volume

V [see[18]]. We look at the compositesystemas the volume element V of the

container subdivided into spatially isolated cells. Let the phase space of the

compositesystembe as follows: (T*X, dt~~),with local coordinates,sayX 1R31’,

T*X JR6k T*X :{ v~,s~,n
1, irs, r~,p

1, }and thesymplecticform

= (~dv~+ r~ds~+

wheren~are the mole numbersof respectivecells,v
1,s~are the molarvolume and

the molar entropy of the i-th cell. Thus accordingto classicalthermodynamics

irs, r1, 1i~aredefined as follows

ir~=—p1n1,r~=7n~,~

where p~,7, p~are the pressure, the temperature, and the chemical potential of

the i-th cell. We use also the following notation ~ = (p1,.., ~k
1’ (v

1) = (v1,

Uk), etc.

Let the internal energy (vi, s~,n~)—s- u(v~,~ n~)be the generating function

for the space of equilibrium states of the composite system u(v~,s1. n1) =

= ~ n~u(v1,se). The configurational domain K [attainable states] of the system

can be defined as follows
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K=~(v
1,s~,n~)EX;v~>O,s~>0,n1~0, for

i= I k,En1=n>0

Now we describethe set of equilibrium statesof this compositesystem[where
the constraintsof deformationare only virtual]. Let (T*Y, d~~)be the phase
spaceof the system,i.e. the phasespaceof the starting system,before deforma-
tion. Local coordinateson T*Y :{V,S,—p, T}. Let WC T*Y denotesthe set

of equilibrium statesof the systemactualsrealizedby the externalforces[consti-
tutive set]. Hence, following [19], we can adapt the variationaldefinition of
constitutive set introduced there and write for W: (V, 5, —-p, 7) E W if there

exists(vi, s~,n~)E K suchthat

1°,~ n~s~)=(V~s)~

(4)

2°,—p~~ n~v~+ T& ~ n1s1 ~ bu(v1,s~,n1)

for all displacements~ ~ ~n~) compatiblewith K, i.e.thereexists an integral

curve ‘y : JR—s. X of v E TX, v = ~ 6s1,
6n~)such that y([0, e[) E K for some

e>0.
It is easyto seethe following fact,

REMARK 3.1. A constitutive set W C T* Y is an image, by meansof T*f, of the

following resolving constitutive set W ={ p E T*X; ir~(p)E K, (v, p) ~ (v, du)

for each vE TK such that r
1(v) = rrx(p)}, where TK is defined as follows [cf.

[19]]

TK ={ U E T*X; thereexistsan integralcurve‘~‘ : JR—s.X of U

suchthat7([0, e[) C K for somee> 0}.

Nowwe have to take into consideration the following cases.

K’), n1> 0,for i = I k [k subsystems].

SoTK’ ={(ov~,5s1,ön~);~
6n~= o}. Taking 6n~~ 0, from 2°we obtain

(5) P = — — (vi, se), T = — (v., s.),
~~1 ~

but inserting into 2°, 6v
1 = 0~~sm= 0, for I ~ I, m<~kand 5n7 + on1 = 0,
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where0~r = Oifr*i,j, we obtain

(6) —p(u,.—u
1) + T(s1 —s1) —u(v1,s1)+ u(v1,s1)= 0.

For the Van derWaalssystemat constant(p, 7) thereare possibleat mostthree
solutions to the equations(5). By the equation(6) only one pair of solutions

can coexist.Thus the possiblesolutionsto the equations(5), (6) canbeformulat-
ed as follows,

(i) all subsystemsarein the samephaseu, = v~,s~= s1, I ~ i, j ~
(ii) each subsystemis in one of the two possiblephases:only two different

pairs,say (v,
1,s

1
1), (v~2,s~).

Let be a subsetof K ={ 1,. . . , k} correspondingto the solution(U’, ~i) and

‘2 = K the subsetcorrespondingto the solution (U2 S 2) respectively.Hence
we canwrite down: V = N v1 + N ~2 S = N s1+ N ~2 N = E n., N = n.1 2 1 2 1 i 2

and — p = — (v’, ~1), T = — (u 1,s 1), which are well known equationsfor
as

coexistenceof phases[see [11]]. Moreoverby (6) we obtain,as a consequence,

the Maxwell principle of equalareas.

K”), n
1 = Ofor some I El,.

Let us supposethat a cell, say I -th one,becameempty, i.e. K” ={ (Uj, ~

u~>0, s1> 0, n1 = 0 for some I El,, n1 >0 for i E K —{l~}.Henceat the points
of K”, by (4) we obtain

—p = — (u,, si), T = — (ui, si), for i E 1K — { I},
asi

V=v
1 E fl

1+U2~fl~,S=s1 ~ n1+s~~n~
fEI,_~1} iEI, jEJ~—~1} jEt2

and

(7) TKIK~= ~(ou~,Os~,One); ~ On~= 0, On1> O~. [1 is fixed].
iEIK

Letj ElK andj~ 1 thenby (7)

~ On~.
1EK-{j}

Substitutingthis formula in 2°of (4) we obtain the following inequality
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~ (—pu
1+Ts1+pu1—Ts,)~n1~<

i~K-{/}

~ (u(u~,s)—u(v1,s1))&n~.
iEK-{/}

In fact, by independencyof variations6n1 we havethe followingequations

(8) —p(u~—v1)+ T(s1 —s1) = u(v,,s1)—u(v1,s1), for i,j* 1,

and inequalities

(9) —p(v1— v~)+ T(s1 —s1) ~ u(v,, s1) — u(u1,s1), 1 ~j ~ k.

It is easyto check that (9) is trivially fulfilled. If the 1 -th cell is the lastone
wherethe first phaseexiststhenrepeatingtheabovecalculationswe obtain

p =— — (u1,s~), T= — (v1,s,),3t) 35

(v~,s,)= 1 (v
1,s1)= (v

2,s2),

V= v2N,S=s2N.

Thusthe equations(8) andinequalities(9) are trivially fulfilled. As a consequence
we obtainthe following proposition.

PROPOSITION3.2. The space of equilibrium states for the Van der Waals system

is a singular lagrangian submanifold representedas an image of a regular one
describingan appropriately deformedcompositesystem. [seeFig. 1].

Further applicationsof singular images in the critical region andin chemical
equilibriawe leave to a forthcomingpaper.

4. EQUIVALENCE FOR PULLBACKS AND PUSHFORWARDS OF LAGRAN-
GIAN SUBMANIFOLD

In this sectionwe give the moreprecise,geometricbasisfor the aboveintrodu-
cednotionsand formulatethe problem.

Let us considerthe set e of symplecticrelations in &2, which are definedby

smoothmappingsf : X —s. Y, i.e. everyrelation of 0 hasa form T*f. In the present
paperwe areinterestedonly in localpropertiesof symplecticrelationsandimages
of lagrangian submanifolds.Hence X, Y will be open subsetsof IR”, and JR~
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i,L’, a)(T*f) = ((pr 0~,,~ a
1 Op ofo ~i

1)(p, a, i,ti, a of)(T*f) = (p
1 ° ° +

+ a, ~ ° i~’~a~o(pof+ aof)= (p1 o ~, ~ o ~ a1 O~ + a)(T*f).

In this way we are ready to identify the action of r in the spaceof images

[called puilbacks or pushforwards]of lagrangian submanifoldsL C (T* Y,w~)

[and N C (T*X, w1) respectively]with respectto the relation T*f [as defined
below]. For this purposewe associatewith the pair (L, T*f) the pullbackof a
lagrangian submanifold L with respect to T*f, and to the pair (T*f, N) the

appropriatepushforwardof N.

DEFINITION 4.4. Two pullbacks(L1, T*f,), (L2, T*f2) [pushforwards(T*f1, N1),
(T*f2, N2)] are calledequivalentif thereexistsg = (so, ~‘, cx) E F suchthat

(L2, T*f2) = (CF(L1),g(T*f,)),
(13)

[(T*f2, N2) = (g(T*f1), ~‘4’(N1))resp.],

where CF E G~[‘I’ E G~]is the symplectomorphismof T* Y [T*X] defined by
((p,a) [defined by (iii, a of1) respectively].

REMARK 4.5. Let us take (id~,0, id~,/3) E G~x G1 and T*fE 0. We seethat

(id~,0, id~,~3)(T*f) = {((y, ii), (x, ~))E T*Y x T*X; y = f(x), ~ + d!3(x) =

= tDf(x)fl } and, if j3 ~ 0 then we have (id~,0, id~,/3) (T~f)~ 0. Thus the

action of G~x moves out of 0. Now we try to extendthe set0 to retainthe
action of x G1. Let f : X-s. Y be a smoothmap.We denotegraphfC YxX
by K. LetA be a differentiablefunction on K. Theset[see[17], [20]]

~pE T*(Y x X~r~,~(p)E K and(u, p) = <u, dA) for eachu E
(14)

E TK C T(Yx X) suchthatTy~x(U)= iry~(P)}

is a lagrangiansubmanifoldof (T*( Yx X), d(~~e

Let us denoteby 0’ thesetof symplecticrelationsin (T*(Y x X), d~~ed~3~)
definedby (14). Every relationR E 9’ is definedby the pair (f, A). It is easyto
seethat 0 C 0’ andevery elementof 9 correspondsto a pair (f, 0). The symplec-

tic relations belonging to 0’ are generatedby the Morse families of the form

(15) G(y,x;x)=A(y,x)+~x~(~—~(x)), m=dim Y, [locally],

where A is the local expressionof arbitrary continuationof the functionA to
Y x X. Obviously, we can take the pullback of A to X by meansoff, namely
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x is defined as a systemof functions and diffeomorphisms:(p,cx, i~,/3)

with an appropriatecompositionformula.
Let ((p,s,I/,a) be a triplet of mappings,p : Y-+ Y, i/i :X—s.X are diffeomor-

phismsand cx : Y—s. JR is a smooth function.The set F of suchtriplets definesan
equivalencegroupin ~� preservingtheset �1.

DEFINITION 4.1. Let g E F, then the equivalencerelation in 9 is definedby the

following action:

(11) (g, T*f)~_s.g(T*f)=((p,a,~i,c1of)(T*f),

where(Ip, a, 1,11, cx of) definesanelement(CF, ‘I’) of G~x G~asin (10).

PROPOSiTION4.2. Let T*fE 9 andg = ((p, iji, cx) E F then the resultof theaction
ofgon T*f is thesymplecticrelation T*(pofo ,L1)~,henceit belongstoO.

Proof According to Definition 4.1 and formulae(10) we have

((p,a,~, aof)(T*f) ={(((p o f)(~),tD(pf(~)Y1(~+

+ da(f(~))),t,Ii(x), tDt~i (i~~1(tDf (x~Fj + Df(~)dct(f(x))));

(12) ~EX,(f(~),~j)E T*Y}={(((pofo i1/~’(x),tDp(f°

° ~‘(x)y’(~ + da(fo ~1(x))), x, tDfo ~r’(x)(~+

+ da(fo ~i ~(x)))); (f~~[ 1(r) ~)E T* ~}.

Let i~denote tDp(fo ~Lr1(x)y~j + da(fo ~,1i~(x))),then

i~+dct(fo ~r’(x)) = tD(p(f°~[1(x))77.

Inserting this in thelastterm of (1 2) we obtain:

(~,a, ~, ccof)(T*f) ={((y, 77), (x, ~))E T~Yx T*X;y = (p°f°

° ~1(x) ~ = tDfo ~(x)tD(p(f° ~x))~}={((y, ~1),(x, ~))E

E T* Yx T*X; y = ~ of~ 1r 1(x), rD(p of~~i 1(x)77}.

This completestheproof of theproposition.

COROLLARY 4.3. The composition of syinpiectomorphismscorresponding to
(p

1, ~ cx1), (p, ~i, cx) is thesymplectomorphismcorrespondingto the triplet (~
° p, ‘~‘~° 1(1/, a1 ° p + a). This provides a formula for thegroupoperation in F.

Proof On the basis of Definition 4.1 and (12) we can write (p~,~ a,) -
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~, cx)(T~f)= ((p1,a1, ~, a1 0 (p ofo ~1)((p, a, ~, a of)(T*f) = (~ o (p a, 0 (p +

+ a, ~ ° ~ a1 O(pOf+ aof) = ((p, 0 (p, ~ ° ‘Ji, a~0 (p + a)(T*f).

In this way we are ready to identify the action of F in the spaceof images
[called pullbacks or pushforwards]of lagrangian submanifoldsL C (T* Y, ~)
[and N C (T*X, w.~.)respectively]with respectto the relation T*f [as defined
below]. For this purposewe associatewith the pair (L, T*f) the pullbackof a
lagrangian submanifold L with respect to T*f, and to the pair (T*f, N) the

appropriatepushforwardof N.

DEFINITION 4.4. Two pullbacks (L1, T*f,), (L2, T*f2) [pushforwards(T*f1, N1),

(T*f2, N2)] are calledequivalentif thereexistsg = ((p, ~i, a)E F suchthat

(L2, T*f2) = (CF(L1),g(T*f,)),
(13)

[(T*f2,N2) = (g(T*f1), ‘I’(N1)) resp.],

where CFEG~[‘I’EG1] is the symplectomorphism of T*Y [T*X] definedby

(p,a) [defined by (1’, a of1) respectively].

REMARK 4.5. Let us take (id~,0,id~,/3)EG~xG1 and T*fE®. We see that

(id~, 0, idx,/3) (T*f) r{((y 77), (x, ~))E T*Y x T*X;y = f(x), ~ + d(3(x) =

= tDf(x)n } and, if /3 ~ 0 then we have (id~,0, id~,/3) (T*f) ~ 0. Thus the

actionof G~x G~moves out of 9. Now we try to extendthe set 0 to retainthe
action of x G~.Let f : X—s. Ybe a smoothmap.We denotegraphfC Y xX

by K. LetA be a differentiablefunction on K. Theset[see [17], [20]]

{p E T*(Y x X~ir~1(p)E K and (u, p) = (U, dA) for eachu E
(14)

E TK C T(Yx X) suchthat r~~~(u)=

is a lagrangiansubmanifoldof (T*( Yx X),d(t~~e

Let us denoteby 9’ theset of symplecticrelationsin (T*(Yx X), ~
definedby (14). Every relationR E 0’ is defined by the pair (f, A). It is easyto

seethat 9 C 9’ andeveryelementof 9 correspondsto a pair (f, 0). The symplec-

tic relations belonging to 0’ are generatedby the Morse families of the form

(15) G(y,x;x)=A(y,x)+~ X~(y1—~(x)),m = dim Y, [locally],

where A is the local expressionof arbitrary continuationof the function A to
Yx X. Obviously, we can take the pullback of A to X by means off, namely
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A(x) = A(f(x), x). Then, more simply our sympictic relations [at leastlocallyl
arereproducedby asmoothfunction on X, sayA : X -s. IR, and a smoothmapping

f:X-s. Y defining the respectivemorse family G(y,x;X)=A(x)+~X1(y1—

For the pairs (f, A) determiningthe respectivesymplecticrelationswe
have the following transformationlaw [according to theaboveintroducedaction

QfG~xG1]:

(16) (f, A) ~°‘ ~ (~ofo ~ A 0 ~r’ + a ofo ~1—/3 o

If the pair (L, R) is a pullback of the lagrangiansubmanifold L C T* Y with
respect to the symplectic relation R = (f,A)C(T*Yx T”X, d~3~Odt~~)and
if F : Yx A -+ JR is a Morse family generatingL then the generatingfamily for

the equivalent pullback R ‘(L’) [with respect to the group G~x G~]has the

following form

(17) H:XxA~JR,HFo((p
1,id)((pofo 14r’,idA)+(/l_A)o ~

To obtain normal formsfor pullbacksandpushforwardsof lagrangiansubmani-

folds we use thestandardequivalenceof Morse families [cf. [24]], namelythe one
definedby the diagram

YxA— YxA

(18)

Two Morse families F, F’ : Yx A —s. JR are called equivalent if there exists a
diffeomorphism [asin the diagram(1 8)] suchthat

(19) F=F’o~.

Applying the formula (17) to the family 0 we set A = 0 and /3 = aof. The
resultingexpressionfor the generatingfamily of the equivalentpullback is

(20) H=(F+a)o(fo~Li’,idA).

Note that this generatingfamily may notbe a Morse family and the set generated

by it in the standardway may not be a submanifold.In the sameway are one
canwrite down thegeneratingfamily for the equivalentpushforward.

5. NORMAL FORMS FOR SINGULAR PULLBACKS AND PUSHFORWARDS

It is not easyto classify,in general,the normal forms of pullbacksand pushfor-
wardsof lagrangiansubmanifolds.This paper dealswith the problemin the case
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of small dimension of the manifoldsX, Y and for the pairs (L, T*f) [(T*f, N)]
in which L [N respectively]and f are locally stable in the standardsense[see

[24]. [8]].

PROPOSITION5.1. Let djm X = dim Y= k ~ 3, then for the generic puilbacks

(L, T*f), where L is of type A2 [fold, according to Arnold’s notation [3]] and

f is a stablemapping,the correspondinggermofgeneratingfamily H : X x JR —s. JR
for T*f(L), at everypoint ofXis equivalentto onein thefollowing table

k f:X-s.Y J1:XxlR-*JR

1 ~

y=x
2 X3±Xx2

~

1X1, Y2-~2

y1=x1, y2=x~ A
3+A.x

1, X
3+X(±x~±x~)

y
1=x1, y2~=x~+x1x2 X

3=/’Xx
1

y1=x1, y2=x2, y3=x3 X
3+Ax

1

Yi =x1, y2=x~,y3=x3 X
3+Xx

1, X
3+X(±x~±x~±x~)

yj=x
1, y2=x~+x1x2,y3=x~ A

3+Xx
3, X

3+X(±x~±x
1)

y1=X1, Y2~2~ y3=X3+X1X3+

+x1x3

Proof Since L C T* Yhasa singularityof typeA2 at a point p E L, it is generated

by the Morse family F: Yx JR —s. IR,

(21) F(y, x) = x~+ Xg(y), [see [24], p. 28],

where g is a smooth function, such that g(0) = 0, dg(0) ~ 0. It follows from

our definition of equivalenceof pairs (L, T*f), [see Definition 4.4] and the from

of the generatingfamily for pulibacksof L [see formula (20)] we can reduce the

problem of finding normal forms of such puilbacksto the problem of classifica-
tion of normal formsof mappingdiagrams

f

X g
(p

x ~‘
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Since the function g satisfies the conditiong(0) = 0 we canapply well known
Arnold’s results [2] on classificationof genericmapping diagramswith respect
to theso-calledstrongequivalence,i.e.

x ~ ~lR

I 1 Ii~+const.
~IR

On the basis of the classificationtheoremthere, with dim Y= dim X ~ 3 [2],

Theorem 5.1, p. 572-3], we obtain the normal forms for the function g using

f-liftable diffeomorphisms of (Y, 0). Inserting these forms in (21) we obtain

thenormal formslisted above.

REMARK 5.2. Some of the functions in the table of Proposition 5.1 are not

Morse families. HoweverthesetsR(L) definedby theequations~ = 3H/0x(x, A),

0 = 3H/3X(x, A) are semi-algebraicsetsand can be endowedwith the stratifica-

tion [see [9]] into isotropic submanifoldsof (T*X, d~9~).The genericsingularity

of a pullback in the caseof n = 1 andfold mappingfis shown in Fig. 2.

By using the methods of the proof of Proposition 5.1, we can conduct the

classificationof normal forms of R(L) for the casewhenfis a fold mappingand

>0<

Fig.2.
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L is a lagrangian sumbanifold of type A2 without restricting the dimension of

XandY.

PROPOSITION5.3. Let f : (X, x0) —s. (Y, y0), dim Y ‘~ dim X, be a foldsingularity,
i.e. f(x ~ x,~)= (x~,. - . , Xm) in local coordinateson (X, x0) and (Y, .v,)
respectively.Let (L,p) be also a fold singularity and let 7ry(p) = p0. Then the

normal formsfor generatingfamilies of pullbacks [without modal parameters]

are thefollowingfunctions

H(x, A) = A
3 + A(±x~±x~~ + Q(x

3,~., xm)), p> 2,

H(x, A) = A
3 + X(±x~±x~x

3 ±x~
1+ Q(x

4 Xm))j1 >4,

.E6 : H(x, A) = A
3 + A(±x~±x~± + Q(x

4

£7 : H(x, A) = A
3 + A(±x~±x~±x~x

2 + Q(x4 xm)),

E8 : H(x, A) = A
3 + A(±x? ±x~±x~+ Q(x

4,..., Xm))~

where Q(x~ Xm) is a nondegeneratequadraticform of m —s + 1 variables.

Proof According to Arnold’s method of liftable diffeomorphisms[see[2], Lem-
ma 3.1 adaptedto the real case] the problem of finding normal forms of the
compositionof mappings

,~ f-fold m g

JR
can be reducedto the problem of finding normalformsof functionsg : JR”~..÷ JR
with respectto the right action of the groupof diffeomorphisms[germs]preserv-

ing a hypersurface[apparent contour of f]. For this problem we can use the
results of [3] and obtain the following facts.If the normal form off is f= (x~,

X2 Xm), then the simple normal forms of functionsg : (JR~0) —s. (lR, 0),

such that dg(0)� 0, with respect to the group of germsof diffeomorphisms
preservingthe hypersurface{ x1 = 0 } are

A~:g=±y,±y~
1+Q(y

3

D~:g=±y1±y~y3±y~~+Q(y4,..,y~),

E7:g= ±y1±y~±y2y~+Q(y4 y~),

E8:g=±y1±y~±y~+Q(y4 y,~),

whereQ is a nondegeneratequadraticform dependingon theremainingvariables

[cf. [3], p. 104]. Combining these and the fact that the Morse family for L of type
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A2 has the form A
3 + g(y)A we obtain thethesisof our proposition. •

Now we passto the classificationof pushforwards.Let NC T~Xbe a lagran-

gian submanifoldgeneratedby a Morse family, say G : X x JR~’-s. JR. Using the
standardfacts concerninggeneratingfamilies for symplectic relations [cf. [19],

[5]] we obtain almostimmediatelythe following assertion,

PROPOSITION5.4. A generatingfamily for the pushforward(T*f, N), sayP: Yx
x JRN_s. JR canbe written asfollows

P(y; A, ~, v) = ~ A~(~—~(p)) + G(p, v),

~ vk),N~<m+n+k.

On the basis of this proposition and section 4 we obtain that the generating
family for anequivalentpushforwardis the following:

P(y;A,#,P)=~X
1~_((pofo ~r’).(p))+

+ aofo 1r
1(tz) + G(~V~(/.L),p),

wherea is a smoothfunction on Yand((p, a, 1i) is anelementof equivalencegroup.

PROPOSITION5.5. Let dim X = dim Y= k ‘~ 3, then the beginingof the classifi-
cation of the germs ofpushforwards(T*f, N), where Nis of typeA

2 andf is a

stablemappingis givenin thefollowing table. (seebelow).

Here G is a normalformfor a Morsefamily generatingthegermof lagrangian
submanifoldN, (p~are smoothfunctionsand [‘

3~]E ~2/f~ m2 where In is the
maximal ideal in the local algebra ofsmoothfunction-germsin (X,x

0).

Proof Applying the sameargumentsas in the proofof Proposition5.1, andusing
Arnold’s results [2] concerningthe classificationof mappingdiagrams

by meansof f-lowerablediffeomorphismswe obtain the classificationof normal
forms of functionsg : X—s. JR. Inserting these normal forms to the Morse family
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k f:X-s.Y G:XxIR-.lR

y=x X
3+Xx+13

1(x)
y = x

2 A3 + X(±x + ç~j(x2))+ /3
2(x)

y1=x1, y2=x2 X
3+Xx

1+83(x)

2 Yi =x~, y2=x2 X
3+X(x

1+x2)+j34(x), X
3+X(x

1 ±x~)+~,(x),A
3 + X(x

2 ±x1 x2 + 4)+ /36(x)

y1=4+x1x2, y2=x2

YI ~l’ Y2=~2, y3x3 X
3+Xx

1+138(x),
y2=x2, y3=x3 X

3+X(x
1+x2)+139(x),X

3+X(x
1±x~±x~)+

+/310(x), X
3+X(x

2+x1x3)+B11(x), X

3+

+ X~x
2+ x1x2+ 4±x1 4)+ 1312(x)

3 y~=$+x~x2, y2=x2, y3=x3 X
3+X(x

1+x3)+j313(x), X
3+X(x

1±x~+~3(4

+x1x2,x2))+1314(x),X
3+X(x

3±x~+x1~4(4+

+x1x2,x2)) +/315(x),

yj=Xi +X2X1 +X3X1~y2=x2, y3=x3 A
3 +X(±xj+ ~

5(4+x24+x3x1, x2,x3)+

+ /316(X)

G(x, A) = A
3 + Ag(x) + /3(x) we obtain the desired result with theadditional term

~3(x)moduloan elementbelonging tof* 1112.

As we see this classificationis not satisfactorycompleteand dependsheavily

on the classification of mapping diagrams of more general type, hence we leave it

to the forthcomingpaper.

6. FINAL REMARKS AND APPLICATIONS

6.1. As a simple mechanicalexample of singular image with respect to the

symplecticreduction we consider the finite elementanalogueof the Euler beam
problem illustrated in Fig. 3. This system,consistingof two rigid rods of unit

length connectedby friction-lesspins, is subjected to a compressiveforce Pq

which is resistedby a torsion spring of unit strength.The angle p and the force

Pq are consideredcoordinatesof a manifold X. Togetherwith the torquep~and
the position q they form a canonicalcoordinatesystem(~. Pq~P~,.—q) of T*X.
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Fig. 3.

The potential energy of this system[generatingfunction of the lagrangian sub-

manifold N C T*X] has the form

V((p, Pq) = (p2 —
2Pq cos (p.

If we take the reduced phase space T* Y with the local coordinatesystem(Pq~

— q) and the mappingf : X —s. Y, f((p, Pq) = Pq then we obtain for the image of
N the following formula

av
rT*f(N) (pq,_q)ET*Y;O= — (~~Pq)

av
~O+ 2P~sin ~,—q = ((p~Pq)~2cos(p,

aPq

which is a space of equilibrium statesin the control phasespace T* Y. A simple

calculation shows that if Pq = — ~- p = 0; V is not Morse family and the set

tT*f(N) hasa standard singularity well known in bifurcationtheory [seeFig. 4]..

Unfortunately that singularity is not stable,it disappearsafter a small deforma-

tion of V becausethe respectivetransversalitycondition [cf. §2] is not fulfilled.
However for examplesof this type we can constructthe spaceof deformations

andtreat the unstablesingularlagrangiansubmanifold as an elementof a family

of deformations[a kind of unfolding [9] or more preciselyWassermann’s(r, s)-

-unfolding [21]]. The number of parametersof this family is connectedto the

codimension according to the aboveclassified singularity types. This approach
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Pq

0 2

1 IT*f(N)

Fig. 4.

leads to the classification of stable images according to the composition of two

reduction relations.

6.2. Let lR2’~ = {(x, p)} be a phasespaceof a particle in classicalmechanics[1],

let h(x, p) = (I ~ 2 — 1) be a Hamilton function for this particle. Then the

space of bicharacteristics in H = { h = 0}, say M, which forms a manifold of all

oriented lines in JR~has a canonical symplectic structure. Let K be a hypersur-
face in IR0 [an obstacle] and ‘y a geodesic flow on K [e:g. that one defined on K

by the variational problem of shortest bypassing of K]. It is proved in [4] that
the set of oriented lines tangent to ‘y on K forms a lagrangian submanifold in
M which is 1?ot necessarily smooth. The appropriate local classification of these

singularlagrangiansubmanifoldsis carried out in thequotedpaper.It turnedout

that the generic singularitiesof this classification,so-calledopen swallowtails,

can be convenientlydescribedin the SL
2(JR)-invariantsymplecticspaceof binary

forms of an appropriatedegree. Wefind, usingthe results of the previous sections,
that the openswallowtails can be obtainedas imagesfrom the regularlagrangian
submanifoldsby means of a canonical symplecticprocedure.Now we briefly

describethis resolution procedure.
Let us consider the space of polynomialsof the form [cf. [4]]
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x211 x2”1 x’~
T*Q=~~+q

1 (2n—l)! q~

—p~ + - . . + (— l)~’p,~
(n—l)!

endowed with the symplectic form w = ~ dp1 A dq1. Let a hypersurfaceHC

C T*Q be defined by a Hamiltonian of translations along the x-axis, h = p1 +

+q0_1p~+ , H={h = o}. ‘~~H:H~T*Q is an embeddingof

H then the pull-backWH = i~whasrank 2n —2, so haskernela onedimensional

subbundle TJJ
1 C TH, the Hamilton foliation of H, the integral curvesof which

are the bicharacteristicson H. The space,sayM, of [local] bicharacteristicson H
is itself a symplectic manifold with the induced symplecticstructureand the

canonicalprojectionir : H—s.M associatingto eachpoint of H the local bicharac-

teristic on H throughit.

DEFINITION. [cf. [4]]. The systemof objects(H, L, 1), where His a hypersurface
in T*Q, L is a lagrangian submanifold in T*Q tangentwith the first ordertangen-
cy to H alongsubmanifold 1 = H fl L, which hascodimension1 in L, is calleda

symplectictriplet in T*Q.

Let us define L as a trivial section of T*Q, L = {p
1 = . . - = p,~= o}. It is

easily seen that (H, L, H fl L), where H = { h = 0), is a symplectic triplet. An

image L = ir(Hfl L) is called an n — 1-dimensionalopen swallowtail [4]. It is
not difficult to provethe following fact

PROPOSITION. An open k-dimensionalswallowtail can be representedas a
canonicalpushforwardofa regular lagrangiansubmanifoldLk, i.e.

Lk=Tf(Lk),dirnQ=k+ 1,

whereLk is a lagrangian submanifoldof(T*Q, WQ) with the followinggenerating

function:

k—2 k—i—1

,~(q1,...,~k+l)”.~ s=2 ~

I k—2
+ 2
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k—2 1

E~”~
+E~”~ k+2 — 2 2k+3k+,~l1 qk+l 2k+3

where

k+ 1 (_ ]~J_S

,~ (J—s)! (2k + 3 —j—r)!

1 k+1 (—l)’(j—l)
~ = (— I )k_r — , 1 ~r, s ~ k+

(2k + 3 —r)! j=2 /!(2k + 3 —j—r)!

and f is definedasfollows:

f(q) = (f1(q) f~(q)), (q) = (q1, - . . qk+ ,)

/—1 1

~(q)= E(_l)’ —~q~q1~1_1+

I
q’~’, 1=1 k.

(/+ 1)! 1

6.3. Now we show that the regular geometricinteractionbetweenholonomic

components[in the senseof Kashiwarain Micro-local calculus [13], [16]] can
be resolved, i.e. obtainedas aTn image of a regularlagrangiansubmanifoldby a
symplecticreductionrelation.

Let V,, 1’~~be lagrangiansubmanifoldsof a symplectic manifold (P, w) [the

respective holonomic components of aninteraction[15]].

DEFINiTION. The lagrangian subset U V~[or pair (J’~, J’)] of (P, w) is called

a regulargeometricinteractionif the following conditions are fulfilled

a) J’~flJ~isasubmanifoldofP,dim Vjn 2= dim
b) for everypointp E Vj fl we have

7~(Vjn V2)=T~V1nT~V2.

Let (l’~ U l~, p) be agerm of a regular geometric interaction in (P, w).

PROPOSITION.There is a symplecticmanifold (F, Z~J)anda symplecticreduction
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relation R C (Px F, ~i Ow) such that for a germof regulargeometricinteraction,

say (V1 U I’~,p) C (F, w) we havea canonicalresolutionformulae

V1uV2=R(L),

for someregular lagrangian submanifold L C (~,~).

Proof On the basis of the Kostant-Weinsteintheorem[see.g.[10], [23]] wecan

isomorphicallyrepresent(F, w) by meansof (T* ~ wy), where is azero-sec-
tion of the bundle. Hence V~={p, = = p~= 0} and a generatingfunction

for l’, in T* V1, can be written as H(q) = q~a(q),where p(0) � 0 [because of
the point b) of the definition]. So we can chooselocal Darboux coordinates

in T* V1, nearp, preservingthe zero section and such that the respectivegerm
of generatingfunction for is

H(q) = q~.

Takingthe new Darbouxcoordinatesin T* l/~preservingVj, namely

qn,pi,...,pn)=(qi_~p1,q2, ~

we obtain the following local equations for and 1’~ respectively

J~j:p1= =p~=O,

I’:p2=0,...,p~=0,q1=0.

But for this germ of geometricinteraction we can easily write the respective
generatingfamily:

F(q1,..., q~,X)=q1A
3.

If T*X is any initial, specialsymplecticstructureof (F, w) then using theMorse

family, say G : X x Q x JR’S’ —s. IR, for the respectivesymplectomorphismsin the
aboveprocedure[according to [17], [20]] we canwrite down the desiredgenerat-

ing family for U

F(x;v,p,A)=G(x
1,...,x,v1,...,v,1i1, /IN)+P1A.

This completestheproof.

Having such analytical description of regular holonomic interaction we can

formulate the appropriatestability problemanduseit to determinethe respective

Gause-Manin systems [15], [16].
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6.4. [Landau singularities]. Let us consider the motion of a free particle of mass

m in space-time JR4 endowed with the Minkowski metrictensor.The phasespace

is the cotangent bundle P T*lR4. A mass surfaceor a first classconstraint
submanifoldM C P is defined by

M ={(x, p)EP;p2 = p~—p2= m2, p
0> 0},

where the respective Hamiltonian is defined as a zero function on 114.

In elementary particle physics the collision processesconstitute one of the

main subjects of interest [for the basis of the theory of multiple collisions pro-

cessesseee.g. F. Pham,<<Singularities des processusde diffusion multiple>>, Ann.
Inst. H. Poincaré 6, 2(1967)]. Let us consider a collision processI—s.Jdescribed

by the coisotropicsubmanifoldM~.J) in H F1, namely

iEIUJ

(*) M(JJ)=~(X,P)Efl F1;(~~Efl J~i,~pi= ~

ZEIUJ IEIUJ 101 JEJ

where I, J are the numberingsets for the respectiveparticles [as in Fig. 5] in the

collision process(I, .1). Let us consider an associatedcausal configuration for

(I, J) corresponding to the graph G of an appropriatemultiple diffusion process

[see Fig. 6]. Let I resp. J denote the set of external lines incoming and resp.

outgoing from G. Let MG be the coisotropic submanifold defined analogously

as in (*) using the conservationlaws. It is easy to check that the symplectic

spacesM(JJ)/ and MGI associatedcanonically with M(JJ) and MG are iso-
morphicto T*M(J ~ and T*MG respectively,where

~IE~
l={1,2,3} J=~4,5,6}

Fig. 5.
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Fig. 6.

D M(JJ) = ~(p) E JR
4N. p~— p

1
2 = m

1, p01> 0, ~ p1 =

iEI fuJ

andanalogouslyfor MG.
Wehave here the natural projection

f : MG .~ M(JJ)~

which definesthecorrespondingsymplecticrelation

T*fC~(JJ)I= X MG/=

responsiblefor the geometrical propertiesof the collision process.The set of

critical valuesoff, say FfCM(JJ) [an apparentcontour of f] is called a Landau

set correspondingto the graph G. The singularity type off is responsiblefor the

singularity type of theLandausetandis frequentlycalled theLandausingularity.

COROLLARY. The geometricalproperties of a multiple diffusion processwith a

graph G are describedby thepair:

(LFf, T*f),

where Lrf is a constrainedlagrangian submanifoldover constraint I’f [cf. [12]].

Hence the classification of normal forms, as in the Pham approach for the
Landau singularities, can be easily derived using our classificationtheoremsfor
pullbacks.
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