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This paper is devoted to the investigation of critical phenomena from the mathemat- 
ical pint of view. An interesting question in this field is universality (i.e. independence of 
the type of material and, to some extent, of the type of process) of the so-called critical 
exponents. We try to show that one can compute the critical exponents using structural 
stability arguments. The universality is then implied automatically as a consequence of 
similarity of models and of the structure of stable singularities. The considerations lead to 
some new results: information about the generic shape of hysteresis loops and universal 
form of the equation of state in the critical region. 

Introduction 

Critical phenomena in a homogenous and isotropic ferromagnet are similar, in 
a sense, to those in a gas. This paper provides a ferromagnetic version of the ideas 
introduced in [3], where the singularity theory (Arnold, Thorn) was used as the 
main mathematical tool for a description of gas-liquid phase transitions. 
However, there are also differences between these two thermodynamical systems. 
Magnetic experiments exhibit the symmetry with respect to the simultaneous 
change of direction of magnetization M and external magnetic field H. Moreover, 
the hystereses for ferromagnets have quite different shape from those formed by 
oversaturation and overheating processes for gas-liquid systems. These and few 
other features cause that the present translation of [3] to the ferromagnetic case 
does not consist in a mere replacement of volume I/ and pressure P by -M and 
H as it is indicated by the second law of thermodynamics. However. to make the 

paper self-contained, we give in extenso all necessary definitions, hypotheses and 
comments even if they are direct metaphrases of the respective parts of [33. 

[3S7] 
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The main points of our approach are as follows: 

1” We view the set of all thermodynamical states of a ferromagnet as consist- 
ing of two subsets: the overcritical states, i.e. those for temperatures T greater than 
the critical temperature t,, and those for T< tc which we call undercritical. This 
paper deals mainly with the undercritical region: our ideas how to describe the 
overcritical region and how to combine the descriptions of both regions are 
sketched in Remark 16. 

2” For each temperature TX rc we observe a hysteresis, i.e. two processes of 
remagnetization: the first called remugnetization upward, is realized by increase of 
H from -co to + 00 (in practice we do not go beyond the saturation magnetiz- 
ation), and the second called remagnetizution downward, is realized by decrease of 
H from + co to - a. 

Fig. 1 

3” The shape and the size of hysteresis loop of a given ferromagnetic sample 
at fixed T -c t,, may vary while the sample is subject, for instance, to a plastic 
treatment. Such or other technological treatments can modify friction between 
magnetic domains as well as influence their growth. From the macroscopic point 
of view this enables us to get a new sample the hysteresis loop of which is much 
narrower and almost rectangular: cf. Figs. 1 and 2. 

Besides a single ferromagnet we shall consider a family of samples labelled by a 
parameter z, made of the same material but with different properties of magnetic 
domain structure. Namely, decrease of z corresponds to narrower and narrower 
hysteresis loops. Thus, for a fixed T < t,, the coercivity H, and the residual 
magnetization M, are functions of z and H, JO as z JO. 

4” Let us consider a ferromagnet (z = const > 0) in isothermal conditions T 
-c t,. Because of the hysteresis phenomenon, one thermodynamic variable, e.g. M, 
does not suffice to determine uniquely a state of the system. Such uniqueness is 
achieved if we consider only the states obtainable in the processes of remagnetiz- 
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* 
M 

Fig. 2 

ation upward and downward,’ and if we add to M the information to which of 
those two kinds of processes the state we want to determine belongs: cf. Fig. 3. 
Such considerations result in the postulate (Hypothesis I) to model the space of 
undercritical states of the ferromagnet by the space W consisting of two copies of a 
half-plane (ME R and T < t,) glued along their boundaries, i.e. the critical isotherm 

Fig. 3 

(ME R and T = t,). In other words W 2 RZ but we do not take W = R2 to avoid 
the canonical coordinates on R2. The two half-planes of W; separated by a curve L 
which is to play in future the role of critical isotherm, are distinguished by a two- 
valued index E = + 1. We parametrize W by two coordinates x, y directly related 
to magnetization M and (total) energy E: see (6) and Fig. 4. 

5” The magnetic field H, the next, after M and E, thermodynamic function 
appearing in our model, is introduced with two hypotheses. First, we assume that 
H restricted to the critical isotherm L is infinitesimally cubic at the critical point 
(Hypothesis II). Then, we require a stability of this feature, namely, the in- 
finitesimal cubicity of H restricted to all curves obtained from L by small 
perturbations (Hypothesis III). As a result we get a general infinitesimal form of H 

1 We exclude other processes, e.g. the magnetization of a neutral sample, which starts from H = 0 
= A4 and proceeds with H t + 00: see Fig. 3. 
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near the critical point OE L? Further constrains are imposed on H by next 
postulates. 

6” Similar considerations apply to the temperature 7: Its infinitesimal cubicity 
while restricted to the isoenergetic curve E = e, (e, - the critical energy) is a 
consequence of 5” and the Maxwell identity 

a i iJH - -..-- 
aMT dE T’ 

As above, we assume this cubicity to be stable with respect to small perturbations 
of the curve E = e, (Hypothesis III’). Then a general infinitesimal form of T near 
the critical point is deduced. 

7” We require the following symmetry property of our model: the state 
characterized by a triple (M, H, T) is attainable in an isothermal remagnetization 
upwkd process iff the state characterized by the triple (-M, -H, T) is attainable 
in an analogous downward process: see Fig. 1. We look at this symmetry, as a 
condition to be satisfied by H and T as functions of (M, E). In our approach both 
of them are somehow determined by smooth functions q and r. We are interested 
in establishing which singularity types of q and Zj are stable among all q’s and 4% 
compatible with the symmetry condition as well as with the previous hypotheses. 
We find the answer 

in Arnold’s notation 
8” This enables 

magnetization 

v~Jto, &Dq+ 

ca2 
us to show that for temperature f 7 t, the residual 

M,(t) s (1 - t/rC)2’3 

and the magnetic susceptibility for H = 0 

x(0, r) - (1 -t/rJ4’3. 

In other words, within our approach we have the critical exponents 

/3=2/3 and y’=4/3. 

An attempt to explain the only partial agreement between our critical exponents 
and the mostly accepted experimental data /I = 0.36-0.39, y’ = 1.2- 1.36 [7], is 
given in Remark 14. 

’ This means that 

ij = U3fG6, 4 = u”+v3 

if for each of them appropriate coordinates (u, v) are chosen. 
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9 1. The space of thermodynamic undercritical states 

Let Z be the space of thermodynamic states in a phenomenological theory of 
ferromagnetism and T: Z -+ R the temperature within this theory. If f, is the 
critical temperature then C_ (resp. Z+) consists of those points for which T ,< f, 

(resp. T > t,). 
The classical tt.ermodynamics of ferromagnets can be seen as a theory for 

which Z = R2 and the points of C are physically interpreted by two functions: 
magnetization and temperature defined as follows: 

C 3(x, y) -+ M(x, y) : = x E R, 

X+x, y) -+ T(x, y) := r,+y~R. 

Then Z- and Z, are, respectively, a closed and an open half-plane in R2. 
Presentation of our model starts with a new definition and an interpretation of 

the space C_; Z, will be discussed in Remark 16. Let W be a real two- 
dimensiomal vector space and W, an open half-plane in W. Then L : = @$ n - w. 

is a line in M/: We define 

i 

1, WE w,, 

E(W):= -1, WE--0, (2) 

+1, WEL; 

E(W) can be seen as a function on w which is double-valued on L. 

HYPOTHESIS I. The undercritical thermodynamic space of a ferromagnetic sample 
is the pair (C-, E), where 

Z_:=W (3) 

and E is the (double-valued) function (2) on FK3 A complete physical interpretation 
of (E, E) consists of two steps: 

A. We take a smooth (curvilinear) coordinate system (x, yj on K vanishing at 
zero and such that the line L is symmetric with respect to zero, in these 
coordinates, i.e. 

(WE L) =+ W’E L: x(d) = -x(w), y(w’) = -y(w)). 

If (x, y) denotes a unique point in W wib-. coordinates x and y then the symmetry 

of L means that 

(x, y)E Lo( -x, --y)E L. (4) 

3 Later on, in 3 6, we speak of a ferromagnetic material - in the sense of 3” in Introduction, i.e. a 
one-parameter family of samples. In that case Z- : = Wx R, and the extra variable ZE R, parametrize 
the family. 
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We assume also that the y-axis is not tangent to Z.,, i.e. there exists a smooth 
function f such that 

L = {(x,j-(x))E w: x&R). (5) 

Moreover, without loss of generality, we can restrict ourselves to the case in which 
L does not intersect the set xy K 0. 

B. Magnetization M and energy E are defined as: 

M(x, Y) : = --E(x, Y)X, 

E(x, Y) :=8(x, Y)Y. 
(6) 

Obviously, M and E are double-valued on L: the coordinates x and y can be 
viewed as their smooth representatives. This is discussed in Remark 1.4 

Remark 1. Next we introduce further hypotheses. They permit to construct a 
function T which - if necessary after modifications analogous to the Maxwell 
construction - is interpreted as the temperature. Let z be fixed, which is the case 
when we deal with a concrete ferromagnetic sample. The level set T( 0, a, z) = t, is 
the critical isotherm. By experiments, it does not seem to depend on z, which we 
are shall assume next. We want L of our model to be the critical isotherm, i.e. L 
= {(x, y)~ W T(x, y, z) = f,}.’ (This can be achieved by an appropriate choice of 
the arbitrary parameters appearing in the construction of T and or by a 
diffeomorphically equivalent other choice of the coordinates {x, yj). Let us answer 
the question why M( 0, *, z) and E( ., 1, z) are double-valued on L in the plane W 
shown in Fig. 4. Whatever the future definition of the temperature T will be, 
undercritical isotherms (level sets T( 0, 0, z) = const <t,) have to be situated 
somehow along L, e.g. as the dotted and dashed curves in Fig. 4. If we run over 

Remagnetization 
downvard 

Remagnetization 
upward 

Fig. 4 

4 By (6), x corresponds to -M while in the gas-liquid version of Hypothesis I (see [3]) x 
corresponds to the volume K This is justified by the second law of thermodynamics if the external 
magnetic field H is associated with the pressure P. 

’ Admission of T( ., ., - -) = t, dependent on z does not seem to introduce essential complications. 
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them from left to right then the magnetization M is decreasing on the dotted 
isotherm and it is increasing on the dashed one. This is why the domain where E 
= - 1 (resp. E = + 1) is called a region of remagnetization downward (resp. 
remagnetization upward). On the critical isotherm I, if we choose for the double- 
valued E the value - 1 (resp. + 1) then the magnetization M decreases (resp. 
increases) from left to right. These two physical interpretations of L correspond to 
two different experiments: the critical isothermal remagnetization downward and 
upward. Now, the symmetry (4) of L becomes a consequence of (6). 

Remark 2. C_ could be introduced not in the axiomatic but more constructive 
manner. We start with the classical description of a ferromagnetic sample, men- 

-&+6 

Fig. 5 

tioned at the beginning of this section. The undercritical region in M, E plane has 
the shape sketched in Fig. 5. We take two copies of that region. They are shown in 
Fig. 5 where different directions of remagnetization processes are indicated by 
arrows. Then, the space C_ of our previous axiomatic definition can be obtained if 
we glue those two copies along L in such a way that the opposite directions on 
both copies coincide. Such an operation can be done smoothly in the sense of the 
coordinates M, E provided that L is symmetric with respect to the point M = 0 
= E. 

Fig. 6 

0 2. Magnetic field 23 

According to Remark 1, L is physically interpreted as the critical isotherm. But 
the interpretation is very different from that which is met in the classical approach. 
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The critical isothermal remagnetization upward and downward processes are not 
obtained by running along L in two opposite directions: we get both of them if we 
run along L from left to right but we have to choose the appropriate values for E. 
By (6), magnetization and energy are not uniquely defined on L because E is 
double-valued on L.6 ‘For the same reasons the (external) magnetic field H can be 
defined on L only up to E, i.e. 

H(x, Y) : = E(X, Y) rl(x, ~1, 

where q is a smooth function on C-. 

(7) 

We know from experiments that, in the critical isothermal process, H is a 
monotone function of magnetization and its derivative, i.e. the inverse of sus- 
ceptibility (dM/CJH),, vanishes at the critical point (see e.g. [S]) as is shown in 
Fig. 7. The “simplest” example of such a function is a cubic parabola.7 This 
encourages us to introduce the following 

Fig. 7 

HYPOTHESIS II. Along the critical isothermal process, the magnetic held is cubic 
(infinitesimally at the critical point) with respect to magnetization, i.e. 

?j (x, f’(x)) = ax3 + 0 (x4), cf. (3) (8) 

where, by (6), 

a CO. (9) 

The assumption of cubicity of magnetic field in the critical isothermal prol-tss 
could be understood as an implicit admission that this feature can be observed 

6 One may ask whether our decision to deal with the coordinates x, y instead of M, E has any 
justification’! Have they more fundamental physical interpretation than M and E, if any‘? The answer is 
the subject of the whole paper: see also Remark 16. 

’ Here the term “the simplest” can be understood rigorously as follows: by the previous 
arguments, the germ at 0 of the function H + M(H. I,) must lay in m3 (see the footnote’), where the 
cubic germs form a unique orbit of codimension zero. 
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(measured) * and therefore it should exhibit a kind of stability with respect to small 
perturbations of the isotherm f, in IY This suggests 

HY-POTHESIS III. The function q restricted to a curve being a small zero- 
preserving smooth deformation of L is also of cubic type, i.e. there exists a 
neighbourhood 0 of zero in C”(R) endowed with the Whitney topology, such that 

rl(x,f(x)+g(x)) = a,x3+O(x4) (10) 

if gE 0 and g(O) = 0; u,ER. 

TIJEOREM 3. Hypotheses II and III imp1.y thar 

r] (x, y) = Ax3 t 13x2 y + Cxy' + Dy3 (mod m4),9 (11) 

i.e. VE nt3, und 

A = u4(B+C1+W), I: =f’(O), B, C, QER. (12) 

Proof: Hypothesis III excludes from the Taylor expansion of q at zero all 
monomials of degree lower than 3. (12) results from (8). n 

4 3. Temperature 

The same arguments as at the beginning of the previous section compel us to 
look for the temperature T of the form 

V-7 Y) : = f‘ -t E (x, Y) 5 (.x, Y), (13) 

where 4 is a smoo:h function on W and c(O) = 0. 

PROPOSTION 4. The Maxwell identity (1) implies that the derivatives ax 3 (()), 

g(O) vanish and therefore 

5( ., O)E 14, (14) 

where ttt, is the muximul ideal in the ring of’ smooth germs of one vuriuble. 

’ We are aware of experimental data H - (sgnM)lh4)d for critical isothermal processes, where 4 
CC 6 < 5 depends on ferromagnets. A kind of justification for neglecting them is given in [4] and 
Remark 16. 

9 WC use the following standard notation: 6 - the ring of germs at 0, of C”,-functions on V% m - 
its maximal ideal consisting of all germs vanishing at 0, mx - the k-th power of tn. To avoid 
inessential rigour we speak about functions instead of their germs. (11) means that the functions on 
both sides are equal up to a function, the germ (at zero) of which belongs to the ideal nt“. 
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Proof: By the Maxweli identity and Theorem 3 we have that 

and it belongs to m2. n 

As for q, we assume the cubic type (14) of t to be stable. 

HYPOTHESIS III’. The function i” restricted to a curve, which is a small zero- 
preserving deformation of the curve y = 0, is also of cubic type, i.e. there exists a 
neighbourhood 0 of zero in Cm(R) endowed with the Whitney topology, such that 

5 (x, 9 (x)) = b, x3 + 0 (x4) (16) 

if gE0 and g(0) = 0; b,E R. 

THEOREM 5. The Maxwell identity and Hypothesis III’ amply that 

4 (x, y) = t, [f Bx3 + Cx’ y + 3Dxy’ + D’y3] (mod m4), 

where B, C, D are as in Theorem 3 and D’ is an arbitrary real number. 

(17) 

Proof: Hypothesis III’ excludes from the Taylor expansion of 5 at zero all 
monomials of degree lower than 3. The interrelation between coefficients of < and 
q follows from (15). 

0 4. Symmetry 

The fundamental symmetry of magnetic phenomena - see 7” of the 
Introduction - can be expressed in terms of our model as follows: For every 
(xi, Yi)E~-, i = 1, 2 such that: 

7-(x,, Y,) = T(xzr YZ), (*) 

they are attainable in the opposite remagnetization processes, (**) 

M(x,, ~1) = -M(xz, YJ, (***) 

one has 

H(x,, ~1) = -H(x,, ~2). 

PROPOSITION 6. The above symmetry condition is equivalent to: 

v x,yl.yz 5(x, Y1) = -r(x, Y2) *r(x, Y1) = r(x, Y2). (18) 

Proof: It is sufficient to show that the conditions (*), (**) and (***) are 
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equivalent to 

&(X1, Y1) = --&(X2, Y2L (19) 

<(x1, Yl) = -{(x2, Y2L (20) 

x1 = x2. (21) 

Indeed, it fdllows from (**) that (Xi, Yi) are on the opposite sides of L, i.e. (19). 
From (*), (13) and (19) we get (20). Similarly, from (***) (6) and (19) we get (21). At 
last, the fact that (19H21) imply (*H***) is obvious. 

Let us denote 

Y := {(q, <)~m~ x nt3: (18) is fulfilled). 

Obviously, if g( ., .) is smooth and cubic in the first variable 
: = g(x, t2(x, Y)) then (q, 5)~ y. The following theorem tells 
stable. 

(22) 

and we put ~(x, y) 
us that this case is 

THEOREM 7. There exists a subset 0 E in3 which is open in the set ?f all germs 
from I$ vanishing on L, and such that 

(VT S)EY ( > CEO =+P_ rl(x, Y) =9(x, r2(x, y))). 

Proof: It is easily seen that if we put 

51(x, y):= 5(xJM+Y)T 

V,(X> Y) := v(xJw+Y)> 
(23) 

where f is that of (5), then c1 and q1 satisfy the assumptions of Theorem 17 given 
in the Appendix. 

Remark 8. From Theorem 17 we get an explicit description of the set 0. It 
consists of such 5~ m3 \ mm that: 

S(xJ(x)) = 0, 

x 
;r~;(x, Y) > 0 for (x, Y) f 0, 

the Taylor series T,<, (x, y) has no multiple factors in R[[x, y]], 

the series To <I (x, y)+ T, <I (x, y’) is irreducible in R[[x, y, y’]]: 

the germ <I is defined in (23). 
Besides the symmetry we want q and 5 to satisfy the Maxwell identity. Let 

A:= {(q, <)~nt~ xm3: (15)-is fulfilled}. (24) 

So, we are interested in Y n JZ. 
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Remark 9. Some preliminary calculations suggest that the orbit structure of ,4p 
is, roughly speaking, the same as that of Y n 4. Of course, such a statement 
should be first made precise and then proved; this we leave to another paper. Here 
we mean that by looking for stable singularities of our q and < we can remain in 
the whole ,Y instead of ,4p n 4, i.e. we can neglect, but not violate, the Maxwell 
identity. The next is based on this idea. 

9 5. Critical exponents 

In this paragraph we find out physical consequences implied by our q and r 
satisfying the symmetry condition (the symmetry of hysteresis). Theorem 7 distin- 
guishes as stable the following case: 

5~0 c m3 (see Remark 8), 

r(x, Y) = Y(X, t2(x, Y)), 
(25) 

where g E in, g( *, 0)~ nt: cf. (14). Therefore we take 

g (x, y) = x3 (u + uI x + a, x2 + u3 x3 + higher order terms in x) + 

+y(b+b,x+b,y+higher order terms in x and y) (26) 

- here a is the same as that in (8) - and 

<(.x, v) = cy3+cl xy2+c2x2y+c3 x3(mod m4). (27) 

PROPOSITWN 10. Zf u, b, c # 0 lo then there exists a diffeomorphism $1 R2, 0 
-+ R2, 0 such that jar q given by (25) 

vrl/(x, y) = x3 +(wb)y6, (28) 

i.e. q is a singularity of type J,, according to Arnold’s cluss$cution [2]. 

For the proof see Appendix. n 

Let us switch off the external magnetic field, i:e. we pass to H = 0. The 
remaining magnetization M, is called a residual magnetization. By (7), H = 0 is 
equivalent to q = 0. This is why we are interested in the set +r-’ (0). 

COROLLARY 11. Tile set q-l (0) is the curce 

s+p(s):= ( -2yz7&~+O(s3)’ 

S )* 

For the proof see Appendix. n 

(29) 

lo a # 0 was already assumed in Hypothesis II. The assumptions b, c # 0 imposed on 
(q, <)~.Yn(m~ x0), see Theorem 7, introduce a restriction to an open and dense (generic) subset of 
.‘f n(m3 x0). One of the principles of our approach is to neglect such restrictions. 
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Now, we want to calculate at the critical point x = 0 = y the infinitesimal 
dependence of the residual magnetization M,(t) and the inverse of the isothermal 
magnetic susceptibility (i.m.s.) l/~(h, t) as functions of temperature. Let h be fixed a 
magnetic field and t a fixed temperature. What corresponds in our approach to 
l/X(h, t) which in thermodynamics is introduced as (aH/8M),? Let cp(x, t) be 
defined by the equation 

+G cp(x, t))<(x, cp(xt 0) = t-t,. (30) 

Since 

H(x, Y) = E(X, Y)?C% Y), 

Mb, Y) = -&(X7 Y)X, 

the inverse of i.m.s. is the derivative of the mapping 
xq(x, cp(x, t)) to each --E(x, cp(x, t))x. 

This results in differentiation of the mapping x -+ 
define 

assigning ~(x, cp(x, t)) x 

-v(.x, cp(x, t)). Thus we 

(31) 
X: H(x,&~,t)) = h 

As concerns the residual magnetization, we are interested only in its absolute value 
and therefore we put 

(32) 

By the infinitesimal dependence of the above two functions on temperature we 
mean the asymptotic proportionalities 

M (0 - (1 - W”, 
1 

-- - (1 -t/t,)“, 
x(0, t) 

for t /* t,. Their occurrence in our model is expressed in 

PROPOSITION 12. For OUT 5 and q,- we have 

M,(t) = 2JG7G(tC-r)2/3-kO(t,-t), 

1 
-------= 
x(0, t) 

-12$G(r,-t)4’3+0(@-tJ5’3). 

(33) 

Proof: For a given t the corresponding parameter s, on the curve (29) is given 
by the equation . 

c = T(p(s)) = t,+cs:+O(sy 

‘I Without loss of generality, we restrict our considerations to W, c .k, where E = + I, cf. (2). 
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Thus 

s, = - (f&p3 (1 - t/r,)“3 + 0 (( 1 - t/t,2’3) 

and 

M,(t) = M(p(s,)) = 2$+(1 -f/r,)2’3+0(1 -t/r,). 

Passing to the other critical exponent we see that, by (25) and (30), 

)?(x. q(x, t,) = g(x, C’(x, cp(x, t),) = g(x, (L-02). 
Let us denote by pl, p2 the coordinates of the curve (29). By (31) and (26) 

1 
-= 
X(0, 0 

-~,(% (tA2)l,: H(.X,cp(x,t))= 0 

= - 3ax’ -(t, - t)‘(b, + terms of higher order in x and/or t - t,)l,= plcstj 

= - 12(ub2 c4)1’3 (1 - t/tp + 0 (( 1 - t/tp). m 

Remark 13. It is known that the singularities of types D:, i.e. equal u(u2 -+tq2) 
in appropriate coordinates, form an open and dense set m3. Their zero sets are: a 
curve for 0: and three curves intersecting transversally at 0 for 04. Since t-l (0) 
is interpreted in our model as the critical isotherm, we postulate that 5 belong to 
0:. However, not whole orbit 0: is admissible in the light of the assumption: 
(?t/+ > 0 outside zero, see Remark 8. Nevertheless, there are in 0: singularities 
satisfying that assumption, e.g. 5(x, y) = y(x2 +y2), and they form an open set in 
0:. 

9: 6. Final remarks 

Remark 14. The parameter z was introduced in Introduction 3O. Roughly 
speaking, the loop of hysteresis becomes narrower as z + 0. In this sense, by 
passing with z to zero we approximate an ideal ferromagnet consisting of one 
magnetic domain. Up to now we have considered the case of a fixed z + 0. Let us 
imagine that all objects of our approach, from the coordinates x, y beginning and 
up to the functions q and 5, depend on z. Then for very small z the residual 
magnetization M,(t) could be interpreted as the spontaneous magnetization M,(t). 
If we assume a regular (non-singular) dependence of our model on z then we obtain 
/? = 2/3 as the critical exponent for MS. It seems to disagree with the values 
p = 0.36-0.39 given by experimental physics. On the other hand, our y’ = 4/3 
seems to fit very well the experimental data y’ = 1.2- 1.36. 

Remark 15. Measurements of the critical exponents consist in fitting the 

experimentally obtained points by a “monomial” a, (I- l/tJao, where a,, ~1~ E R. The 
fitting is done on an interval [tl, r2] strictly below fC, i.e. t, -C t,. Such a method 
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assumes implicitly that the coefficients ai in a rational 

f Ui(l -t/tJZ 
i=O 

SINGULARITIES 

power expansion 

371 

(34) 

of the thermodynamical function whose critical exponent is to be measured, are 
such that the first term a,(1 - t/tJaO dominates on the interval [t,, t2]. Undoubtedly, 
this cannot be true in general. Therefore we propose another point of view 
mentioned already in [4]. According to it 

1” This is only a theory which is able to provide an expansion of the type (34), 
i.e. the exponents cli, i = 0, 1,. . . 

2“ Experimental data provide information about the coefficients ai, i = 0, 1,. . . 

Fig. 8 

Remark 16. To anybody interested in our ideas about C, and the whole L 
= C- u Z, we recommend Remark 19 of [3]. They are drawn in Fig. 8 which 
augments the illustrations given there: two leaves of Z,, as presented in [3], are 
now identified and E becomes a double-valued function on the whole C, . The 
thermodynamic space Z is the product of a spur I-- and a line. This is, of course, 
a neighbourhood in Z of the critical point. 

Appendix. Proofs 

THEOREM 17. Lcr 5 E m2 \ ntOc he finite-determined, [(x, 0) = 0, 

2(-x, y) > 0 .for (x, .v) f 0, (35) 

the 7il)./or series To { (x, y)~ R[[x, y]] h ave no multiple factors, the .formal power 
series To 5 (.u, y) + To < (x, y’) E R [ [x, y, y’]] b e irreducible. If we (Ire given VE m 
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compatible with 5, i.e.fir every (x, y, y’) ({(x, y) = -r(x, y’))*(q(x, y) = q(x, y’)), 
then there exists gE m such that 

vl(x, Y) = g(x9 t2(x, Y)). (36) 

Proof: Since x and 5 are smooth coordinates on an annular neighbourhood of 
zero, there exists a smooth f0 such that ~(x, y) =fO(x, ((x, y)). Decomposing f0 
into its even and odd parts: 

“6 (xv 0 =f1 (xv t2) + tf2 (x, t2) 

and taking into account the compatibility of ‘1 and t, we get f2 (x, c2(x, y)) = 0. 
Thus, outside zero we have fi such that 

?(X? Y) =A (x, C2(x, Y)). (37) 

LEMMA 1. If there exists a formal power series SE R[[x; y]] such that 

T,rl(x> Y) = S(x> (To02(x, Y)) (38) 

then fi can be smoothly extended to zero. 

So we have only to show the existence of such S. Let 

F(x, Y, Y’) := <(x9 y)+<(x, Y’) 

G(x, Y, Y’) := v(x, Y)-9(x, Y’). 
(39) 

The compatibility of 5 and q means that for any (x, y, y’) close to OE R3 

F(x, y, y’) = 0 => G(x, y, y’) = 0. (40) 

Let us check the following analogous implication for their Taylor series: for each 
formal curve Z@)E R[[1]13 close to OE R[[1]13 

(&F@(l)) = O=E-(T,G)(z(l)) = 0. (41) 

By Borel’s theorem there exists a smooth curve A--+ zo(A) E R3 such that (To z,)(l) 
= Y(A) and F (z,( .)) is flat. Then, using Tougeron’s implicit function theorem we 
infer the existence of a smooth /I +z(t)! R3 such that z--z0 is flat and F (z(A)) 
= 0. But we have to check the hypothesis of the theorem. To this end let us notice 
that by the finite determinacy of 5, an appropriate change of coordinates in R3 
allows us to assume analyticity of F. Then the components of its gradient satisfy 
the tojasiewicz inequality 
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for some positive C and tr; see [6], Corollary 1.6, p. 119 and 
p. 102. Thus 

for C,, ai > 0: we consider only F(A) # 0. Hence the ideal I generated by 

Definitions 4.1, 4.2, 

’ $$Q(.)) and $k)) = $(%(_,) 

is not flat and, in particular, nt30 = nt”l’. Therefore F(z,( -))~m~1’ and 
Tougeron’s theorem ensures the existence of smooth z for which F (z( .)) = 0 and 
Z--ZOEntmlJ = m”. 

Now, by (40) we obtain the right-hand side of (41). It is easily seen that in the 
light of our assumptions about 5 (VT, <)(X0(A), j’~~(1)) # 0 for almost all formal 

curves (X0 (A), Y. (A)) E R [PI]“, i.e. except those for which ye(I) = 0. Now, ‘if we 
denote 

F:= T,F, G:= TOG, 

the following lemma can be applied: 

LEMMA 2. Let F, GE R[[x 
= 0, iS such that 

1,. . ., x,J], F be irreducible. If x(A)E R[[iZ]]“, X(O) 

F(%(iL)) = 0, (VF)(X(A)) # 0 

and for every j?(A) f rom a neighbourhood of X(l) in R[[J_]]” (endowed with the Cull 

roPologY) 

then F divides G. 

F (jqlz)) = 0 => G@(A)) = 0, 

Hence we have a 

(T,F)(Z(A)) = O=+$G)(z(rZ)) = 0 (42) 

for all complex formal curves F(A)E C [[A]]“. 
So we have stated our problem in the complex domain and now we shall 

investigate To q on the set of complex formal curves which are zeros of To 5. The 
Puiseux decomposition for To 5 E C [[x, Y]] has the form 

(TOW, Y) = x4 fi (y-qcPi(xl’“‘))a(x, y) (43) 
i= 1 

where 4 = 0, 1,. . . , pi(z)EC[[z]], pi = 1, 2 ,..., and a(x, Y)EC[[X, y]] is inver- 
tible; Cpi(.X”“) are fractional formal power series. Let us show that To q(x, q+(~l”‘~)) 
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do not depend on i. Thus, we take p = pi . . . pk and two complex formal curves 
y,(X) such that 

(To <)(X’, J’i(X)) = 0, i = 1) 2. (44) 

Hence, T, F vanishes on the formal curve (xp, y, (x), y2(x)). By (42) we’ have 

(T,?)(XP, Yl(x))=(Gr)(xp~ Y2(X)) 

i.e. 

(Tovl)(x, YIWP)) = mJ)(x9 Y2(X1’p)). 

So the complex fractional power series 

$0 (Xl”) : = & r] (xy Yi (Xl”)), 

where (x, yi(x’~p))~~[[x1~P]]2 runs over all zeros of T,<, does not depend on i. 

Let E be any of the complex p-th roots of 1, i.e. sp = 1. If we substitute sx’Ip 
into (44) in the place of x, we see that (To <)(x, y, (EX”~)) = 0, i.e. the curve 
(X’ y, (EX”“))E C[[x”P]]2 coincide with one of the curves (x, yi(xl”)), i = 1, 2, . . . , k. 

Thus $0(x1/p) = T, q(x, yl (EX?!~)) = (To ~)((Ex”~)“, y, (EX”~)) = f,bo(~xl’“). Hence, all 
terms of the series $,,(x”~), containing fractional (non-natural) powers of x must 
vanish. In other words, 

(T,?)(x9 Yitxl”)) =:ti(X)ECICxl]. 

Since the formal series T, < has real coefficients, there exists such i = 1,. . ., k that 
the complex conjugate 

y1 (Xl”) = Yi (Xl”). 

This and the fact that T, q is a real formal series tells us that cc/ is also real. 
Let us denote 

0(x, Y) := T,rl(x, Y)-W)ER[CX, yl]. 

Obviously, 0 vanishes on all complex formal curves which are zeros of To 5(x, y). 
Since T, 4 has no multiple factors, there exists ?ji (x, y)~R[[x, y]] such that 

T,vl(x, Y) = $(x)+V,(x, Y)T,<(%Y)* (45) 

Let us define 

G,(x, y, Y’):= rl,(x, y)+h(x, y’kR[Cx, Y, ~'11. 

It follows from (41) and (45) that 

(To F)(5(R)) = 0 3 G, (F(A)) = 0. (46) 
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It is easily seen that the part of our proof contained between (41) and (45) can be 
repeated with To q, T, G replaced by vi, G, (respectively). Then (46) is an analog of 
(41) and as an analog of (45) we get 

V1(x, Y) = ti1(x)+)?zk y)T,5(x, Y), 

An infinite sequence of such steps yields 

T,v(x, Y) = II/(x)+ f ~kCX)(T,4k Y)K 
k= 1 

where, by the compatibility of r] and i;, $k(x) = 0 for odd k. Finally we put 

St-? Y) = II/(x)+ 1 $2kh)Ykv 
k= 1 

which completes the proof. H 

Proof of Lemma 1: Let f3 be a smooth function (germ at 0) the Taylor series of 
which T’,‘,f, = S. Then the function 

F(x, Y) = r(x, 4’) -.A (x, r2(% Y,) 

is flat at 0, i.e. for any N and a = (c~i, x2) there exists a constant C,,, such that 

ID” F(x, Y)I d Ca,N(lXl + IYIJN. (47) 

Since 5 (0, .) 4 in=, there exists the smallest I such that 
c 

i:+ # 0 and S(O) = 0, 

and so forth. Therefore 

([xl+ Iy()2’ e (x2 +y2)Q 1tt21 c (x, i), 

where (x, <> is the ideal in r generated by x and 5. Thus 

(l.d+I~l)~’ G Ia@, y)+W, yit(x, y)l < C(l~l+l5(x, y)l)- 

By (47) and (45) we have 

IF(x, YI f CNC0.ZIN(I~I+15(~, ~)l)~ for any N. 

Let us define 

.f(x, t) : =.1; (x, t2)-.fi (x, t2) for (x, t) # 0. 

Obviously, if (x, 5(x, J)) # 0 then 

f(X? 5(x, Y,) = Fb, Y). 

(48) 

(49) 

, 

(50) 
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Thus, by (49) 

If (x, 
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f)l G CN C0,21N (ix/ + itbN (51) 

for any N and (x, t) # 0. We shall prove an analogous estimate for all derivatives 
of J We use the notation 

a al+=2 

a.? aya2 ’ 
where a = (ai, a2) 

and similarly for other variables. Let (x, 5(x, y)) # 0, then 

(7:F(x, y) = @f(x, 5(x, y))(a,t(x, y))4+terms involving lower 

order derivatives off; 

a::qF(x, Y) = [ f: a:-kap+v(x, 5(x, y))(axm, Y)~I x 
k=O 

x (a,, 5 (x, y))p + terms involving lower order derivatives of f; 

;P,,,F~ Y) = (am, Y))*~w(x~ 5(x, Y))+ 

+ c q(wX, Y), am, ywt,,f(x, w Y))+ 
‘$1;; 

+ terms involving lower order derivatives of J; (52) 

where @; are monomials of two variables and < is the lexicographic order in 

2-indices of the norm r, i.e. if I/?1 = Ial = r then 

(P <a) +A ( ai v 0% = a1 * /32 < a,)). 

For a given r we take the system of equations (52) for all a with /aI = r. Let us 
solve it with respect to a,,,f(x, <(x, y)) as unknowns. If the equations and 
unknowns are ordered lexicographically then the matrix of the system is triangular 
with powers of non-zero a,,c($ y) at the diagonal. Its determinant equals 
(4 <(x, y)r where s = r(r + 1)/2. We solve these systems subsequently starting with 
r = 1. In this way we get 

(a, l (x, Y)P a:,, f(x, r (x, Y)) = $+ u”s (a, 5 (x, Y), a, s’(x, Y)) at,, ~(x, Y) + 

+ terms involving lower order derivatives of F. 

Now, by (47) and (48), for any N there exists a constant Ma,N such that 

id, <(X, Y)i” Ia,, f (XV 5 (X, Y))l G M,,N (id+ iybNe (53) 

Being finitely determined, t as well as ay < are analytical up to a diffeomorphism. 
In particular, the Lojasiewicz inequality occurs for S, 5, i.e. there exist M and k 
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such that 

la, 5(x, Y)l 2 M(Ixl + IYllk. 

Hence, by (53) and (48) 

377 

&,J(x, 5(x, Y,) Q MK,iv(l4 +lYIPk 

< MM,,N C”” ([XI + 15 (x, y)l)(N-sk)‘21. 

In other words 

la,,,f(x, t)l < MM,,N C1’21(I~I +Itl)‘N-Sk)‘2z. 

Therefore, if we extend f to zero, i.e. we put f(0, 0) = 0, f becomes a smooth and 
flat function at zero. So, fi can be extended to zero by the formula 

fi(% t) =A@, t)+f(x, JR) 

which is smooth at zero. m 

Proof of Lemma 2: 1”. Without loss of generality we can assume that 
- 

$0,. . ., 0, x,) # 0 
n 

and 

&A)) # 0. 
n 

By the preparation theorem [6], p. 189, F is equivalent to a Weierstrass poly- 
nomial of x,, i.e. there exists Q E R[[x]], Q(O) # 0 (i.e. Q invertible), and 

P- 1 

F, (X) = Xf: + C pi (X’) Xl, 

i=O 

where x’:=(xr,..., xn-l), ai(~‘)ER[[x’]], such that 

Let G,(x) 

We want 
Let us 

F and G, 

-- 
F=QF,. 

p-1 

T i;. bi(x’)xf, be the rest from dividing G by F, i.e. 

-- 
G = RF,+&. 

to show that G, = 0. 
notice that F, and ~7, satisfy the assumptions made in our lemma about 

respectively. Moreover, degXn C, CC deg.+ F, . Therefore it is enough to 



378 S. JANECZKO, J. KOMOROWSKI and T. MOSTOWSKI 

prove that if F, G of our lemma are polynomials with respect to x, and 

deg,. G < deg,” P 

then G = 0. To this end, let us suppose that G # 0. - 

Let N be the degree of g(?(n))~R[[i]], i.e. there exists q(A)~R[[12]] such 

that ~(0) # 0 and :(X(A)) = ANq(A). 
” 

2”. We introduce new variables a,, . . , , a,_ 1 and denote a’ 
the previous notation x’(L)ER[[~]]“-‘.‘~ 

Let us define 

<‘(a’, A):= jZ’(l)+a’AZN+%R[[a’, /I]]“-‘. 

We shall prove that there exists a unique series &,(a’, A)EC [ 

QY(a’, 4, 4,(a’, 4) = 0 

and 

&(a’, l)-z,(i)EAN+r C[[u’, A]]. 

In fact, we have (exactly as above) 

= (a ,,...,a,,-~). BY 

[a’, i]] such that 

Hence 

F(<‘(a’, 4, Z”@))EJ 2N+1 R[Ca’, Al] = (AC[[a’, Al])(ANCICa’, Al])‘, 

P(y(a’, A), X&I)) = AZN+* @(a’, A) 

for some @ (a’, A) ER [[a’, A]], and moreover 

(4 

Thus INS = g(ii’(a’, A), Fn(I))+12N+1 $(a’, A) for some $ER[[u’, A]]. Since 
n 

v(O) f 9 
- 

AN = ggy,,: A), a”(q/(cp(II)-P+‘$(u’, A)), 
” 

I2 i.e. X(2) = (X’(l), -Y,,(A)). 



PHASE TRANSITIONS IN 

which shows that AN belongs 

X, (A)). Therefore 
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to the ideal in C [[a’, A]] generated by 

This and (*) permits us to use Tougeron’s theorem by which the existence and 
uniqueness of our &(a’, 2) is ensured. 

3”. Let A : = R [[x’]] and 

P(X”) : = F(x’, X”)EA [x,-J, 

Q(x,):= G(x’, x.)~A[x,]. 

The discriminant d of P and Q is a polynomial (with integer coefficients) in 
coefficients of polynomial P and Q. Thus A is an element of A and to stress this 
fact we write A = A(x’). We shall prove that A (x’) = 0. 

Let B : = R [[a’, A]] and 

PI(&) := F(5’(4 4, X”)Em,l, 

Q1 (x,) : = G(t’@‘, 4, x,)~Nx,l. 

As above, the discriminant A, = A, (a’, 2) of polynomials P, and Q1 is an element 
of B. Obviously, 

A, (a’, 3L) = A(<‘(u’, A)). 

It was shown in part 2” of the present proof that P, and Q1 have a common root, 
namely, <,,(a’, 2) E B. This implies A, (a’, 2) = 0. Let u’(n) run over a neighbourhood 
of zero in R[[l]]“, then <‘(a’(A), 2) runs over a neighbourhood of %‘(I_) in R[[A]]. 
Since A(<‘(u’(i), l))a;,O, we have A = 0. 

So, P and Q have a common root a belonging to the field K which is the 
algebraic closure of the field of quotients of A. Let M(x,) E K [x,] be the minimal 
polynomial of IX M divides in K[xJ both Q and P. Thus P is reducible in K [x,]. 
Since P(a) = 0 and P(x,) = x:-i-lower order terms, 51 is an integral element over 
A [x,]. So its minimal polynomial ME A [x,]. Therefore P(x,) is reducible in 

A Cx,l = R [WI] Cxnl, which implies reducibility in R [[x’, x,,]] of F(x’, x,) 
= P(x,). This contradiction is a consequence of the assumption G # 0. Thus G 
= 0, which completes the proof. n 
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Proof of Proposition 10: By (25)-(27) 

q(x, y) = x3(a+a, x+a,x2+u3x3)+ 

+ b (cy3 + cl xy2 + c2 x2 y + c3 x3)2 (mod m’) 

= x3 [a + a, x + a2 x2 +(a, + bc;) x3] + bc2 y6 + 2bcc, xy5 + 

+x2 P4 (x, y)(mod nt’), 

where P4 is a homogeneous polynomial of degree 4. 
Let us define 

(*) 

1 
X(x, y):= [u+u,x+u2x2+(u3+bc:)x3]“3+3a2i3P,(x, y), 

Y(x, y) : = (lb1 c’)~‘~(Y++C~‘~ C, x). 

It is easily seen that 

X3 (x3 y) +(sgn b) Y6 (x, Y) = v (x, Y) + x2 Q4 (x, y) (mod m’), 

where Q4 is a homogeneous polynomial of degree 4. Obviously, the mapping 

(x, Y) -(X(x7 Y), ytx9 Y>) is a diffeomorphism R2, 0 + R2, 0. If we calculate the 
linear part (derivative) of its inverse we see that x2 Q4 (x, y) = X2(x, y) R4 (X(x, y), 
Y(x, y))(mod m’), for some homogeneous polynomial R4 of degree 4. Hence 

q =X3+(sgnb)Y6-X2Rq(X, Y)(modm’). 

If we put X 1 :=X-*R,(X, Y) and Y, := I: then 

7 = Xf +(sgn b) Yt(mod m’). 

Obviously, $I := (X,, Y,) is a diffeomorphism R2, 0 -+ R2, 0 and 

vo$;‘(x, y) = x3+(sgnb)y6(modm7). 

Using the well known sufficient condition for k-determinacy (see, for instance, Cl], 
Lemma 2, or [S]) we see that our vo$; 1 is Gdetermined, which completes the 
proof. n 

Proof of Corollary 11: Let II/ be as in Proposition 10. We denote I,-’ 

= (til, 4G2) and we put 

$I (x, y) = ax+al y+a2x2+a3 xy+a,y’(mod nt3), 

$2(x, Y) = Bx+hy+P2 x2 + fi3 xy + p4 y2 (mod nt3). 
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Then, by (28) and (*) of the proof of Proposition 

r(x, Y) = It/:(x, Y)+(sgnW% Y) 

10 
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= x3 [a + a, x + a2 x2 +(a3 + bci) x3] + bc2 y6 + 2bcc, xy5 (mod m7). 

This implies aI = a3 = a4 = 0, a = u~‘~, /I = lb1”6c1/3c2’3, a2 = u~/~u~‘~, fil 

= I4 116 cll3 

On the bther hand, q-‘(O) is given by the equation til(x, y)+(sgnb)$i(x, y) 
= 0 which leads to 

ax+a2x2+(/l?x+j31y)2 = O(modm”). 

Since a = u113 # 0, we can find x as an implicit function of y and we get 

281 
x = 7(/?-a)y2+O(y3). 
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