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Abstract. Classification of singular lagrangian submanifolds which appear as images
of a regular one under a symplectic relation, is considered from the point of view of
standard singularity theory. The classification is carried out in small dimensions and
restricted to special types of symplectic objects. Normal forms for singular pull-
backs and pushforwards are given using an appropriate symplectic equivalence
group. It is shown that the general classification problem reduces to the classifica-
tion problem for appropriate mapping diagrams. An approach to the classical
theories of phase transition is given based on the geometry of singular lagrangian
images. The variational open swallowtails and regularly intersecting pairs of holo-
nomic components are resolved using an appropriate reduction relation. Examples
are given of singularities encountered in physics.

1. INTRODUCTION

Let (T*X, wX), (T*Y, wY) be cotangent bundles endowed with the canonical
symplectic structure [1]. The product

Q=(T*Y x T*X, pr’;w},——pr}(wx),
where pry :T*Y x T*X - T*Y, pry :T*Y x T*X - T*X are the natural projec-
tions, is a symplectic manifold. Let f: X - Y be a smooth mapping. We consider
the canonical lift 7*f of the graph of f to a lagrangian submanifold of [see [6],

[23]]. In more general context [cf. [17], [14]], the lagrangian submanifold 7*f C
C £ is called a symplectic relation from (T*Y, wY) to (T*X, wX). Let L be a
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lagrangian submanifold of T*Y, we call the set
T*f(L) ={pze T*X, there exists p,€L:(p,p,) € T*f}

the image [pullback] of L by the relation T*f. In particular if we define UT*f) =
={(py,2)) ET*X x T*Y; (p,,p,)ET*f} and take a lagrangian submanifold
N CT*X then the inverse image [pushforward] of N by the relation T*f is
defined as "(T*f}V) [cf. [5], [10]].

It is well known that if the appropriate transversality [10] [clean intersection
[22]] conditions are fulfilled then T*f(L) is an immersed lagrangian submanifold
of (T*X, wy). It tums out [see [19], [11], [4]] that the general situation, when
T*f(L) is not even a submanifold, is important for applications of symplectic
geometry to physics. Most of the motivating examples for this subject are intro-
duced in [19], [4], [12]. A very interesting thermodynamical example of singular
image [cf. [11]] was also suggested by W.M. Tulczyjew. In a different physical
context singular lagrangian submanifolds have appeared in [4], where they form
the sets of rays tangent to the geodesic flows on a hypersurface. This is connected
to the theory of nested hypersurfaces in a symplectic manifold describing the
geodesics on a Riemannian manifold with boundary as well as to the problem of
the shortest bypassing of an obstacle represented by a smooth hypersurface [4]. It
turmed out that the generic singularities in these problems, so-called open swall-
owtails, can be conveniently obtained as images from the regular lagrangian
submanifolds by an appropriate symplectic relation.

The next motivation, for investigations presented here, comes from thermody-
namics of phase transitions [11]. Let us consider the simple one-component
thermodynamical system [cf. [18]] and admit the calss of deformations onto
two isolated subsystems of the same sample. The phase space for such deforma-
tions is the following

(T*Y, x T"‘Y,—Sld71-pldVl +u AN, = §,dL—pdV, +u,dN,),
where T*YVP {I/l' TigNl’_p]y—Sla #1}’ T*),Zs {I/2~ ];3A]2=_p2~"_52~ #2} are
the phase spaces of the respective subsystems and V. 7: NI., p; Si. u; are the
standard thermodynamical coordinates. Let a lagrangian submanifold Ly xL,C
CT*Y x T*Y, be a space of equilibrium states of a composite isolated system.

After removing [chemical, thermal and mechanical] constraints the virtual states
of the system are defined by the coisotropic submanifold CQT*Y1 x T% Y2 [cf.

[511
C={T1=Tz,;vl:pz,ul:uZ,Nl + N,=N=const.,N;>0,N,>0].

C provides the canonical characteristic submersion, say p, onto the phase space of
the composite system (T*Y, —SdT —pd V) [cf. [18]],p : C— T*Y, p( Vl, TI, Nl,
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Py Sty Vo Ty Ny Dy, Sy ) = (V + 1), T.p,S,+S,. Hence the space of
equilibrium states of the composite system is an image p(L, x L,), which for
the Van der Waals gas forms a singular lagrangian submanifold in T*Y [see Fig.
1] well known in thermodynamics of coexistence states [11]. It is obvious that
the symplectic relation [reduction relation [5]] associated to p can be represented
as an appropriate lifting {cf. §3]. This example suggestes that the very singular
constitutive sets in thermodynamics can be derived as the symplectic images of
constitutive sets for sufficiently deformed composite systems. The other examples
of singular lagrangian images coming from microlocal analysis of holonomic
systems [13], [16] and control of static mechanical systems we present in the
next sections.

The aim of this paper is to set up a method of formalizing and generalizing the
above observations and derive the first results for further applications. We now
outline the organization of the paper. In section 2 we introduce some known but
perhaps unfamiliar results of symplectic geometry, which we shall need later.
Section 3 is devoted to the more precise symplectic treatment of the thermody-
namic phase transitions. Then, in Sections 4, 5, 6, we formulate the problem of
classification of images of lagrangian submanifolds by means of special classes
of symplectic relations, namely these ones most frequently encountered in phy-
sics, i.e., pushforwards and pullbacks of smooth stable mappings. Here we obtain
a classification of normal forms for pullbacks and pushforwards of regular lagran-
gian submanifolds in the case when dim X = dim Y < 3, the mapping f is stable
and L has a fold singularity. The main point of the technique is that we reduce
the classification of normal forms of pullbacks and pushforwards to the classifi-
cation of normal forms of an appropriate mapping diagram:

x— v,
vl ol R
X———¥ &
for pullbacks, and
YTl x—£ LRExR
v] | el | | Gd.id + o f)

Yyl x5 LRFxR

for pushforwards, where ¥, p are diffeomorphisms, « is a smooth function and
rankDg is maximal.

One of the purposes of this paper is to give an effective approach to the resolu-
tion problem for singular constitutive sets [see [19]]. The resolution or prepresen-
tation as an image by means of smooth sumplectic objects means that all informa-
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tion about singularity structure is contained in the appropriate smooth parametric
potential. So the classification presented here can be used to characterize the
typical properties of resolving singularities. In §6 we show that the holonomic
regular interactions [15] and open swallowtails [4] can be resolved in the canoni-
cal way.

2. DEFINITIONS AND PRELIMINARIES

Let (P, w) be a symplectic manifold. A submanifold L of Psuch that w |L =0
and dim P = 2 dim L is called a lagrangian submanifold of (P, w). Let (Pl, wl)
and (Pz’ “’z) be symplectic manifolds and let T and m, denote the canonical
projections of P,x P onto B and P, respectively. The two-form w,Qw, =
= n;‘wz—ﬂ;“wl is clearly a symplectic form on P, x £. A symplectic relation
from a symplectic manifold (Pz, “’2) to (Pl, wl) is a lagrangian submanifold of
the symplectic manifold (P, x £, w, ©w,) [cf. [17], [6]]. For example the graph
of a symplectic diffeomorphism & of (Pl, w,) onto (Pr ‘*’2) is a symplectic rela-
tion [for more detailed description of the properties of symplectic relations and
their applications see e.g. [6], [5], [12], {14],[17], [23]].

Let R _C_(P2 xPl, wzewl) be a symplectic relation and let L ;(Pz, ‘*’2) be a
lagrangian submanifold of P, the set R(L) ={p1 GPI; there exists pzeL such
that (p,, P)ER }is called the image of L under the symplectic relation R [cf.
[51]. If the transversality conditions [or clean intersection conditions [22]]
between R and L x-F are fulfilled then this image is an immersed lagrangian
submanifold of (P, w,) [see [10] p. 147]. If the transversality conditions are
not fulfilled then the image of L can be singular, i.e. R(L) in this case is a subset
of £ but not a smooth submanifold. We limit all considerations to locally alge-
braic [semi-algebraic] subsets of Pl For such subsets there exist [not unique]
partition-stratifications [see [9]] into smooth submanifolds of F [called the
strata] which satisfy the local finiteness condition, i.e. every point in R(L) has
a neighbourhood in P1 which meets only finitely many strata.

Let us assume that RN L N A is an algebraic [or semi-algebraic] subset of
Pyx P then R(L)=n(RNLNA) is also a semi-algebraic subset of F [cf.
[9]]. We show that all strata of this subset are isotropic submanifolds of (Pl, w)).
A submanifold K C Pl is called an isotropic submanifold of (Pl, wl) if w, | x =0.
cf. [23]. Let X be a stratumof RN L xP1 and let x € X, then forall {,ne T X
we have 0= (S An, Tr;wz—wi"wl) = An,riw,) = An mfw)), where (¢ A
A, ﬂ;wz) = 0 because of {, n & T (L x Pl), thus we obtain

0=GAnmfw)=(Tn {\NTm 0, w),

but this is the condition for isotropy of the image of the stratum X by the projec-
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tion m,.

We lconsider a typical example of a symplectic manifold namely the cotangent
bundle [symplectic manifolds found in most applications are isomorphic to
cotangen bundles [14], [11], [19]] (T*X, dL‘)X) where X is a smooth manifold
and §, is the Liouville form [cf. [1]]. The structure and properties of linear
symplectic relations have been thoroughly investigated in [6]; however, it turns
out that in physical applications nonlinear symplectic relations are important. In
this paper we shall not consider the categorial aspect of symplectic formalism
but rather we shall concentrate on a concrete class of relations [defined below]
and develop a classification of images of lagrangian submanifolds under relations
belonging to this class.

Let X, Y be smooth manifolds. Then (T*Y x T*X, dd,ed 19X) is a symplectic
manifold. If f : X - Y is a differentiable mapping then the set

(1) T*f={((y.m), (x,NET*Y x T*X;y = f(x), T}fn={}

is a symplectic relation from T*Y to T*X [cf. [23], [10]]. It is well known that
the relation T*f operates on certain lagrangian submanifolds of (T*Y, wy) to
give lagrangian submanifolds of (T*X, w,). In particular if L C T*Y has a genera-
ting function S :Y — KR then T*f(L) C T*X has Sof as its generating function
[see [10]]. Let F:Y x R > IR be a Morse family [see {23], p. 25] generating
L C T*Y locally, then

oF oF
L={(y,mMeT*Y;n= — (¥»,N),0=— (»,0),.
oy oA
By using (1) and matrix notation we obtain for 7*f the formula

(2 §="'Df(x)n.

Inserting ¥ = f(x) into equations of L and substituting these into (2) we obtain
for T#f(L) the equations

oF ]
$="Df(x) — (f(x), )= — F(f(x),N\)
dy ox

oF
0= — (S, N).
oA

Thus a generating family for the image of L under 7*f has the form
3) G(x,\)=F(f(x), 7).

If fis a submersion then any lagrangian submanifold of 7*Y may be operated
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upon by T*f providing a lagrangian submanifold of T*X. If fis not a submersion
then the respective transversality condition is not fulfilled for some class of
lagrangian submanifolds and singularities of T*f(L) can appear. In this paper we
propose an approach which would allow us to describe some generic classes of
singularities of these images. We consider the space of pairs (L, T*f) [rather than
the space of images T*f(L)]. In this space we introduce an equivalence relation
and then reduce the problem of finding local models for singularities of images
to the well known problem in the theory of singularities of composite mapping
[see [2], [7]]. Similarly, we search the normal forms for the inverse images
(T*£)N) [called pushforwards].

3. COEXISTENCE OF PHASES IN THERMODYNAMICAL COMPOSITE
SYSTEMS

Now we give the physically simple model [continuation of the one started in
Introduction], which can form the partial motivation for investigation of singular
lagrangian submanifolds, as well as the respective images. This section is an
account of some research suggested by W.M. Tulczyjew.

Let us consider the one-component simple thermodynamical system of volume
V [see [18]]. We look at the composite system as the volume element V of the
container subdivided into spatially isolated cells. Let the phase space of the
composite system be as follows: (T*X, dl?X), with local coordinates, say X = R3%,
T*X =R, T*X :{v,s;, n, m, 7, } }and the symplectic form

[ [

k
By = Z (ﬂidv\i + 7,ds; + /Iidni),

i=1

where n; are the mole numbers of respective cells, v,, s, are the molar volume and
the molar entropy of the i-th cell. Thus according to classical thermodynamics

T, T ﬁl. are defined as follows

mo=—piny, 7= Tng By =u—pv+ Iy,
where p;, T, y; are the pressure, the temperature, and the chemical potential of
the i-th cell. We use also the following notation (p;) = (7, - - ., ;). (v;) = (v,
. uk), etc.

Let the internal energy (vi,si,ni)eu(vi,si,ni) be the generating function

for the space of equilibrium states of the composite system u(vi,si,ni)z

= Z nu(y;, ;). The configurational domain K [attainable states] of the system
i

can be defined as follows
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K = (ui,si,ni)eX; v, >0,s5>0, n20, for

i=l,...,k,Zni=n>0€.
i

Now we describe the set of equilibrium states of this composite system [where
the constraints of deformation are only virtual]. Let (T*Y, dt?Y) be the phase
space of the system, i.e. the phase space of the starting system, before deforma-
tion. Local coordinates on T*Y :{V, S, —p, T}. Let WC T*Y denotes the set
of equilibrium states of the system actuals realized by the external forces [consti-
tutive set]. Hence, following [19], we can adapt the variational definition of
constitutive set introduced there and write for W: (V,S,—p, T) € W if there
exists (v, S;s nl.) € K such that

H
I, f(vi,si,ni)=(znivi,z n,.s,.)=(V, s),
i i

(4)
20, —pb Z nv, + T8 Z ns; <oéu(v,s;,n)
i i

for all displacements (8v,, 8s;, 6n;) compatible with K, i.e. there exists an integral
curve v :R> X of vE TX, v=(8y, 35, 6nl.) such that y([0, €[) € K for some
€> 0.

It is easy to see the following fact,

REMARK 3.1. A constitutive set W C T*Y is an image, by nteans of T*f, of the
following resolving constitutive set W={p & T*X; 7rX(p) €K, (v,p)<(v, du)
for each v& TK such that 'rX(U) = 7rX(p)}, where TK is defined as follows [cf.
[19]]

TK ={v & T'*X;there exists an integral curve y : IR > X of v
such that y([0, €[) C X for some € > 0}.

Now we have to take into consideration the following cases. L]

K'),n.>0,fori=1,...,k[ksubsystems].
So TK' ={(8v;, §s;, 6n,); Z 8n, = 0}. Taking én; =0, from 2° we obtain

ou ou
(5) p=— a_J (v;, 8;), T= g (v;, ;)

i i

but inserting into 2°, (Svl =0, 6sm =0, for 1 <1, m<k and 6ni + 6n]. =0,
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where 6nr =0ifr+i,j, we obtain
(6) =P =) + Fls; —s5;) —uy;,s;) + u,s;) = 0.

For the Van der Waals system at constant (p, T) there are possible at most three
solutions to the equations (5). By the equation (6) only one pair of solutions
can coexist. Thus the possible solutions to the equations (5), (6) can be formulat-
ed as follows,

(i) all subsystems are in the same phase U =08 =8 1 <i,j<k,

(ii) each subsystem is in one of the two possible phases: only two different
pairs, say (v}, 5), W2 sP).

Let I, be a subset of K ={1, ..., k}corresponding to the solution (v1,s!) and
I, =K —1, the subset corresponding to the solution (v 2 52) respectively. Hence

we can write down: V=Nl + Nv2 S=N;s' + Nysi N, = Z n, N,= Z n,
ier, T2 gep i

ou ou | . .
and —p = -5-0- (w,s), T= a_s (v',s", which are well known equations for

coexistence of phases {see [11]]. Moreover by (6) we obtain, as a consequence,
the Maxwell principle of equal areas.

K™, n, =0 forsome 1 €1,.

Let us suppose that a cell, say 1-th one, became empty, ie. K" ={ (v;, S 1)
v;>0,5;> 0, n, =0 for some 1 €1,,n, >0 fori € K —{1}}. Hence at the points
of K", by (4) we obtain

ou ou '
—p= . (v;,8,), = ™ (v;,s;), for ie K—{1},

i i

V=l Z n].+v24v‘_ni,5=s1 Z n/+s22ni

jel-1{1} i€l jel-{1} iel,
and
(7) TK |in = {(8v,, 85, 8n); ) on,=0.6n, > 05, (1 is fixed].
i€k ’

Letje K andj# 1 then by (7)

Bn]. = — Z on,.

ieK-{j}

Substituting this formula in 2° of (4) we obtain the following inequality
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Z (—pyv; + T5; + py; — Ts].) én, <
ieK-{j}

< Z (U, s) —uly;,s)) 8n;.

i€k -{j}
In fact, by independency of variations én; we have the following equations
(8) —py; —v].) + T(s; —s].) =u(v,;,s;) —-u(vl., sl.), for i,j#1,
and inequalities
9) —p(v1 — v/.) + T(sl —s].) < u(vl, sl) — u(v]., s].), 1 <j<k.

It is easy to check that (9) is trivially fulfilled. If the 1-th cell is the last one
where the first phase exists then repeating the above calculations we obtain

du du
p=- a—v (viasi)s = g (U’., si)’

= = (p2 2
@5, = (@ 5) = (%59,
V=0v2N,§=sN.

Thus the equations (8) and inequalities (9) are trivially fulfilled. As a consequence
we obtain the following proposition.

PROPOSITION 3.2. The space of equilibrium states for the Van der Waals system
is a singular lagrangian submanifold represented as an image of a regular one
describing an appropriately deformed composite system. [see Fig. 1].

Further applications of singular images in the critical region and in chemical
equilibria we leave to a forthcoming paper.

4. EQUIVALENCE FOR PULLBACKS AND PUSHFORWARDS OF LAGRAN-
GIAN SUBMANIFOLD

In this section we give the more precise, gecometric basis for the above introdu-
ced notions and formulate the problem.

Let us consider the set ® of symplectic relations in £, which are defined by
smooth mappings f : X = Y, i.e. every relation of ® has a form T*f. In the present
paper we are interested only in local properties of symplectic relations and images
of lagrangian submanifolds. Hence X, Y will be open subsets of IR”, and IR™
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¥, O)(T*) = (o}, 0y, ¥y, 0090 fo ™, &, ¥, o FUT*) = (90 0, & 00 +
+a, Yoy, o opof+aof)=(p 00 ¥ oV, op+a)TH). .

In this way we are ready to identify the action of I' in the space of images
[called pullbacks or pushforwards] of lagrangian submanifolds L C (T*Y, wY)
[and N C(T*X, wy) respectively] with respect to the relation T*f [as defined
below]. For this purpose we associate with the pair (L, T*f) the pullback of a
lagrangian submanifold L with respect to T*f, and to the pair (T*f, N) the
appropriate pushforward of N.

DEFINITION 4 .4. Two pullbacks (Ll, T*fl), (Lz’ T*fz) [pushforwards (T*fl, Nl),
(T*fz, Nz)] are called equivalent if there exists g = (p, ¢, «) € I' such that

(L,y, T*f) = (2(L ), &(T*f)),
[(T*f,), N,) = (&(T*f), ¥(N)) resp.],

where ® € G, [¥ € G,] is the symplectomorphism of T*Y [T*X] defined by
(p, @) [defined by (Y, a o f)) respectively]. ]

(13)

REMARK 4.5. Let us take (idy, 0,idy,B)€ G, x G, and T*f€ ©. We see that
(idy, 0, idy, B) (T*f) ={{(y, M, (x, NET*Y x T*X; y = f(x), § + dB(x) =
=*'Df(x)n} and, if B# 0 then we have (idy, 0, idy, B) (T*f)& ©. Thus the
action of Gy x G, moves out of ©. Now we try to extend the set © to retain the
action of Gy, x Gy. Let f: X - Y be a smooth map. We denote graph fC ¥ x X
by K. Let A be a differentiable function on K. The set [see [17], [20]]

{PET*(Y xX);my x(P) €K and (u, p) = (u, dA) foreachu €

14)
( €TK CT(Y x X)suchthatry, ,(u)=m, ,(p)}

is a lagrangian submanifold of (T*(Y x X), d(¥y© 19X)).

Let us denote by ©' the set of symplectic relations in (T*(Y x X), dﬂyed 19X)
defined by (14). Every relation R € ©' is defined by the pair (f, A). It is easy to
see that ® C @' and every element of © corresponds to a pair ( f, 0). The symplec-
tic relations belonging to ©' are generated by the Morse families of the form

(15) G(y,x;?\)=1(y,X)+Z Ny~ f(x), m=dim Y, [locally],

i=1

where A is the local expression of arbitrary continuation of the function A to
Y x X. Obviously, we can take the pullback of 4 to X by means of f, namely
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G},x GX is defined as a system of functions and diffeomorphisms: (¢, &, ¥, §)
with an appropriate composition formula.

Let (p, ¥, ) be a triplet of mappings, ¢ : Y > Y, ¥ : X > X are diffeomor-
phisms and & : Y - IR is a smooth function. The set ' of such triplets defines an
equivalence group in §2 preserving the set ©.

DEFINITION 4.1. Let g€ I', then the equivalence relation in © is defined by the
following action:

(1) (g, T*f)—>g(T*f) = (¢, &, Y, ac fYT*f),
where (g, a, Y, @ o f) defines an element (P, ¥) of GY X GX as in (10).

PROPOSITION 4.2. Let T*f€®andg = (¢, ¥,®) € r then the result of the action
of g on T*fis the symplectic relation T*(p o fo y)~1, hence it belongs to ©.
Proof. According to Definition 4.1 and formulae (10) we have

(9., ¥, a0 [UT*f) ={((¢ )X, 'Do(fE) 1T+

+ da(f(X))), ¥ (X), ' DYE (D@7 + Df(X)da( f(X))));
(12) XEX, (f®,MET*Y})={((¢pofo ¥y 1(x),'Dy(fe

oy 1) 1@ + da(fo Y (X)), x, 'Df e YT X)W +

+da(fo ¢ M) (foy 1), METHY )
Let  denote "Dp(fo Y~ 1(x)™ 1@ + da(fe ¥ ~1(x))), then

7+ da(fo ¢ 1(x) ="De(fo Y1) n.
Inserting this in the last term of (12) we obtain:

(o, 0, Y, o fUT*)={((y,n), (x, SN ET*Y x T*X;y = pofo

o Y ix). & ="Df o YY) Do(fo Y 1N} ={((».n). (x, ) €

ET*Y x T*X;y =gofoy (x),"Dpofoy1(x)n}.
This completes the proof of the proposition. .
COROLLARY 4.3. The composition of symplectomorphisms corresponding to
(0 ¥y @), (o, ¥, &) is the symplectomorphism corresponding to the triplet (g, o

o, Y, o v, o op+ o). This provides a formula for the group operation in T.

Proof. On the basis of Definition 4.1 and (12) we can write (¢, V,, ) " (o,
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¥, a)T*f) = (oo, ¥, 0pofoy™ g, o ¢, ac fUT*) = (p o0, a0p+
+o, Y oY, @ epof+aef)=(p o0 ¥ 0¥, o p+a)TH). .

In this way we are ready to identify the action of I' in the space of images
[called pullbacks or pushforwards] of lagrangian submanifolds L C (T*Y, wy)
[and N C(T*X, wy) respectively] with respect to the relation T*f [as defined
below]. For this purpose we associate with the pair (L, T*f) the pullback of a
lagrangian submanifold L with respect to T*f, and to the pair (T*f,N) the
appropriate pushforward of V.

DEFINITION 4 4. Two pullbacks (L, T*fl), (LZ, T*f) [pushforwards (T*f,, Ny,
(T*f,, Nz)] are called equivalent if there exists g = (g, ¥, @) € I" such that

(L,, T*f,) = (®(L), g(T*1)),

[(T*f,, N,) = (8(T*£,), ¥ (N))) resp.],

where ® € GY [V e Gx] is the symplectomorphism of T*Y [T*X] defined by
(p, «) [defined by (¥, @ °f1) respectively]. =

(13)

REMARK 4.5. Let us take (idy, 0,1idy, B) € G x Gy and T*f€ ©. We see that
(idy, O, idy, B) (T*f) ={((y, ), (x, §) € T*Y x T*X; y = f(x), § + dB(x) =
='Df(x)n} and, if B+ 0 then we have (idy, O, idy, B) (T*f) € ©. Thus the
action of Gy x G, moves out of ®. Now we try to extend the set © to retain the
action of Gy x G,. Let f: X > Y be a smooth map. We denote graph fC ¥ x X
by K. Let A be a differentiable function on K. The set [see [17], [20]]

{p€T*(Y x X);my  4(p) € K and (u, p) = (u, d4) for each u €
(14)
€TK CT(Y x X)such that 7y, ,(u) =7y, ,(p)}

is a lagrangian submanifold of (T*(Y x X), d(t?Ye 19X)).

Let us denote by ©' the set of symplectic relations in (T*(Y x X), dﬁyed z?X)
defined by (14). Every relation R € @' is defined by the pair (f, 4). It is easy to
see that ® C @ and every element of @ corresponds to a pair ( f, 0). The symplec-
tic relations belonging to ©' are generated by the Morse families of the form

(15) G =Ax)+Y N, —f(x), m=dimY,  [locally],

i=1

where A4 is the local expression of arbitrary continuation of the function 4 to
Y x X. Obviously, we can take the pullback of A to X by means of f, namely



A NOTE ON SINGULAR LAGRANGIAN SUBMANIFOLDS 45

A(x) = A (f(x), x). Then, more simply our sympictic relations [at least locally}
are reproduced by a smooth function on X, say 4 : X - IR, and a smooth mapping

m
f:X > Y defining the respective morse family G(y, x;\) = A(x) + i§1 NGy, —

— f,.(x)). For the pairs (f, A) determining the respective symplectic relations we
have the following transformation law [according to the above introduced action
of Gy x Gyl

(16) (f, 4) —22¥® L (pofoy L Aoy ltaofoy I-Boyh.

If the pair (L, R) is a pullback of the lagrangian submanifold L C T*Y with
respect to the symplectic relation R = (f, A) C(T*Y x T*X, déyed ¥y) and
if F:YxA—-IR is a Morse family generating L then the generating family for
the equivalent pullback R'(L) [with respect to the group G, x G,] has the
following form

(17) H:XxA->R,H=Fo(g id )pofoy id,)+(B-A4)oy L

To obtain normal forms for pullbacks and pushforwards of lagrangian submani-
folds we use the standard equivalence of Morse families [cf. [24]], namely the one
defined by the diagram

YxA—3E—s¥YxA
(18) ;x ﬁ
Y

Two Morse families F, F': Y x A= R are called equivalent if there exists a
diffeomorphism Z [as in the diagram (18)] such that

(19) F=F'o=x

Applying the formula (17) to the family ® we set A =0 and § =« f. The
resulting expression for the generating family of the equivalent pullback is

(20) H=F+ao(foy Lid,).

Note that this generating family may not be a Morse family and the set generated
by it in the standard way may not be a submanifold. In the same way are one
can write down the generating family for the equivalent pushforward.

5. NORMAL FORMS FOR SINGULAR PULLBACKS AND PUSHFORWARDS

It is not easy to classify, in general, the normal forms of pullbacks and pushfor-
wards of lagrangian submanifolds. This paper deals with the problem in the case
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of small dimension of the manifolds X, ¥ and for the pairs (L, T*f) [(T*f, N)]
in which L [N respectively] and f are locally stable in the standard sense [see
[24]. [8]].

PROPOSITION 5.1. Let dim X =dim Y =k < 3, then for the generic pullbacks
(L, T*f), where L is of type A2 [fold, according to Arnold’s notation [3]] and
f is a stable mapping, the corresponding germ of generating family H : X x R - R
for T*f(L), at every point of X is equivalent to one in the following table

k fiX>Y H:XxR-R
1 y=x A ax
y:X2 )\Bi)\xz
1=X1, Y2=X; N+
yi=X1, yy=x3 N, AMBHaEatzxd)
M=X1, Yi=X3+X1X, A #Ax,
Vi=X1, Va=Xz V3=X3 A4+ ax,
Yi=Xi, Yi=X3 V3=X3 N+dx, AMHaExirxizxd)
V=X, Ya=X3+ XXy Yi=X; M Fdxg, AP+ AExitx)
Yi=Xi, Ya=X3 Yi=xi+x x3+
+ X1 X3 A ax,.

Proof. Since L C T*Y has a singularity of type 4, at a point p € L, itis generated
by the Morse family 7 : Y x R - IR,

QD F(y,\) =2+ g0y, [see [24], p. 28].

where g is a smooth function, such that g(0) = 0, dg(0) = 0. 1t follows from
our definition of equivalence of pairs (L, T*f), [see Definition 4.4} and the from
of the generating family for pullbacks of L [see formula (20)] we can reduce the
problem of finding normal forms of such pullbacks to the problem of classifica-
tion of normal forms of mapping diagrams

X———=Y7
ol e T
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Since the function g satisfies the condition g(0) = 0 we can apply well known
Arnold’s results [2] on classification of generic mapping diagrams with respect
to the so-called strong equivalence, i.e.

X ! Y g R
V] 1 l ¥ lidlR + const.
X r Ly ¢ R

On the basis of the classification theorem there, with dim Y = dim X < 3 {[2],
Theorem 5.1, p. 572-3], we obtain the normal forms for the function g using
f-liftable diffeomorphisms of (Y, 0). Inserting these forms in (21) we obtain
the normal forms listed above. L]

REMARK 5.2. Some of the functions in the table of Proposition 5.1 are not
Morse families. However the sets R(L) defined by the equations § = d H/dx(x, \),
0 = 0H/OX\(x, \) are semi-algebraic sets and can be endowed with the stratifica-
tion [see [9]] into isotropic submanifolds of (T*X, d19X). The generic singularity
of a pullback in the case of » = 1 and fold mapping fis shown in Fig. 2.

By using the methods of the proof of Proposition 5.1, we can conduct the
classification of normal forms of R(L) for the case when fis a fold mapping and

Fig. 2.
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L is a lagrangian sumbanifold of type A2 without restricting the dimension of
Xand Y.

PROPOSITION 5.3. Let f: (X, X)) => (Y, y,), dim Y < dim X, be a fold singularity,
ie. f(xl, cesXp) = (xlz, c ,xm) in local coordinates on (X, xo) and (Y, yO)
respectively. Let (L,p) be also a fold singularity and let ny(p) =p, Then the
normal forms for generating families of pullbacks [without modal parameters]
are the following functions

Hx, M) =M+ @Exdsxd 1 +0(x,, . x,)), >2,
CHOGN) =A@l xdx e x4 00x,, L x> 4,
e HOGN) =+ @ xie 32 xy+ 0(x,. ..., x,)),
E, Hoo N =N+ 2232230, + 0(x,, ..., X)),
E TH M) =N+ @ xiex32xd+ Qx,, ..., x,)),
where Q(xs, ..., X, ) is a nondegenerate quadratic form of m —s + 1 variables.

Proof. According to Arnold’s method of liftable diffeomorphisms [see [2], Lem-
ma 3.1 adapted to the real case] the problem of finding normal forms of the
composition of mappings

R” f-fold ]Rm £ R

can be reduced to the problem of finding normal forms of functions g : R™ - R
with respect to the right action of the group of diffeomorphisms [germs] preserv-
ing a hypersurface [apparent contour of f]. For this problem we can use the
results of [3] and obtain the following facts. If the normal form of fis f= (xf,
X, ...,X,), then the simple normal forms of functions g :(IR™, 0) - (IR, 0),
such that dg(0)+# 0, with respect to the group of germs of diffeomorphisms
preserving the hypersurface {x; = 0} are

A g=+y 2y 4000, 0,
D,g=ty +yly, 2y 14+ 0y, ..., 5,
Egig=2y2y3 2y} + 0.5,
E,g=xy+y3 2,07+ 0,5,
Eg:g=4y 232235+ 0.V,

where @ is a nondegenerate quadratic form depending on the remaining variables
[cf. [3], p. 104]. Combining these and the fact that the Morse family for L of type
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A2 has the form A3 + g(¥)\ we obtain the thesis of our proposition. a

Now we pass to the classification of pushforwards. Let N C 7*X be a lagran-
gian submanifold generated by a Morse family, say G : X x R* - IR. Using the
standard facts concerning generating families for symplectic relations [cf. [19],
[51] we obtain almost immediately the following assertion,

PROPOSITION 5.4. A generating family for the pushforward (T*f,N), say P:Y x
x RY > R can be written as follows

PN ) =) NG —f0) + G, v),

i=1

whereu=(u1,...,/.tn),V=(V1,...,vk),N<m+n+k.

On the basis of this proposition and section 4 we obtain that the generating
family for an equivalent pushforward is the following:

Biinuv) =) Ny—(pofoy™h )+

i=1
+aofoylw + Gy (u), v),

where a is a smooth function on Y and (¢, &, {) is an element of equivalence group.

PROPOSITION 5.5. Let dim X =dim Y = k < 3, then the begining of the classifi-
cation of the germs of pushforwards (T*f, N), where N is of type A4, and fis a
stable mapping is given in the following table. (see below).

Here G is a normal form for a Morse family generating the germ of lagrangian
submanifold N, ¢; are smooth functions and [8;] € m2/f* M2 where M is the
maximal ideal in the local algebra of smooth function-germs in (X, xO).

Proof. Applying the same arguments as in the proof of Proposition 5.1, and using
Amold’s results [2] concerning the classification of mapping diagrams
Y u X—=% R

o wl/

f

y—JF  x

by means of f-lowerable diffeomorphisms we obtain the classification of normal
forms of functions g : X = IR. Inserting these normal forms to the Morse family
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k fX->Y G XxR-R
. =X A+ Ax +B1(x)
= x? A+ A x + 01(x?)) + Ba(x)
Yi=X1, Y2=2Xa2 A3+ Axg + Ba(x)
5 n=xi yi=x, WA+ x2) +B4(x), NP +HA(x; 2 x3)+Bs(x),
)\3+X(X2ix1X2+x:;)+ﬁ6(X)
Vi=Xi+X1X ya=x; A%+ (& Xy + a(xT + X X3, X2) + Bao(X)
Y1i=Xy, Yp=X3 Y3=X3 A%+ Ax; + By(x),
yi=X1, yi=X13 Y3=2Xx3 N NG+ x) + Box), WA Ax 2 xFexd) +

+Bro(x), X+ Ay + X x3) + Bu(x), NP+

+ M(xp + xy x5+ x3 £ 33 X3) + Bra2(x)

3] pi=xi+xixs ya=Xy ya=X3 | NPEAE X))+ Bua(x), X HAx; £ x3+es(x]
+X1X2, %))+ Bralx), NNz x+x, pa(x]+
+ X1X2, X2)) + Bis(x),

yi=xt+xaxiHx3%0 ya=Xa, Ya=x3 | XK HNEX +os(xTHxox T+ x3x0, X2, x3)+

+ B1e(x)

G(x,\) = Nrag(x) + B(x) we obtain the desired result with the additional term
B(x) modulo an element belonging to f* m2, n

As we see this classification is not satisfactory complete and depends heavily
on the classification of mapping diagrams of more general type, hence we leave it
to the forthcoming paper.

6. FINAL REMARKS AND APPLICATIONS

6.1. As a simple mechanical example of singular image with respect to the
symplectic reduction we consider the finite element analogue of the Euler beam
problem illustrated in Fig. 3. This system, consisting of two rigid rods of unit
length connected by friction-less pins, is subjected to a compressive force — P,
which is resisted by a torsion spring of unit strength. The angle ¢ and the force
p, are considered coordinates of a manifold X. Together with the torque D, and
the position ¢ they form a canonical coordinate system (¢, Dy Py —q) of T*X.
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Fig. 3.

The potential energy of this system [generating function of the lagrangian sub-
manifold N C T*X] has the form

1
V(p,p)= — ¢?—2p, cos .
q 2 q

If we take the reduced phase space T*Y with the local coordinate system (pq,
—q) and the mapping f: X =Y, (g, pq) =p, then we obtain for the image of
N the following formula

oV
IT*f(N) = (Pp,—q) €T*Y;0= — (o,p) =
0y

oV
=@+ 2p,sing, —q= g(xp,pq)=—2cos‘p,
q
which is a space of equilibrium states in the control phase space 7*Y. A simple
1
calculation shows that if Py=— 3 ¢ =0; V is not Morse family and the set

'T*f(N) has a standard singularity well known in bifurcation theory [see Fig. 4].
Unfortunately that singularity is not stable, it disappears after a small deforma-
tion of V because the respective transversality condition [cf. §2] is not fulfilled.
However for examples of this type we can construct the space of deformations
and treat the unstable singular lagrangian submanifold as an element of a family
of deformations [a kind of unfolding {9] or more precisely Wassermann’s (7, 5)-
-unfolding [21]]. The number of parameters of this family is connected to the
codimension according to the above classified singularity types. This approach
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e,

TT*E(N)

Fig. 4.

leads to the classification of stable images according to the composition of two
reduction relations.

6.2. Let IR2" = {(x, p)} be a phase space of a particle in classical mechanics 1],
1
let h(x,p) = —2— (|p|2— 1) be a Hamilton function for this particle. Then the

space of bicharacteristics in H ={h = 0}, say M, which forms a manifold of all
oriented lines in IR” has a canonical symplectic structure. Let K be a hypersur-
face in IR” [an obstacle] and v a geodesic flow on K [e:g. that one defined on K
by the variational problem of shortest bypassing of K]. It is proved in [4] that
the set of oriented lines tangent to v on K forms a lagrangian submanifold in
M which is 120t necessarily smooth. The appropriate local classification of these
singular lagrangian submanifolds is carried out in the quoted paper. It tumed out
that the generic singularities of this classification, so-called open swallowtails,
can be conveniently described in the SL,(IR)-invariant symplectic space of binary
forms of an appropriate degree. We find, using the results of the previous sections,
that the open swallowtails can be obtained as images from the regular lagrangian
submanifolds by means of a canonical symplectic procedure. Now we briefly
describe this resolution procedure.
Let us consider the space of polynomials of the form [cf. [4]]
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x2n x2n—1 X
e By YRR L
xn—l
-p, (—HT)' +...+ (=D 1p,

endowed with the symplectic form w = Z dp; Adq;. Let a hypersurface HC

C T*Q be defined by a Hamiltonian of translations along the x-axis, h =p, +
2

q
+q1p2+...+qn_1pn+—2i

H then the pull-back wj =ifw has rank 2n — 2 so has kernel a one dimensional
subbundle TH§ C TH, the Hamilton foliation of H, the integral curves of which
are the bicharacteristics on H. The space, say M, of [local] bicharacteristics on H
is itself a symplectic manifold with the induced symplectic structure and the
canonical projection 7 : H - M associating to each point of H the local bicharac-
teristic on H through it.

, H={h=0}.1f iy, : H-> T*Q is an embedding of

DEFINITION. {cf.[4]]. The system of objects (H, L, 1), where H is a hypersurface
in T*Q, L is a lagrangian submanifold in 7*Q tangent with the first order tangen-
cy to H along submanifold 1 = HN L, which has codimension 1 in L, is called a
symplectic triplet in T*Q.

Let us define L as a trivial section of T7*Q, L={p,=...=p,=0}. It is
easily seen that (H, L, HN L), where H={h =0}, is a symplectic triplet. An
image L= m(HN L) is called an n — 1-dimensional open swallowtail [4]. It is
not difficult to prove the following fact

PROPOSITION. An open k-dimensional swallowtail Zk can be represented as a
canonical pushforward of a regular lagrangian submanifold Lk, ie.

L =T* (L), dim Q=k + 1,

where Lk is a lagrangian submanifold of (T*Q, wQ) with the following generating
function:

k-2 k
— k k+i-
F,'c(ql,...,qk+1)- }: Z Dlg—)i,sqlﬂ S+3qsqk—i+
i=—1 s=2

k) 2+3 2
ZDk ik-idi TGt



54 S. JANECZKO

1
W gk+i+3g — h® 2
+21E 191 —i+2Dk+1,k+lqlqk+1+
i[=

E®
+ER gk+1g g2k+3,
171 k+17 Sy N
where
k+1 (= 1)f-s
k —
DR ="y - : . ,
= U=9)!'Qk+3—j—n!
1 krl o (=1Y(G-D
Er(k)=(_1)k_—r(___ - I<rs<k+
2k+3-n! = j'2k+3-j-n!

and fis defined as follows:

f@Q=0@,....5@), @=(qy. . .,q,)

j-1
1 1
f@=) D' —alg,, ,+
=0
+ (=17 art,  j=1... k.

G+ D!

6.3. Now we show that the regular geometric interaction between holonomic
components [in the sense of Kashiwara in Micro-local calculus [13], [16]] can
be resolved, i.e. obtained as an image of a regular lagrangian submanifold by a
symplectic reduction relation.

Let Vl, V2 be lagrangian submanifolds of a symplectic manifold (P, w) [the
respective holonomic components of an interaction [15]].

DEFINITION. The lagrangian subset V1 U, [or pair (Vl, 1/2)] of (P, w) is called
a regular geometric interaction if the following conditions are fulfilled

a) V1 N V2is a submanifold of P, dim V1 N V2 = dim V1 —1,

b) for every pointp € ¥, N ¥, we have

TV, 0 V) =TV,NTV,

Let (V, U V,, p) be a germ of a regular geometric interaction in (P, w).

PROPOSITION. There is a symplectic manifold (ﬁ, &) and a symplectic reduction
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relation R C (ﬁx P, & ©w) such that for a germ of regular geometric interaction,
say (V1 U V2, p) C (P, w) we have a canonical resolution formulae

V,u¥,=R(L),

for some regular lagrangian submanifold L C (ﬁ, @).

Proof. On the basis of the Kostant-Weinstein theorem [se e.g. [10], [23]] we can
isomorphically represent (P, w) by means of (T*V, le), where V] is a zero-sec-
tion of the bundle. Hence V] ={p1 = ...,=p,= 0} and a generating function
for V), in T*V,, can be written as H(q) = quo(q), where ¢(0) = 0 [because of
the point b) of the definition]. So we can choose local Darboux coordinates
in T* Vl, near p, preserving the zero section V1 and such that the respective germ
of generating function for ¥, is

H(q) = q}.
Taking the new Darboux coordinates in 7%V preserving V], namely

1
®(q, .5 QP B) =4, — Epl,qz,...,q,,,pl,..-,p,,

we obtain the following local equations for V| and V, respectively
V1:p1=,...,=pn=0,
V2:p2:0,...,pn:0,q1=0.

But for this germ of geometric interaction we can easily write the respective
generating family:

F@p . q, N =g\

If T*X is any initial, special symplectic structure of (P, w) then using the Morse
family, say G : X x Q x RY > IR, for the respective symplectomorphisms in the
above procedure [according to [17], [20]] we can write down the desired generat-
ing family for V, U V:

F(x;v,u,?\)zG(xl, Cea X VY .,uN) + Vl)\3.
This completes the proof. =
Having such analytical description of regular holonomic interaction we can

formulate the appropriate stability problem and use it to determine the respective
Gause-Manin systems [15], [16].
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6.4. [Landau singularities]. Let us consider the motion of a free particle of mass
m in space-time IR* endowed with the Minkowski metric tensor. The phase space
is the cotangent bundle P= 7*R* A mass surface or a first class constraint
submanifold M C P is defined by

M={(x,p) €P;p>=p}—p2=m? p,> 0},

where the respective Hamiltonian is defined as a zero function on M.

In elementary particle physics the collision processes constitute one of the
main subjects of interest [for the basis of the theory of multiple collisions pro-
cesses see e.2. F. Pham, «Singularitiés des processus de diffusion muitiple», Ann.
Inst. H. Poincaré 6, 2(1967)]. Let us consider a collision process / = J described

by the coisotropic submanifold M(‘,’J) in e P, namely

wnel] pEme [] Mi,Zp,:}:p,g,

A=V AV iefulJ iel jeJ

where /, J are the numbering sets for the respective particles [as in Fig. 5] in the
collision process (/,J). Let us consider an associated causal configuration for
(1, J) corresponding to the graph G of an appropriate multiple diffusion process
[see Fig. 6]. Let I resp. J denote the set of external lines incoming and resp.
outgoing from G. Let MG be the coisotropic submanifold defined analogously
as in (*) using the conservation laws. It is easy to check that the symplectic
spaces ﬁ(l,l)/~ and ]WG/ ~ associated canonically with 1171(1’” and ]VIG are iso-
morphic to T*M(IJ) and T*M , respectively. where

1={1,2, 3} J=14,56}

Fig. 5.
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and analogously for M.
We have here the natural projection

f:MG_?M(I,J)’
which defines the corresponding symplectic relation
T*fC My, /~ x Myl ~

responsible for the geometrical properties of the collision process. The set of
critical values of f, say I'f C M(I,J) [an apparent contour of f]is called a Landau
set corresponding to the graph G. The singularity type of f is responsible for the
singularity type of the Landau set and is frequently called the Landau singularity.

COROLLARY. The geometrical properties of a multiple diffusion process with a
graph G are described by the pair:

(Lyp T*),
where er is a constrained lagrangian submanifold over constraint Tf [cf. [12]].
Hence the classification of normal forms, as in the Pham approach for the

Landau singularities, can be easily derived using our classification theorems for
pullbacks.
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