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One of the useful methods of mathematical physics is the one arising from symplectic 
geometry and associating the singularities of Lagrangian submanifolds with the optical 
caustics, phase transitions, bifurcation patterns, obstacle geometry etc. In this paper we 
derive the stability criteria for singularities of rquivariant Lagrangian submanifolds with a 
compact Lie group action determined by a system with symmetry. The recognition 
problem and classification list for stable (Z#equivariant singularities is proved. We find 
that the classified stable local models occur as possible realizations for the equilibrium 
states in the breaking of symmetry and structural phase transitions. Additionally, the 
connection between two technically different (bv generatine functions, by Morse families) 
infinitesimal G-stability conditions for equivariant Lagrangian submanifols is studied and 
an alternative approach is proposed. 

1. Introduction 

Singularities of Lagrangian submanifolds appeared as natural objects in the 
study of the wave pattern with high-frequency waves coming from a point source 
and moving through a medium (cf. [14], [12]). The corresponding intensity of 
radiation is described by the asymptotics of the so-called rapidly oscillating 
integrals (cf. [7], [3]). Asymptotically (with high frequency) this intensity is infinite 
around the singularities (caustics) of Lagrangian submanifolds generated by the 
appropriate phase functions (cf. [19], [7]). Thus the Lagrangian submanifolds 
appeared initially as the spaces which model the systems of rays in geometrical 
optics [3]. In the case of symmetries of the sources of radiation, as well as when 
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the boundary conditions (mirrors) exhibit some symmetry properties, then the 
corresponding Lagrangian submanifold describing the respective optical geometry 
of the system possesses also some symmetry properties (cf. [14], [ 173). Similar 
problems with symmetric Lagrangian submanifolds appeared also in the varia- 
tional calculus, nonlinear partial differential equations, and optimization (cf. 

1141, c241). 
Another domain where the singularities of Lagrangian submanifolds play an 

important role is the symplectic bifurcation theory (cf. [23], [ll], [lo]) and the 
breaking of symmetry in mechanics and the structural phase transitions (cf. [17], 
[S], [9]). It was observed in [lo] that the Lagrangian submanifolds model the 
space of equilibrium states of thermodynamical systems. In most thermodynamic 
phase transitions in crystals (cf. [12]) the whole bifurcation picture can be 
described by an appropriate G-equivariant Lagrangian submanifold in the corre- 
sponding phase space with the compact Lie group G of symmetry (cf. [ll], [9]). 
The first step in the study of typical properties of constitutive sets in structural 
physics is the recognition and classification of stable G-equivariant germs of 
Lagrangian submanifolds, which is the aim of the present paper. 

In this paper we will study the infinitesimal stability and local stability criteria 
for the germs of equivariant Lagrangian submanifolds near the fix-point of the 
symplectic action of the compact Lie group. Our purpose is twofold. First, we want 
to write down the algebraic criteria for the local G-stability. Secondly, we want to 
use this general method to investigate the normal forms of the stable G-equivari- 
ant Lagrangian germs. 

In [-?I, [22] there is a study of stable singularities of Lagrangian submanifolds 
in the nonsymmetric case, and we will follow the notations and terminology used 
there. In Section 2 of our paper we present the basic results and notation. In 
Section 3 we construct the infinitesimal stability conditions for G-invariant generat- 
ing functions of G-equivariant Lagrangian germs and show their effectiveness in 

calculations with the trivial Z2 and D, symplectic group actions. Section 4 is 
devoted to the complete calculation of stability criteria and classification of stable 
normal forms of equivariant Lagrangian germs in the concrete (Z,)* group action. 
This action is motivated by the theory of phase transitions in uniaxial ferromag- 
nets as well as in all types of ferroelectrics. In Section 5, 6 we present the stability 
criteria in the Morse family (cf. [19]) approach. Here we derive the so-called linear 
infinitesimal stability condition and show its usefulness in some concrete symme- 
tric problems. Following [9] we also present there an alternative approach to the 
study of G-equivariant Lagrangian singularities in physical applications. 

2. Preliminaries 

Let v: G --+0(n) be an orthogonal representation of G in R”. By G:(n) we 
denote the set of smooth v-invariant functions on R” and by e,,(n) the set of all 
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their germs at OER” (cf. [13]). We denote q(n) = w(n)n E,,(n), where w(n) 
denotes the k-th power of the maximal ideal %JI(n) c C?(n) (cf. [21]). For conve- 
nience we shall write also &(z), %X,,(z) etc. instead of &((n), ‘m(n), etc., where z 

(2 z,) denote the corresponding coordinates of R”. By E(n, v; m, 6), where 
6=is &‘orthogonal representation of G in R”, we shall denote the set of germs (at 

0 ER”) of equivariant mappings R” -+ R”. 
The foundational theory of equivariant singularities may be found in [13], 

[21]. Now we recall some of the basic facts needed for the development of the 
theory of equivariant Lagrangian submanifolds. 

PROPOSITION 2.1 ([15-J, [21]). Let v be an orthogonal representation of the 
compact Lie group G in R”. 

(a) There exists a polynomial mapping Q: R” +Rk, called a Hilbert map, such 
that 

The set ,o(R”) c Rk is semialgebraic. 
(b) If’ 6: G +0(n) is an orthogonal representation of G in R” and 

R “+“‘+x, y) -+,u(x, y) ER’ is the corresponding Hilbert mapfor v@S. then the germs 

R”~(x) **(x, 0), 1 < i 6 r generate the module E(n, v; m, 6) over E,,(n). 
aY 

Let us consider the cotangent bundle T* R” endowed with the standard 
symplectic structure (see Cl]). We identify it with the Lagrangian fibre bundle 
rrn: R2” -+R”, n’: (x, r) -+(x) endowed with the canonical symplectic structure CD 

= it1 d& A dxi. Th e action v of G on R” can be canonically lifted to the symplectic 

action of G on R2” =” T* R”, say T* v: G x R2” +R2”. One can easily see that T* v 
E v@v, where (v@),(x, 4) = (vs x, vg <) for g EG, (x, 5) ER’“. An equivariant symp- 
lectomorphism @: R2” -+ R2” which preserves the fibre bundle structure n’: R’” 
-+R” will be called an equivariant Lagrangian equivalence (v-L-equivalence for 
short). By direct generalization of well-known results [19], [22] concerning of the 
nonequivariant case we obtain 

PROPOSITION 2.2. Let @: (R’“, 0) +(R”‘, 0) be a germ of v-l-equivalence; then 
there exists a diffeomorphism cp ~<(n, v: n, v) and a smooth function SEC&(~) such 
that 

@(x, 0 = q*(x)(<+dS(x)). 

Let p be the v-invariant point of R2”. By (LG, p) we denote the germ of v- 
invariant Lagrangian submanifold in (R2”, co) (v-L-germ for short). As we know by 

L91, any v-L-germ (LG, p = (~0, to)) can be generated by the germ of the so-called 
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respectively are given by Arnold’s results (cf. 121, Theorem 10.6.) namely we can 
choose the numeration of coordinates in a neighbourhood of 0 E R2” in such a way 
that (x,), (xJ) parametrize the invariant subspaces corresponding to the representa- 
tions v, and v2 respectively, I = (i,, . . . , ir). .I = { 1, . . , n] - 1. The lifted represen- 
tation T* v has the form vr @r2@v, @IV,. Thus we can consider (c$,, xJ) as the new 
parametrization of the representation space for v. By [9], [2], [22] there exists a 
generating function, say (<,, s,,) -S(&, .Y,,), for (I?. 0) and SE@,(~). We will call 
this function a v-IJ-germ generating the v-L-germ (L’, 0) if LG is defined near 
OER~” by the equations: 

(2.3) 

If k = dimkerD(nlL’)(O), then we have 

E(O) = 0 
;‘<I zr 

and the germ 

k 

F: Rn+k 3(X, ;1) ~S(~, XJ)- C taxi, (2.4) 
a= 1 

is a minimal G-Mf-germ for (L’, 0), where the corresponding representation 6 in 
the parameter space can be chosen as 6 Z VI ,XJ= 0I (cf. [22]). Summarizing the 

above properties of (L’, 0) and repeating the genericity argument of [23 (Proposi- 
tion 10.1 l), we obtain 

PROPOSITION 2.5. Generically, any v-l-germ (L’, 0) s (T* R”, w) has a v-IJgerm 
of yenmating function S with J = 8, i.e. < *S(t), S E ‘%I: (n). 

Now we introduce the fundamental notions necessary to obtain the finite 
classification of v-invariant Lagrangian submanifolds. 

DEFINITION 2.6. Let LG c (T* R”, co) be a v-invariant Lagrangian submanifold. 
A v-L-germ (L’, p) is called stable if for an open v-inv. neighbourhood U of p in 
T* R” and every smooth family c, ItI -e E, (I,:, p) = (L’, p) of v-invariant Lagrang- 
ian submanifolds there exist a smooth family Qr of v-L-equivalences such that 
@:,(Lp n U) 2 L” n K for some open v-inv. neighbourhood I/ of p and sufficiently 
small t. 

As was shown in [9] (cf. [2]) the standard notion of unfolding of a singularity 
[20] can be adapted to represent the G-Mf-germs generating the germs of 
Lagrangian submanifolds. Let F E ecoa(n+ I). We will call F the v-unfolding of 

s =Flro[XRI ~$(0 (cf. C91, Cf61). 
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DEFINITION 2.7. Let F ~C:~~(n+o be a representative of the germ of the v- 
unfolding F ~q@&(n+I). We say that F is stable if for any smooth family of 
functions Ft ECF~(~+ I), ItI < E, P, = P, there exists a neighbourhood U of 0 in 
R “+I, a family of diffeomorphisms (cp,, A1)~Cm(rz, v; n, v)@C”(n+/, ~06; I, 6) and 
family of functions f; EC:(~) such that 

F(x, 2) = F*(cp,(& A,@, n))+f;(x), 

for (x, A) EU and sufficiently small t. 

According to the standard results of the theory of stable singularities we can at 
first characterize the stable germs by the necessary infinitesimal condition, the so- 
called versality condition. 

DEFINITION 2.8 (cf. [16]). Let F E Q,, @*(rn+ k) be a y-unfolding off E E*(k). F is 
called the G-versa1 unfolding of-f if for any orthogonal representation v of G in R” 
any v-unfolding F E EVoa(n + k) of f has the form 

F(x, 2) = F(cp(x), /1(x, 3))+a(x), 

where n cE(n+k, ~06; k, 6), q~E(n, v; m, y), a I&. 

On the basis of [7], [9], [18], [2] we know that the stable v-L-germs (L’, p) 
are effectively represented by the corresponding stable germs of v-unfoldings. Our 
notion of v-unfolding reduces to the standard notion of unfolding if we assume the 
trivial action of the group G. The corresponding theory is exhaustively presented in 

[24], [14]. For the symmetric case, following [2], [22], [7], we have the following 
equivalent: 

PROPOSITION 2.9. Let (I,‘, p) be a v-l-germ contained in (T* R”, CO), let 
F ~C?,,,,(n+k) be the corresponding G-Mf-germ, then the following properties are 

equivalent: 
(a) (I,‘, p) is stable v-L-germ. 
(b) The G-Mf-germ F is stable as a v-unfolding off = Fl,,xti ~@a@). 

Having the analytical representation of stable v-L-germs, given in Proposition 
2.9, we can characterize them by the infinitesimal stability property, i.e. versality of 
the corresponding G-Mf-germs as v-unfoldings. 

3. Infinitesimal stability conditions for G-invariant generating functions 

Let (I,:, 0) be a germ of the smooth family of v-L-germs I$ c_ T* R”, ItI -C E. Up 
to the v-l-equivalence (cf. [2], Proposition 10.11) we can represent this family in 
the following form: 

as, 
(x, 5) ET* R”; x = $5) , (3.1) 
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where t 4.7, (5) EC%;(~) is an appropriate family of generating functions (deforma- 
tion of S,). So we can reformulate the local stability of (LE, 0) in terms of the 
smooth deformations S,. If (Lg, 0) is stable and E sufficiently small, then there 
exists a smooth family Qt of v-L-equivalences and an open neighbourhood U of 
0 ET* R” such that 

@+(Lo n U) c L,. (3.2) 

Let us consider the vector field X = f ‘BtltcO on T* R”. Since each Gt (ItI < E) is an 

equivariant symplectomorphism preserving the canonical fibration T* R” + R”, 
therefore X must be the equivariant Hamiltonian vector field constant along the 

fibers of T* R’, i.e. X = 
aH a aft a 

---+--, where for H GCT&(T* R”) we can write 
ax a5 aq; ax 

Hk 0 = (~@M)+~(x), (3.3) 

where (+I*) denotes the canonical scalar product on R”, and v-invariance of H 
implies A EC~(~, v; IZ, v), BcC$(n). Now, using the Hamilton-Jacobi theorem Cl] 
for the family Lf we can write the equation 

(3.4) 

near 0 ER”+‘. 
Note that to assure stability of (L$j, 0) the left-hand side of (3.4) can be an 

arbitrary element of CT(n) satisfying the equation (3.4) with some v-equivariant 
Hamiltonian H of the form (3.3). 

Let us denote by H, the space of germs at 0 ET* R” of v-invariant Hamilton- 
ians H: T* R” +R of the form (3.3). Let i,, ~:@(n, v; T* R”, T* v) be the Lagrang- 

as, ian immersion < + z, r corresponding to (L’, 0). 
( > 

LEMMA 3.1. Let (L$, 0) he a stable v-L-germ, with a generating function 
S,, c&(n). Then we have 

EV (n) = izg H,. (3.5) 

The proof of this lemma follows immediately from Definition 2.6 and [23 
p. 21. 

Let 7t be the projection, n(x, 5) =x, we denote 3(x, 4) = (~14oj(X)), where 
acl, qj(x):=T(X, 0) and p =(pr, . . . . ,u&: R” x R” +Rb is the Hilbert map for the 

VOV action of G on R” x’Rs. 
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PROPOSITION 3.2. Let (L$j, 0) be a stable v-L-germ, with a generating function 
S, ECV(n). Then the following irzfinitesimal stability condition is fulfilled: 

C(n) = i2 G CV,, . . ., 5, 1 )n*C,cn,, (3.6) 

where (v,, . . . , v,, 1 ),et,(n) is the submodule of $~,(n+ n) generated by K, . . . , 4, 1 

ouer II* & (n). 

Proof: We know that E(n, v; n, v) is finitely generated over E_(n) with gener- 

ators qj(X) = %(x, 0) (see Proposition 2.1, b). Thus the right-hand side of (3.5) can 
ay 

be written in the following way. Let f~&,(n), so by Lemma 3.1 we have 

for some ci(x)EEv(n), By@,, which gives exactly the infinitesimal stability 
condition (3.6). 

Let F E (K(n), (5,, xJ) + F(tl, xJ) be the v-IJ-germ generating for the v-L-germ 
(L’, 0) 5 (T* R”, o) (cf. 4 2). The corresponding immersion of LG, i,,: R” + T* R”, 
has the form 

(3.7) 

Let us define for the v-invariant germs Q on oilJ, y oi,, (j = 1, . . . , b) the following 
smooth mappings 0 ~@(a, a), fi ~@(a) 

00~ = QonoiilJ, floe = l$oiIJ o’= 1, . . . . b), (3.8) 

where Q: R” -+R” is the Hilbert map corresponding to the v-action of G on R”. 

PROPOSITION 3.3. For a stable v-L-germ (L’, 0) E T* R” and for its corresponding 
v-IJ-germ F E C$ (n) of generating function we have the following equivalent ir$inite- 
simal stability conditions 

4 (n) = (@* VI, . -. , @* E, 1)(noi~~)*~,(n)9 (3.9) 

6(n) = (e* VI, . . . , e* C, ~~~~~~~~~~~~ (3.10) 

R,(n) = <e* VI, . . . . e* 9, l)~+((nOi~~)* %(n))%(n), (3.11) 

@(a) = CC, . . . . R, I)*+ (01, . . . . D.)U(II)+Mp(a), (3.12) 

where by M,(a) c @(a) we denote all germs vanishing on e(R”). 

Proof: One can easily see that (3.9) results from (3.5), (3.6) and (3.7). By (3.8), 
conditions (3.9) and (3.10) are equivalent. Equivalence of (3.9) and (3.11) is a 
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consequence of the Equivariant Preparation Theorem (see [13] p. 116). In fact 

@v (@/((Jr o&J)* ‘JJZ (n)) t% (4 is a finite-dimensional vector space and for its 
generators we can choose Q* &, . . ., Q* 4, 1. Taking into account the equation 
0 OQ = gorroiIJ we can rewrite (3.11) in the form (3.12). We need here only the 
fact that the equality gog = g’oe, for some functions g, g’ E:@(a), implies 

C?-s’EJ$(4. 

Remark 3.4. Assume that v is trivial, thus Q = id, and Q* c(<,, xJ) = tr, 

e* Qcr,, XJ) = $e,, xJ), q(n) = E(n), M,(n) = {O), 0 = id,. Finally (3.9), (3.10) 
3 

take the form 

where 

and for (3.11), (3.12) we have 

w = (g %),,+(g, r,, 1>. 

Eliminating the variables xJ by the Preparation Theorem [6], we obtain 

which is exactly the standard versality condition for versa1 deformations [20], used 
by Arnold [2] in the classification theory of stable Lagrangian singularities. 

EXAMPLE 3.5. (Infinitesimal stability condition for D,-action.) In many applica- 

tions of equivariant singularity theory [S] we find the following irreducible 
representation of the group D,: 

P(S& (x1, x2) -*(Xl, --x2), 

I: (x1, x2) 
i 

27r 271 211 2lr 
--* xi cos--xX2sin---, x1 sin-+xX2cos- 

m 
, 

m m m > 

where, gi, g2 are generators of D,. Let us write the corresponding infinitesimal 
stability conditions for D,,,-equivariant singularities with corank at most two. In 
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this case we consider the action 

v: &,xR”+R”,(~,(~,, . . ..x.))~(~(~)(x~.x~),x~,...,x,) 

and the generating function 

F(5,, tz, x3, f.., x,) = hL 52t x3, *.., %I), 

where the corresponding Hilbert map 

@(Xl, . ..) x,) = (ZZ, z”+z”, x3, . ..) x,), z = x,+ixz. 

Here I = {l, 21, J = {3, 4, . . . , n} and 

&J(t;,> xJ) = xJ)~ XJ, <I? -f&v xJ)). 
J 

We easily calculate 

6 (XT 4) = Nr Gz), V2(x, 5) =+(l$lz”‘-l+&F-l), 

K(X, 0 = 5i9 i = 3, . . . . n, 

where we also denote 

(I = 5r +G. 

From (3.8) after straightforward calculations we obtain 

VI (u) = 2ur F,r (u) + mu2 F,2 (u), u = (u1, uz, -*-, u3, 

m-l 

V2(u) = 2m-2 C m-1 
( > j=O i 

mju~-jP,,(~)“-j-~P,~(u)jw~_~(u), 

g(u) = -F,i(u), 3 < i < n, 

where w_ 1 (n) = u2/t4’ and the polynomials (of (j- 1)degree) Wj_ 1 (u) = (tm)jvl 

+(p)‘- l are determined by the following recurrent formula: 

(cm)k+(p)k = 

Also for oi(i = 1, . . . . n) we obtain 

O,(u) =4u,F~~(u)-t-4mu2F,1(u)~,2(u)+4m2u~-’F,22(u), 

0,(u) = 2’” i ” 
0 

m’F,l(u)m-jF,Z(~Y’~T-j~j_l(~), 
j=e J 

‘~i(U)=Ui, 3<i<n. 
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Using the Malgrange preparation theorem, we find that (3.12) is equivalent to the 
following condition: 

+ (22~~ F,, + mu2 F,2, 

+ M@ m 
aF 

where F,i(~l, u2) = c(ul, u 2, O), *j- 1(~1, ~2) = wj- l(u1, ~2, O), and M,#) de- 
k 

notes the ideal of smooth function-germs vanishing on the set; 

{(u 1, uJ: 4uT-u; > 0, u1 2 0:. 

This reduced formula for infinitesimal stability provides us with the first step in 
classifying stable classes of v-L-germs. We postpone a detailed analysis of this case 
to a forthcoming paper. The classifying methods are the same as the ones 
presented in Section 4 for the (Z2)4-action. 

Remark 3.6. Let Q: R” +Rk be a Hilbert map for the v-action of G on R”, so 
e(R”) c Rk is the semialgebraic set defined, say, by the equations fl (u) 

0 , . . .,_&(u) = 0 and inequalities hl (u) > 0, . . . , h,(u) 2 0, where A, hj ER [u], 
LRh are irreducible. Let us denote by A4,* (k) = (fi, . . .) fr)@(h, the ideal in E(k) 
generated by fi, . . . , f,. Obviously we have 

M,* (k) = M, (k). (3.13) 

However, the equality in (3.13) usually does not hold, so we cannot replace M,(k) 
by M,*(k) in the condition (3.12). Nevertheless, by Nakayama’s Lemma (cf. [6]), we 
can make such replecement if 

M,(k) - M$ (k) c Y.JP (k). (3.14) 

Let us assume that (3.14) is fulfilled. 

DEFINITION 3.7. The equality 

@(a) = (ol, . . . . OO),,,+(c, . . . . 4, 1)=+&$(a) 

is called the reduced condition for infinitesimal v-L-stability. 

(3.15) 

Remark 3.8. Let us notice that the dependence of q, pi on $, in general, is 
J 

not linear. In what follows we propose an equivalent approach to the classification 
problem of stable v-L-germs using the Morse family notion. In that approach we 
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derive the corresponding linear infinitesimal v-L-stability condition. Equivalence of 
these two conditions results from the equivariant version of the Malgrange 
preparation theorem (cf. [ 131). 

EXAMPLE 3.9. Assume the representation v of G = Z2 on R” has the form 

R”~(x,, . . . . -%I) -+@I 7 x2, f.. 2 %I), EEG. 

Let the v-L-germ (L’;, 0) c T* R” have a v-IJ-germ S(<r, x2, . . . . x,) 

= SOQ(<~, x2, . . . . s,,), where Q: R” -+R”, Q!(<~, .x2, . . . . .v,J = (Cf. x2, . . . . x,,). In 

this case M,(II) c W”(n), M,*(n) = {O), 

V,(u) = -2u, S,,(u), 

R(u) = S,i (u), 2<ibn, 

G (4 = Ul% (4 

Cj(U) = Uj, 2 <j < M. 

Thus we see that (3.12) is equivalent to the following condition: 

W) = @I PI (u), u2, *. ., u.)w+ <u&(4, I,,, . . . . %(4, l),p (3.16) 

Using the Malgrange preparation theorem we obtain the following, suitable for 
further calculation, equivalent form of (3.16): 

where 

- as’ 
~(1)3S,i(U,) = &(U,, 0), i = 1, . . ., n. 

4. Stable v-L-germs with respect to the (Z2)q action 

Now for the purposes of applications (cf. [ll], [S]) we consider the following 
action of G = (Z2)q 

v: (ZJq xR”3(q, . . . . cq, x) -+(x1, . . . . x”_~, E~x,_~+~, . . . . E~x,JER”. 

The corresponding Hilbert map (orbit mapping) for v is defined by 

e(x) =(x1, .a., x,-q, x,2-,+,, ..., x3. 

Any v-L-germ (LG, 0) c T * R” is v-L-equivalent to the v-L-germ, say 
(157, 0) z T* R”, which has the following generating function (see $’ 2): 

@v(n)3S(T) = SW(S), (4.1) 

where s E E(n). 
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s”,,, (0) = a3 # 0 thus it suffices to put co = U(O), cl = CI,~ (0), hr = fir/U,, h2 = (Q- 
- II, h,)/$., h, = (as - U3 h,)/i!?:2,. 

(A;) (For A;’ we have the same procedure.): Assume a, = 0, a, = 0 and 
a3a11 a,,(42 -a,, ~22) # 0. We see that the germ 

B(x) =~~~)-~0-~1~1-~2~~2~~)~2f~~1~~)~90+91~1+~2~2) 

belongs to the ideal (x:, x:x2, xl xz, x3, x3 ) provided that co = 01(o) and the 
constants cl, c2, go, gl, g2 satisfy the following system of linear equations (solv- 
able iff n,, ~,,(u~~-u~, az2) # 0): 

41(O) = a,, 9o+c1, 

42(O) = a12g0, 

4110 = ~lllgo+2~11gll9 

Qh20) = ~11290-+~1291+~1192+~12C2~ 

+%22(o) = ~11290+~12g2+~22c2. 

Now consider the germs Uij, fli satisfying the following decompositions: 

$,i fx) = xl uil txl) + x2 ui2 txl 7 x2)+x3 ui3 txl 9 x2, x3) 

for i= 1, 2 and 

P(x) = x: Pl (x)+ x: x2 P2 (4 + Xl xt P3 (4 + x: 84 (4 + x3 Bs 64. 

Let the germs kr, k2, k,, h, ~@(3) be the solutions to the following system of linear 
equations: 

Bl = Ullh~ 

P2 = U12 kl + Ul1 k3 + U;1 h2, 

83 = U11k2+U12k3+2U21 U22h2, 

Pa = U,,k,+U:,h,. 

The above system is solvable since the system determinant at 0 is equal to 
all (at, -all uz2)’ # 0. One can easily check that the germ 

~(4 := B(x)-~,,(x,)(xfkl(x)+x~kz(x)+x1 xzk3(x))--2S~2(x)h2(x) 
belongs to the ideal (x3) in E(3), i.e. y has the form y(x) = x3 y’(x), where y’ ~@(3). 
Finally, we observe that c,,, cl, c3, h,(x) defined as above, c3 : = 0 and 

hl(x):=go+g,xl+g,x,+x:k,(x)+x:k2(x)+x1x2k3(x), 

h, (4 : = Y’W% (4 

satisfy (4.2). This completes the proof of Proposition 4.3. 
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Now we consider the recognition problem for the stable v-L-germs. Let 
52 (R3, R) Z R3 x.Js (R3, R) be the space of 2-jets of C”(3)-functions (cf. [6]) with a 

coordinate system (Xi; y, JJi, J’ij). Let Ml, Ml, n/I,, M, be submanifolds of 

Ji(R3, R) defined by the following conditions: 

(A,): MI = ;YZY~Y,I Z% 

(A,): M2 = ;Y, I = 0, Y,J’3 f 0) 9 

(Aj): M3 = ;Y, =O,Y~YI~Y~~(Y:~-Y~~Y~~)~O), 

(A;‘): M-2 = b3 = 0, Y~YIIYI~(Y:~-YIIY~~~ Z 0;. 
Their codimensions in Jg(R3, R) are 0, 1, 1 and 1 respectively. The subset of 

those 2-jets, say at x = (.u,, 0, 0), x1 ER, which do not belong to u Mi has 
I 

codimension 2, i.e. it is a finite union of submanifolds of Jz(R3, R) of codimcnsion 
2. Given F EC?(~), let j2F: R3 -+J~(R3, R) denote the 2-jet extension of F (see 

e.g. [24], [20]). Thus on the basis of Thorn’s transversality theorem [13], [24] 
we obtain immediately 

PROPOSITION 4.4. AlE germs (j2 F) (x1, 0, 0) of a generic function F EC”(~) 

belong to TJ Mi. 
i= 1 

Let us denote by Ei, i = 1, 2, 3, 4 the subsets of all germs F EC(~) satisfying 
conditions (A,), (A,), (A;), (A;‘) of Proposition 4.3 respectively; together with 
F (0) = F,, (0) = 0. These germs generate the corresponding v-L-germs 

(i 

Woe) 
-7(<), 5) 

1) 
, 0 . Using the appropriate canonical transformations we easily 

obtain 

PROPOSITION 4.5. Let F EC”(~), x0 = (x1, 0, 0). If 

Q2 F)(x,) EM;, i = 1, 2, 3, 4, 

then the germ (F, x0) is v-L-equivalent to a germ belonging to Ei. 

Let us recall that two v-inv. germs of generating functions are v-L-equivalent iff 

the corresponding v-L-germs are v-L-equivalent (see Section 2). 
Now we try to find classes of v-L-equivalent germs in Ei. For this purpose we 

introduce 

DEFINITION 4.6. Let F (x, t) = F,(x) be a smooth function on R3 x J, where J is 
an open interval in R. F is called i&homotopy (and the germs (F,, 0), (Fb, 0), 

a, b EJ are called inf-homotopic) if all germs (F,, 0) belong to the same class Ei (we 
assume F(0, t) = S’(0, t)/& = 0 for any inf-homotopy F(x, t)). 

PROPOSITION 4.7. Any germ belonging to Ei (i = 1, . . . , 4) is inf-homotopic to one 
,jroru the following list: 
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@I) F(x,, ~2, ~3) = 

(E2) Fh> ~2, ~3) = 

(W F(Xl, x2, 4 = 

(Ea) F(x,, x2, x3) = 

Let us remark that 

S. JANECZKO and A. KOWALCZYK 

+_x::+(x1 * x,12+x3, 

fxS$_(X1+X3)2+X2. 

the generating functions F OQ, for F belonging to the 
respective classes (Ei), correspond to the classification proved by Arnold in [2], 
Hence this coincidence justifies our notation (A,), (A,), (A;), (A;‘). 

Proof of Proposition 4.7: We consider only the case (Es). The conditions 
sgna,, = +l, sgna z = _+ 1, sgntr, = * 1, sgn(af2-all azz) = _+ 1, distinguish in 
the 4-dimensional space of coefficients (all, aI,, u3, u22) = (F,,,, F,12, F,,, F,,,) 
(0) sixteen open convex regions. So, if germs F’, F” E& correspond to the same 
region, the following function: 

F(x, t) = tF’(x)+(l -r)F”(x) 

is an inf-homotopy between them. The observation that the above forms of E, 
correspond to each of these regions completes the proof. 

PROPOSITION 4.8. Let F(.x, t), (x, t)ER3 XJ be an inf-homotopy, S(x, t) 

: = F(Q (x), t) and t, EJ be a ,fixed point. Then there exists an open neighbourhood 

U x I of (0, to) and smooth functions ai (x, t), b(x, t) on R3 x R, with compact 

supports, such that 

(i) 0,(x, t) =g(O, t) for [El, 
1 

and 

(ii) -‘s 
.& (x, 0 = If i 

x, gtx, 0, t 
> 

.for (x, t) c U x I, 

where 

for (x, y, f) gR3 x R3 x R. 

Proof: Assume to = 0. From the proof of Proposition 4.3 it follows that for 
any germ a E E(4) there exists the decomposition 

cI(X, t)=F,l(x, t)h,(x, t)+c,(t)x,+c,(t)f~32(XiF~(X, t)4(X, t)+ 

+ xi F,i(X, t, ci (t)), 
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with ci E g(l), hi ~C5(4). Substituting Ci (t) = Ci (O)+q (t), for i = 0, 1, 2, 3 and 

h(X, t) = Fo(t)+Fl (t)Xl +ZiXiF,i(xy l)Fi(t), 

we obtain 

CC (x, t) = F,l (X7 t) h, (X3 t) + cl(O) X1 + co (0) + Ci (xi 3’: (xy t) hi (XT t) + 

+XiF,i(Xy t)Ci(O))+th(Xp t). 

From the Malgrange preparation theorem [20] applied to the germ g: (R4, 0) 

-+(R4, Oh 

g (x, t) = (F,, (x, t), 4x2 F,‘2 (x, t), 4x, F,23 (x, t), t) for (x, 0 ~~~ x R 

we obtain the following decomposition: 

(iii) -f(x, t) = XlUlOg(X, t)+Z32XiF,i(X, t)Uiog(X, t)+bOg(Xy t), 

with a,, b ~@(4) (we can take the representatives of these germs with compact 
supports). 

Now if we consider (iii) at (Q(X), t) and such that g (e(x), t) = Q g( 
i (ax x7 ' 

t) t 
)2 

we easily get (ii). 
In order to show (i) we have to consider the respective cases: In the case E, we 

have F,i (0, t)‘= F,ii (0, r) = 0 # F,iti (0, t). So, taking 8/8x, and a2/8x: of (iii) at 
(0, t), we obtain 0 = a, (0, t) and 0 = b,l (0, t) F,lll (0, t). Thus (i) results. In the 
case E, we have F,l (0, t) = F,, (0, t) = 0 # F,12 (0, t). Taking 8/8x, of (ii) at (0, t) 
we have 0 = b,, (0, t) F,l, (0, t), so b,l (0, t) = 0. Now by differentiation of (iii) with 
respect to x1 at (0, t) we obtain 0 = a, (0, t). For the case El we have F,l (0, t) 
= 0 # F,,l (0, t), so taking a/ax, of (iii) at (0, t) we get 

0 = a, (0, t) + b,, (0, 0 F,11(0, 9. 

Hence, if a, (0, t) = 0, then b,, (0, t) = 0. Thus it is enough to show that decompo- 
sition (iii) with al (0, t) = 0 is always possible. In fact as the Jacobian 
(ag)/a(x, t) # 0 at (x, t) = (0, 0), there exists X, ~C5(4) such that xl = Xl 09(x, t). 

If we set a1 (z, t) := a, (z, f)-~~(0, t) and b(z, C) := b(z, ~)+a, (0, t)Xl(z, t), we 
can substitute a,, 6 into (iii) to a place a, and b respectively. But a, (0, t) = 0, 
which completes the proof of Proposition 4.8. 

Let F(x, t), S(x, t), H(x, y, t) = H,(x, y) be as in Proposition 4.8. We assume 
to = 0, I = (-E, E) for simplicity. Let us consider the time dependent Hamiltonian 
vector field on T* R3 
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(7 
as well as the vector field X,, = z+ XIJ, on T* R3 x R. XHf has the global flow g,, 

f E R (i.e. there exists a smooth mapping R3 x R3 x R 3(x, y, t) -+g, (x, y, t) E R3 x R3 

such that i;u,(x, y) = X&,(x, y)) and gO(x, y) =(x, y), for (x, ~)ER~ xR3). This 

results from: (i) compactness of supports of Ui and b, (ii) the independence of the 
“y”-component of X, , on x (so y(r) can be found independently on x), (iii) linearity 

of the “x”-componenet of X,,, with respect to x. 

LJMMA 4.9. g1 is II v-L-equivalence for every t ER. 

Proof: Since oH = w +- dN A dt is the invariant form of r?, (see Cl]), therefore 
gt is a symplectomorphism for every f. Take LEG. As I&(x, y) = Hfoo(x, y), 

fJoX,, I =XH,og and ~~(noy,-g,o~)=*oX,,-X,~oa=O for every t+xR. 

Hence rr o gt = gt o o holds for every t E R since go = idT,R3. Finally, gt preserves the 

fibration II (see Section 2) because the “y”-component of XHt is independent of x. 

Thus the proof is completed. 

Let us define the mapping @: R3 x(-c, E) -+T* R3 as @(.\-, t) = Qi,(.v) 

z.z 
( 

x, g(x, t) and let the r-L-germ di(R3 x it;) = 

L’; 
1 

{(x, g(x, t))] be denoted by 

I I 

LEMMA 4.10. The global flow gr fbrms the v-l-equivalence of zhe v-L-germs 
(J$, 0) and (c, 0) for )tJ Cc. 

Proof: First we show that g,(@ = Lr. By straightforward calculations it can 

be checked that the vector field 

is tangent to Lf at the point Q,(x) for every (x, t) eR3 x R. Let B(x, t) be a smooth 
vector field on R3 x R and z’ E R, 0 c I:’ < E, be such that 

@*(B, Is, t,) = A(x, 1) for (x, I) cR3 X(-C’, E’), 

where @* denotes the corresponding tangent map (cf. Cl]). Denote by h, the flow 
ii 

of -B (x, t) f- on R3 x R (assumed to be defined globally, for simplicity). Then 
B 

hs(R3 x jr\, = R3 x (r+s) for s, t ER. 
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Let us define k,: R3 -+ R3, t E R, by the formula 

k,(x) = @(h,(.u, 0)). 

It is easily seen that f k, (x) = XHt (k, (x)) and k, (R3) = Lz. Hence, by the unique- \ 

ness theorem for the first order differential equations we obtain k, = g, and g,(@ 
= k,(R3) = LF for It/ < F’. To complete the proof it suffices to notice that g,(O, 0) 
= (0, 0) since XHt(O, 0) = 0, by (i) and (ii) of Proposition 4.8 and gO(O, 0) = (0, 0) 

which completes the proof. 
By the above two lemmas we obtain immediately 

PROPOSITION 4.11. Any two inf-homotopic germs belonging to e(3) are v-L- 
equivalent. 

It is easily verified that for any F EC”(~) the mapping j2 F: R3 -+Ji(R3, R) is 
transversal to Mi, (i = 1, 2, 3, 4). Hence if j2 F(x) cMi for every function 
F0 EC” (3) sufficiently close to F, there exists a point x0 E R3 close to x such that 
j2 F,(x,) EMi. Hence (F, x) and (F,, x0) are v-L-equivalent to two inf-homotopic 
germs from Ei, so they are v-L-equivalent. Thus we obtain 

PROPOSITION 

j2 F(x) EUM; is 

Now we can 
stable germs of 

PROPOSITION 4.13. Any v-L-srabie germ (F, x0), where F 6Cm(3) and x,, 

4.12. Let F’gC”(3). Any germ (F, x) where x =(x1, 0, 0) and 
a v-L-stable germ. 

formulate the classification theorem for the normal forms of Y-L- 
generating functions. 

= (x01 > 0, 0), is v-L-equivalent to the germ at 0 E R3 qf olte of the ,following normal 

f arms : 

64,) F(x,, x2, x3)=Xf+X2+X3, 

042) F(x,, x2, X3)=X:+X2+X3, 

643) f'(x,, x2, X3)= -+Xt+(X2+X1)2+X3. 

Proo$ By Propositions 4.4, 4.5, 4.7, 4.11, 4.12, it suffices to construct the v-L- 
equivalences which reduces the normal forms of Proposition 4.7 to the normal 
forms listed above. But this is easily achieved by the v-L-equivalences of the form 
(x, ~1) *(CC; Xi + Di yi, Jri) for appropriate CC;, pi E { - 1, 0, 1) . This completes the 
proof of Proposition 4.13. 

5. Stability conditions for G-invariant Morse families 

Now using the Morse families local formalism (cf. [19]) we derive the corre- 
sponding linear infinitesimal stability conditions for v-L-germs. Consider a smooth 
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family (c, 0), ItI < E of v-L-germs with the corresponding smooth family F,, )tl < E 
of G-Mf-germs. For simplicity we denote F,, (I,:, 0) by F, (L’, 0) resp. and assume 
that all Morse families of the family F, are minimal (see $ 2). Let (LG, 0) be the 
stable v-L-germ. Thus for sufficiently small el, by Propostition 2.4, F,(ltl < EJ is 
locally trivial, i.e. 

F,(x, 1.) = F(~ot(x), At@> A))+_&), (5.1) 

where A, g@(n+I, @a; 1, a), cpl ~@(n, v; ~1, v), 1; ~@,,(,(n) and (cp,, A,) EQ(~ 
+I, V&T; )I+/, v00) is the local family of diffeomorphisms. 

By M we denote the space of minimal G-Mf-germs 

M = {F ~.&yo(n+f); (a2 F/8& aA,) = 0). 

According to (5.1) and theorems of Section 2 we have 

PROPOSITION 5.1. Let (I,‘, 0) be a stable v-L-germ. Then the necessary condition 

for the restricted local G-L-stability of the corresponding G-Mf-germ, F, is following: 

‘%l(n+l) E(n+l, V&J; 1, CT) (5.2) 

where the first and second terms are submodules of C%V,e,(n+ l) defined by the 

srandard scalar products (.I.) on R’ and R” respectively, TC,: R” x R’ --t R”. 

Let p’: R”+’ x R’ -+ Rb, Q’: R” x R -+R” be the Hilbert maps for vOa@a and 
v@v respectively. Let us denote 

Cpi(x, 1) =z(x, 2, 0) (i= 1, . . . . b), 

$j(x)=$&,o) o’= 1, . ..) a). 

Thus from Proposition 2.1 and condition (5.2) we infer immediately 

COROLLARY 5.2, In terms of the generators of the modules C?(n+l, v@o; 1, a), 
@(II, V; n, v), the condition (5.2) of Proposition 5.1, can be rewritten in the following 

,form: 

(( 

aF 
MC 

di, I> ( aF 
‘pl 3 ...? x (Pb ! >) @v,ecrb+l)+ 
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When a physical system with symmetry exhibits the structural phase transitions 
then the n&ion of “order parameter” is well established (cf. [123) and 
dimensionality is a rather stable feature of the system. This is the reason for 
restricted stability condition introduced in Proposition 5.1. However, from 
point a view of the standard singularity theory of Lagrangian submanifolds [7] 
corresponding deformation space is @,.@,,(n + I). Thus, at first, we consider 
stronger condition of infinitesimal G-L-stability 

its 
the 
the 
the 
the 

This condition immediately follows from the v-stability of the corresponding v-L- 
germ (L$, 0), introduced in Section 2. Let ,C: R”+l --* Rk and a: R” +R’ be the 
Hilbert mappings for v@a and v actions respectively. For further use we define the 
new Hilbert map for the v&-action, 

p = (,ii, Gore,): R”+’ --+Rk xR’. 

As we know, the germs (giq;), (gi$j), 1 <iib, 1 <j<U are V@a- 

invariant, thus we can obtain their smooth preimages by the Schwarz [lS] 
homomorphism: 

(5.5) 

where t7i, iij E Q(k + v). 

PROPOSITION 5.3. Let (I,‘, 0) c (T* R”, o) be the stable v-L-germ. Then the 
necessary infinitesimal G-L-stability condition for the corresponding G-Mf-germ F 
can be written in the following form: 

W) = (HI, . . . . H,)6k,+ (E,, . . . . E,, l),+M,(k+rIk), (5.6) 

where Hi = gi/,+ xlo), (i = 1, . . ., b), Ej = Eli,+ x(,,)y 0’ = 1, . . . . a) and M,(k+rlk) is 

the restriction of M,(k+r) to Rk x {O}. 

Proof: Inserting the expressions (5.5) to the condition (5.4) and taking the 
surjective homomorphism p*: @(k-i-r) -qGo,(n+l), we obtain the equivalent con- 
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dition 

/J* E(k+r) = (PL*I?f, . ..) p*fib)p*dk+r)+ (PL*Ei, . ..) #U*&, l&Q r 0) 

where R,: Rk” +R, (z, y) h(y) is the canonical projection. Thus we can take (5.4) 
in the following equivalent form: 

@(k+r) = (fi1, . . . . &)Kjk+r)+ & *-., &, ~),;,,,+&I@+~)T (5.7) 

where M,(k + r) is defined in $ 3. Let A be the finite generated E(k +r)-module, 

A = E(k+r)/(fi,, . . . . I?,) CZ(k+r)+ M,(k+r). 

From (5.7) we have 

A/7r,*(%R(r))A = (El, . . ., I!?~,, l)R. 

Thus by applying the Malgrange preparation theorem we see that condition (5.7) 
is equivalent to (5.6). This completes the proof of Proposition 5.3. 

Let us notice that the functions Hi, Ej depend linearly on F, which shows some 
advantage of the Morse family approach comparing to the generating functions 
method presented in the preceding sections. These two approaches are equivalent, 
however the direct method of description of Lagrangian singularities by generating 
functions is convenient from the point of view of physical applications where the 
generating functions, usually, have a physical meaning of the equilibrum potentials. 
Similarly as in Section 3, the condition 

E(k) = (H,, . . . , H&o)+@f, . . . . J%, l)R+M3(k+rlk) (5.8) 

will be called a linear condition of infinitesimal G-L-stability. If we assume that 

M,(k+rlk)- M,*(k+rlk) c ‘W”(k), then by Nakayama’s Lemma [20] we obtain 
equivalence of the two conditions (5.8) and (5.6). 

EXAMPLE 5.4. Assume that v: G -+ O(n) is trivial. Let (<,, xJ) -+ S (l,, x_J be a 
[J-germ for (L, 0) c 7’* R” and the corresponding Morse family F E C(n+ k) be 
given by (2.4), where k = #I. In this case we can put p = id,,,. We also find 
easily that (5.7) takes the form 

G(iztk) = 

And equivalently, we can write (5.6) in the following form: 

. 
e(n) 
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We can write (5.6) even in a more compact form 

which is exactly the standard condition for versality (infinitesimal stability) of 
unfoldings of singularity q = St,, x,ol (cf. [2], [20]). 

EXAMPLE 5.5. Let us take G = Zz, its action on R” being defined as follows: 

\‘,(.U, , XI, . . . , x,,) = (&XI, x2, . . . X”), EEZ~ = :+l;, XER”. 

Let a v-l-germ (I,‘, 0) have the following v-IJ-germ of generating function: 

S(5,, x2, . . . . -%J = h?(Sl, x2, .*., XII), 

where Q: R” -+ R”, (tl, x2, . . . . x,) -(lf, x2, . . . . x,). The corresponding Morse 
family: 

F(x, 2) -s(n, x2, . . . . x,)--x1 (5.9) 

and the corresponding representation c has the form 

a,@) = &,I. 

Define a Hilbert map ,E: R”+ r --f R”+ 2 for v@o as 

ji(X, 3L) = (I?, Ax,, x:, x2, . ..) X”). 

We find that M,(n+ 2) is the set of smooth function-germs vanishing on the set 

p(R”+‘) = ((y,, . . . . Yn+2); Yf-YI Y3 = 0; (5.10) 

and also we have 

M$(n+W) = YS WY,, Y2). 

After straightforward calculations we obtain 

Ej,(Y)=2Y,S,(Y,,Y,,...,Y,+2)-Y2, 

t72(Y)=2Y2~1(Yl,Y4,..,,Yn+2)-Y3, 

E”,(Y) = -Y,, Ej (Y) = $i (Y’), i=2,...,n. 

Substituting them to (5.7), we get the condition 

WY) = (2YJ,,(Y’)- Y2,2Y2S,(Y’)-Y3h(y,+ 

+ 02, S,(Y’L . . ., S,(Y’)},(y’,)+M,(n+2), 
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where y’ = (yl, y4, . . . , Y,+ J, y” = (y3, . . . , Yn+J and for k, r in Proposition 5.3 we 
put k = 2, Y = n. Thus the infinitesimal v-L-stability condition for the v-L-germ 
(LG, 0) has the form 

@(Y, 7 YZ) = (2Y,% (Y1)-Y2, Y, s1 (YA YI)QY1’YZJ + 

+ CVZ, S*(Y1), .‘.9 $“(Yl)V I)R, (5.11) 

where s,a (yl) : = q, (yl, 0, . . . , 0). From the decomposition 

@(Yl, YZ) = E(y,)+y, @(Y,)-tYZ @(Y,V.Y,), 

on the basis of (5.11) we obtain 

@(Y,)+Yz @(VI) = (2Y1 s1 (Y,)-Y,)@(Y,)+Y,% (Yl) @(y,)+ 

+ C_v2, S,(YA . * .9 S”(Yl)~ 1 )R. 

In other words, for every a(yl), b(y,) ECF(~~) there exist hl, h, tzCF(y,) and constants 

co, . .‘, c, ER such that 

a(yl) = 2Y,S,(Y,)hl(Y,)+9,(Y,)c,+ . . . +~,,(y&+c,,, 

b(y,) = -h,(~,)-t?,(Y,)hAYA+cl. 
(5.12) 

Eliminating h, from these equations, we get an equivalent condition 

a(Y,)+2Y,S,(Y,)b(Y,)=y,S~~(Y,)h,(Y,)+Y,S,(Y,)c,+, . . . . + 

+S,(y, )c,+co. (5.13) 

We easily see that (5.13) can be written in the form 

@(YJ = CY1 s,** (Yl)),,,,-t 01 s, (YA S,(Y,), . . *, $“(Yl), I )R, (5.14) 

which gives another form for infinitesimal v-L-stability of the v-L-germ 
(LG, 0) C 7-e R”. 

Remark 5.6. We derived condition (5.14) in Section 3 (see formula (3.16)), in 
quite a different way. In Example 5.5 we showed the equivalence of these two 
approaches to the classification problem of stable v-L-germs of Lagrangian 
submanifolds. It seems that the Morse family approach is very useful in explicit 
calculations because of the linearity of the corresponding infinitesimal stability 
conditions. 

6. Versality and stability of v-L-germs 

In the preceding sections we characterized the infinitesimal stability of v-L- 
germs through the corresponding infinitesimal stability conditions for their G- 
Morse family germs. To have an adequate approach to local stability of v-L-germs 
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by the corresponding locally stable generating families we have to introduce the 
modified notion of G-unfolding (cf. [16]) and adapt this notion to use it in the 
standard Morse family approach (cf. ES]). 

Let u a& for some orhtogonal representation g of G. The pair (v, f), where 
v: G -+0,(R) is a representation of G, andfE@@,(n+k) such thatfJf,,X,, = q is 

called an n-parametric G-unfolding of-q with respect to the representation v. Let (T 
be fixed for all G-unfoldings of the germ q. 

Let ;’ be an orthogonal representation of G in R”. A morphism of G-unfoldings 
(@, a): (;*, h) -)(v,f) of the germ q is defined by the following maps: 

(i) @ = (43, $) E@(s+~, yea; k, o)@ti(s, y; n, v), 

(ii) c( FE),(s) 

and the following condition: 

h = f o@+ao7c,, 

where n,: R” x R“ -+ R” is the canonical projection. If $ is a diffeomorphism, then 
(@, 2) is called an isomorphism of G-unfoldings. We say that a G-unfolding (I?,_/) 
of the germ q is G-versa1 if for any other G-unfolding (y, h) of q there exists a 
morphism (Q, ct): (y, h) +(v,f). The G-versa1 unfolding of q is called G-miniversal 
if the dimension of the basis n of the unfolding is the smallest possible number 
(cf. [6]). We see that the above introduced isomorphism of G-unfoldings (@, a) 
defines the Lagrangian equivalence of y-L-germ (Ly, 0) generated by h and the v- 
L-germ (L;, 0) generated by 1; i.e. there is the G-equivariant symplectomorphism 
RG: T* R” --+ T* R” preserving the fibre structure 7tRn: T* R” --+ R” and such that 
RG (Ly) = L;, R’(b) = 0. We know (see [9], [6], p. 269) that RG can be locally 
written as follows: 

(x, 4) +(t)(x), ‘D$(x)-‘(t+da(x))): T* R” -+ T* R” (6.1) 

with $ EDiff(n, ;‘; n, v), c( ~$(n). The converse statement is also true, i.e. if the y- 

L-germ (LY, (x0, to)) c T* R” is mapped into the v-L-germ (L;, (X0, to-,>) c T* R” 
by a germ of G-equivariant symplectomorphism (T* R”, (x,,, t,,)) +(T* R”, (X,,, TO,>) 
of the form (6.1), then the corresponding G-unfoldings, say h and A generating 
i’;‘2,(x0, t,,)) and (L$, (X0, t,,)) respectively, are isomorphic as G-unfoldings (cf. 

Let S: (R” x t?, 0) -+ R, S ~iE,,~,(n+ k) be a germ of a generating family for the 
v-l-germ (L’, 0) c T* R”. 

DEFINITION 6.1. A G-invariant Lagrangian submanifold LG c T* R” is called 
G-aersaf at 0 EL’ if a germ S of a generating family of (L’, 0) is a G-versa1 
unfolding if the germ q = SJf,iXRk I@,. 

Let us endow the space of G-unfoldings CFo,(~t+k) and the space of G- 
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equivariant Lagrangian immersions Z(n, Q; n+n, v@v) with the induced Cm-Whit- 
ney topology, then the G-versa1 v-L-germ (LG, 0) is locally stable, i.e. for every G- 
invariant neighbourhood I/ of 0 in T* R” there exists an open neighbourhood U of 
the G-equivariant Lagrangian immersion iLG: (R”, 0) -+(T* R”, 0) in I(n, 4; n 

+n, v@v) (where Q is the linearised representation v@vJ,,G) such that for every 
iEU there exists p ~Imagei c I/ with the property that the \*-L-germs (L’;, 0) and 
(Image i, p) are v-l-equivalent (or (iLG, O), (i, i- I (p)) are G-equivalent as immers- 
ions [7]). Thus the local v-L-stability of v-L-germs has an adjoint formulation in 

terms of the stable G-unfoldings of invariant singularities (cf. [24], [2]). 
Let rl E $@ (k), by J(q) we denote the Jacobi ideal of q generated by the partial 

derivatives i?+/aA,, . . . , a~/&%,. J(q) is a G-submodule of the G-module E(k). 
Following [9] (see also [16]) we obtain the main result on the G-versa1 v-L-germs. 

PROPOSITION 6.2. Let 6: G -+0,(R) be a fixed representation of G in Rk, let (v, S) 

be a G-unfolding of a germ q = S((Olx ti which generates the v-L-germ 

(LG, 0) c T* R”, we set n = dim, !JJl(k)/J(v) < cc. Ler y be the representation of G in 

the Vector space $JJZ(k)/J (v]) 2 R” and r: Vll(k)/J (I$ -+ %3(k) an equiuariant splitting of 

the exact sequence of G-modules 0 *J(q) *(D{(k) & W(k)/J(q) -+O such that the 

function f: ‘%Jl(k)/.J (q) OR’ + R, f (x, A) = q(A) + r (x)(l) is a Morse family. Then 

(i) f is a generating family for the G-versa1 y-L-germ (L:, 0). 

(ii) The v-L-germ (L’, 0) with the generating family (v, S) is G-versa1 if and only 

if a morphism of G-unfoldings (@, a): (v, S) -+(y,f) is an isomorphism. 

The proof of this proposition can be found in [9] (p. 187). 
The main tool in proving Proposition 6.2 as well as in classifying the 

corresponding normal forms for G-versa1 v-L-germs is the infinitesimal versality 

notion (cf. [24], [ 161). 
Let q~ti~(k) and f~E,,@,(n+k) be a G-unfolding of q. Thus dfE@(n 

+k)@(X@l)* (where we denote A s Rk, X 2 R”) has the two components 
dl f ~CF(n+k)&l*, and d, f ~@(n+k)@X*. Let us consider the second component 
and the sequence of homomorphisms (cf. [16]) 

@(n+k) -+@(n+k)@X* -*E(k)@X* -+@(k)/J(q)@X*, 

f -'d,f+d,fl,-,4fl,=~f. 
(6.2) 

We see that Sf is G-invariant, i.e. ~3f~(E(k)/.l(~)@X*)~, Sf is identified also with a 
G-equivariant homomorphism X -+ Q(k)/J (q). If the homomorphism Sf is surjec- 
tive we say that the G-unfolding (v, f) is infinitesimally versa]. It is proved in [16] 
that the two notions: infinitesimal versality and versality, are equivalent. 

We can adapt the above notions to the symplectic objects and write down, for 
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G-Mf-germs, the corresponding sequence 

!?JI(k)@(n+k)+W(n) ~(~(k)CF(n+k)+~31(n))~(R”)* -9JI(k)O(R’3* 

-+ WV/J (VI) WV* 

DEFINITION 6.3. Let (v,f) be G-Mf-germ for the v-L-germ (L’, 0) c T* R”. We 
say that (LG, 0) is an ir$nitesimally G-versa/ if the corresponding G-homomor- 
phism Sf is surjective. 

PROPOSITION 6.4. The v-L-germ (L’, 0) is G-versa1 if and only if (L’, 0) is 

i$initesimall_y G-versal. 

Proof: Using Proposition 6.2 and Corollary 3.7 in [16] (cf. [93). 

Following the standard lines of Lagrangian singularity theory (see [a], [9], [7], 
[lS]) we can summarize the stability theory of invariant Lagrangian submanifolds 
in the following 

PROPOSITION 6.5. Let i,(;: (L’, 0) +(T* R”, 0) be a germ of G-equivakant 

Lagrangian immersion. Let S: (R” x Rk, 0) -+ R be a corresponding generating fami/y 

for (LG. 0). Then the ,following conditions are equivalent: 

(i) &,G? 0) is locally stable, 

(ii) (i[,G, 0) is injinitesimally stable, 

(iii) (S, 0) is a versa1 G-unfolding of the germ r] = SjiO)xRk, 

(iv) (S, 0) is an infinitesimally versa1 G-unfolding of the germ v = SlIO)rRk. 

Proof: The equivalence of (i) and (ii) results immediately by the equivariant 

local version of the Theorem 5.1.3 in [6]. By Theorem 4 [22] and the previous 
results we obtain equivalence of conditions (i), (iii). The equivalence of the notion 
of infinitesimal stability for Lagrangian G-immersions and infinitesimal versality 
for generating G-invariant Morse families follow from the corresponding equivar- 
iant’ reformulation of standard arguments in [24] (see also [7]). 
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