Unix Fundamentals — Bash Scripting

Marek Koztowski

Faculty of Mathematics and Information Sciences

Warsaw University of Technology

Never use copy&paste for the following exercises. Retype all commands manually!
Don’t just read those exercises and examples. Do them, please!

1. Part I

(a)
(b)
()

Download the file ‘bash1.sh’ and make it executable:
$ chmod +x bashl.sh

Open it with ‘vim’ (preferred) or any editor of your choice. Read it. Its contents should
be self-explanatory.

Run it with and without parameters:

$./bashl.sh

$./bashl.sh one two three

As you remember if you are using the ‘vim’ you may run the script as follows:
<Esc>:!./%

<Esc>:!./% one two three

Create your own script:

$ echo ’#!/bin/bash’ > myscript.sh

make it executable:

$ chmod +x myscript.sh

and open (with ‘vim’).

Based on ‘bashl.sh’ add some multi-line output (help message) with ‘cat’. Check if it
works.

Remember: no blanks may precede the closing tag!

Define the function ‘help()’, which prints that help message and invoke it. Your script
should look like:

7

#!/bin/bash

help(O) {
cat << TAG1
Something
to
be
printed

TAG1
}

help

Check if it works.

Check if you can define a function on the command line. Does bash help with auto-
completion?
$ myfun() { echo "The 1st parameter is $1"; }

$ myf<Tab>

$ myfun someparam

Assuming you didn’t forget leading and trailing blanks and the semicolon (read the
tutorial again!) the answer for both questions is ‘yes’. Yes, bash built-ins are in fact
functions.

2. Part I1

(a) Download the file ‘bash2.sh’ and make it executable:
$ chmod +x bash2.sh

(b) Run it from the command line. Mind that at some point it will require closing all ‘gvim’
instances:
$./bash2.sh

(¢) Open it with ‘vim’ (preferred) or any editor of your choice. Read it. Its contents should
be self-explanatory. Some notes:

e remember that — unlike the C ‘break’ instruction — in bash double semicolons (; ;)
are obligatory after each ‘case’ choice block!

e take yet another look at the ‘while’ loop: commands’ exit status is commonly used
as a logical condition; for silent mode ignore both: ‘stdout’ and ‘stderr’ — as you
remember we do that as follows:
$ somecommand 1>/dev/null 2>&1

(d) ‘while’ is quite often invoked together with ‘sleep’. A simple example:
$ while true; do date; sleep 1; done
Terminate this infinite loop with the ‘SIGINT’ signal (Ctrl-C).

(e) Extend your script (myscript.sh) so it accepts five options: ‘-a’, ‘-b’ (with a value),
‘~¢’ (with a value), ‘-d’ and ‘-h’ (help). An exemplary solution:

e ~

#!/bin/bash

help() {
cat << TAG1
Something
to
be
printed

TAG1
}

while getopts "ab:c:dh" some_variable 2>/dev/null
do
case ${some_variable} in
a) echo "option \‘-a’ active" ;;
b) echo "option \‘-b’ active; value: $0PTARG" ;;
c) echo "option \‘-c’ active; value: $0PTARG" ;;
d) echo "option \‘-d’ active" ;;
h) help ;;
?) echo "unrecognized option"; exit 1 ;;
esac
done

Check if it works as expected. Experiment with grouping or specifying options in any
order.

3. Part III

(a) Download the file ‘bash3.sh’ and make it executable:
$ chmod +x bash3.sh

(b) Run it from the command line:

$./bash3.sh

(¢) Open it with ‘vim’ (preferred) or any editor of your choice. Read it thoroughly. It
contains a lot of useful copy&paste examples you may need but focus on why and how

the work.

(d) Read the man page for the ‘test’ command. Then run ‘man bash’ and seek for the
‘CONDITIONAL EXPRESSIONS’ section.

(e) Do experiments on your own until you are quite sure you have some fluency in conditional

command execution.

(f) Our script (myscript.sh) accepts options in any order (or even grouped) but it behaves
a little bit different depending on the order of the options. Moreover we cannot define

mutually exclusive options. Let’s try to improve it a little bit:

7

#!/bin/bash

help() {
cat << TAG1
Something
to
be
printed

TAG1
}

do

a) A=1 ;;
d) D=1 ;;

esac
done

I -z $A] &&
! $B 1 &&
I -z $C] &&
I -z $D] &&

|
N

(o T e B e W |

echo
echo
echo
echo

case ${some_variable} in

b) B=1; B_VAL=$0PTARG ;;
c) C=1; C_VAL=$0PTARG ;;

h) help; exit 0 ;;
?) echo "unrecognized option"; exit 1 ;;

"option
"option
"option
"option

\‘-a’
\‘-b’
\(_C)
\‘-d’

while getopts "ab:c:dh" some_variable 2>/dev/null

active"
active", value: $B_VAL"
active", value: $C_VAL"
active"

The above script seems to be a perfect template for any bash scripts you’ll write in the

future!

4. Part IV

(a) Download the file ‘bash4.sh’ and make it executable:
$ chmod +x bash4.sh

(b) Run it from the command line:

$./bash4.sh

(¢) Open it with ‘vim’ (preferred) or any editor of your choice. Read it. Feel free to modify

it and do experiments on your own.

(d)
()

Mind that bash supports only integer arithmetic. There are no decimal / floating point
values.

For the string chopping explanation more in detail refer to the IBM tutorial Bash
by example (https://www.ibm.com/developerworks/library/l-bash/index.html),
sections:

e Chopping strings overview

e Chopping strings like a pro
Unfortunately most bash documentation explains this language by example. The sa-
me refers to the most comprehensive (and undoubtedly the longest!) Advanced Bash-

Scripting Guide (http://tldp.org/LDP/abs/html/). Fortunately our 4 part short tu-
torial covers at least 99% of all bash code you can ever see in real bash scripts.

https://www.ibm.com/developerworks/library/l-bash/index.html
http://tldp.org/LDP/abs/html/

