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Abstract—We characterize general symplectic manifolds and their structure groups through a
family of isotropic or symplectic submanifolds and their diffeomorphic invariance. In this way
we obtain a complete geometric characterization of symplectic diffeomorphisms and a reinter-
pretation of symplectomorphisms as diffeomorphisms acting purely on isotropic or symplectic
submanifolds.
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1. INTRODUCTION

A symplectic manifold is a 2n-manifold X together with a symplectic form ω on X, i.e., a differ-
ential 2-form that is closed and nondegenerate. Diffeomorphisms φ : X → X that preserve the sym-
plectic structure, i.e., φ∗ω = ω, are called symplectic diffeomorphisms or symplectomorphisms. If N
is a submanifold of X, say symplectic (isotropic, etc.), i.e., ω|N is a symplectic structure on N , then
we say that φ is symplectic on N ; in other words, φ preserves the symplectic data ω|N (see [5, 9, 16]).

The main question we would like to answer in this paper is whether we can collect information
from the symplectic data on a family of submanifolds and construct a complete system of invariants
for the group of symplectomorphisms.

In the case of linear X (dim X = 2n), if we collect the data ωk|Li from the finite (minimal) family
L1, . . . , LN of linear 2k-dimensional subspaces that are not co-planar (i.e., they do not belong to any
hyperplane in the appropriate Grassmannian), then for odd k these data form a complete system of
symplectic invariants. If k is even, this is a complete system of invariants for εk-symplectomorphisms
(i.e., φ∗ω = εω, εk = 1).

Diffeomorphic invariance of symplectic data on proper smooth submanifolds in symplectic space
provides a sufficient condition for the group of conformal symplectic diffeomorphisms. Let (X,ωX)
and (Y, ωY ) be symplectic manifolds or compact symplectic manifolds of dimension 2n > 2. Let
us fix a number s with 0 < s < n and assume that a diffeomorphism Φ: X → Y transforms all
2s-dimensional symplectic submanifolds of X into symplectic submanifolds of Y or transforms all
isotropic k-dimensional tori of X into isotropic tori of Y (1 < k ≤ n). We find that in both these
cases (symplectic and isotropic ones) Φ is a conformal symplectomorphism, i.e., there is a constant
c �= 0 such that Φ∗ωY = cωX (see [19]).

The important properties of symplectic manifolds we have to apply to get this result are mainly
the fact that they are k-point connected; i.e., if a1, . . . , am is a family of points in X and for every
i = 1, . . . ,m we choose a linear k-dimensional isotropic subspace (0 < k ≤ n) Hi ⊂ TaiX, then
there is a closed isotropic k-dimensional torus Y ⊂ X such that ai ∈ Y and TaiY = Hi.
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This is a survey article based on [9–11] and build of three components; the first is devoted
purely to the linear symplectic geometry considerations and the second gives a characterization of
symplectic manifolds and their structure groups through the isotropic or symplectic submanifolds
and their basic invariants. The third part presented in Section 5 is a study of the group of polynomial
symplectomorphisms and their k-transitivity.

2. LINEAR AUTOMORPHISMS IN A SYMPLECTIC SPACE

Let K be either R or C. Let (X,ω) be a symplectic vector space over K, i.e., X ∼= K
2n is a vector

space and ω is a bilinear nondegenerate skew-symmetric form on X. The symplectic complement of
a linear subspace L ⊂ X is defined as the subspace Lω = {x ∈ X : ω(x, y) = 0 ∀y ∈ L}. A subspace
L ⊂ X is called isotropic if L ⊂ Lω, coisotropic if Lω ⊂ L, symplectic if L ∩ Lω = {0}, and
Lagrangian if Lω = L. A subspace L is symplectic if and only if ω|L is a nondegenerate form. For
any subspace L we have dimL + dimLω = dim X and (Lω)ω = L. There exists a basis of X, called
a symplectic basis, u1, . . . , un, v1, . . . , vn, such that

ω(ui, uj) = ω(vi, vj) = 0, ω(ui, vj) = δij.

If L ⊂ X is a subspace, then there is a basis u1, . . . , uk, v1, . . . , vk, w1, . . . , wl of L such that
ω|L(uj , vk) = δjk and all other pairings ω|L( · , ·) vanish. This basis extends to a symplectic basis
for (X,ω) and the integer 2k is the rank of ω|L.

We say that a linear automorphism F : X → X is a symplectomorphism (or is symplectic on X)
if F ∗ω = ω, i.e., ω(x, y) = ω(F (x), F (y)) for every x, y ∈ X. If L ⊂ X is a linear subspace,
then we say that F is symplectic on L if ω(x, y) = ω(F (x), F (y)) for every x, y ∈ L. The group
of automorphisms of (X,ω) is called the symplectic group and is denoted by Sp(X,ω). Via a
symplectic basis, Sp(X,ω) can be identified with the group Sp(2n, R) of real 2n × 2n matrices A
that satisfy ATJ0A = J0, where J0 is the 2n × 2n matrix of ω (in a symplectic basis).

Let X be a vector space of dimension 2n. Let L ⊂ X be an l-dimensional linear subspace
(0 < l < 2n). If vectors v1, . . . , vl form a basis of L, then the line K(v1 ∧ . . . ∧ vl) is uniquely
determined by L and it does not depend on the basis v1, . . . , vl. This line determines a unique
point Ψ(L) in the Grassmannian G(l, 2n) ⊂ P

N−1, where N =
(2n

l

)
and P

N−1 denotes the (N − 1)-
dimensional projective space. We have the following notion of co-planar spaces:

Definition 2.1. Let L1, . . . , LN be l-dimensional linear subspaces of X. We say that they
are co-planar if the points Ψ(L1), . . . ,Ψ(LN ) ∈ G(l, 2n) are co-planar, i.e., if there is a hyperplane
Λ ⊂ P

N−1 containing all points Ψ(L1), . . . ,Ψ(LN ).

Note that subspaces L1, . . . , LN are not co-planar if the points Ψ(L1), . . . ,Ψ(LN ) ∈ G(l, 2n)
span linearly the whole space P

N−1. Let e1, . . . , e2n be a basis of X. Since the Grassmannian
G(l, 2n) contains the subset {ei1 ∧ . . .∧ eil}0≤i1<...<il≤2n, we see that the subspaces L1, . . . , LN are
not co-planar if the points Ψ(L1), . . . ,Ψ(LN ) span linearly the Grassmannian G(l, 2n).

If L1, . . . , Lm are not co-planar, then we can always choose a subfamily L1, . . . , Lk of non-co-
planar subspaces with k = N , and conversely, it is easy to construct a collection L1, . . . , LN that is
not co-planar. Hence we can always assume that m = N .

It is well known (see, e.g., [1]) that we can always choose a vector basis e1, . . . , e2n in X (symplec-
tic basis) such that ω

((∑
viei

)
,
(∑

wiei

))
=

∑
0<i≤n(viwi+n−vi+nwi). We have ω =

∑n
i=1 e∗i ∧e∗i+n

in the dual basis e∗1, . . . , e
∗
2n.

Denote by G(2, 2n) ⊂
∧2 X := Y the set of all vectors v ∧ w, where v,w ∈ X. Let (vi

1, v
i
2) be a

basis of the linear subspace Li, i = 1, . . . , N . It is easy to see that the linear subspaces L1, . . . , LN

are co-planar if the vectors {vi
1 ∧ vi

2}i=1,...,N ⊂ Y are co-planar in Y .
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Set ui = vi
1 ∧ vi

2. Now, consider the mapping R :=
∧2 F : Y → Y . In Y we have the basis

eij = ei ∧ ej, 0 < i < j ≤ 2n. For y =
∑

yijeij let η(y) =
∑n

i=1 yii+n. Of course, η is a linear
form on Y .

Observe that η(v ∧ w) = ω(v,w). Consequently, the mapping F is symplectic if and only if for
all v,w ∈ X we have η(v ∧w) = η(R(v ∧w)). However, the form η(y)− η(R(y)) is linear on Y and
by the assumption it vanishes on the vectors ui, i = 1, . . . , N . Since the latter set is not co-planar
in Y , the form η(y)− η(R(y)) vanishes identically on Y . This means that ω(v,w) = ω(F (v), F (w))
for all v,w ∈ X, i.e., F is a symplectomorphism. Thus we proved

Proposition 2.1. Let X be a symplectic vector space of dimension 2n, and let F : X → X be
a linear automorphism. Assume that F is symplectic on a collection L1, . . . , LN of 2-dimensional
subspaces that are not co-planar. Then F is a symplectomorphism.

Definition 2.2. Let (X,ω) be a symplectic vector space, and let F : X → X be a linear
automorphism. We say that F is an εk-symplectomorphism if F ∗ω = εω, where εk = 1. Moreover,
we say that F is an antisymplectomorphism if F ∗ω = −ω.

We can treat an εk-symplectomorphism as a root of a symplectomorphism. Indeed, if F is an
εk-symplectomorphism, then F k is a symplectomorphism.

Lemma 2.1. Let (X,ω) be a symplectic vector space. Let W ⊂ X be a 2k-dimensional sym-
plectic subspace of X; i.e., (W,ω|W ) is a symplectic vector space. If

ωk(v,w1, . . . , w2k−1) = 0

for any {w1, . . . , w2k−1}, wi ∈ W, then v is complementary to W with respect to ω.
Using Proposition 2.1 and Lemma 2.1, we prove a general result.
Theorem 2.1 (cf. [9]). Let (X,ω) be a symplectic vector space of dimension 2n, and let

F : X → X be a linear automorphism. Let 0 < k < n. Assume that F preserves the form ωk

on a collection L1, . . . , LN of 2k-dimensional subspaces that are not co-planar. Then F is an
εk-symplectomorphism. In particular, if K = R and the number k is odd, then F is a symplecto-
morphism.

Corollary 2.1. Let (X,ω) be a symplectic vector space, and let F : X → X be a linear auto-
morphism. Let 0 < l < k ≤ n be natural numbers such that (k, l) = 1. Assume that F preserves
the forms ωk and ωl. Then F is a symplectomorphism.

Let Al,2r ⊂ G(l, 2n) denote the set of all l-dimensional linear subspaces of X on which the
form ω has rank ≤ 2r. Of course, Al,2r ⊂ Al,2r+2 if 2r + 2 ≤ l. We have the following:

Theorem 2.2 [9]. Let (X,ω) be a symplectic vector space of dimension 2n. Then the set
A2k,2k−2 ⊂ G(2k, 2n) ⊂ P

N−1 is an irreducible algebraic subset of G(2k, 2n) and it linearly spans
a hyperplane in P

N−1. More generally, for r < k the set A2k,2r is also irreducible and linear in
G(2k, 2n); i.e., there is a linear projective subspace L ⊂ P

N−1 such that A2k,2r = G(2k, 2n) ∩ L.
Moreover, the set A2k,2r can be computed effectively.

Proof. First, assume that K = C. Let A = A2k,2k−2 denote the set of all 2k-dimensional
subspaces on which the form ω has rank < 2k (also called the set of subspaces of rank < 2k).

Now recall the notion of a projectively factorial variety. Let X ⊂ P
n be a complex algebraic

subvariety of a complex projective space, and let C(X) be an affine cone over X. We consider
the projective coordinate ring R(X) of X as the ring C[C(X)] = C[x0, . . . , xn]/I(C(X)), where
I(C(X)) = {F ∈ C[x0, . . . , xn] : F |C(X) = 0}. We say that X is projectively factorial if the ring
R(X) is factorial.

If X is a smooth projective variety, we can consider the Picard group Pic(X) of all algebraic line
bundles on X (for details see, e.g., [7, p. 133]). It is well known that if X is projectively factorial,
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then Pic(X) = Z and Pic(X) is generated by the line bundle O(H), where H ⊂ X is a hyperplane
section.

By the Andreotti–Salmon theorem (see, e.g., [14]) the embedded Grassmannian G(2k,2n)⊂ PN−1

is projectively factorial. In particular, the Picard group of G(2k, 2n) is generated by a hyperplane
section. It can be easily deduced from this that for every hyperplane H⊂P

N−1 the set H ∩G(2k, 2n)
is an irreducible variety that is not contained in a proper linear subspace of H (cf. [12, Lemma 3.18]).
Let H ⊂ P

N−1 be a hyperplane such that A = H ∩G(2k, 2n). Thus, by the above, A linearly spans
the hyperplane H.

Now consider the set A2k,2r. It is irreducible since it contains an orbit of the symplectic group
as a dense subset (in fact, the orbit of any subspace l of dimension 2k on which the form ωk

has rank exactly 2r is dense in A2k,2r). We show that there is a linear subspace L such that
A2k,2r = L ∩ G(2k, 2n). Take a sequence of vectors (x1, . . . , x2k) ∈ X2k. Let A be the matrix that
has (the coordinates of) the vectors xi1, . . . , xi2k−2r−2

as rows. Let δs1,...,s2k−2r−2
(xi1 , . . . , xi2k−2r−2

)
denote the principal minor of A determined by the columns indexed by s1, . . . , s2k−2r−2. Consider
all possible skew-symmetric forms of the type

ωr+1(xj1 , . . . , xj2r+2)δs1,...,s2k−2r−2
(xi1 , . . . , xi2k−2r−2

),

where {j1, . . . , j2r+2} ∪ {i1, . . . , i2k−2r−2} = {1, . . . , 2k}. It is not difficult to check that they simul-
taneously vanish only at the vectors x1 ∧ . . . ∧ x2k that belong to A2k,2r. On the other hand, these
skew-symmetric functions can be treated as linear forms on P

N−1 (cf. the proof of Theorem 2.1). Of
course, we can find these linear forms effectively (as functions of the variables yi1,...,i2k

, cf. the proof
of Theorem 2.1). Since we know the equations of the Grassmannian G(2k, 2n) (see [7, p. 211]), we
can compute the set A2k,2r effectively. This finishes the proof in the case K = C.

Now we sketch the proof for the case K = R. As before, define A ⊂ G(2k, 2n) as the set of all
2k-dimensional linear subspaces of X of rank < 2k. This set has a stratification into smooth subsets
Ar = {W ∈ A : rankω|W = 2r}, where r = 0, 1, . . . , k−1 and Ai ⊂ closure(Ai+1). Moreover, every
such subset is homogeneous with respect to the induced action of the group Sp(2n, K). Take a real
subspace L ∈ Ak−1. Let H ⊂ Sp(2n, R) be the stabilizer of L in the group Sp(2n, R). Thus

dimA = dimAk−1 = dim Sp(2n, R) − dimH.

Now let us complexify X. Let H ′ ⊂ Sp(2n, C) be the stabilizer of L ⊗ C in the group Sp(2n, C).
Let A′ ⊂ G(2k, 2n, C) be the set of all complex 2k-dimensional linear subspaces of X ⊗ C of

rank < 2k. Then A′ has the same (complex) dimension as the orbit of L ⊗ C, and this dimension
is equal to dimSp(2n, C) − dim H ′. But H ′ contains the complexification of the subgroup H; thus
dimC H ≥ dimR H and consequently dimC A′ ≤ dimR A. However, in the complex case we have
dimA′ = dim G(2k, 2n, C) − 1. From this we see immediately that dimA = dimG(2k, 2n, R) − 1.
This means that the complexification of A is A′. Thus A spans linearly a (real) hyperplane if and
only if A′ spans a (complex) hyperplane. Now we can finish the proof as above. �

From the proof we see that Theorem 2.2 can be partly generalized:
Corollary 2.2. Let (X,ω) be a symplectic vector space of dimension 2n. Let l and r be

integers such that l ≤ 2n and 2r + 2 ≤ l. Then there is a proper linear subspace L ⊂ P
N−1

such that Al,2r = L ∩ G(l, 2n). Moreover, we can compute the equations of Al,2r effectively. In
particular, this is true for the Lagrangian Grassmannian manifold Λn = An,0.

Definition 2.3. Let L1, . . . , LN−1 ∈ A2k,2k−2 be 2k-dimensional linear subspaces of X (of
rank < 2k). We say that they are in general position if they linearly span a hyperplane in P

N−1.
Remark 2.1. By Theorem 2.2 every sufficiently general subset {L1, . . . , LN−1} ⊂ A2k,2k−2 is

in general position. Moreover, we can find such subspaces Li with rank Li = 2k − 2.
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A slightly more general version of Theorem 2.1 (see also [9]) is as follows:
Theorem 2.3. Let (X,ω) be a symplectic vector space of dimension 2n, and let F : X → X be

a linear automorphism. Let 0 < k < n. Let L1, . . . , LN−1 be 2k-dimensional linear subspaces of X
of rank < 2k that are in general position. Assume that F transforms L1, . . . , LN−1 into subspaces
of rank < 2k. Then there is a nonzero constant c such that F ∗ω = cω.

Proof. We can assume that K = C. Let L be a 2k-dimensional subspace of rank 2k. There
is a constant a such that F ∗ωk = aωk on L. As in the proof of Theorem 2.1 (see [9]), denote
by G(2k, 2n) ⊂

∧2k X := Y the set of all vectors v1 ∧ . . . ∧ v2k, where v1, . . . , v2k ∈ X. Let
A = {L1, . . . , LN−1}.

Let H ⊂ P
N be a hyperplane such that A2k,2k−2 = H ∩ G(2k, 2n). Thus, by assumption, A

linearly spans the hyperplane H. Since L /∈ H, we can easily deduce that the set B := {L} ∪ A is
not co-planar in Y . By assumption, for W ∈ B we have

aη(uW ) = η(R(uW )),

where uW ∈ G(2k, 2n) ⊂
∧2k X := Y is a vector determined by W .

This implies that the linear form aη(y) − η(R(y)) vanishes on the vectors uW , W ∈ B. Since
the set B is not co-planar in Y , the form aη(y) − η(R(y)) vanishes identically on Y . This means
that aωk(v1, . . . , v2k) = ωk(F (v1), . . . , F (v2k)) for every v1, . . . , v2k ∈ X, i.e., F ∗ωk = aωk.

It is easy to see (see [9]) that there is a constant c such that F ∗(ω) = cω and ck = a. Since F
is a linear automorphism, we have c �= 0. �

Corollary 2.3. Let (X,ω) be a symplectic vector space of dimension 2n, and let F : X → X
be a linear automorphism. Let 0 < k < n. Assume that F transforms 2k-dimensional subspaces
of rank 2k − 2 into subspaces that have rank < 2k. Then there is a nonzero constant c such that
F ∗ω = cω.

Corollary 2.4. Let (X,ω) be a symplectic vector space of dimension 2n, and let F : X → X
be a linear automorphism. Let 0 < l < 2n and 2r+2 ≤ l. Assume that Al,2r �= ∅ and F transforms
the set Al,2r into the same set. Then there is a nonzero constant c such that F ∗ω = cω.

Proof. Let B2r+2,2r denote the set of (2r + 2)-dimensional subspaces of rank 2r. Since every
subspace from B2r+2,2r is contained in some subspaces from Al,2r, it is easy to see that F transforms
the set B2r+2,2r into the same set. Hence we are done by Corollary 2.3. �

Corollary 2.5. Let (X,ω) be a symplectic vector space of dimension 2n, and let F : X → X
be a linear automorphism. Let 2 ≤ l ≤ n and assume that F transforms l-dimensional isotropic
(e.g., Lagrangian) subspaces into subspaces of the same type. Then there is a nonzero constant c
such that F ∗ω = cω.

Theorem 2.4. Let (X,ω) be a symplectic vector space of dimension 2n, and let F : X → X
be a linear automorphism. Let 0 < 2r < 2n. Assume F transforms A2r,2r−2 into A2r,2r−2. Then
there is a nonzero constant c such that F ∗ω = cω.

From Theorem 2.4 we can deduce the following interesting facts:
Proposition 2.2 [10]. Let (X,ωX) and (Y, ωY ) be symplectic vector spaces of dimension 2n,

and let F : X → Y be a linear isomorphism. Fix a number s: 0 < s < n and assume that F
transforms all 2s-dimensional symplectic subspaces of X into symplectic subspaces of Y . Then
there is a nonzero constant c such that F ∗ωY = cωX .

Proof. Via a symplectic basis we can assume that (X,ωX ) ∼= (R2n, ω0) ∼= (Y, ωY ). By assump-
tion the mapping F ∗ induced by F transforms the set A = A2s,2s \ A2s,2s−2 into the same set A.
Of course, F ∗ : A → A is an injection. Since A is a smooth algebraic variety and F ∗ is regular, the
Borel theorem (see [4]) implies that F ∗ is a bijection. This means that F transforms A2s,2s−2 into
the same set, and we conclude the proof by applying Theorem 2.4. �
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Proposition 2.3 [9]. Let (X,ωX) and (Y, ωY ) be symplectic vector spaces of dimension 2n,
and let F : X → Y be a linear isomorphism. Fix a number k: 1 < k ≤ n and assume that F
transforms all k-dimensional isotropic subspaces of X into isotropic subspaces of Y . Then there is
a nonzero constant c such that F ∗ωY = cωX .

Proof. For k = 2 it follows immediately from Theorem 2.4. Assume that k > 2. Take a
plane H belonging to A2,0. Since H is isotropic, we can extend H to a k-dimensional isotropic
subspace L. By assumption L is transformed into an isotropic subspace F (L). Observe that F (H)
is contained in F (L). Then F (H) is also isotropic. In particular, F (H) ∈ A2,0. Then on the basis
of Theorem 2.4 we have the thesis. �

We end this section by
Proposition 2.4 [10]. Let X be a vector space of dimension 2n, and let ω1 and ω2 be two

symplectic forms on X. If Sp(X,ω1) ⊂ Sp(X,ω2), then there exists a nonzero constant c such
that ω2 = cω1.

Proof. If n = 1, then the theorem is obvious. Assume that n > 1. Let A1 (A2) be the set
of all 2-dimensional subspaces of X that are symplectic with respect to ω1 (ω2). These sets are
open and dense in the Grassmannian G(2, 2n). Hence A1 ∩ A2 �= ∅. Take H ∈ A1 ∩ A2. We have
A1 = Sp(X,ω1)H ⊂ Sp(X,ω2)H = A2. Now apply Proposition 2.2 to X = (X,ω1), Y = (X,ω2)
and F = identity. �

3. SYMPLECTOMORPHISMS GENERATED BY HAMILTONIANS

Here we recall some basic facts about the linear symplectic group. The group of automorphisms
of (X,ω) is called the symplectic group and is denoted by Sp(X,ω). Via a symplectic basis, X can
be identified with the standard symplectic space (R2n, ω0) and Sp(X,ω) can be identified with the
group of 2n × 2n real matrices A that satisfy ATJ0A = J0, where J0 is the 2n × 2n matrix of ω0

(in the standard basis), i.e.,

J0 =
(

0 −In

In 0

)
.

We can define the following “elementary” symplectomorphisms:

(1) Li(ci)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xn, y1, . . . , yi−1, yi + cixi, yi+1, . . . , yn);
(2) Lij(cij)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xn, y1, . . . , yi−1, yi + cijxj , yi+1, . . . , yj−1, yj + cijxi,

yj+1, . . . , yn);
(3) Ri(di)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xi−1, xi + diyi, xi+1, . . . , xn, y1, . . . , yn);
(4) Rij(dij)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xi−1, xi +dijyj, xi+1, . . . , xj−1, xj +dijyi, xj+1, . . . ,

xn, y1, . . . , yn),

where ci, cij , di, dij are real numbers and 0 ≤ i < j ≤ n.
Now we have the following basic result:
Theorem 3.1 [10]. Let X = (R2n, ω0) be the standard symplectic vector space. Then the group

Sp(X) is generated by the following family of elementary symplectomorphisms :
{
Li(ci), Lij(cij), Ri(di), Rij(dij) : 0 < i < j ≤ n and ci, cij , di, dij ∈ R

}
;

i.e., if g ∈ Sp(X), then g =
∏m

i=1 ei, where ei is one of the elementary symplectomorphisms
and m ∈ N.

Let X = (R2n, ω0) be the standard symplectic vector space. In X we consider the norm
‖(a1, . . . , a2n)‖ = max2n

i=1 |ai|. Take a smooth function H : X × R � (z, t) → R and consider a
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system of differential equations (cf. [6])

φ′(t, z) = J0(∇zH)(φ(t, z), t), φ(0, z) = z.

Assume that this system has a solution φ(t, z) for every z and every t (this is satisfied, e.g., if
the supports of all functions Ht, t ∈ R, are contained in a compact set). Then we can define the
diffeomorphism

Φ(z) = φ(1, z). (3.1)

It is not difficult to check that Φ is a symplectomorphism.
Definition 3.1. Let Φ: X → X be a symplectomorphism. We say that Φ is a Hamiltonian

symplectomorphism if it is given by formula (3.1) for some smooth function H. We also say that H
is a Hamiltonian of Φ.

Lemma 3.1. All elementary linear symplectomorphisms are Hamiltonian symplectomorphisms.
Proof. Indeed, we have the following:

(1) Li(c) is given by the Hamiltonian H(x, y) = (c/2)x2
i ;

(2) Lij(c) is given by the Hamiltonian H(x, y) = cxixj;
(3) Ri(c) is given by the Hamiltonian H(x, y) = −(c/2)y2

i ;
(4) Rij(c) is given by the Hamiltonian H(x, y) = −cyiyj. �
Now we show how to compute a Hamiltonian of a linear symplectomorphism:
Theorem 3.2. Let L : R

2n → R
2n be a linear symplectomorphism. Then L has a polynomial

Hamiltonian

HL(z, t) =
2n∑

i,j=1

ai,j(t)zizj , (3.2)

where ai,j(t) ∈ R[t] are polynomials in one variable t. Moreover, we can compute HL effectively.
Proof. Let L = Lm ◦ . . . ◦ L1, where Li are elementary symplectomorphisms. We proceed by

induction with respect to m. If m = 1, then we can use Lemma 3.1. In this case the flow L1(t)
depends linearly on t.

Now consider L′ = Lm−1 ◦ . . . ◦L1. By the induction hypothesis L′(t) = Lm−1(t) ◦ . . . ◦L1(t) is
given by a Hamiltonian H ′ of the form (3.2). Let H ′′ be the Hamiltonian of Lm (as in Lemma 3.1).
Now the flow L(t) = Lm(t) ◦ L′(t) is given by the Hamiltonian

H(z, t) = H ′′(z) + H ′(Lm(t)−1(z), t).

Of course, it also has the form (3.2). Since we can decompose L into the product L = Lm ◦ . . . ◦L1

effectively (see the proof of Theorem 3.1), we can also compute H in an effective way. �
Proposition 3.1. Let L : R

2n → R
2n be a Hamiltonian symplectomorphism given by the flow

z → φ(t, z), t ∈ R. Assume that φ(t, 0) = 0 for t ∈ [0, 1]. For every η > 0 there is an ε > 0 and a
Hamiltonian symplectomorphism Φ: R

2n → R
2n such that

(1) Φ(z) = L(z) for all z with ‖z‖ ≤ ε;

(2) Φ(z) = z for all z with ‖z‖ ≥ η.

Proof. We know that L(z) = φ(1, z), where φ(t, z) is the solution of some differential equation

φ′(t, z) = J0(∇zH)(φ(t, z), t), φ(0, z) = z.
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Since φ(t, 0) = 0 for every t ∈ [0, 1], we can find ε > 0 so small that all trajectories {φ(t, z), 0 ≤
t ≤ 1} that start from the ball B(0, ε) are contained in the ball B(0, η/2). Let σ : R

2n → R be a
smooth function such that

σ(z) =
{ 1 if ‖z‖ ≤ η/2,

0 if ‖z‖ ≥ η.

Take S = σH. The Hamiltonian symplectomorphism Φ given by the differential equation

φ′(t, z) = J0(∇zS)(φ(t, z), t), φ(0, z) = z,

is well defined on the whole of R
2n and

Φ(z) =
{

L(z) if ‖z‖ ≤ ε,

z if ‖z‖ ≥ η. �

Now Theorem 3.2 easily yields the following important
Corollary 3.1. Let L : R

2n → R
2n be a linear symplectomorphism. For every η > 0 there is

an ε > 0 and a Hamiltonian symplectomorphism Φ: R
2n → R

2n such that
(1) Φ(z) = L(z) for all z with ‖z‖ ≤ ε;
(2) Φ(z) = z for all z with ‖z‖ ≥ η.

Before we formulate our next result concerning characterization of symplectomorphisms by finite
data, we need the following:

Lemma 3.2. Let X = (R2n, ω0) be the standard symplectic vector space. Fix η > 0 and let
a, b ∈ B(0, η). Then there exists a symplectomorphism Φ: X → X such that

Φ(a) = b and Φ(z) = z for ‖z‖ ≥ 2η.

Proof. Let c = (c1, . . . , c2n) = b − a. Define a sequence of points as follows:
(1) a0 = a,
(2) ai = ai−1 + (0, . . . , 0, ci, 0, . . . , 0).

Of course, ai ∈ B(0, η) and a2n = b. Now consider the translation

Ti : R
2n � (x, y) �→ (x, y) + (0, . . . , 0, ci, 0, . . . , 0) ∈ R

2n.

We have Ti(ai−1) = ai for i = 1, . . . , 2n.
The translation Ti is a Hamiltonian symplectomorphism given by the Hamiltonian

Hi(x, y) =
{−ciyi if i ≤ n,

cixi−n if i > n.

Let Vi be the symplectic vector field determined by the Hamiltonian Hi. Since the ball B(0, r) is a
convex set, all trajectories φ(t), 0 ≤ t ≤ 1, of the symplectic vector fields Vi that begin at ai lie in
the ball B(0, η). Let σ : R

2n → R be a smooth function such that

σ(z) =
{ 1 if ‖z‖ ≤ η,

0 if ‖z‖ ≥ 2η.

Let Fi : R
2n → R

2n be the Hamiltonian symplectomorphism given by the Hamiltonian Gi = σHi.
Then

Gi(ai−1) = ai and Gi(z) = z if ‖z‖ ≥ 2η.

Now it is enough to take Φ = G2n ◦ G2n−1 ◦ . . . ◦ G1. �
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We apply Proposition 3.1 to the general case:
Theorem 3.3 [10]. Let (X,ω) be a symplectic manifold. Let a1, . . . , am and b1, . . . , bm be two

families of points of X. For every i = 1, . . . , n choose a linear symplectomorphism Li : TaiX →
Tbi

X. Then there is a symplectomorphism Φ: X → X such that
(1) Φ(ai) = bi,

(2) daiΦ = Li.

Proof. By the Darboux theorem every point z ∈ X has an open neighborhood Vz that is
symplectically isomorphic to the ball B(0, rz) in the standard vector space (R2n, ω0). Denote by
Uz ⊂ Vz the open set that corresponds to the ball B(0, rz/3).

Since dimX ≥ 2, the manifold X \ {a2, . . . , am} is also connected. Hence there exists a smooth
path γ : I → X such that γ(0) = a1, γ(1) = b1 and {a2, . . . , am} ∩ γ(I) = ∅. Additionally we can
assume that the sets Vz that cover γ(I) are also disjoint from {a2, . . . , am}.

Let ε be a Lebesgue number for the function γ : I → X with respect to the cover {Uz}z∈X .
Choose an integer N with 1/N < ε. If Ik := [k/N, (k + 1)/N ], then γ(Ik) is contained in some {Uz};
denote it by Uk, the set Vz by Vk, and rz by rk. Let Ak := γ(k/N), in particular, A0 = a1

and AN = b1.
Since Vk

∼= B(0, rk) and Ak, Ak+1 ∈ B(0, rk/3), we can apply Lemma 3.2 to obtain a symplec-
tomorphism Φ: B(0, rk) → B(0, rk) such that

Φ(Ak) = Ak+1 and Φ(z) = z for ‖z‖ ≥ (2/3)rk.

We can extend Φ to the whole of X (we glue it with the identity); denote this extension by Φk. Put

Ψ = ΦN ◦ ΦN−1 ◦ . . . ◦ Φ0.

Then Ψ(a1) = b1 and Ψ(ai) = ai for i > 1. Repeating this process, we finally arrive at a symplecto-
morphism Σ: X → X such that Σ(ai) = bi for i = 1, . . . ,m. In a similar way, using Proposition 3.1,
we can construct a symplectomorphism Π: X → X such that

(1) Π(bi) = bi,
(2) dbi

Π = Li ◦ (daiΣ)−1.
Now it is enough to take Φ = Π ◦ Σ. �

Remark 3.1. Statement (1) of Theorem 3.3 is well known; however, a new ingredient is given
by statement (2) of this theorem.

Since for a compact symplectic manifold (X,ω) of dimension 2n it is well known (cf. [15]) that
for a fixed number 0 < s ≤ n there exists a closed 2s-dimensional symplectic submanifold Z ⊂ X,
we can use Theorem 3.3 to obtain

Corollary 3.2 [10]. Let (X,ω) be a compact symplectic manifold of dimension 2n. Let
a1, . . . , am be a family of points of X. Take 0 < s ≤ n. For every i = 1, . . . ,m choose a linear
2s-dimensional symplectic subspace Hi ⊂ TaiX. Then there is a closed symplectic 2s-dimensional
submanifold Y ⊂ X such that

(1) ai ∈ Y,

(2) TaiY = Hi.

In a similar way we get
Corollary 3.3 [10]. Let (X,ω) be a symplectic manifold of dimension 2n. Let a1, . . . , am be

a family of points of X. Take 0 < k ≤ n. For every i = 1, . . . ,m choose a linear k-dimensional
isotropic subspace Hi ⊂ TaiX. Then there is a closed isotropic k-dimensional torus Y ⊂ X such that

(1) ai ∈ Y,

(2) TaiY = Hi.
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4. DIFFEOMORPHISMS THAT ARE SYMPLECTOMORPHISMS

Finally we show that a symplectomorphism can be described as a diffeomorphism that preserves
isotropic or symplectic submanifolds of a given fixed dimension (cf. [10]).

Theorem 4.1. Let (X,ωX) and (Y, ωY ) be compact symplectic manifolds of dimension 2n > 2.
Fix a number 0 < s < n. Assume that Φ: X → Y is a diffeomorphism that transforms all
2s-dimensional symplectic submanifolds of X into symplectic submanifolds of Y . Then Φ is a
conformal symplectomorphism; i.e., there exists a nonzero number c ∈ R such that

Φ∗ωY = cωX .

Proof. Fix z ∈ X and let H ⊂ TzX be a 2s-dimensional symplectic subspace of TzX. By
Proposition 3.2 (applied for m = 1, a1 = z and H1 = H) there exists a 2s-dimensional symplectic
submanifold M of X such that z ∈ M and TzM = H.

Let Φ(M) = M ′ and z′ = Φ(z). By assumption the submanifold M ′ ⊂ Y is symplectic. This
means that the space dzΦ(H) = Tz′M

′ is symplectic. Hence the mapping dzΦ transforms all linear
2s-dimensional symplectic subspaces of TzX into subspaces of the same type. By Proposition 2.2
this implies that dzΦ is a conformal symplectomorphism, i.e.,

(dzΦ)∗ωY = λ(z)ωX ,

where λ(z) �= 0. This means that there is a smooth function λ : X → R
∗ (= R \ {0}) such that

Φ∗ωY = λωX .

Since the form ωX is closed, so is Φ∗ωY . Since n > 1, this implies that the derivative dλ vanishes,
i.e., the function λ is constant. �

Theorem 4.2. Let (X,ωX) and (Y, ωY ) be symplectic manifolds of dimension 2n > 2. Fix a
number 1 < k ≤ n. Assume that Φ: X → Y is a diffeomorphism that transforms all k-dimensional
isotropic tori of X into isotropic tori of Y . Then Φ is a conformal symplectomorphism; i.e., there
exists a nonzero constant c ∈ R such that

Φ∗ωY = cωX .

Proof. Fix z ∈ X and let H ⊂ TzX be a k-dimensional isotropic subspace of TzX. By
Theorem 3.3 (applied for m = 1, a1 = z and H1 = H) there exists a k-dimensional isotropic
torus M of X such that z ∈ M and TzM = H.

Let Φ(M) = M ′ and z′ = Φ(z). By assumption the torus M ′ ⊂ Y is isotropic. This means that
the space dzΦ(H) = Tz′M

′ is isotropic. Hence the mapping dzΦ transforms all linear k-dimensional
isotropic subspaces of TzX into subspaces of the same type. By Proposition 2.3 this implies that dzΦ
is a conformal symplectomorphism. The rest of the proof is the same as in the case of Theorem 4.1
above. �

Remark 4.1. Let us note that, in particular, if Φ maps Lagrangian tori onto tori of the same
type, then Φ is a conformal symplectomorphism.

Corollary 4.1. Let X be a manifold of dimension 2n > 2. Let ω1 and ω2 be two symplectic
forms on X. Fix a number 1 < k ≤ n. Assume that the family of all k-dimensional ω1-isotropic
tori of X is contained in the family of all k-dimensional ω2-isotropic tori of X. Then there exists
a nonzero number c ∈ R such that

ω1 = cω2.

Proof. It is enough to apply Theorem 4.2 to X = (X,ω1), Y = (X,ω2) and Φ = identity. �
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Corollary 4.2. Let (X,ω) be a compact symplectic manifold of dimension 2n > 2. Fix a
number 1 < k ≤ n. Assume that Φ: X → X is a diffeomorphism that transforms all k-dimensional
isotropic tori of X into isotropic tori. Then Φ is a symplectomorphism or antisymplectomorphism;
i.e., Φ∗ω = ±ω. If Φ preserves the orientation and n is odd, then Φ is a symplectomorphism.
Moreover, if n is even, then Φ must preserve the orientation.

Proof. Indeed, we have Φ∗ω = cω. And we can write

vol(X) =
∫
X

ωn = ±
∫
X

Φ∗ωn = ±cn

∫
X

ωn; (4.1)

hence c = ±1. Moreover, if Φ preserves the orientation and n is odd, then we get c = 1. If n is
even, then (−ω)n = ωn and Φ must preserve the orientation. �

Remark 4.2. Corollaries similar to Corollary 4.1 and Corollary 4.2 are true for a compact
symplectic manifold X in the case of symplectic submanifolds. Also a similar concept of geometric
characterization of symplectomorphisms was already used for capacity-preserving diffeomorphisms,
which imply symplectic and antisymplectic diffeomorphisms (cf. [8, 15]).

Example 4.1. We show that in the general case Φ need not be a symplectomorphism. Let
Y = (S2, ω) (where ω is a standard volume form on the sphere), and let (Xn, ωn) =

∏n
i=1 Y be a

standard symplectic product. Further let σ : S2 � (x, y, z) → (x, y,−z) ∈ S2 be a mirror symmetry.
Of course, σ∗ω = −ω. More generally, if Σ =

∏n
i=1 σ : Xn → Xn, then Σ∗ωn = −ωn. Hence it is

possible that Φ from Corollary 4.2 is an antisymplectomorphism.
However, in any case either Φ or Φ ◦ Φ is a symplectomorphism.
Now let (X,ω) be a symplectic manifold, and let us denote by Symp(X,ω) the group of sym-

plectomorphisms of X. At the end of this note we show that this group also determines a conformal
symplectic structure on X:

Theorem 4.3. Let X be a smooth manifold of dimension 2n > 2, and let ω1 and ω2 be two
symplectic forms on X. If Symp(X,ω1) ⊂ Symp(X,ω2), then there exists a nonzero constant c
such that ω2 = cω1.

Proof. Take z ∈ X and consider the symplectic vector spaces V1 = (TzX,ω1) and V2 =
(TzX,ω2). By Theorem 3.3, for every linear symplectomorphism S of V1, there is a symplectomor-
phism ΦS ∈ Symp(X,ω1) such that

(a) ΦS(z) = z,
(b) dzΦS = S.

Since Symp(X,ω1) ⊂ Symp(X,ω2), we easily find that Sp(V1) ⊂ Sp(V2). Consequently, by
Proposition 2.4 there exists a nonzero number λ(z) such that ω2(z) = λ(z)ω1(z). Now we finish the
proof as in the proof of Theorem 4.1. �

5. POLYNOMIAL SYMPLECTOMORPHISMS

Throughout this section, (X,ω) will be a symplectic affine space over K (the field of real or com-
plex numbers) of dimension 2n; i.e., X ∼= K

2n (unless mentioned otherwise) and ω =
∑

i dxi ∧ dyi is
the standard nondegenerate skew-symmetric form on X. Linear symplectomorphisms of (X,ω) are
characterized (cf., e.g., [13]) as linear automorphisms of X preserving some minimal complete data
defined by ω on systems of linear subspaces. In this way the linear symplectic group Sp(X) may
be characterized geometrically together with its natural conformal and antisymplectic extensions.

The purpose of this investigation is to put the linear considerations of symplectic invari-
ants into the more general context of polynomial automorphisms. We say that a polynomial
automorphism F : X → X is a symplectomorphism (or is symplectic on X) if F ∗ω = ω, i.e.,

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 267 2009



DIFFEOMORPHISMS PRESERVING SYMPLECTIC DATA 185

ω(u, v) = ω(dxF (u), dxF (v)) for every x ∈ X and all u, v ∈ TxX. The group PlSp(X) of polyno-
mial symplectomorphisms is an important tool in affine algebraic geometry (see [2, 3, 18, 17]). In
particular, the group of polynomial symplectomorphisms of C2n is conjectured to be isomorphic to
the group of automorphisms of the Weyl algebra An(C) (see [3]).

The first property of PlSp(X) that we prove is its transitivity (k-transitivity) on finite collections
of points of X. First, we show that the group PlSp(X) is quite large. We start with the following
lemma:

Lemma 5.1. Let ai = (αi,1, . . . , αi,2n) ∈ K
2n and A = {a1, . . . , am} be a finite family of points.

Let πk : K2n � (α1, . . . , α2n) → αk ∈ K be the projection. There is a linear symplectomorphism L
such that if A′ = L(A), then all projections πk, k = 1, . . . , 2n, restricted to A′ are one-to-one;
i.e., if

L(ai) = (α′
i,1, . . . , α

′
i,2n),

then for every {i, j} ⊂ {1, . . . ,m}, α′
i,s = α′

j,s for some s implies α′
i,s = α′

j,s for all s.
Let us recall the following
Definition 5.1. Let G be a group that acts on a set X. We say that G acts k-transitively

on X if for any two k-element subsets {a1, . . . , ak} and {b1, . . . , bk} of X, there is a g ∈ G such that
g(ai) = bi for i = 1, . . . , k.

We have the following basic result (cf. [11]):
Theorem 5.1. Let (X,ω) be an affine symplectic space of dimension 2n. For every m ∈ N

the group PlSp(X) acts m-transitively on X.
Proof. Let ai = (αi, βi) ∈ K

2n and bi = (γi, δi) ∈ K
2n, i = 1, . . . ,m, be finite families of

distinct points. By Lemma 5.1 there are linear symplectomorphisms L and T such that

L(ai) = (α′
i, β

′
i) and T (bi) = (γ′

i, δ
′
i),

where for every i and every j we have L(aj) = L(ai) if and only if α′
is = α′

js for some s ∈ {1, . . . , n},
and T (bj) = T (bi) if and only if δ′is = δ′js for some s ∈ {1, . . . , n}.

Let φi(t) be a polynomial in one variable such that

φi(α′
is) = β′

is for s = 1, . . . , n.

Consider the polynomial symplectomorphism

Φ(x, y) =
(
x, y1 − φ1(x1), y2 − φ2(x2), . . . , yn − φn(xn)

)
.

By the construction we have

Φ ◦ L(ai) = (α′
i, 0) for i = 1, . . . ,m.

In a similar way we can construct a polynomial symplectomorphism

Ψ(x, y) =
(
x, y1 + ψ1(x1), y2 + ψ2(x2), . . . , yn + ψn(xn)

)

such that
Ψ(α′

i, 0) = (α′
i, δ

′
i) for i = 1, . . . ,m.

Further, there exists a polynomial symplectomorphism

Λ(x, y) =
(
x1 − λ1(y1), x2 − λ2(y2), . . . , xn − λn(yn), y

)
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such that
Λ(α′

i, δ
′
i) = (0, δ′i) for i = 1, . . . ,m.

Finally, we can construct a polynomial symplectomorphism

Σ(x, y) =
(
x1 + σ1(y1), x2 + σ2(y2), . . . , xn + σn(yn), y

)
such that

Σ(0, δ′i) = (γ′
i, δ

′
i) for i = 1, . . . ,m.

Set
P = T−1 ◦ Σ ◦ Λ ◦ Ψ ◦ Φ ◦ L.

Then
P (ai) = bi for i = 1, . . . ,m. �

Example 5.1. Theorem 5.1 does not hold for an arbitrary symplectic algebraic variety. We
construct a smooth rational algebraic symplectic manifold Y with trivial automorphism group; in
particular, PlSp(Y ) = {id}. Let G ⊂ C

2n be a sufficiently generic hypersurface of degree d > 2n.
Set Y = C

2n \ G and equip Y with the symplectic structure induced by the inclusion i : Y → C
2n.

We show that Aut(Y ) = {id}. Let F : Y → Y be a polynomial automorphism of Y . Since
the hypersurface G is not uniruled (for details see, e.g., [12, 13]), F has a unique extension to a
polynomial automorphism F : C

2n → C
2n. Moreover, by [12] we have Aut(G) = {id} and we know

that the hypersurface G is the identity set for automorphisms; i.e., if F |G = {id}, then F = id.
Altogether this implies that Aut(Y ) = {id}.

Now we are ready to provide a geometric characterization of polynomial symplectomorphisms.
Definition 5.2. Let (X,ω) be an affine symplectic space, and let Y ⊂ X be a smooth algebraic

subvariety. We say that Y is a Lagrangian variety if for every y ∈ Y the linear space TyY is a
Lagrangian subspace of TyX. In an analogous way we define a symplectic, pseudo-symplectic and
isotropic variety.

Of course, in X there are affine linear isotropic (or symplectic) subvarieties—these are varieties
of the form a+H, where H is a linear isotropic (or symplectic) linear subspace of X. We show that
there are also quite a lot of nonlinear ones. The measure of nonlinearity is the degree of a variety.
Let us recall the definition:

Definition 5.3. Let Y ⊂ C
n be a complex variety of dimension k. By the degree of Y (deg Y )

we mean the number
#(Ln−k ∩ Y ),

where Ln−k is an (n− k)-dimensional sufficiently general affine linear subspace of C
n. If Y ⊂ R

n is
a real variety, then by deg Y we mean deg YC, where YC denotes the Zariski closure of Y in C

n.
It is not difficult to prove
Proposition 5.1. Let Y ⊂ K

n be an algebraic variety. Assume that there is an affine line l
that intersects Y in precisely D points. Then

deg Y ≥ D.

Proof. We use induction on n. If n = 1 or n = 2, then Y is a set of points or a curve and the
result is clear. Now let n > 2 and assume that our result holds for n−1. Take a general hyperplane H
that contains l. Then by the Bézout theorem deg Y ∩ H ≤ deg Y , and by the induction hypothesis
we have deg Y ∩ H ≥ D. �
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Now we can prove
Proposition 5.2 [11]. Let (X,ω) be a symplectic 2n-dimensional affine space. For any positive

integers s ≤ n and D, there is an algebraic isotropic s-dimensional subvariety Y ⊂ X such that

deg Y ≥ D.

Proof. Fix a linear isotropic s-dimensional subvariety H ⊂ X. Choose D points a1, . . . , aD

on H and additionally a point a0 /∈ H.
Now take a line l ⊂ X and choose distinct points b1, . . . , bD, b0 on it. By Theorem 5.1 there is

a polynomial symplectomorphism Φ of X such that

Φ(aj) = bj for j = 0, 1, . . . ,D.

Now set Y = Φ(H). By the construction the line l intersects Y in at least D points and it is not
contained in Y . This implies that deg Y ≥ D. �

In the same way we can prove
Proposition 5.3. For any even integer 0 < s < 2n and any positive integer D, there is an

algebraic symplectic s-dimensional subvariety Y ⊂ X such that

deg Y ≥ D.

Similarly, for any odd integer 0 < s < 2n and any positive integer D, there is an algebraic pseudo-
symplectic s-dimensional subvariety Y ⊂ X such that

deg Y ≥ D.

Finally, we show that a polynomial symplectomorphism can be described as one that preserves
symplectic, pseudo-symplectic or isotropic algebraic subvarieties of X.

Proposition 5.4 [11]. Let (X,ω) be an affine symplectic space of dimension 2n > 2. Fix an
integer 2 ≤ s ≤ n. Assume that Φ: X → X is a polynomial automorphism that preserves the family
of all s-dimensional isotropic subvarieties of X. Then Φ is a conformal symplectomorphism; i.e.,
there exists a nonzero number c ∈ K such that

Φ∗(ω) = cω.

Proof. Fix x ∈ H ⊂ X, where H is an affine linear s-dimensional isotropic subvariety of X.
Let x′ = Φ(x) and H ′ = Φ(H). By assumption the variety H ′ is isotropic. This means that the
space dxΦ(TxH) = Tx′H ′ is also isotropic. Hence dxΦ transforms all linear l-dimensional isotropic
subspaces of TxX into subspaces of the same type. By Proposition 2.3 this implies that dxΦ is a
conformal symplectomorphism, i.e.,

(dxΦ)∗ω = λ(x)ω,

where λ(x) �= 0. This means that there is a smooth (even polynomial) function λ : X → K
∗

(K∗ = K \ {0}) such that

Φ∗(ω) = λω.

But since the form ω is closed, so is Φ∗(ω). Since n > 1, this implies that the derivative dλ vanishes;
i.e., the function λ is constant. �
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In a similar way (we now use Proposition 2.2) we can prove
Proposition 5.5. Let (X,ω) be an affine symplectic space of dimension 2n > 2. Fix an integer

0 < s < n. Assume that Φ: X → X is a polynomial automorphism that preserves the family of
all 2s-dimensional symplectic subvarieties of X or (if 1 < s < n − 1) the family of all (2s + 1)-
dimensional pseudo-symplectic subvarieties of X. Then Φ is a conformal symplectomorphism; i.e.,
there exists a nonzero c ∈ K such that

Φ∗(ω) = cω.

To end this section, we introduce the notion of symplectic type of an algebraic variety.
Proposition 5.6. Let (X,ω) be an affine symplectic space of dimension 2n. Let Y ⊂ X be a

smooth k-dimensional algebraic variety. Then there are even integers r1 > · · · > rs (where s ≥ 1)
and disjoint algebraic locally closed subvarieties Yr1 , . . . , Yrs that cover Y such that the form ω has
rank ri on Yi. Moreover, Yri+1 ⊂ cl(Yri). The sequence {r1, . . . , rs} is a symplectic invariant, which
we call the symplectic type of the variety Y .

Proof. Consider the Gauss mapping

G : Y � y → TyY ∈ G(k, 2n).

This is a regular (locally polynomial) mapping. By [13] the linear spaces in the Grassmannian
G(k, 2n) on which the rank of ω is equal to r form a smooth locally closed (in the Zariski topology)
subset Sr, and Sr−2 ⊂ cl(Sr). Now it is enough to take Yr = G−1(Sr) if this set is not empty. �

Example 5.2. (a) A 2k-dimensional subvariety Y ⊂ X is a symplectic subvariety if and only
if the symplectic type of Y is {2k}.

(b) A (2k + 1)-dimensional subvariety Y ⊂ X is a pseudo-symplectic subvariety if and only if
the symplectic type of Y is {2k}.

(c) A subvariety Y ⊂ X is an isotropic subvariety if and only if the symplectic type of Y is {0}.
Now the following statement is obvious:
Theorem 5.2. Let (X,ω) be an affine symplectic space of dimension 2n > 2. Fix an integer

2 ≤ k ≤ 2n− 2. A polynomial automorphism Φ: X → X is a conformal symplectomorphism if and
only if it preserves the symplectic types of all algebraic k-dimensional subvarieties of X.
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