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One of the useful methods of mathematical physics is the one arising from symplectic
geometry and associating the singularities of Lagrangian submanifolds with the optical
caustics, phase transitions, bifurcation patterns, obstacle geometry etc. In this paper we
derive the stability criteria for singularities of equivariant Lagrangian submanifolds with a
compact Lie group action determined by a system with symmetry. The recognition
problem and classification list for stable (Z,)4-equivariant singularities is proved. We find
that the classified stable local models occur as possible realizations for the equilibrium
states in the breaking of symmetry and structural phase transitions. Additionally, the
connection between two technically different (by generating functions, by Morse families)
infinitesimal G-stability conditions for equivariant Lagrangian submanifols is studied and
an alternative approach is proposed.

1. Introduction

Singularities of Lagrangian submanifolds appeared as natural objects in the
study of the wave pattern with high-frequency waves coming from a point source
and moving through a medium (cf. [14], [12]). The corresponding intensity of
radiation is described by the asymptotics of the so-called rapidly oscillating -
integrals (cf. [7], [3]). Asymptotically (with high frequency) this intensity is infinite
around the singularities (coustics) of Lagrangian submanifolds generated by the
appropriate phase functions (cf. [19], [7]). Thus the Lagrangian submanifolds
appeared initially as the spaces which model the systems of rays in geometrical
optics [3]. In the case of symmetries of the sources of radiation, as well as when
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the boundary conditions (mirrors) exhibit some symmetry properties, then the
corresponding Lagrangian submanifold describing the respective optical geometry
of the system possesses also some symmetry properties (cf. [14], [17]). Similar
problems with symmetric Lagrangian submanifolds appeared also in the varia-
tional calculus, nonlinear partial differential equations, and optimization (cf.
[14], [24]).

Another domain where the singularities of Lagrangian submanifolds play an
important role is the symplectic bifurcation theory (cf. {237, [11], [10]) and the
breaking of symmetry in mechanics and the structural phase transitions (cf. [17],
(81, [9D. It was observed in [10] that the Lagrangian submanifolds model the
space of equilibrium states of thermodynamical systems. In most thermodynamic
phase transitions in crystals (cf. [12]) the whole bifurcation picture can be
described by an appropriate G-equivariant Lagrangian submanifold in the corre-
sponding phase space with the compact Lie group G of symmetry (cf. [11], [9]).
The first step in the study of typical properties of constitutive sets in structural
physics is the recognition and classification of stable G-equivariant germs of
Lagrangian submanifolds, which is the aim of the present paper.

In this paper we will study the infinitesimal stability and local stability criteria
for the germs of equivariant Lagrangian submanifolds near the fix-point of the
symplectic action of the compact Lie group. Our purpose is twofold. First, we want
to write down the algebraic criteria for the local G-stability. Secondly, we want to
use this general method to investigate the normal forms of the stable G-equivari-
ant Lagrangian germs.

In [2], [22] there is a study of stable singularities of Lagrangian submanifolds
in the nonsymmetric case, and we will follow the notations and terminology used
there. In Section 2 of our paper we present the basic results and notation. In
Section 3 we construct the infinitesimal stability conditions for G-invariant generat-
ing functions of G-equivariant Lagrangian germs and show their effectiveness in
calculations with the trivial Z, and D, symplectic group actions. Section 4 is
devoted to the complete calculation of stability criteria and classification of stable
normal forms of equivariant Lagrangian germs in the concrete (Z,)? group action.
This action is motivated by the theory of phase transitions in uniaxial ferromag-
nets as well as in all types of ferroelectrics. In Section 5, 6 we present the stability
criteria in the Morse family (cf. [19]) approach. Here we derive the so-called linear
infinitesimal stability condition and show its usefulness in some concrete symme-
tric problems. Following [9] we also present there an alternative approach to the
study of G-equivariant Lagrangian singularities in physical applications.

2. Preliminaries

Let v: G —=0(n) be an orthogonal representation of G in R". By C{(n) we
denote the set of smooth v-invariant functions on R" and by €, (n) the set of all
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their germs at 0eR" (cf. [13]). We denote I (n) = M*(n) N €, (n), where M (n)
denotes the k-th power of the maximal ideal M(n) = €(n) (cf. [21]). For conve-
‘nience we shall write also €,(z), M, (z) etc. instead of €, (n), M, (n), etc., where z
=(zy, ..., z,) denote the corresponding coordinates of R". By €(n, v; m, ), where
¢ is an orthogonal representation of G in R™ we shall denote the set of germs (at
0eR" of equivariant mappings R" — R™
The foundational theory of equivariant singularities may be found in [13],
[21]. Now we recall some of the basic facts needed for the development of the
theory of equivariant Lagrangian submanifolds.

Proposimion 2.1 ([15], [21]). Let v be an orthogonal representation of the
compact Lie group G in R"

(@) There exists a polynomial mapping o: R" — R*, called a Hilbert map, such
that

€ () = o* E(k).

The set o(R") = R* is semialgebraic.
(b) If 6: G—-0(n) is an orthogonal representation of G in R™ and
R ™>(x, y) = p(x, y) €R" is the corresponding Hilbert map for v@®8. then the germs

ou
R">(x) —»F/;'—(x, 0), 1 <i<r generate the module €(n, v; m, d) over G, (n).

Let us consider the cotangent bundle T* R" endowed with the standard
symplectic structure (see [1]). We identify it with the Lagrangian fibre bundle
n: R >R n': (x, &) =(x) endowed with the canonical symplectic structure w

= Y d& A dx;. The action v of G on R" can be canonically lifted to the symplectic
i=1

action of G on R*" = T*R", say T*v: G x R*" = R*". One can easily see that T*v
= v@v, where (v®v), (x, &) = (v, x, v, &) for g €G, (x, &) eR*". An equivariant symp-
lectomorphism &: R*" -»R*" which preserves the fibre bundle structure n’: R>”
—R" will be called an equivariant Lagrangian equivalence (v-L-equivalence for
short). By direct generalization of well-known results [19], [22] concerning of the
nonequivariant case we obtain

ProrosiTioN 2.2. Let &: (R*", 0) =(R?", 0) be a germ of v-L-equivalence; then
there exists a diffeomorphism ¢ €&(n, v: n, v) and a smooth function S €€, (n) such
that

D(x, &) = p*(x)(¢+dS(x).

Let p be the v-invariant point of R*". By (LY, p) we denote the germ of v-
invariant Lagrangian submanifold in (R*", w) (v-L-germ for short). As we know by
[9], any v-L-germ (L%, p = (xo, &,)) can be generated by the germ of the so-called
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Morse family F: (R" xR, (xo, 0)) >R, F €€, q,(n+1]). Locally (I9, (x,, &)) can be
written by the following equations:

OF OF
E="(x, A, 0=(x, i) 2.1)
¢ V)
where
PF O*°F )
rank (‘m, m (XO, O) = l (22)

Conversely, any germ F €€, 4;(n+1) satisfying (2.2) (G-Mf-germ for short) defines
the v-L-germ via equations (2.1). An G-Mf-germ, generating (L, p), with minimal
number of parameters [ is called a minimal G-Mf-germ (cf. [2], [7]). A minimal G-
Mf-germ can be equivalently characterized by the requirements

(62F)( 0 =0
aer ) e =T

The two G-Mf-germs F' €€, o5 (n+10), Fe@,g5(n+1) are called G-L-equivalent if
F(x, ) = F'(p(x), A(x, ) +f (%),

where (A, @): R"*' - R"*! is a diffeomorphism, and Ae€n+l, v®s: 1, ),
pe€(n, v;n,v), fe€(n. To be able to compare the various G-Mf-germs with
different dimensions of parameter spaces we introduce the notion of stable G-L-
equivalence. We say that two G-Mf-germs F, €€, q; (n+1,), F, €€, o5(n+1,) are
stable G-L-equivalent if the corresponding G-Mf-germs F,+Q, €€, g5 gia(n+1,
+ry), Fa+Q,€€ g50u(n+1,+r,), where Q,, @, are the nondegenerate quadratic
forms of the additional variables, are G-L-equivalent (cf. [2]). By straightforward
generalization of [2], [22]1, [9] we obtain

Proposition 2.3, Let (LS, p,). (LS, p,) be two v-L-germs of (T* R", w). They are
v-L-equivalent, ie. there exists an v-L-equivalence ®: T* R" > T* R", such that
&(p,) =p, and D(LY) = LS, if and only if their G-Mf-germs are stable G-L-
equivalent.

For the corresponding minimal G-Mf-germs we have the stronger result.

ProposiTioN 2.4. Two v-L-germs of (T* R", w) are v-L-equivalent if and only if
their minimal G-Mf-germs are G-L-equivalent.

Correctness of these two equivalences is assured by the easily seen fact that any
two G-Mf-germs generating the v-L-germ (L%, p) =« T* R" are stable G-L-equiva-
lent. Let (L%, 0) =(R?", @) be a v-L-germ. Let k = dimker D(xn]L%)(0), then the
representation v is reducible and can be written as the direct sum, at least, of two
components v =v,;®v,. The corresponding invariant subspaces for v, and v,
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respectively are given by Arnold’s results (cf. [2], Theorem 10.6.), namely we can
choose the numeration of coordinates in a neighbourhood of 0 € R*" in such a way
that (x,), (x,) parametrize the invariant subspaces corresponding to the representa-
tions v, and v, respectively, I = (i;, ..., i). J = {1, ..., n}—1. The lifted represen-
tation T*v has the form v, ®v,@®v, ®v,. Thus we can consider (£;, x;) as the new
parametrization of the representation space for v. By [9], [2], [22] there exists a
gencrating function, say (&, x,) = S(&,, x,), for (15.0) and S €€, (n). We will call
this function a v-IJ-germ generating the v-L-germ (L%, 0) if LY is defined near
0eR?" by the equations:

s as
7= ”(»T“(Cul Xy, X = -T’;(él, Xy)- (23)
Xy ¢y
If k = dimker D(n|L%)(0), then we have
iy
——(0)=0
A
and the germ
k
F: R"*3(x, ) »S(4, x)— Y. Ay X;, (2.4)
a=1

is a minimal G-Mf-germ for (LY, 0), where the corresponding representation § in
the parameter space can be chosen as ¢ = v|,,=o, (cf. [22]). Summarizing the
above properties of (LY, 0) and repeating the genericity argument of [2] (Proposi-
tion 10.11), we obtain

ProPosITION 2.5. Generically, any v-L-germ (L¢, 0) <(T* R", w) has a v-1J-germ
of generating function S with J = Q, ie. £ >S(&), SeM?(n).

Now we introduce the fundamental notions necessary to obtain the finite
classification of v-invariant Lagrangian submanifolds.

DeriniTiON 2.6, Let LY < (T*R", w) be a v-invariant Lagrangian submanifold.
A v-L-germ (L, p) is called stable if for an open v-inv. neighbourhood U of p in
T* R" and every smooth family LY, (1| <e, (LS, p) = (LS, p) of v-invariant Lagrang-
ian submanifolds there exist a smooth family &, of v-L-equivalences such that
@, (LY nU) > L NV, for some open v-inv. neighbourhood V of p and sufficiently
small ¢.

As was shown in [9] (cf. [2]) the standard notion of unfolding of a singularity
[20] can be adapted to represent the G-Mf-germs generating the germs of
Lagrangian submanifolds. Let F e, 4;5(n+/). We will call F the v-unfolding of
f=Fl,, G0 (f [9] [16]).
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DerinitioN 2.7, Let F eClps(n+1) be a representative of the germ of the v-
unfolding F €€, g;(n+0). We say that F is stable if for any smooth family of
functions F,eC%;(n+1, |t| <e¢, F, = F, there exists a neighbourhood U of 0 in
R**', a family of diffeomorphisms (¢,, A,)eC®(n, v; n, vV@®C®(n+1, v®s; I, §) and
family of functions f,eCZ?(n) such that

F(x, ) = Fy(@(x), 4,(x, H)+£(x),
for (x, A)eU and sufficiently small ¢.

According to the standard results of the theory of stable singularities we can at
first characterize the stable germs by the necessary infinitesimal condition, the so-
called versality condition.

DerFiniTioN 2.8 (cf. [16]). Let F €€, g5(m+k) be a y-unfolding of f €G; (k). F is
called the G-versal unfolding of f if for any orthogonal representation v of G in R"
any v-unfolding F €@, 4;(n+k) of f has the form

F(x, A) = F(p(x), A(x, D))+a(x),
where AeC(n+k, v®d; k, d), peCn, v;m,y), a € (n).

On the basis of [7], [9], [18], [2] we know that the stable v-L-germs (L, p)
are effectively represented by the corresponding stable germs of v-unfoldings. Our
notion of v-unfolding reduces to the standard notion of unfolding if we assume the
trivial action of the group G. The corresponding theory is exhaustively presented in
[24], [14]. For the symmetric case, following [2], [22], [7], we have the following
equivalent: '

ProposiTioN 29. Let (LS, p) be a v-L-germ contained in (T*R", w), let
Fe@, g;(n+k) be the corresponding G-Mf-germ, then the following properties are
equivalent :

(a) (L, p) is stable v-L-germ.

(b) The G-Mf-germ F is stable as a v-unfolding of f = F| 01 RE e E; (k).

Having the analytical representation of stable v-L-germs, given in Proposition
2.9, we can characterize them by the infinitesimal stability property, i.e. versality of
the corresponding G-Mf-germs as v-unfoldings.

3. Infinitesimal stability conditions for G-invariant generating functions

Let (LS, 0) be a germ of the smooth family of v-L-germs Lf < T*R", |1] <¢&. Up
to the v-L-equivalence (cf. [2], Proposition 10.11) we can represent this family in
the following form:

Lf = {(x, §)eT*R" x = %Sé—'(é)}, (3.1)
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where ¢t = S,(¢) e €®(n) is an appropriate family of generating functions (deforma-
tion of Sy). So we can reformulate the local stability of (L§, 0) in terms of the
smooth deformations S,. If (LS, 0) is stable and ¢ sufficiently small, then there
exists a smooth family @, of v-L-equivalences and an open neighbourhood U of
0eT* R" such that

O, (LynU) =L, (3.2)

d .
Let us consider the vector field X = d—tdi,l,:o on T* R". Since each &,(Jt] <¢) is an

equivariant symplectomorphism preserving the canonical fibration T7*R" —R",
therefore X must be the equivariant Hamiltonian vector field constant along the

0H 0 OH 0
* on —_— ® % Pn H
fibers of T*R", ie. X = F 5C+ & o’ where for H €C%,(T* R") we can write
H(x, &) = (A(x)|&)+B(x), 3.3

where (‘|') denotes the canonical scalar product on R", and v-invariance of H
implies A €C*(n, v; n, v), BeCZ(n). Now, using the Hamilton-Jacobi theorem [1]
for the family LS we can write the equation

(3.4

0s, ( 0s,
0o = H=2(8),

5 ©h=o=H (5 © f)
near 0eR"*!

Note that to assure stability of (LS, 0) the left-hand side of (3.4) can be an
arbitrary element of C(n) satisfying the equation (3.4) with some v-equivariant
Hamiltonian H of the form (3.3).

Let us denote by H, the space of germs at 0 € T* R" of v-invariant Hamilton-
ians H: T* R" —R of the form (3.3). Let i, ¢ €C€(n, v; T*R", T*v) be the Lagrang-

oS
ian immersion & — (—a—;—, é) corresponding to (L%, 0).

LemMma 3.1. Let (L%, 0) be a stable v-L-germ, with a generating function

So€€,(n). Then we have ’

G,(n) = if¢ H,. (3.5)

The proof of this lemma follows immediately from Definition 2.6 and [2]
p.- 21.

Let n be the projection, m(x, {) =x, we denote V;(x, é)z——(él(pj(x)), where
ou:
(p,—(x)::—é%('x, 0) and p=(uy, ..., #p): R"xR" > R® is the Hilbert map for the

v@®v action of G on R" xR".
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ProrosiTION 3.2, Let (LS, 0) be a stable v-L-germ, with a generating function
So€€,(n). Then the following infinitesimal stability condition is fulfilled:
€. (n =it GV, ..., Voo Deg o (3.6)
where (Vy, ..., Vi, 1Dpes,m 1S the submodule of €,g,(n+n) generated by V, ..., V;, 1
over n* €, (n).

Proof: We know that €(n, v; n, v) is finitely generated over €, (n) with gener-

ou;
ators ¢;(x) = —é‘;’(x, 0) (see Proposition 2.1, b). Thus the right-hand side of (3.5) can

be written in the following way. Let f €€, (n), so by Lemma 3.1 we have

_ b a8, ( S, )) ( So
f@o= (éti; o % (5))<p.- 7O )87 («:))
for some ¢;(x) €€, (n), B(x)eE,(n), which gives exactly the infinitesimal stability
condition (3.6).
Let Fe@G,(n), (¢, x;) = F(&;, x;) be the v-1J-germ generating for the v-L-germ
(LS, 0) =(T*R", w) (cf. § 2). The corresponding immersion of L%, i;;: R® - T*R",
has the form

oF oF
i (Crs xy) = (‘az"(én xy), X1, &1s _73_)(7(6” XJ))- (3.7

Let us define for the~v-invariant~germs OOy, Vioiy (j=1, ..., b) the following
smooth mappings U €€(a, a), V;e€(a)

Uog=gomnoiy, I7jOQ=VjOi1J G=1,...,b), (3.8)
where g: R" = R is the Hilbert map corresponding to the v-action of G on R".

ProrosiTioN 3.3.  For a stable v-L-germ (LS, 0) < T* R" and for its corresponding
v-1J-germ F € €,(n) of generating function we have the following equivalent infinite-
simal stability conditions

€, (n) = <* Vi, ..., €* Voy Digoippresim> (39)

€,(n) = <@* Vh, -.s 0* Voo 1gcgstars (3.10)

€ (n) = * 1, ... * Vo D+ ((r0in)* M, (m) &, (n), 3.11)
Ga) = Py, ..., ¥, e+ <Oy, ..., U)ea+ M, (a), (3.12)

where by M,(a) < €(a) we denote all germs vanishing on ¢(R").

Proof: One can easily see that (3.9) results from (3.5), (3.6) and (3.7). By (3.8),
conditions (3.9) and (3.10) are equivalent. Equivalence of (3.9) and (3.11) is a
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consequence of the Equivariant Preparation Theorem (see [13] p. 116). In fact
E (m/((moi,)* M ()€, (n) is a ﬁmte-dlmenswnal vector space and for its
generators we can choose o* Vl,. . 0 V,,, 1. Taking into account the equation
Uog =gonoi,, we can rewrite (3.11) in the form (3.12). We need here only the
fact that the equality gog =g 0g, for some functions g, g €€(a), implies
g—9g' €M, (a)

Remark 3.4. Assume that v is trivial, thus Q=idn,l and Q*V,(é,,x,) =&,

o* Vi (&, x)) = %(51, xz), €, (n) = €(n), M,(n) = {0}, U = id_,. Finally (3.9), (3.10)

€(n) = (%F Q)

(moiy y)*e(n)

take the form

where

(roiy) (&), x)) = (651 (Srs X4)s )

and for (3.11), (3.12) we have

oF oF
ln) = <a¢, >w " )..‘

Eliminating the variables x;, by the Preparation Theorem [6], we obtain

oF oF
(E k = <—‘ > + <‘_ ’ 1> ] k = ;’I’
( ) 3&, x7=0/ k) ax.l xJ=0€I R

which is exactly the standard versality condition for versal deformations [20], used
by Arnold [2] in the classification theory of stable Lagrangian singularities.

ExampLE 3.5. (Infinitesimal stability condition for D,-action.) In many applica-
tions of equivariant singularity theory [8] we find the following irreducible
representation of the group D,,:

B(g1): (X1, x3) = (x1, =),
2n . 2n . 2m 2n
u(g2): (x1, x3) = [ x; cOs—— X, sin—, x; sin— + x, cos — ),
m m m m

where, g,, g, are generators of D,,. Let us write the corresponding infinitesimal
stability conditions for D,-equivariant singularities with corank at most two. In
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this case we consider the action
v Dm XR" _’Rn» (g’ (xl’ RS ] X,,)) —)(""(g)(xli X2), xs, sy xn)
and the generating function

F(ila 52’ X3y cees xu) = FOQ(fl, 629 X35 000y xn)a

Q('xla"-v n)=(ZE, Zm+2m’x37--'9xn)a Z=X1+iX2.

Here I =1{1,2}, J=1{3,4,...,n} and

0 oF
il.l(éla x.l) (aél (éb x.l) X1, éla —5)}—(519 xJ))'
J

We easily calculate
Vi(x, & =345, Valx, § =5(Ez HE Y,
Vix, &) =¢&, i=3,...,n,
where we also denote
51 = 61 +iéz-
From (3.8) after straightforward calculations we obtain
I‘.;'l(u)=2“1ﬁ’l(u)_*-rnuZF,Z(“)a u=(u1’u2,'-"un.)’
- mol -1\ . o~ o~ ,
V,w=2""?%% (m, >M’uT"F,1(u)’"_"‘F,z(u)’wj—l(u),
ji=0 J
Vw=~F;w, 3<i<n,
where w_,(n) = u,/u? and the polynomials (of (j—1)-degree) w;_,(u) = (Y ™*

+(&m~! are determined by the following recurrent formula:
k-11

1
Ep ey =ik 5 ()(ul)' (EmF= 2+~ (1—(—1)"“)(%"k>u5*m.

Also for U,(i=1, ..., n) we obtain .
ﬁl(u) du, F2 (w)+4mu, Fy (W) F,, W)+ 4m?up ™ F5 (),

O, =2"3 (’;’)wa, ("1 Fop Y 07wy (),

=0
Ui(u)——-—u,-, 3<l<n
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Using the Malgrange preparation theorem, we find that (3.12) is equivalent to the
following condition:
€2 = Fazl +mu, Fu F,2+m2 u'flv1 Fszz, z (m>mlis"i_lifz u’ln—jw—j—l dazyt+

j=o \J

m—1
— — —1 . S e = _ = —
+<2u1F,1+mu2F,2, Z (mj )m’u;"—’F,"{ J 1F‘,’2Wj_1, F,3,..., F,n, 1>n+

i=0

+M; (2),

-~

= oF
Where F,i (ul’ u2) = E‘:(uly U, O)a Wj—l (ul, uZ) = j“l(ul, Us,, 0), and ME(Z) de-
notes the ideal of smooth function-germs vanishing on the set;
{(uy, uy): 4uf—u} >0, u, >0}

This reduced formula for infinitesimal stability provides us with the first step in
classifying stable classes of v-L-germs. We postpone a detailed analysis of this case
to a forthcoming paper. The classifying methods are the same as the ones
presented in Section 4 for the (Z,)%-action.

Remark 3.6. Let g: R" — R* be a Hilbert map for the v-action of G on R", so
¢(R") = R* is the semialgebraic set defined, say, by the equations f; (u)
=0,...,/,(w) =0 and inequalities h,(u) >0, ..., hy(u) > 0, where f;, h;eR[u],
u€eR* are irreducible. Let us denote by M* (k) = (fi, ..., fiDeu the ideal in E(k)
generated by f;, ..., f.. Obviously we have

M* (k) = M, (k). (3.13)

However, the equality in (3.13) usually does not hold, so we cannot replace M, (k)
by M} (k) in the condition (3.12). Nevertheless, by Nakayama’s Lemma (cf. [6]), we
can make such replecement if

M, (k)— M} (k) = M= (k). (3.14)
Let us assume that (3.14) is fulfilled.
DerinmmioN 3.7. The equality
€@ =Ty, ..., ODga+ Fh, ..., Uiy 1>p+ M¥(a) (3.15)

is called the reduced condition for infinitesimal v-L-stability.

-~

] Y~ oF .
Remark 3.8. Let us notice that the dependence of ¥, U; on F in general, is

J
not linear. In what follows we propose an equivalent approach to the classification

problem of stable v-L-germs using the Morse family notion. In that approach we
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derive the corresponding linear infinitesimal v-L-stability condition. Equivalence of
these two conditions results from the equivariant version of the Malgrange
preparation theorem (cf. {13]).

ExamprLe 3.9. Assume the representation v of G = Z, on R" has the form
R">(x,, ..., X,) 2(exy, X3, ..., X, ¢e€G.

Let the v-L-germ (L°,0)<T*R* have a v-IJ-germ S(&;, x5, ..., X,)
=S00(,, X3, ..., X,), where o: R"—=R" 0({y, X3, ... Xo) = (7. X3, ..., x,). In
this case M,(n) = M*(n), M*(n) = {0},

Vi) = —2u, S, (u),
V=8, 2<i<n,
Uy ) =u, § ),
Uj(u) =u;, 2<j<n.
Thus we see that (3.12) is equivalent to the following condition:
€(n) = uy S W), Uy, ..., U D+ Wy Sy W), S3), ..., S, (), 155 (3.16)

Using the Malgrange preparation theorem we obtain the following, suitable for
further calculation, equivalent form of (3.16):

(g(l) = <ul S-yzl (ul)>(ﬁl)+ <ul g’l (ul)’ Saz (u1)9 R S'm(ul)a 1>R’
where

€(1)a5, (uy) =~§§(u1, 0, i=1,...,n

4. Stable v-L-germs with respect to the (Z,)? action

Now for the purposes of applications (cf. [11], [8]) we consider the following
action of G =(Z,)

Vi (Z)* xR"3(81, .05 Eg0 X) X1y ovs Xpogy 81 Xpmgt1s -5 g Xa) ER".
The corresponding Hilbert map (orbit mapping) for v is defined by
0(X) = (X1, ovs Xpogo Xpogu1s <eos X2).

Any v-L-germ (LY, 00 =T*R" is v-L-equivalent to the v-L-germ, say
(L§, 0) = T* R", which has the following generating function (see § 2):

€, (m3S(6) = Soe(?), 4.1)
where S e E(n).
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*Ss
3% & &,
S, etc. and their values at 0 by a;, g, etc. Using Proposition 3.3, after
straightforward calculations we obtain immediately

Let us denote the partial derivatives , etc. of the function § by §.;,

Prorosition 4.1. The v-L-germ (LS, 0) = T*R", generated by the function
S = Sop is infinitesimally v-L-stable if for every germ ae€&(n) there exists the
decomposition

a(z)="fi,.(z)h,.(z)+co+"fc,.z,.+ Z (z;S% @) hi(2)+2;8,;(2) c;), (4.2
i=1 i=1

j=n—gq+1

where h, € €(n) and c,eR.

To be more concrete and useful in some physical applications (cf. [9], [11]),
without loss of generality we concentrate now on the case ¢ =2, n=3. The
general case can be treated exactly in the same way, so we omit it here.

DermNiTioN 4.2, The function germ S € €(n), introduced in Proposition 4.1 and
such that (4.2) is fulfilled, is called an infinitesimally v-L-stable germ.

ProposiTION 4.3. A function-germ Se®(3) is infinitesimally v-L-stable if and
only if the following conditions are satisfied:

(Ao) a, # 0 (trivial case) or a; =0, and

(A ayazay, #0 or

(Ay) a;, =0 and a,azayy #0 or

(A3) a; =0 and asay; a,,(a,—a;; a;,) # 0 or
(A3) a3 =0 and a,a,;ay3(ai,—ay ass) # 0.

Proof: (Necessity) The above conditions arise as necessary for the decomposi-
tion (4.2) mod M (3).

(Sufficiency) For a € €(3) we show how to define germs h; and constants c;
satisfying (4.2) in the respective cases:

(Ao): It is enough to take h; =a/S,,, h, =h; =0, ;=0 for i =0, 1, 2, 3.

(A)): Now a; =0 and let a,a;a,, # 0. We define %;, y; € €(3) as follows: x(x)
3

3
=a()+ Y x%u(x), Si(x0=Y xUi(x). Then U,(0)=ay; #0, §,(0)=a,#0,
i=1 i=1
S,5(0 = as; # 0. Hence we can take co =a(0), ¢; =c; =¢c3=0, hy =a,/uy, h,
= (a,— U, h,)/8%, hy = (a3 —Us h,)/S%, which satisfy (4.2).

(Ay): Let a; =0, a;y, =0, a,asa,; # 0. We define the new germs «;, U; € €(3)
i=1,2,3), §,1(x)=fo1(x)+x2U2(x)+x3 U, (x), a(x) = a(0)+x; a,; (0)+
+x2B,(X)+ x50, (x)+x303(x). In this case U,(0) =a;,; #0, S,,(0 =a, #0,
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$,5(0) = ay # 0 thus it suffices to put ¢o = a(0), ¢; = &, (0), by = B,/U;, hy = (a2~
-U, hl)/S’29 hy = (a3 —Us 1)/5,3
(A3) (For A; we have the same procedure): Assume a, =0, a, =0 and
azady, alz(afz_all azz) #* 0. We see that the germ

B(x) =a(x)—co—cy x; —¢; 8,5 (x) X, + 8, (x)(go+g1 X1 +g2x2)
belongs to the ideal (x3}, x?x,, x; x3, x3, x;) provided that c, = «(0) and the
constants ¢;, ¢,, go, g1, g, satisfy the following system of linear equations (solv-
able iff a;; a,,(a},—ay;a5,) # O):
#,1(0) = a;,go+cy,
,2(0) = a;2 9o,
#,11(0) = ay11g0+281, 914,
#,12(0) = a11290+a129,+a1192+a;5;, €2,
3%,22(0) = a11390+ 31292+, €.

Now consider the germs U;;, B; satisfying the followiqg decompositions:

ij»
§.(0) = x; Uiy (1) + X, Uiy (31, x5) + X3 Uiz (x4, X3, X3)
for i=1,2 and
B(x) = x7 By (x)+ X7 X3 B2 (%) + X1 X3 B3 (x)+ X3 B4 (X)+x3 Bs (x).
Let the germs k, k,, k3, h, € €(3) be the solutions to the following system of linear
equations:

Br=Uyrky,
Br=U,ky+U, ks+ U3 by,
Pa=U; ky+ U ks +2U,, Usy by,
Ba=Uirky+ U3 hy.

The above system is solvable since the system determinant at O is equal to
a;;(a?,—ay; a,,)* # 0. One can easily check that the germ

y(0) 1= B(x) =8, () (x2 ky (x)+ xZ k; () + X1 x5 k3 (%)) — x5 §Z (%) hy (%)

belongs to the ideal (x;> in €(3), i.c. y has the form y(x) = x; y'(x), where y’ e(E(3).
Finally, we observe that cg, ¢y, c3, h,(x) defined as above, ¢y:=0 and

hi(X):=go+9gy X1 +g2 X3+ X1 ky (X)+ x5 ky (X)+ x5 x5 k3 (%),

hy(x): =y (x)/S% ()
satisfy (4.2). This completes the proof of Proposition 4.3.
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Now we consider the recognition problem for the stable v-L-germs. Let
JZ(R®, R) = R® xJ2(R3, R) be the space of 2-jets of C*(3)-functions (cf. [6]) with a
coordinate system (x;; y, ¥, yy). Let M, M, M;, M, be submanifolds of
J3(R?, R) defined by the following conditions:

(Ap): My = 1y;y3y11 # 0],

(A): My =y, =0, y,p3 # 0],

(A% My =1y, =0, 3511 ¥120012= Y11 ¥22) # 0},

(AD): My =1{y3 =0, 3,91, 113013 — V11 yas) # 0.

Their codimensions in J3(R3, R) are 0, 1, 1 and 1 respectively. The subset of
those 2-jets, say at x =(x;, 0, 0), x; €R, which do not belong to {JM; has

codimension 2, i.e. it is a finite union of submanifolds of JZ(R>, R) of codimension
2. Given FeC®(3), let j2F: R* -»JZ(R*, R) denote the 2-jet extension of F (see
e.g. [24], [20]). Thus on the basis of Thom’s transversality theorem [13], [24]
we obtain immediately

ProrosiTioN 44. All germs (*F) (x,, 0, 0) of a generic function F eC™(3)
4
belong to ) M,;.
e

Let us denote by E;, i =1, 2, 3, 4 the subsets of all germs F € €(3) satisfying
conditions (A,), (A,), (A3), (A3) of Proposition 4.3 respectively; together with
F(O)=F,(0)=0. These germs generate the corresponding v-L-germs

o(F
({—— ( 650 J &), 5)}, O). Using the appropriate canonical transformations we easily

obtain
ProposiTion 4.5. Let FeC*®(3), xo =(x;,0,0). If
(G2F)(xq)eM;,, =123, 4,
then the germ (F, x;) is v-L-equivalent to a germ belonging to E,.

Let us recall that two v-inv. germs of generating functions are v-L-equivalent iff
the corresponding v-L-germs are v-L-equivalent (see Section 2).

Now we try to find classes of v-L-equivalent germs in E;. For this purpose we
introduce

DEerINITION 4.6.  Let F(x, t) = F,(x) be a smooth function on R?® xJ, where J is
an open interval in R. F is called inf-homoropy (and the germs (F,, 0), (F,, 0),
a, beJ are called inf-homotopic) if all germs (F,, 0) belong to the same class E; (we
assume F(0, t) = oF (0, 1)/t = 0 for any inf-homotopy F(x, 1)).

ProrosiTioN 4.7.  Any germ belonging to E; (i = 1, ..., 4) is inf-homotopic to one
from the following list:
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(E1) F(xy, x5, X3) = £ x{ X, £ X3,

(E2) Fxy, x3, x3) = i'xfixzixa,

(E3) F(xy, x5, x3) = £x{+(x; £ xz)zix;;,

(Ea) F(x1, x5, x3) = £x3£ 00 £x3)° £ x5

Let us remark that the generating functions Fogp, for F belonging to the

respective classes (E;), correspond to the classification proved by Arnold in [2].
Hence this coincidence justifies our notation (A;), (A,), (A3), (A%).

Proof of Proposition 4.7: We consider only the case (E;). The conditions
sgna;, = +1, sgna, = +1, sgnuy = +1, sgn(ai,—a,;, a,,) = +1, distinguish in
the 4-dimensional space of coefficients (a,,, a5, a3, a35) =(F 3y, F 15, F3, F3))
(0) sixteen open convex regions. So, if germs F’, F” €E; correspond to the same
region, the following function:

F(x,t) =tF (x)+(1 -1 F"(x)
is an inf-homotopy between them. The observation that the above forms of E,
correspond to each of these regions completes the proof.

ProposiTioN 48. Let F(x,1), (x,)eR®>xJ be an inf-homotopy, S(x,1)
:=F(o(x), t) and to€J be a fixed point. Then there exists an open neighbourhood
UxI of (0,t,) and smooth functions a;(x,t), b(x,t) on R®>xR, with compact
supports, such that

ob
() a,(x,t) =5—(0,1) for tel,
0x,
and
(11) —ég(x, t)y=H (x, a—S(x, N, t for (x, yeU xI,
ot 0x

where
H(X, ys t) = al (Q(y)’ t)xl +Z§ ai(Q(y), t)xiyi+b(Q(y)a t)

for (x, y,t)eR> xR® xR.

Proof: Assume t, = 0. From the proof of Proposition 4.3 it follows that for
any germ o €E(4) there exists the decomposition

a(x, ) = F, (x, ) hy (x, O)+cy () xy +co(0)+ 23 (x; FE(x, ) i (x, t)+
+x; Fi(x, )¢ (1)),
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with ¢; € €(1), h; € €(4). Substituting ¢; (1) = ¢;(0)+¢;(t), for i=0,1, 2,3 and
hix, 1) = Co()+¢; (1) X, + 23 x, F i(x, 1) (1),
we obtain
a(x, 1) = F, (x, ) hy (x, ) +¢; (0) x; + o (0)+ 23 (x; F3(x, t) b (x, )+
+x; F i (x, 1y ¢; (0))+ th(x, t).

From the Malgrange preparation theorem [20] applied to the germ g: (R*, 0)
—(R*, 0),

g(x’ [) = (Fal (x’ t)a 4‘-)C2 F,22 (X, t), 4X3 F’23 (xy t), t) fOI' (x’ t) €R3 XR

we obtain the following decomposition:
oF
(lll) _E{(Xa t) = X1 4, og(x, [)+Z; 2xi Fn‘(x, [)ll,- Og(x, t)+bog(x’ [),

with a,, beE(4) (we can take the representatives of these germs with compact
supports).

oS
Now if we consider (iii) at (¢(x), t) and such that g(o(x), t) = (Q (5;()(’ 1), t),

we easily get (ii).

In order to show (i) we have to consider the respective cases: In the case E, we
have F,; (0, )= F,;;(0,1) = 0# F,;{;(0, t). So, taking 8/0x, and 8%/ 0x} of (iii) at
(0, ¢), we obtain 0 =a,(0,7) and 0 =b,; (0, 1) F,;;,(0, t). Thus (i) results. In the
case E; we have F,;(0,1) = F,,(0, 1) =0 # F,;,(0, t). Taking 6/0x, of (ii) at (0, f)
we have 0 = b,,(0, t) F,{,(0, 1), so b,, (0, t) = 0. Now by differentiation of (iii) with
respect to x; at (0, ) we obtain 0 = a, (0, t). For the case E,; we have F,; (0, 1)
=0## F,{1(0, 1), so taking 0/0x, of (iii) at (0, t) we get

0=a,(0,)+b,(0,)F,;, (0, 1).

Hence, if a, (0, t) = 0, then b,, (0, t) = 0. Thus it is enough to show that decompo-
sition (iif) with a,(0,t) =0 1is always possible. In fact as the Jacobian
(0g)/0(x, t) # 0 at (x, 1) = (0, 0), there exists X, € (4) such that x; = X, og(x, ).
If we set a;(z,t):=a,(z,)~a;(0,1) and b(z, 1):=b(z, t)+a, (0, 1) X, (z, t), we
can substitute a,, b into (iii) to a place a, and b respectively. But a, (0, t) =0,
which completes the proof of Proposition 4.8.

Let F(x, 1, S(x,t), H(x, y, t) = H/(x, y) be as in Proposition 4.8. We assume
to =0, I =(—¢, ¢) for simplicity. Let us consider the time dependent Hamiltonian
vector field on T*R3

ST TP T
H, — <1 aY;(x’ ¥, aXi axi X, Y, ax
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~ 0
as well as the vector field X, = 5+ Xy, on T*R®> xR. X has the global flow g,,
{ €R (ie. there exists a smooth mapping R®* xR* xR3(x, y, t) = ¢,(x, y, t) eR* xR

d
such that o (X, ¥) = Xy, (g, (x, »)) and go(x, y) = (x, y), for (x, y)€R> x R?). This

results from: (i) compactness of supports of g; and b, (ii) the independence of the
“y"-component of Xy on x (so y(t) can be found independently on x), (iii) linearity

of the “x”-componenet of X, with respect to x.
Lemma 49, g, is a v-L-equivalence for every teR.

Proof: Since wy = w+dH A dt is the invariant form of X, (see [1]), therefore
g, 15 a symplectomorphism for every t. Take o0e€G. As H,(x, y) = H,00(x, ),

d

60Xy, = Xyo00 and —(l-t»(frOg,—-g,OG) =00Xy,—Xp 06 =0 for every teR.
4

Hence o 0g, = g, 00 holds for every t R since g, = idr~n3' Finally, g, preserves the

fibration m (see Section 2) because the “y”"-component of X is independent of x.

Thus the proof is completed.
Let us define the mapping @: R®>x(—¢,8 =>T*R> as &(x, 1) = &,(x)
-8 as
= (x, ;-(x, t)) and let the v-L-germ ®(R* x {t}) = {(x, ?(x, t))} be denoted by
X ) 0X
L.

Lemma 4.10. The global flow g, forms the v-L-equivalence of the v-L-germs
(L, 0) and (L7, 0) for i <e.

Proof. First we show that g,(L%) = LY. By straightforward calculations it can
be checked that the vector field

di Oy; 0x;

iJj i

i OH, 0 &S, 0
A, )= 7 9,00 X (€,(9) =% 5(2 () (‘9‘ on o, ""5}7)
t J J

is tangent to LS at the point &, (x) for every (x, t)eR? x R. Let B(x, ) be a smooth
vector field on R® xR and ¢ eR, 0 <& <& be such that

@, (B, (x,1)=A(x,1) for (x,)eR*>x(—¢,¢),

where @, denotes the corresponding tangent map (cf. [1]). Denote by h, the flow

0 X .
of —B{x, r)+5 on R3 xR (assumed to be defined globally, for simplicity). Then

h (R x ity = R* x{t+s} for s, teR.
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Let us define k,: R*> = R? teR, by the formula
k (x) = & (h (x, 0)).

d .
It is easily seen that ;i—tk, (x) = Xg,(k(x)) and ko(R®) = LS. Hence, by the unique-

ness theorem for the first order differential equations we obtain k, = g, and g, (L$)
=k, (R?® = L? for |t| <& To complete the proof it suffices to notice that g,(0, 0)
= (0, 0) since Xy (0, 0) =0, by (i) and (ii) of Proposition 4.8 and ¢, (0, 0) = (0, 0)
which completes the proof.

By the above two lemmas we obtain immediately

ProrosiTioN 4.11.  Any two inf-homotopic germs belonging to €(3) are v-L-
equivalent.

It is easily verified that for any F e C*(3) the mapping j2F: R* -»JZ(R*, R) is
transversal to M;, (i=1,2,3,4). Hence if j°F(x)eM,; for every function
F,eC™(3) sufficiently close to F, there exists a point x, €R> close to x such that
j? Fo(xo)eM;. Hence (F, x) and (F,, x,) are v-L-equivalent to two inf-homotopic
germs from E;, so they are v-L-equivalent. Thus we obtain

ProrosiTioNn 4.12. Let F\ECW(:;). Any germ (F, x) where x =(x;, 0, 0) and
j*F(x)euUM; is a v-L-stable germ.

Now we can formulate the classification theorem for the normal forms of v-L-
stable germs of generating functions.

PROPOSI:TION 4.13. Any v-L-stable germ (F, x,), where FeC%®(3) and x,
= (xg;, 0, 0), is v-L-equivalent to the germ at 0eR? of one of the following normal
Sforms:

(A}) F(xy, X3, X3) = x{+ X+ X3,

(A2 F(xy, x5, X3) = X} + X, 4 x5,

(As) F(xy, X3, X3) = £x3 (x4 %)%+ x5.

Proof: By Propositions 44, 4.5, 4.7, 4.11, 4.12, it suffices to construct the v-L-
equivalences which reduces the normal forms of Proposition 4.7 to the normal
forms listed above. But this is easily achieved by the v-L-equivalences of the form
(x, ¥) = (o, x; + B; y:, y;) for appropriate o;, f;e{—1,0,1}. This completes the
proof of Proposition 4.13.

5. Stability conditions for G-invariant Morse families

Now using the Morse families local formalism (cf. [19]) we derive the corre-
sponding linear infinitesimal stability conditions for v-L-germs. Consider a smooth
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family (LY, 0), |t} <& of v-L-germs with the corresponding smooth family F,, jtf| <e
of G-Mf-germs. For simplicity we denote Fy, (LS, 0) by F, (LS, 0) resp. and assume
that all Morse families of the family F, are minimal (see § 2). Let (L¢, 0) be the
stable v-L-germ. Thus for sufficiently small ¢,, by Propostition 2.4, F,(|t| <&,) is
locally trivial, i.e.

Fi(x, ) = Fo,(x), 4,(x, H)+£(x), (5.1)

where A, €C®n+1, vdo;l, 0), ¢,€Cn,v;n,v), feC®n and (¢, 4,)eCn
+1L,v®o; n+l, v®o) is the local family of diffeomorphisms.
By M we denote the space of minimal G-Mf-germs

M = {Fe€, g, (n+1); (0*F/04 04)(0) =
According to (5.1) and theorems of Section 2 we have

ProposiTION 5.1.  Let (LS, 0) be a stable v-L-germ. Then the necessary condition
for the restricted local G-L-stability of the corresponding G-Mf-germ, F, is following:

Mc (QE“JJE(n+l)(§(n+l, v®o; 1, 0) +(g:—
oA Ox |

oy €(n, v; n, V))+ €, (6.2
where the first and second terms are submodules of €,g,(n+1) defined by the
standard scalar products (-|-) on R' and R" respectively, n,: R"xR' = R".

Let ¢': R"*'xR' >R, ¢': R"xR" — R® be the Hilbert maps for vds@®o and
v@v respectively. Let us denote

@ (x, A) = (x 4,0 @(=1,...,b),

6/1’

o0
wj(x)=ag’,(x,0) G=1,... a.
X

Thus from Proposition 2.1 and condition (5.2) we infer immediately

CoRroLLARY 5.2. In terms of the generators of the modules €(n+1, v®o; I, 0),
€(n, v; n, v), the condition (5.2) of Proposition 5.1, can be rewritten in the following
Sform:

e ((Glen ) - il

)> (iveaa(n+l)+

) oF
+<<ai 7'6*!//1>, - (

* 'l/a)’ >n:lkfv(n) . (53)
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When a physical system with symmetry exhibits the structural phase transitions
then the notion of “order parameter” is well established (cf. [12]) and its
dimensionality is a rather stable feature of the system. This is the reason for the
restricted stability condition introduced in Proposition 5.1. However, from the
point a view of the standard singularity theory of Lagrangian submanifolds [7] the
corresponding deformation space is €,g,(n+/0). Thus, at first, we consider the
stronger condition of infinitesimal G-L-stability

¥y ), .

ot =((Glo ) (o)), (&
L Wa) 1>7t,’f E (). (59

(8F
T\ ox
This condition immediately follows from the v-stability of the corresponding v-L-
germ (L§, 0), introduced in Section 2. Let i: R"*' > R* and g: R" >R be the

Hilbert mappings for vébe and v actions respectively. For further use we define the
new Hilbert map for the v@®gs-action,

u=(u gomn,): R""'>R*xR".

OF oF
A k — e =
s we know, the germs ( 0,1\(P')’ < F™

invariant, thus we can obtain their smooth preimages by the Schwarz [15]

homomorphism:
~ oF
H,' = (—l i b 1 S ] < 3
ou A (p) i<b

wj), 1<i<bh 1<j<ga are v@o-

- (5.5)
E'O =1\"a lﬁ y 1 < j ’< a,
J H ax J J

where H,, Ej eC(k+r).

ProposiTion 5.3. Let (L%, 0) = (T*R", w) be the stable v-L-germ. Then the
necessary infinitesimal G-L-stability condition for the corresponding G-Mf-germ F
can be written in the following form:

G(k) = (Hy, ..., Hydety+ <Eis -.or Eqy 15g+ M, (k+7]k), (5.6)

where H, :ﬁi,,‘,‘x‘o}, (i=1,...,b), E,:Eﬂnkxm, G=1,...,a) and M, (k+rlk) is
the restriction of M,(k+r) to R* x{0}.

Proof: Inserting the expressions (5.5) to the condition (5.4) and taking the
surjective homomorphism p*: €(k+r) = €, 4, (n+ 1)), we obtain the equivalent con-
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dition
W Ck+r) = Hy, o 1 Hyatern+ U Ery o 1% Eay 1pentens

where n,: R**" > R', (z, y) =(y) is the canonical projection. Thus we can take (5.4)
in the following equivalent form: :

Clk+r) = <H,, ..., Bdsuen+ iy ooy Bay Ut + My (k+7), (5.7)
where M, (k+r) is defined in § 3. Let A be the finite generated €(k+r)-module,
A=Ck+r/Hy, ..., B Clk+r)+M,(k+7).

From (5.7) we have
A/t (M) A = <Ey, ..., E,, g

Thus by applying the Malgrange preparation theorem we see that condition (5.7)
is equivalent to (5.6). This completes the proof of Proposition 5.3.

Let us notice that the functions H;, E; depend linearly on F, which shows some
advantage of the Morse family approach comparing to the generating functions
method presented in the preceding sections. These two approaches are equivalent,
however the direct method of description of Lagrangian singularities by generating
functions is convenient from the point of view of physical applications where the
generating functions, usually, have a physical meaning of the equilibrum potentials.
Similarly as in Section 3, the condition

Ck) = (Hy, ..., H)epy+ <Ey, ..., Eg, 1Dp+ M (k+r|k) (5'.8)
will be called a linear condition of infinitesimal G-L-stability. If we assume that
M, (k+r|k)y—M¥(k+r|k) = MM (k), then by Nakayama’s Lemma [20] we obtain
equivalence of the two conditions (5.8) and (5.6).

ExaMpLE 54. Assume that v: G —»0(n) is trivial. Let (&;, x;) =S (&), x,) be a
IJ-germ for (L, 0) = T*R" and the corresponding Morse family F e@(n+k) be

given by (2.4), where k = # 1. In this case we can put p=id_, We also find
easily that (5.7) takes the form

oS oS
C(n+k) = <(E/{—(A“ XJ)‘X1>, cees (5;('11, X.I)_XK)>(H k)"f‘
1 'k n+

oS . oS .
+<8 (s X0)s ooos A1y X0)s Aty ooy A4 1> .
X1y ©(n)

ax'ln"k

And equivalently, we can write (5.6) in the following form:

oS as :
C(y, xp) = <‘a?l(fl’ Xy), xj><£(§1,x1)+ <‘5;J—(€h x5), C1» 1>R-
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We can write (5.6) even in a more compact form

.. /s &s
€(&) = <a—él(<§,, 0)>W+ (55(«:,, 0, &, 1>R,

which is exactly the standard condition for versality (infinitesimal stability) of
unfoldings of singularity # =S|R,X<O} (cf. [2], [207).

ExamprLE 5.5. Let us take G = Z,, its action on R" being defined as follows:

AKX, X, e, X)) = (X, Xg, ohs Xu)s ' e€Z,=+1!, xeR".
Let a v-L-germ (L€, 0) have the following v-IJ-germ of generating function:

S(él’ X2y euny xn) =§OQ(E.19 xZa ey xn)v

where ¢: R* > R", (&, X5, ..., X)) 2(E2, x,, ..., x,). The corresponding Morse
family:

F(x, ) =8(4, x5, ..., X,)—4x, 5.9
and the corresponding representation ¢ has the form

o, (A) = ¢&d.
Define a Hilbert map g: R"*' -»R"*? for v®o as
j(x, Ay = (42, Ax;, x2, x5, ..., X,).
We find that M;(n+2) is the set of smeoth function-germs vanishing on the set

AR = {1 -5 Yas2)s V=1 ¥3 =0} (5.10)

and also we have
M¥(n+2]2) = y; €(y,, y2).
After straightforward calculations we obtain

Hi (1) = 20151015 Yas s Yar ) =25
ﬁz(J’) =2y, §,1 1> Yas -+ > Yar 2) = Y3,
El(}’)= Y2, E~i()’)=§.i(y/)~ i=2,..,n
Substituting them to (5.7), we get the condition
€)= 2151 0N~ 12, 2251 ()~ V3dew +
+ @2, 8§50 -1, 80006+ My (n+2),
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where ¥ = (Vy. Va, oo Vpa2h ¥V =(¥3, ..., Vot 2) and for &, r in Proposition 5.3 we
put k =2, r = n. Thus the infinitesimal v-L-stability condition for the v-L-germ
(L%, 0) has the form

€y, y2) = 2y 5,1 W)=Yz, ¥z g,x s Y%>(€(y1,y2)+
+<)’2, g,z(}’x), sy §,n(y1)’ 1>R’ (511)
where S,(y)):=8,(y1, 0, ..., 0). From the decomposition
€(y1, y2) = €+, €+ 33 E(yyav2)s

on the basis of (5.11) we obtain

€y +y, €yy) =2y, S, ) —y2) €y +y: S () €y +
+ <yZ5 g,z(h)a cees g,n(yl)’ 1>R

In other words, for every a(y,), b(y,) € €(y,) there exist h,, h, € €(y,) and constants
Co, --., C, €R such that :

a(yy) = 2y, §,1()’1)h1(h)+§,2()’1)02+ 48,y eatco,

b(y)) = —h () +S1 () by () +ey. (5.12)

Eliminating h, from these equations, we get an equivalent condition

a()+21 8.1 00)b) = n SR G)+n S e+, ..., +
+S,(r1)entco.  (5.13)
We easily see that (5.13) can be written in the form

E(y,) = 1 53 1) Deyp+ I S151)> S22 s Sa(y1)s g, (5.14)

which gives another form for infinitesimal v-L-stability of the v-L-germ
(L%, 0y « T*R"

Remark 5.6, We derived condition (5.14) in Section 3 (see formula (3.16)), in
quite a different way. In Example 5.5 we showed the equivalence of these two
approaches to the classification problem of stable v-L-germs of Lagrangian
submanifolds. It seems that the Morse family approach is very useful in explicit
calculations because of the linearity of the corresponding infinitesimal stability
conditions.

6. Versality and stability of v-L-germs

In the preceding sections we characterized the infinitesimal stability of v-L-
germs through the corresponding infinitesimal stability conditions for their G-
Morse family germs. To have an adequate approach to local stability of v-L-germs
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by the corresponding locally stable generating families we have to introduce the
modified notion of G-unfolding (cf. [16]) and adapt this notion to use it in the
standard Morse family approach (cf. [9]).

Let n €€, (k) for some orhtogonal representation ¢ of G. The pair (v, f), where
v: G - 0,(R) is a representation of G, and f €€, 4, (rn+k) such thatfl‘o}xﬂk =7nis

called an n-parametric G-unfolding of .y with respect to the representation v. Let ¢
be fixed for all G-unfoldings of the germ .

Let ; be an orthogonal representation of G in R°. A morphism of G-unfoldings
(D, a): (7, h) = (v, f) of the germ # is defined by the following maps:

(i) D = (@, ¥)eC(s+k, yDa; k, 0)DE(s, y; n, v),

(i) a €€, (s)
and the following condition:

h=fod+aom,

where m;: R® x R* — R® is the canonical projection. If  is a diffeomorphism, then
(&P, a) is called an isomorphism of G-unfoldings. We say that a G-unfolding (v, f)
of the germ n is G-versal if for any other G-unfolding (y, h) of 5 there exists a
morphism (@, «): (y, h) = (v, f). The G-versal unfolding of #n is called G-miniversal
if the dimension of the basis n of the unfolding is the smallest possible number
(cf. [6]). We see that the above introduced isomorphism of G-unfoldings (@, a)
defines the Lagrangian equivalence of y-L-germ (LS, 0) generated by h and the v-
L-germ (LS, 0) generated by f, i.e. there is the G-equivariant symplectomorphism
RS: T*R" — T*R" preserving the fibre structure mgn: T* R" —R" and such that
RY(LS) = LS, R°(b) = 0. We know (see [9], [6], p. 269) that R® can be locally
written as follows:

(x, &) —>(¢ (x), ‘D (x)~* (£+da(x))): T*R" > T*R" (6.1

with ¢ eDiff(n, y; n, v), x €€, (n). The converse statement is also true, i.e. if the y-
L-germ (L§, (xo, o)) = T* R" is mapped into the v-L-germ (LS, (X,, &) = T*R"
by a germ of G-equivariant symplectomorphism (T* R", (x,, o)) =(T* R", (X,, &o))
of the form (6.1), then the corresponding G-unfoldings, say h and f, generating
(LS, (xo, o)) and (LS, (X, &) respectively, are isomorphic as G-unfoldings (cf.
[22]).

Let S: (R"xR*, 0) =R, S€€,q,(n+k) be a germ of a generating family for the
v-L-germ (L%, 0) = T* R".

DerFiniTION 6.1. A G-invariant Lagrangian submanifold L% < T* R" is called
G-versal at 0elL® if a germ § of a generating family of (L%, 0) is a G-versal
unfolding if the germ 5 = Sl{O‘;xkke(E”(k)'

" Let us endow the space of G-unfoldings C%,(n+k) and the space of G-
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equivariant Lagrangian immersions I (n, ¢; n+n, v&®v) with the induced C*®-Whit-
ney topology, then the G-versal v-L-germ (L%, 0) is locally stable, i.e. for every G-
invariant neighbourhood V of 0 in T* R" there exists an open neighbourhood U of
the G-equivariant Lagrangian immersion it (R, 0) =(T*R", 0) in I(n,o;n
+n, v@®v) (where ¢ is the linearised representation v@®v|, G) such that for every
ieU there exists pelmagei < V with the property that the v-L-germs (LY, 0) and
(Imagei, p) are v-L-equivalent (or (i,6-0) (G, 0 “!(p)) are G-equivalent as immers-
ions [7]). Thus the local v-L-stability of v-L-germs has an adjoint formulation in
terms of the stable G-unfoldings of invariant singularities (cf. [24], [2]).

Let n € WZ (k), by J () we denote the Jacobi ideal of y generated by the partial
derivatives /04y, ..., On/04,. J(n) is a G-submodule of the G-module E(k).
Following [9] (see also [16]) we obtain the main result on the G-versal v-L-germs.

ProrosiTioN 6.2. Let 6: G — O, (R) be a fixed representation of G in R*, let (v, S)
be a G-unfolding of a germ n= Sl{o;xd‘ which generates the v-L-germ
(L%, 0) < T* R", we set n = dimg M(k)/J (1) < oo. Let y be the representation of G in
the vector space M(k)/J (n) = R" and r: M(k)/J () = WM(k) an equivariant splitting of

the exact sequence of G-modules 0 —J(n) — (k) s W(k)/J(n) =0 such that the

Sunction f: WM(K)/J (n)@DR* =R, f(x, 2) = n(A)+r(x)(A) is a Morse family. Then
() fis a generating family for the G-versal y-L-germ (LS, 0).
(i) The v-L-germ (LS, 0) with the generating family (v, 8) is G-versal if and only
if @ morphism of G-unfoldings (®, a): (v, S) —(y, f) is an isomorphism.

The proof of this proposition can be found in (9] (p. 187).

The main tool in proving Proposition 6.2 as well as in classifying the
corresponding normal forms for G-versal v-L-germs is the infinitesimal versality
notion (cf. [24], [16]).

Let ne, (k) and fe@,q,(n+k) be a G-unfolding of . Thus df e€(n
+k)R(X DA)* (where we denote A = R¥, X =R") has the two components
d, feC(n+k)@A*, and d, f e €(n+k)@X*. Let us consider the second component
and the sequence of homomorphisms (cf. [16])

Cn+k) - En+hRX* - EhX* - Ek)/J(M®X*,
f=dyf =dy fla—dy fla=9f.

We see that &f is G-invariant, i.e. §f €(€(k)/J (n®X*)%, df is identified also with a
G-equivariant homomorphism X — €(k)/J (n). If the homomorphism 4f is surjec-
tive we say that the G-unfolding (v, f) is infinitesimally versal. It is proved in [16]
that the two notions: infinitesimal versality and versality, are equivalent.

We can adapt the above notions to the symplectic objects and write down, for

(6.2)
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G-Mf-germs, the corresponding sequence
M(k) €(n+k)+ M (n) —(M(k) E(n + k) + M(n) D(R")* — Vi(k) R(R"*
= M(K)/J () S(R")*
f = of eHomg (R", M(k)/J ().

DeriNiTiON 6.3, Let (v, f) be G-Mf-germ for the v-L-germ (L%, 0) < T* R". We
say that (L, 0) is an infinitesimally G-versal if the corresponding G-homomor-
phism §f is surjective.

ProposiTioN 6.4. The v-L-germ (L%, 0) is G-versal if and only if (L°, 0) is
infinitesimally G-versal.

Proof: Using Proposition 6.2 and Corollary 3.7 in [16] (cf. [9]).

Following the standard lines of Lagrangian singularity theory (see [2], [9], {71,
[187) we can summarize the stability theory of invariant Lagrangian submanifolds
in the following

ProrosiTion 6.5. Let iq: (LS, 0) >(T*R", 0) be a germ of G-equivasiant
Lagrangian immersion. Let S: (R" x R*, 0) — R be a corresponding generating family
for (L%, 0). Then the following conditions are equivalent:

(i) (i 6, 0) is locally stable,

(ii) (i,g, 0) is infinitesimally stable,

(i) (S, 0) is a versal G-unfolding of the germ n = Sl@m’ﬂ

(iv) (S, 0) is an infinitesimally versal G-unfolding of the germ n =Sl{0}xll’"

Proof: The equivalence of (i) and (i) results immediately by the equivariant
local version of the Theorem 5.1.3 in [6]. By Theorem 4 [22] and the previous
results we obtain equivalence of conditions (i), (iii). The equivalence of the notion
of infinitesimal stability for Lagrangian G-immersions and infinitesimal versality
for generating G-invariant Morse families follow from the corresponding equivar-
iant reformulation of standard arguments in [24] (see also [7]).
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