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We derive the general form of a sub-Riemannian Hamiltonian on a Riemannian mani- 
fold endowed with the nonholonomic distribution. The generic properties of sub-Riemannian 
exponential map and horizontal curves are investigated. 
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1. Introduction 

Let a smooth manifold M be equipped with a smoothly varying positive defi- 
nite quadratic form on a distribution-subbundle V of the tangent bundle TM. One 
assumes that V is completely nonintegrable, equivalently all sections of V together 
with all brackets between them generate TM at each point of M. Then by the 
well-known theorem of Rashevski-Chow [3] it is possible to connect any two points 
(in a connected component of M) by a piecewise smooth curve which is tangent to 
V playing the role of nonholonomic constraint [15]. Having any Riemannian metric 
on M, we can endow M with a metric dv defined to be the infimum of the lengths 
of all such curves joining two points. This metric is called the Carnot-Caratheodory 
metric [9] or sub-Riemannian metric. It is expressed by a contravariant metric ten- 
sor gij(x) : T’M + TM, which is nonnegative definite and its image defines the 
distribution V. 

Variational problems with nonholonomic constraints offer questions of great math- 
ematical and physical interest [15, 21. One of such questions concerns the local struc- 
ture of Exp-map and the generic properties of systems of geodesics rays forming 
the corresponding wavefronts. The problem of the shortest paths in sub-Riemannian 
manifold with boundary provides new singular Lagrangian varieties of geodesics anal- 
ogously to the classification of systems of gliding rays in the Riemannian case (cf. 

]71). 
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2. Nonholonomic differential systems 

Let M be a connected differentiable manifold, dim&4 = 7~. Let V be a smooth 
m-dimensional distribution on M equipped with a Riemannian metric (, ). A contin- 
uous C2-curve c : [a, b] -+ A4 will be called horizontal if dc/dt(t) E V(c(t)) for almost 
all t E [a,b]. 

Let X1,... ,X, be a local basis of vector fields generating the distribution V 
near 4 E M. V is said to satisfy the Hiirmander condition at q if these vector fields 
together with all their commutators span T,M. If this condition is fulfilled at every 
point of M, then V is called nonholonomic distribution [15]. Let C,,, be the set of 
all horizontal curves joining z and q. We can define the Carnot-CarathCodory (cf. 
[9]) distance function between the points z and q by dv(z,q) = inf{l(c);c E C&}. 
For the horizontal curves, the length and energy are defined as follows 

L(c) = J (C(t),b(t))1’2dt, E(c) = ; J (d(t),qt))dt. 
I I 

If V is a nonholonomic distribution, then we know [3] that dv is a finite metric 
on M. In what follows, the pair (M, dv) we will call also the sub-Riemannian space 
1121. An alternative way to obtain the sub-Riemannian structures is given by means of 
the symmetric positive semi-definite bilinear form (, ), on the cotangent bundle T*M 
depending smoothly on the base point. Let h, : T’M + TM be the vector bundle 
homomorphism: T,*M 3 e -+ u E T,M, where for the unique u we have (E, v)~ = V(V), 
for all 77 E T;M. If h, is a constant rank map, then V(q) = h,(T,*M) c T,M forms 
a smooth distribution. The corresponding Riemannian metric on this distribution is 
defined by (u,u) = (h,E, h,qjs = (<,qjg. In local coordinates, (., .)9 is defined by the 
tensor (gij) and the corresponding sub-Riemannian geodesics are described by the 
Hamiltonian equations ii = e (q,p), Pj = -@(q,p), 1 5 6 j I n, where H(q,p) = 
$ Cij gij(q)pipj. The only difference from the Riemannian case is that h, may have 
a nontrivial kernel, so that some different initial covectors which give rise to different 
geodesics will be mapped to the same vector. 

The space X of sub-Riemannian geodesics on M is constructed by the cylindrical 
subbundle of T’M defined by the coisotropic hypersurface W = H-l(1/2). By the 
canonical symplectic reduction procedure we have the symplectic space of geodesics 
X equipped with the canonical symplectic form V. Let 1 be a submanifold of X. 
If I is isotropic for V, i.e. L/II = 0, then I is called a Jystem of rays in (X, v). An 
especially distinguished system of rays defining the corresponding wave-front in M is 
formed by a Lagrangian, i.e. maximal isotropic submanifold of (X, v). 

Now we introduce the symplectic formulation of nonholonomic systems. We con- 
sider the symplectic manifold (T’M, WM). Then the tangent bundle T(T*M, WM) is 
isomorphic to the cotangent bundle T*(T*M, WM). The isomorphism is defined by 
the vector bundle morphism ,0 : T(T*M, UM) -+ T*(T*M,uM), ,0(u) = u,Ju~. Now 
we can pull-back all objects from T*(T*M) to T(T*M). In this way we obtain the 
canonical symplectic structure on T(T*M), namely & = /~*wT*M = d(P*&*M), where 
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OTeM is the Liouville form. The symplectic manifold (T(T*M), ~2) is the underlying 
symplectic manifold of two special Lagrangian fiberings on T(T*M), 

X = (T(T*M),T*M,TT*M, K), and ,!Z = (T(T*M),TM,T~M,~), 

where 7T*M is the tangent bundle projection, K and p denote the corresponding 
l-forms on T(T*M) such that dp = drc = ~2. Differential system D is defined as 
a Lagrangian submanifold of the phase space (T(T*M),&). Representation of the 
differential system D by generating families in X and C gives the Hamiltonian and 
Lagrangian formulations of the system. The Legendre transformation from the C to 7t 
representations of D is a symplectomorphism QI : C + ‘FI whose graph in the product 
symplectic space [8] (L x ‘I-& $K - 7rTp) is generated by the function L defined on 
the Whitney sum TM x M T* M, L(v, p) = -(p, w). 

Let V denote a nonholonomic distribution of dimension n - Ic on M defined 
by the basic (annihilating) l-forms wl,. . . , uk of the corresponding codistribution in 
T* M. Let e : V -+ R be a positive definite quadratic form on V and L : TM + IR 
denotes its extension on TM. 

DEFINITION 2.1. Nonholonomic differential system on M is defined as a constrained 
Lagrangian submanifold of (T(T*M), 2) over V with a generating function e in the 
special symplectic structure C. We denote this system by NV c T(T*M). 

Let L be an extension of & then we can write 

NV = {p E T(T*M) : T~&I) E V and ((Y(P), V) = (dL, w) 

for all II E TV c T(TM), such that Try = T~&zI)}, 

where Q : T(T*M) --) T*(TM) is a uniquely defined symplectomorphism defining the 
special symplectic structure L, i.e. TTM o cy = T~TM and (Y*&M = ,u. 

Now we write these formulae in local coordinates (xi) on M, (~9, yj) on T’M, 
(&,kj) on TM, (xi, yj,i:“,Gl) on T(T*M) such that 6M = Ci yidzi. Then in local 
coordinates we have 

/J = x(&dzi + yidk’), n = x(ljidzi - c&y,). 

i i 

The Lagrangian function L is defined by some Riemannian structure on M, L(z, i) = 
cij gij(Z)s) which is an extension of I? to a Riemannian metric on M. Thus the 
generating family for the nonholonomic differential system has the form 

k 

L(z, i, A) = ~g&)i%~ + c XT(w,, ci), 
ij r=l 

where A, are the corresponding Lagrange multipliers-Morse parameters. NV c 
T(T*M) is described by the equations 
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where 1 2 i, j 5 7~, 1 < T 5 Ic. We easily see that the above introduced system is 
equivalent to the system of Euler-Lagrange equations describing the nonholonomic 
geodesics 

By the Legendre transformation we pass from the &representation of NV to its Hamilto- 
nian representation in ‘FI. Now, N v is generated by the function (Hamiltonian) 
H : T*M + IR in the following form 

and we can write the identification on NV, Ci(jrjdxi - iidyi) = -dH(x, y). 

EXAMPLE 2.1. Consider the Heisenberg group Hn = R x P endowed with the 
nonholonomic distribution V (cf. [lo]), w = dz + Ctz, Ai(x)dxi = 0, spanned by the 

system of generating vector fields {Xi = & - Ai(x)g }. The positive quadratic form 
on V we choose in the simplest form 

f/(X,,) = Cgig(X)kiCi9, gij = 6ij. 

ij 

V is transversal to the z-direction, so we can parametrize the leafs of V by (z, k). Thus 
the corresponding Lagrangian has the form 

C(X, Z, kc, i! A) = C gij(x)kiki + X(2 + C Ai(x)k”). 

Now we derive the system of Hamiltonian equations defining the sub-Riemannian geo- 
desics. At first we have the corresponding Morse family 

A(x,,z,Y,w,~,~,A) = Cyii” + wi - J$ij(x)kiii -X(.i + CAi(x)ii), 
i ij i 

and the defining equations s = yi - 2 Cj gij(x)ij - XAi(x) = 0, and 

aA -= 
ax 

_i _ xAi(x)fi = 0, aE;T = w - X = 0. 

i 
d.i 

Thus, after elimination of variables, we obtain 

H(x, z, Y>w) = $ C(yi - wAi(x))gi’(yj - WAN) 

-~‘~gijgik(yk - WAk(x)g”(yl - wAl(x)) 
ijkl 

= i C gi’(yi - wAi(x))(yj - WAN), 

ij 
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which gives the general form of sub-Riemannian Hamiltonian in the case of codimension 
one distribution. 

In the more general case we obtain the following formulae. 

THEOREM 2.1. Let (gij) be a Riemannian structure on M, and 

{WV = ~A;(z)dz’ = O},“=, 
i=l 

define a nonholonomic distribution on M. Then the corresponding sub-Riemannian 
Hamiltonian has the form 

H(z, Y> = + csij (yi + 2 U;(4) (yj + 5 A;(z)), 

ij V-=1 r=l 

where the parameters X are determined by the system of linear algebraic equations 

2 gi”4@)(yi + =& &A;(x)) = o, s=l ,...,k. 
u&l r=l 

3. Lagrange projections with nonisolated singularities 

Let L be a Lagrangian submanifold of (T* M, WM) and let 7r~ : T’M + M be 
the canonical projection. By pa = TX 1~: L + M we denote the Lagrange projection. 

DEFINITION 3.1. We say that the Lagrange projection pi has a nonisolated singu- 
larity at q. E M if there exists a (compact) submanifold N c T&M and a neighbour- 

hood U of N in T’M such that pLl(qo) = N and pi /U-N is finite to one. 

Locally all Lagrangian submanifolds of T’M can be generated by Morse families 
(cf. [14]). In the case of nonisolated singularities we have the following result. 

PROPOSITION 3.1. Let (L, po) be a germ of Lagrangian submanifold of T* M with 
pi having a nonisolated singularity at qo = x~(po) along the submanifold N’. Then 
(L,po) is symplectically equivalent (preserving the jibering KM) to (i, 0) with the gen- 
erating family F : M x 1w” + $ 

where aij(X) are smooth functions on (II%?, 0). 

Let Qt : T* M + T’M be a Hamiltonian flow. We define the Exp-map at q E M, 

Expq = @lITpf : TP’M + T*M =+ M. 
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It is the Lagrange immersion of T;M into T*M. Let H be a sub-Riemannian 
Hamiltonian. Then the germ (L, = Exp,(T,*M),p), fl E Kerh,]r,‘M is Lagrange 
equivalent to the Lagrange projection with nonisolated singularities along the space 
Ker hLSIr;M c T;M. 

Let H,(T*M) denote the space of corank r of sub-Riemannian vector fields on 
T*M. Let W denote a subbundle of T*M, dimW, = n - r, with IV, transversal 
to Kerhglr;M at each 4 E M. We define exp I&, : H,(T*M) x W + J”(W,T*M), 
the s-jet extension of @r restricted to IV. By the transversality theorem we obtain 
the analogue of the standard generic@ theorem (in the Riemannian case [13] ) for 
exp [W in sub-Riemannian geometry. By (I,,$ we denote the germ of an isotropic 
submanifold @r Iw(W,) c T* M. 

THEOREM 3.1 (cf. [6]). W e assume that p does not belong to the zero section of T*M. 
Then, generically, the farnib of germs of isotropic projections (I,, fi), r~ /I* : I9 + M has 
only generic singularities appearing in n-parameter families of the isotropic submanifolds 
in T*M. 

EXAMPLE 3.1. We consider the exponential map for sub-Riemannian Heisenberg 
group X = H3 endowed with the distribution {dz + i(ydz - zdy) = 0). Then pi = n-x o 
Exp IT. x has a nonisolated singularity along N = {(pr , ~2, ~3) E T;X; pl = 0, p2 = O}. 
The generating family for L has the following form 

= ZAl cos x3 + yjx2 cos x3 + .zx3 - $(A; + A;)% + Xl& 
cos X3(cos x3 - 1) 

3 x3 

The corresponding caustic of L is a family of rotationally invariant paraboloids z = 

(x2 + y 
2 26-sin26 
)*(I-co&)’ where S is a solution of the equation tg6 = 6. 

EXAMPLE 3.2. Consider the rotationally invariant Lagrangian submanifold of T*R2, 
generated by the stable family 

F(q, A) = (Xl + A;)” - cr(x; + A;) + qlxl + 92x2, a! > 0. 

We see that pi has a nonisolated singularity at 0, and N = {(PI, ~2) E T~lR2: p: + pz 
= %>? 

PdPl,PZ) = (-2Plws + Pi) - a), -2P2MP? + Pa - a>). 

The caustics of this projection CL has a highly degenerate point q = 0 and the circle 

q: + q; = (F)“. 

4. Local properties of the horizontal curves 

Now we work with the Heisenberg group H3 endowed with the contact distribution 
V = {dz - zdy = 0}, spanned by XI = &, X2 = g + z$. We consider the horizontal 
curves fl : t + (z(t), y(t), z(t)), transversal to the plane {z = 0). fl is a solution of 
the system of differential equations j: = 1, I? = zQ. We integrate these equations and 
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get z(t) = t, y(t) = p(t), z(t) = s,” s(p’(s) ds, cp E C”(Ik?). Using the local Darboux 
coordinates of [4] we calculate explicitely the families of gliding geodesics. To each 
tangent vector v(t) = & +cp’(t)& + tcp’(t)& to the horizontal curve /3 there corresponds 
a one-parameter family of local geodesics 

X(T) = 7 + t, y(7) = p(t) + $1 - (p2 + tp#)li2 - (1 - (P2 + (t + ~h)2)1’21, 

Z(T) = j scp’(s)ds + ;(l - (p2 + tp~)~)l’~ 

0 

- y,1 - @2 + (t + Q3)2)1’2 

-$(arcsin@z + tp3) + (~2 + @3)(1 - (~2 + Q3)2)1’2) 
3 

+ $&rcsin@2 + 0 + +3) + (~2 + (t + 7)p3)(1 - (p2 + (t + 7)~~)~)~‘~~ 
3 

where Cp2, ps, t) satisfy the following equation 

(P2 + Q3) 

&) = (1 - (p2 + Q3)2)1/2. 

PROPOSITION 4.1. The system of geodesics gliding along the horizontal curve ,B in 
the sub-Riemannian space (M, NV) is an isotropic variety Ip of the Jymplectic space 
of geodesics (X, v). 

To prove this result we need to show that (wMI~-~(~)) 11~ = 0. Let X = (A,, . . . , A,) 
be the Morse parameters in a generating family of NV, and let (t, A) + (ti(t), $j(t, A)) 
be a parametrization of the space of geodesics along the horizontal curve t -+ 
(&(t)). Now we have to check that all Lagrange brackets {t, A,}, { Ai, Xj} vanish. 
Indeed, {t,Aj] = Cy=“=, ki$$ because for the gliding geodesics the tangent (P?) to 

the geodesics at 7 = 0 is eq;al to the tangent to the horizontal curve /3 at t. How- 
ever, (i’) fulfills the Hamilton’s equations ii = aa/8pi, so 

16 Xj> = 2 !EE = &(H(“(t)#(X, t))) = 0. 
i=l 8% Q 3 

But # does not depend on A, so we have immediately that {Ai, Xj} = 0, which 
proves the above result. 

Let y be a horizontal curve in (H3,2)). We see that y is uniquely defined by 
its projection plane curve 9 on the zy-plane and an initial point at t = 0. Now we 
seek for the generic properties of the horizontal curves. Let T(t) be a unit tangent 
vector to T(t), and V(t) its perpendicular at +(t). Now we use the perpendicular lines 
spanned by T(t) and V(t) as axes at T(t). Clearly at each point T(t) we can locally 

write ?(I) as the graph (5, A(t)), with ft(t) smooth and jlft(0) = 0. In coordinates 
with the axes T(t), V(t) and .z defined at y(t), y(l) is locally represented as a graph 
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tt, h(r)> St(C)) E H, where St(<) is uniquely defined by ft(<) and the coordinate 
system. Let PA denote the space of polynomials in c of degree > 2 and 5 k. Then 
we have a Monge-Taylor map p7 for the horizontal curve y, bUr : I + 9, given by 
pLy(t) = (j”ft)(0). Next we formulate the transversality result using the space Zr, of 
the polynomial maps H + H of degree 5 k and preserving the distribution 23. A 
deformation of y is obtained by composing with a polynomial map @ : H -+ H, which 
is a diffeomorphism on some open set containing y(l). We assume I = S1, and let 
us choose an open neighbourhood U of id E 2, consisting of polynomial maps which 
map an open set, containing r(S’), diffeomorphically to its horizontal image. Thus 
we have a smooth map I_“: S1 x U -+ Pk, which is a Monge-Taylor map for the curve 
@oy. 

PROPOSITION 4.2. There exists an open neighbourhood VI c U of id E Z, such that 
the map 1-1 : S1 x U + Pk ti a submersion. 

We endow the space of smooth horizontal curves y with the C”-Whitney’s topology. 

COROLLARY 4.1. An open and dense set of regular horizontal curves y : S1 -+ H 
contains those curves whose projections + have only finitely many ordinaly inflections 
and vertices. 

Indeed, let Q be a manifold in Pk = R”-l. By the Proposition 4.2 for some open 
set VI 3 id, the map p : S1 x VI -+ Pk is transverse to Q. Taking ft(<) = azt2 + a3c3 + 
. . . + a&” E Pk and Q1 = (a2 = 0) or Q2 = {as = 0}, we obtain the result. 

Remark 4.1: There is a question: how does it look like, generically, the variety of 
gliding rays along the horizontal curve ? Is it singular or smooth only? We conjecture 
that for the generic horizontal curve in the Heisenberg group the Lagrangian variety of 
gliding rays has only open Whitney’s umbrella singularities in isolated points. 
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