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The generalized Langevin stochastic dynamical system is introduced and the stationary probability 

density for its solution is investigated. The stochastic field is assumed to be singular with a simple 

singularity, and noise in the control parameters is modelled as dychotomous Markov noises. A 

classification of bifurcation diagrams for the stationary density probability is obtained. Two 

examples encountered from physics, the dye laser model and the Verhulst model, are investigated. 

stochastic process * dynamical system * singularity * bifurcation diagram 

1. Introduction 

The main interest of recent bifurcation theory (cf. [2,6]) has been to determine 

bifurcation diagrams and the corresponding structural changes in the system under 

consideration. For the generic, finitely-determined models of singularity theory (cf. 

[4, 141) these bifurcation sets (also called catastrophe sets [15]) are well known and 

their relevance for the understanding of various physical, chemical and biological 

systems has been exhaustively proved in a number of recent publications (see e.g. 

[15,6, 14, 171). It appears, however, that in realistic laser systems (cf. [5]) critical 

region phenomena (cf. [S]) or various open or semiopen chemical or thermodynami- 

cal systems, random internal fluctuations play an important role. It is therefore 

necessary to include in the model the stochastic component of the noise. Stochasticity 

of some control parameters of the standard dynamical models tends to completely 

change bifurcation diagrams. Their use is an important physical branch of the theory 

of stochastic processes (cf. [7, 161). Abstracting from the concrete models we see 

that the structure of these stochastic bifurcation sets is interesting even for the theory 

itself. In this paper we investigate the bifurcation sets for a wide class of stochastic 

dynamical systems, coming from standard singularity theory with Markovian 

dychotomous noise. The paper deals only with l-dimensional stochastic dynamical 

systems. We do not pretend to give a complete description of such systems but 

merely to investigate some interesting examples and the universal problems suggested 

by them. 
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In the first section we give some necessary preliminaries concerning stochastic 

dynamical systems and propose a geometrical method to investigate their probability 

densities. Section 3 is devoted to a presentation of various physical systems with 

stochastic noise, as for example the dye laser system with pre-Gaussian pump 

fluctuations. This problem can be seen as the main motivation for our study. In 

Section 4 we develop a theory for stable dynamical systems with a stochastic control 

space and prove some generic properties. We show that the equations for stationary 

probability densities reduce to equations with so-called regular singular points. The 

analysis of bifurcation diagrams for stable dynamical systems is provided in Section 

5, where the appropriate “topological type function” is introduced. The fold model 

and the cusp model with dychotomous one dimensional noise are investigated and 

the corresponding bifurcation diagrams are obtained. 

2. Stochastic dynamical systems driven by the dychotomous Markov noise 

Many systems of practical interest can be described by a single relevant variable. 

This variable as a function of time is governed by a first-order differential equation 

of motion which additionally depends on external control parameters (see e.g. [14]). 

If it is assumed that there exist a fluctuating control parameter (external noise [16]) 

the deterministic equation of motion (usually) transforms into a stochastic one of 

the form 

(1) 

where u(t) is the external noise, f(x) is the deterministic vector field and g(x) 

represents a linear coupling of the fluctuating parameter u(t) with the coordinate 

x. Equation (1) is the most common case in a large number of real situations; it is 

called a Langevin equation (cf. [ 12,161) Assuming that u(t) is Gaussian white noise 

(cf. [7]), i.e. 

(u(t)) = 0, (u(l)u(l'))=2r6(l-t'), 

we see that the stochastic process x(t) is Markovian and the probability density 

P(x, t) satisfies the differential Fokker-Planck equation (see [ 161) 

If u(t) is not white noise the process x(t) is not a Markov process. 

In this paper we consider (1) when the stochastic process u(t), which is possibly 

multidimensional, is a dychotomous Markov noise. In this case u(t) takes two 

possible values, a and --a, a > 0 with transition rates, from a to -a and vice versa, 

equal to y/2. Let P,(t) =d”FProbability {u(t) = *a}. The Master equation for P* (1) 
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(see [l]) then reads as 

(4) 

If P*(O) = i then u(t) is a stationary process with the correlation function 

(u(t)u(t’))=a’e . --y/f-C 
(5) 

For the detailed information on this type of processes we refer the reader to [ 16, 121. 

Instead of the Langevin equation (1) for X(I) we can write the Liouville equation 

satisfied by the corresponding density 4, 

4(Y, r) = G(Y-x(r)), (6) 

namely 

where x(t) is the solution to equation (1) with initial condition x,, and the definite 

realisation of the stochastic trajectory u(t). In fact we are interested in the probability 

density P( y, t), which is defined as 

P(Y, t) = (4(Y, t)), (8) 

where (.) defines an average over all realisations of u(t) according to equation (4). 

Combining the equations (4) and (7) we obtain two Master equations for the 

probability densities P&(x, t), namely 

; P+(x, I)=-;f(x)P+cx, r)a+)P+b, t)-;YP+(x, t)+;YP-(4 I), (9) 

; P-(x, t) = -S./(x) P-(x, t) + a$(x)P_(x, t)+Z P+(x, t) -; P-(x, t). (10) 

Here P&(x, t) dx denotes the joint infinitesimal probability for x at time t and 

u(t) = ia. Using the new functions 

P(x, t) = P+(x, t)+ P-(x, t), ax, t) = P+(x, t) - P-(x, f), (11) 

where P(x, t) is probability density of the variable x, independent of external noise 

u(t), we can rewrite equations (9) and (10) in the form 

; P(x, t) = -$f(xMx, t) -u; g(x)Q(x, t), 

; ax, f) = -~f(x)Ob, f) -7; dx)P(x, t) - Tax, t). 

(12) 

(13) 

Now we are interested in the stationary solutions; PS,(x), C&,(x), of the above 

equations. By (12) we have 

f(x)p,,(x) + ag(x)%(x) =j = const(x). (14) 
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Let us put j equal to zero. This assumption does not restrict the generality of our 

approach. We insert Q.%,, derived from (14), to (13) and obtain the following 

differential equation for the stationary pF, : 

a f’(x) - a2g2(x) 

G ( g(x) 
Pf,(X) 

> 
= -g P,,(x). 

This equation has the general solution (cf. [11]) 

x 

dx’ 
f (x’) 

a2g2(x’) -f 2(x’) . 

Additionally, we have 

Qs,(x) = -$9,,(x), (17) 

1 
P:,(x) = -~ 

Zag(x) 
F_(x)P,,(x), 

P,(x)=- * ___ F-(x)P,,(x), 
zag(x) 

(18) 

(19) 

(15) 

(16) 

where F,(x) =f(x) * ag(x). 

Remark 2.1. From physical arguments it is concluded that P;’ and P, are not 

negative functions. From equations (18), (19) we see that we can satisfy this 

requirement if and only if F+ and F_ have opposite signs. This observation is also 

very helpful in the geometrical interpretation of stable physical domains defining 

the stationary probability density involved in equation (15). This interpretation was 

introduced in [5] and describes the stable physical domains as defined by the 

stochastic vector fields F+, F- in competition. 

3. Applications to the open systems in a fluctuating environment 

To discuss the ideas for various applications we begin by noting that the random 

force which occurs in a Langevin equation (1) can have quite different origins. In 

an ordinary microscopic derivation of a Langevin equation (see e.g. [ 161) the random 

term u( t)g( t) is associated with the “thermal” or “internal” noise - thermal fluctu- 

ations, especially near a critical point (cf. [8,7]). 

A different and more common interpretation of the random term of a Langevin 

equation is necessary, however when this is thought to model what we call an 

“external noise” situation. This type of fluctuation can be due to a varying environ- 

ment or can be the result of an externally applied random force. The mathematical 

modelling of these fluctuations is made by formulating the appropriate deterministic 

equation in the absence of external fluctuations. One then lets the external parameter, 
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which undergoes fluctuations, be a stochastic variable. The noise term of the 

stochastic differential equation obtained in this way, usually has a multiplicative 

character, i.e. it depends on the instantaneous value of the variables of the system. 

We can take the external noise as an external stochastic field which drives the system 

(cf. [ 161). 

Dynamical equations of motion with random noise have been first used in the 

theory of Brownian motion. The best known examples of such Langevin equations 

are 

where f(x) = 0, g(x) = 1 (as in equation (1)) and x denotes the position of the 

particle. Another example is 

$o=-AViU(f) (21) 

wheref( u) = -Au, g(v) = 1, u is the velocity of the particle and in both these examples 

u(t) is a random noise due to to the external random collisions. If u(t) is a Gaussian 

white noise (see Section 2), then equation (20) leads through equation (3) to the 

well known Wiener-Levy process described by the diffusion equation for the proba- 

bility density P(x, t): 

; P(x, t) = r-$ P(x, t). 

Analogously, insertingf and g from example (21) into equation (3) (see Section 2) 

we obtain the following equation for the density probability P(v, t): 

which describes the evolution of the Ornstein-Uhlenbeck process. 

Another use of stochastic dynamical systems has been made in the modelling of 

a more realistic laser with pump fluctuations (see [5,9, IO]). Again the random 

process composed of two random telegraph processes appears to be useful in 

approximation of the Ornstein-Uhlenbeck process representing the chaotic fluctu- 

ations in the system. Let us consider the dye-laser equation (cf. [5,9]) 

5x=(* -x)x+xz(t), 

where z(t) = u,(t) + u2( t) is the two telegraph additive noise. The corresponding 

equation for the stationary probability density, 

(23) 
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g(x) = 4 f(x) = Ax -x2, Y(X) = I “& 
g ’ 

reduces to the standard Fuchs type equation of second order. The local behaviour 

of P,, at singular points was investigated in [5]. The bifurcating family of supports 

for this model is illustrated in Fig. 1. 

As an example of a Langevin equation used in quantum optics let us take the 

propagation of a pulse in a nonlinear random medium. The propagation equation 

in the z direction of a wave evolution has the form ([16]) 

g f(z)= 
&I+ u(z) 

1-t LJ(z) f(z). (24) 

Fig. 1 
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In this equation, u(z) describes the random properties of the medium. Another 

example of the Langevin equation with external noise in quantum optics can be 

given by the rate equations for multiphoton processes. The changes of atomic 

population due to one or two photon ionisation in the presence of a fluctuating 

laser light are given by the equations (cf. [7]) 

(25) 

where u(t) is the external field amplitude which fluctuates according to external 

conditions. 

In all these examples u(t) may be an arbitrary noise process. The most trivial 

case is of white noise and such systems are described by the Fokker-Planck equations, 

except for (25) where the noise enters nonlinearly. In the rest of the paper we are 

interested in a more realistic situation with nonwhite external noise represented by 

random telegraphs, possibly entering nonlinearly. 

4. Stable dynamical systems in the stochastic control space 

Let us consider a general stochastic dynamical system with one internal variable 

(cf. r 121), 

i=-grad, V(x, ul(t) ,..., u,(t))=F(x, ul(t) ,..., u,,(t)), (26) 

where ur( t), . . . , u,(t) are independent stochastic processes and F is a smooth 

function. We allow (26) to be a general nonlinear system. Because of its simplicity 

and extensive use in applications (see Section 2 and 3) we restrict our considerations 

to the Markovian dychotomous noises ul(t), . . . , u,(t). In this case we have the 

following result. 

Proposition 4.1. Let 

i=F(x; i&u,(t) )...) u,(t)), U=(U ,,..., UJCRk (27) 

be a dynamical stochastic system parametrized by deterministic control variables (ii,) f 

and Markovian dychotomous noises (u,) ;. Then there exist smooth functions 

(gi(x, u))Y, (gi,i,(x3 u))tz-i2, . . . 9 (gl,,...,l,,(x9 u))Y,>.,.>i,, 9 

such that (27) has the form 

a=f(x, u)+ i gi(X, 22)Ui(t)+ i: gi,i,(X, ti)Ui,(t)U,2(t)+e ” 
i=l i,>iz 

+ 5 gt,...i,,Cx, u)"i,(r) ’ ’ . ui,,(t). 

i,>...>i,, 

(28) 
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In other words the general stochastic system (27) is equal to one with stochastic variables 

entering linearly, i.e. 

x=f(x~ u)+ i gitx, u)wt(t), (29) 
i=l 

where wi( t) are, not necessarily independent, stochastic variables representing also 

dychotomous processes as multiplicatively composed initial telegraphs (i.e. wi( t) is a 

product of some number of independent telegraph noises so is also dychotomous). 

Proof. For the one telegraph noise, say u(t) (realized by an integer valued stochastic 

process n(t, to), i.e. u(t) = a(-l)““‘“‘, a > 0, cf. [l]). For its two values +a, -a we 

have 

Thus the 

F(x, ii, +a) =:(F(x, U, a)+F(x, ii, -a))+ T(F( x, 6, a) - F(x, 6, -a)), 

F(x, U, -a) = $(F(x, U, a) + F(x, ii, -a)) + $$(F( x, ii, a) - F(x, 6, -a)). 

stochastic dependence of F(x, 6, u(t)) can be written in the form 

F(x, ii, u(t)) =+(F(x, ii, a)+F(x, ii, -a)) 

+$(F(x,ti, a)-F(x, ii, -a)). 

Now we can treat (*) as a first step in the induction process with respect to the 

number of telegraphs in E Repeating decomposition (*) with respect to second, 

third, . . . , nth telegraphs successively we directly obtain the desired result (28). 

Remark 4.2. For the deterministic dynamical system of type (27) its stationary 

surface (the set of zeros of the corresponding field F) gives basic information about 

the slow dynamics appearing in various dynamical models of physical systems (see 

[15,17]). The general nonlinear system of type (27) can be very complicated with 

regard to its stationary properties. However, when we remove some very small class 

of “pathological” (unstable) systems, the theory of singularities (see [4, 141) provides 

complete information about the local stationary properties of typical nonlinear 

systems. 

Now we recall some necessary basic facts from standard singularity theory. Let 

f = -grad, V(x, u) be a dynamical system with smooth potential V: [w x [Wk + [w. We 

say that this system is stable if at each point (x0, uO) E [w x Rk the following holds 

(cf. [14, 171): the quotient ring mC,,,/J( V) is generated by {aV(x, t)/aUi}f=, as an 

&,,, module (cf. [4]). Here by mCX,,,c ,$CX,Uj, (&,,,) we denote the maximal ideal of 

the ring [CX,Uj of germs at (x,, uO), ((u,) -resp.) of smooth functions and by J(V) 

we denote the corresponding ideal generated by JV(x, u)/ax. It appears that for 
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structurally stable systems (by the Malgrange Preparation Theorem [4]), in a neigh- 

bourhood of each point (x,, uO) the system is equivalent, in its stationary dynamics, 

to one given in the form (cf. Proposition 4.1) 

x = -grad, V,+(X, U) =f(x) + i Uigi(X), /_L s k, (30) 
i=* 

where we assume (x0, u,,) = (0,O) and the gi(x) are smooth functions generating the 

space 5&J(f) (cf. [4,151). 
Comparing the form of the system given by the above potentials to the stochastic 

one (28) with telegraphically fluctuating control parameters we are also encouraged 

to restrict ourselves to dynamical systems with stable potentials (30). It also suggests 

that we should consider additional stochastic noises entering additively in the 

deterministic parameters (Ui). 

Thus, in what follows, we assume our stochastic dynamical system to be recon- 

structed from a stable (30) deterministic one by switching on the respective telegraphs 

associated with each control parameter, the values of which are treated as the 

fluctuating centres of external forces. Thus we have 

x=-grad, V,(x, ii)+ f ui(t)hi(x) 
( > 

, (31) 
i=l 

where the functions hi(x) are determined by the stable deterministic potential V, 

at the neighbourhood of each point (x, u). 

Let x = F(x, ii, u(t)) be a stochastic system 

direct product of independent dychotomous 

equations for the respective probabilities are 

p(+L(p”‘_p$)) 
2r, 

> 

PCy)(t) =-!- (p(i) _ pp)) 

27;+ ’ 
Ti > 0, 

where u(t)=(u,(t),...,u,(t)) is a 

noises. The corresponding Master 

(32) 

(33) 

and the amplitudes ai > 0, i.e. (ui( t)ui( t’)) = af e~“~“i’T~. 

The stochastic solution of (26) is characterized by its joint probability density, 

sayP,(x,t),I=(i,,.. . , i,,), ij = f , which is governed by the joint probability Master 

equation (cf. [16, 111) 

; p,(x, t) = -; F(x, A,)P,(x, t) -iI{, ; (PI - pt,)k f), 

where, J=(i ,,..., -4 ,..., i,,) and A, is a value of u(t) corresponding to I, i.e. 

A, = (i,a,, . . . , &a,). 

Let us order the set of indices I (say: (+, +, . . .), (-, +, . . .), (+, -, . . .), (-, -, . . .) 

etc.). Then we can write the system F(x, A,)P,(x, t) as a column vector, say 2 Thus 
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for the modified stationary density probability P(x), on the basis of (34), we have 

the equation 

2 P(x) = B(x)ji(x), (35) 

where B(x) = TF -(x), F(x) is a matrix function with F(x, A,)-entries on the 

diagonal, ( F-‘(x))~~ = 6,k/ F(x, A,) and T = ( TrJ) is a constant matrix defined by 

T,,=f; ‘&I,-: ,g,i &J. 
j=* 7j (. > 

(36) 

Taking into account equation (28) and the form of matrix B(x) with rational entries 

we have the following result. 

Proposition 4.3. For the generic stochastic system (27) the corresponding system of 

equations for the joint stationary probability, considered in the complex domain, is a 

system of equations with regular singularities (cf [ 131). 

Remark 4.4. On the basis of Proposition 4.3 we can use the standard theory of 

differential equations (see [13,3]) and analyse the behaviour of a physically accep- 

table solution P(x) in the neighbourhood of singular points, for the generic stochastic 

systems without parameters. However in stochastically controlled systems, even 

generic ones, the confluencies of singularities appear and the complete analysis of 

any solution is much more complicated. In order to analyse the controlled systems 

we restrict ourselves to ones with one dychotomous noise, i.e. n = 1 in formula (27). 

We recall that p is a number of control parameters nontrivially entering into F, 

while k denotes the dimension of control space - this is a standard setting of 

singularity theory [14]. More general analysis and the connection between the 

solutions of (34) and monodromy theorems in singularity theory (see [3]) we leave 

to a forthcoming paper. 

In the case of one dychotomous noise the stochastic dynamics is governed by 

two potentials (see equation (26)), V*( x, U) = V(x, U, +a). Thus, on the basis of 

Remark 2.1, we can completely characterize the topological structure of the support 

of the stationary probability density (cf. [5,9]). 

Let x0 be a finite critical point of one of the potentials V,. Let 2i denote the 

order of this point if it is a minimum, and by (2i+ I), we distinguish the two kinds 

of injection point of order (2i + 1) (i.e. nondecreasing “+” or nonincreasing “-“). 

Proposition 4.5. The following configurations of potentials V+, V- (with at most one 

critical point x0, as illustrated in Fig. 2) form, at x0, the support boundary point, s.b.p. 

for short: 

(a) Right s.6.p. If V+ and V- (or in opposite order) are of order 2i or (2i+ 1)) and 

(2 . 0+ l), respectively. We denote these configurations by R2’, R”+‘. 

(b) Left s.b.p. Zf V+ and V- (or in opposite order) are of order 2i or (2i+ l)+ and 

(2 . 0+ l)_ respectively. We denote these configurations by L2’, L”+‘. 



81 S. Janeczko, E. Wajnryb / Stochastic dynamical systems 

These four configurations are illustrated in Fig. 2. 

Proof. We can integrate (34) and obtain 

Assuming that x0 is a finite critical point of one of the 

(d/dx) V-(x,, ii) = -F-(x,, ii) = 0, we obtain by analysing 

the neighbourhood of x0, 

potentials, say V+, and 

the formula (37) that, in 

for k3 1 

Lb> - 
1 

Fi”(x,,, U)(x-x0)’ exp 

yk! 
2(k-l)Fik’(xo, ti) 

(x-xp) (38) 

and 

p,, _ Ix - xOJ y/2r:(%u)- (39) 

for k= 1. Verifying the integrabihty (i.e. existence of I:,, P*,(x) dx) of these 

formulas we obtain the conclusion of Proposition 4.5. 

L2i+l 
) 

LL x 

\ 

\ 
\ ; 
\ \ 
‘*, ‘1 \ \ \ \ \ \ 

‘._’ 

V 

I x 

‘\ VA 

Fig. 2 
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Corollary 4.6. For the dychotomous Markov noise, with potentials V+, V- in general 

position the only support boundary points which appear have the type R2 or L2 (see 

Fig. 2), with the corresponding index of divergence 

Y 
-1 or 

Y 

2FL(x, zi) 2FI_(x,, U) 
-1. (40) 

5. Stochastic bifurcation sets for elementary catastrophes 

In the framework of standard singularity theory one classifies the potential functions 

g : R” -+ R with respect to the properties and configurations of their degenerate critical 

points. From results on structural stability (cf. [ 151) these investigations are usually 

conducted, locally in the neighbourhood of a critical point and using the language 

of germs (i.e. the classes of smooth functions identified in some neighbourhood of 

the source point of the germ [4]). However to avoid inessential rigour we speak 

about functions instead of their germs. 

Let g :R”, O+ R be a singularity, g E tCX,, i.e. g has an isolated critical point at 

0 E R”. An unfolding of a singularity is a “parametrized family of perturbations”. 

These parameters are treated usually as control parameters [ 141. The notion is useful 

mainly because, for finite codimension singularities (cf. [17]), there exists a “uni- 

versal unfolding” which in a sense captures all possible unfoldings. More rigorously, 

let g E &, . Then an l-parameter unfolding of g is a germ V E &+, , V : R”+‘, 0 + R, 

such that V(x, 0) = g(x). An unfolding VE &X,vj of g is induced from VCx,Uj if 

%, u) = VP”(X), G(n))+ Y(V) 

where v=(vl,...,v,)~Rm, pU:lR”+R”, +:R’“+R’, y:R’+R, and pU smoothly 

depends on v. The mapping (v, x) + ( pn (x), +!J( v >> is called a morphism of unfoldings. 

Two unfoldings are equivalent if each can be induced from the other. An l-parameter 

unfolding is versa1 if all other unfoldings can be induced from it; universal if in 

addition I is as small as possible. Suppose that g has finite codimension CL, i.e. the 

codimension in the orbit structure of m(,, . Let h,, . . . , h, be a basis for m+,/J(g) 

(see Section 4). Then a universal unfolding of g is given by the germ 

V(X, U) = g(X) + $J hi(X)ui. 
i=l 

This is stable for p s 5, see [17]. While different choices of the Ui can be made, a 

universal unfolding is unique up to an equivalence. 

One of the most spectacular results of elementary catastrophe theory is a complete 

classification of stable-universal unfoldings for p =G 5 [ 141. These form a generic 

subset of all parametrized potentials. The celebrated elementary catastrophes of 

Thorn [15] are the universal unfoldings of the singularities on this list for p c4. 
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Theorem [14,17]. The elementary catastrophes of codimention G 5 are the universal 

unfoldings 

AZ: x3+u,x, 

A3 : *x4+ ulx2 + u,x, 

A4: x~+~,x~+u~x*+u~x, 

A5 : AX’+ u,x4+ u2x3 + u3x2 + u,x, 

A,: x7+~,~5+~2~4+~3~3+~4~2+~~~, 

D4: X~*X,X:+U*X:+UZX~+U~X*, 

D5: X~X,+X~+U,X~+U*X:+U~XI+U~X*, 

D,: x~~xx,x;+u,x;+u2x:+u3x:+u4x,+u,x2, 

E6: X:+X:+U,X,X:+U2X:+U3X,X2+U4X,+U5X2. 

We have the following immediate corollary. 

Corollary. For the smooth potentials V: R x Rk + R we have only the following normal 

forms of stable-universal unfoldings: 

A,_, : V/(X, t) = xfi+*+ @ ,;, wi, CL =s k. 

Now we define the bifurcation set - the set of qualitative changes in the slow 

dynamics of gradient dynamical systems [ 171. It is the set, also called a catastrophe 

set [14], 

C={u~lR~;d,V(x, u)=O,det(d&V(x, u))=O}. 

The catastrophe sets for A,-singularity and A,-singularity are called “cusp” and 

“swallowtail” respectively (see Fig. 3). The higher Ak-singular catastrophe sets are 

called generalized swallowtails. The catastrophe set for A,-singularity forms the 

smooth hypersurface (“fold”). 

Now we have the stochastic dynamical system 

f= F(x, ii, v, u(t))=-grad,V(x, ii, v, u(t)) 

=-grad,(g(x)+ 5 (C,+viu(t))h,(x))=f(x)+ i (iii+viu(t))gi(x), 
i=, i=, 

(41) 

where V is a universal unfolding of a finite g with the p-dimensional unfolding- 

control space (cf. [14]) and v E R“, (v( = 1 is a direction of the dychotomous fluctu- 

ation u(t). 

The bifurcation set of stationary points of (41) in the deterministic case, corre- 

sponds to the discriminant set (catastrophe set-generalized swallowtail) of F. Investi- 

gation of the catastrophe sets for controlled dynamical systems is one of the aims 

of bifurcation theory or catastrophe theory [2]. Applying the stochastic noise to 

control parameters the nature of a dynamical system is drastically changed but the 

bifurcation set for the stationary probability is still very important in the stochastic 

analysis of the system (cf. [9]). In this section we investigate the bifurcations for 
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Fig. 3 

(41) with dychotomous Markov noise and connect them to the standard catastrophe 

set for the corresponding deterministic system. 

Using the formula (cf. Section 2) 

p = N CY=‘=l uigi(x) exp 
5, 

w("i, iii, xl 1 5 -Y 
x dx,f(X’)+Ztl Uigi(X’) 

w(u,-, iii, x’) I ’ (42) 

where 

one can completely analyse the bifurcations of topological structure of the domain 

of PSI(x) as well as its divergence exponents on the boundaries. 

Let us consider F&(x, u) = F(x, U; 21, *a), with fixed parameters ZJ E RP, a E R,. 

We define 

I;: = {ti E 0; number of zeros of F,( . , U), 

i.e. #(@z = {x; F+(x, u) = 0)) is equal to i}, (43) 

where by lI? we denote the space of control parameters. Thus we have the canonical 

stratifications (see [ 14,2]) 

I/=lijl,;=*;l,<. 
(44) 

i=O j=O 
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To each xz E @i we can associate +l (-1) if it is a local minimum or inflection 

point of the potential V, (if it is a local maximum of V,). We denote this function 

by sgn xt. Now we can define the function 

x: l?+ NW(O), (45) 

x(ti)=min f,i, (l+sgnx:),f i 
i 

(l+sgnx;) 
1 

(46) 
k=l 

where ii~Z:n;l;‘. 

By straightforward calculations for our Ak-singularities of (41) (cf. [ 141) we have 

the following result. 

Proposition 5.1. For a generic stochastic system (41) and sufhciently small a > 0, the 

integer-valued function x defines the topological type of the support of P,,. The value 

of x measures the number of connected components of the support. x is equal to zero 

tf and only if PS, is not defined at all. Discontinuities of x define the points of the 

bifurcation diagram for the corresponding stochastic dynamical system. 

We now illustrate the bifurcation diagram for the concrete perturbations of the 

fold catastrophe and cusp catastrophe (cf. [14,4]). 

Let us consider the system (the fold catastrophe) 

x=x’-(C+u(t))=-grad, VI (47) 

The two equilibrium surfaces for V+ and V- are shown in Fig. 4. Geometrical 

analysis of the pairs of potentials V+, V_ corresponding to the regions (Y, /3, y, 6, 

p as illustrated in Fig. 5 (cf. Remark 2.1) immediately gives the supports for integrable 

Fig. 4 
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Fig. 5 

and thus physically accepted stationary probabilities (the dotted region in Fig. 4). 

We easiIy check the topological type function x for this system 

x(u) = 
0, U < a, 

1, C3a. (48) 

Thus, U = a is a bifurcation point; the shifted one corresponding to the deterministic 

fold catastrophe. 

Remark 5.2. In the case of unstable systems, which are always induced from stable 

ones by appropriate morphisms, say F 0 @(x, u) (cf. [4]), the function x gives only 

an upper bound for the topological type of the support. As an example of such a 

system we can take the Verhulst chemical reaction equation (cf. [9]) 

a=F(x, 27, U(t))=-X*+X(U+U(t)), (49) 
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where the deterministic F is induced from the stable fold singularity F(x, U) = 

-x2+ U by the morphism Q(x, ti) = (x -$G, $Z4), i.e. F = F 0 @. We can easily check 

that x(17) = 1 but the existence of an integrable P,, only occurs for U 3 0. 

Let us consider the system (41) on the plane, p = 2, with direction of fluctuations 

u = (0, l), i.e. f = -x3 - U,x - (I& + u(t)). The corresponding stratifications of C? are 

2:: {A,>O}, (50) 

2:: {A, = 01, (51) 

2:: {A,<O}, (52) 

I B 

Fig. 6 

x -l(2) -B 

Fig. 7 
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where A, = a( ii,* a)‘+$$, and the function x is given by 

By straightforward calculations we obtain the corresponding bifurcation set B (see 

Fig. 6) 

(Ui, ii2) = (-3s2, r2s3 * a) for s 2 (a/2)“‘. 

The generalized analysis of potentials at distinguished points of the respective 

components of the stratification defined by the function x, is illustrated in Fig. 7. 
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