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Goals for today:

▶ Understand course passing requirements
▶ Get basic knowledge on GPU programming
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Semester Schedule

GPU and modern HPC

Introduction to CUDA and GPGPU
Threads and Processes
CUDA Programming Language
Memory Management
Synchronization
Error reporting
Example
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Lectures
Technical part:

1. GPU threads basics
Process/Thread/Kernel, Host/Device

2. Memory management
Global/Local/Shared/Registers/Constant

3. Threads synchronization
4. Advanced memory management
5. Multiple GPU - HPC
6. Advanced parallel execution problems
7. Inter-warp communication
8. Thrust API
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Lectures
Algorithms:

1. Model of vector processing
2. Parallel scalability models
3. Prefix-sums
4. Parallel sorting
5. Optimal matrix multiplication
6. Particle interactions
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Obligatory Laboratories
Semester Schedule

1 Tutorial: Play in the playground – choose your toys
2 Tutorial: Can you reduce? (3p)
3 Tutorial: Touch a fractal border (3p)
4 Tutorial: Trust in Thrust (3p)

5-9 Project 1 (40-60p)
10-14 Project 2 (40-60p)
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Projects
Grading I

▶ Choose two projects from the list:
▶ A (easy): 40 points
▶ B (moderate): 60 points

▶ You must report progress every two weeks.
▶ Deadline for the projects: the last week of the semester.
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Projects
Grading II

▶ If a project contains no mistakes it gets 100% of the possible
points.

▶ There are penalty points for misuse of GPU concepts:

−10% : processor occupancy not achieved or too few
threads running

−10% : memory allocation or deallocation problems
−10% : AoS if SoA is possible
−5% : shared memory conflicts
−5% : ugly code, no comments, mess in files
−5% : no makefile (cmake is ok)
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The most powerful computers use GPU devices
GPU and modern HPC
Site: RIKEN Center for Comp. Sci. DOE/SC/Oak Ridge Nat. Lab. DOE/NNSA/LLNL

Manufacturer: Fujitsu IBM IBM / NVIDIA / Mellanox
Cores: 7,299,072 2,414,592 1,572,480
Memory: 4,866,048 GB 2,801,664 GB 1,382,400 GB
Processor: A64FX 48C 2.2GHz IBM POWER9 22C 3.07GHz IBM POWER9 22C 3.1GHz
Interconnect: Tofu interconnect D Dual-rail Infiniband Dual-rail Infiniband

Performance

Linpack 415,530 TFlop/s 148,600 TFlop/s 94,640 TFlop/s
Theoretical Peak 513,855 TFlop/s 200,795 TFlop/s 125,712 TFlop/s
Nmax 20,459,520 16,473,600 11,902,464
HPCG [TFlop/s] 13,366.4 2,925.75 1,795.67

Power Consumption

Power: 28,334.50 kW 10,096.00 kW 7,438.28 kW

Software

Operating System: Red Hat Enterprise Linux RHEL 7.4 RHEL 7.4
Compiler: FUJITSU Soft. V4.0 XLC, nvcc IBM XLC
Math Library: FUJITSU Soft. V4.0 ESSL, CUBLAS 9.2 ESSL, CUBLAS 9.2
MPI: FUJITSU Soft. V4.0 Spectrum MPI IBM Spectrum MPI

Table: June 2020: www.top500.org
In order to read about FUGAKU get the report: Jack Dongarra’s FUGAKU Report, 22 June 2020
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GPU and modern HPC

top500.org



NVIDIA Supercomputer
POD Architecture

NVIDIA website
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http://https://www.nvidia.com/en-us/data-center/dgx-a100/


DGX A100 HPC Server
GPU and modern HPC

NVIDIA website
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GPU computing applications
GPU and modern HPC

NVIDIA website
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NVIDIA Processors Evolution
GPU and modern HPC

Product Architecture P100 V100 A100 H100
Announcement date April 2016 December 2017 May 2020 September 2022
GPU Codename GP100 GV100 GA100 GH100
GPU Architecture Pascal Volta Ampere Hopper
SMs 56 80 108 132
TPCs 28 40 54 66
FP32 Cores / SM 64 64 64 128
FP32 Cores / GPU 3584 5120 6912 16896
FP64 Cores / SM 32 32 32 64
FP64 Cores / GPU 1792 2560 3456 8448
INT32 Cores / SM NA 64 64 64
INT32 Cores / GPU NA 5120 6912 8448
Tensor Cores / SM NA 8 4 4
Tensor Cores / GPU NA 640 432 576
GPU Boost Clock 1480 MHz 1530 MHz 1410 MHz Not finalized
Peak FP16 TFLOPS 21.2 31.4 78 120
Peak FP32 TFLOPS 10.6 15.7 19.5 60
Peak FP64 TFLOPS 5.3 7.8 9.7 30
Texture Units 224 320 432 528
Memory Interface 4096-bit HBM2 4096-bit HBM2 5120-bit HBM2 5120-bit HBM3
Memory Size 16 GB 32 GB / 16 GB 40 GB / 80 GB 80 GB
Memory Data Rate 703 MHz DDR 877.5 MHz DDR 1215 MHz DDR Not finalized
Memory Bandwidth 720 GB/sec 900 GB/sec 1.6 TB/sec 3.0 TB/sec
L2 Cache Size 4096 KB 6144 KB 40960 KB 50 MB
Shared Memory Size / SM 64 KB up to 96 KB up to 164 KB 228 KB
Register File Size / SM 256 KB 256 KB 256 KB 256 KB
Register File Size / GPU 14336 KB 20480 KB 27648 KB 33792 KB
TDP 300 Watts 300 Watts 400 Watts 700 Watts
Transistors 15.3 billion 21.1 billion 54.2 billion 80 billion
GPU Die Size 610 mm2 815 mm2 826 mm2 814 mm2
TSMC Manufact. Proc. 16 nm FinFET+ 12 nm FFN 7 nm N7 4N cust. for NVIDIA 16 / 51
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General Components of a GPU Processor
Introduction to CUDA and GPGPU

NVIDIA CUDA Programming Guide
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Architecture of GA100 Processor
Introduction to CUDA and GPGPU

GA100 Full GPU with 128 SMs (A100 Tensor Core GPU has 108 SMs)

NVIDIA A100 Tensor Core GPU Architecture
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GP100 Streaming Multiprocessor Internals
Introduction to CUDA and GPGPU

Pascal SM consists of:
▶ 64 (cc 6.0) or 128 (6.1 and 6.2)

CUDA cores for arithmetic
operations,

▶ 16 (cc 6.0) or 32 (6.1 and 6.2)
special function units for
single-precision floating-point,

▶ 2 (6.0) or 4 (6.1 and 6.2) warp
schedulers.

NVIDIA
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GA100 Streaming Multiprocessor Internals
Introduction to CUDA and GPGPU

Ampere SM consists of:
▶ 64 FP32 cores for single-precision

arithmetic operations,
▶ 32 FP64 cores for double-precision

arithmetic operations,
▶ 64 INT32 cores for integer math,
▶ 4 mixed-precision Tensor Cores,
▶ 16 special function units for

single-precision floating-point
transcendental functions,

▶ 4 warp schedulers.

NVIDIA
21 / 51
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Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads

4. Warps are gathered in blocks

5. One block is assigned to single SM
only

6. One SM may execute many blocks

NVIDIA

23 / 51



Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads

4. Warps are gathered in blocks

5. One block is assigned to single SM
only

6. One SM may execute many blocks

NVIDIA

23 / 51



Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads

4. Warps are gathered in blocks

5. One block is assigned to single SM
only

6. One SM may execute many blocks

NVIDIA

23 / 51



Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads

4. Warps are gathered in blocks

5. One block is assigned to single SM
only

6. One SM may execute many blocks

NVIDIA

23 / 51



Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads

4. Warps are gathered in blocks

5. One block is assigned to single SM
only

6. One SM may execute many blocks

NVIDIA

23 / 51



Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads

4. Warps are gathered in blocks

5. One block is assigned to single SM
only

6. One SM may execute many blocks

NVIDIA

23 / 51



Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads

4. Warps are gathered in blocks

5. One block is assigned to single SM
only

6. One SM may execute many blocks

NVIDIA

23 / 51



Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads

4. Warps are gathered in blocks

5. One block is assigned to single SM
only

6. One SM may execute many blocks

NVIDIA

23 / 51



Kernels – Threads definitions
Introduction to CUDA and GPGPU

Simplification:
▶ special C++ function with __global__ declaration
▶ compiler runs N CUDA threads in parallel

Definition of a kernel:
1 __global__ void VecAdd(float* A, float* B, float* C)
2 {
3 int i = threadIdx.x;
4 C[i] = A[i] + B[i];
5 }

Invocation of a kernel:
1 int main()
2 {
3 VecAdd<<<1, N>>>(A, B, C);
4 }
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SIMD processing model
Introduction to CUDA and GPGPU
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SISD, MIMD, MISD - Flynn Taxonomy
Introduction to CUDA and GPGPU

26 / 51



SISD, MIMD, MISD - Flynn Taxonomy
Introduction to CUDA and GPGPU

26 / 51



SISD, MIMD, MISD - Flynn Taxonomy
Introduction to CUDA and GPGPU

26 / 51



Automatic threads scalability
Introduction to CUDA and GPGPU

1. Thread blocks are
automatically assigned to
SMs.

2. Programmers have no
control on this process.

3. Subsequent kernel execution
may result in different
assignment.

NVIDIA
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Heterogeneous programming with host and device
Introduction to CUDA and GPGPU

NVIDIA
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Parallel kernel and memory copying
Introduction to CUDA and GPGPU

▶ Parallel memory copying and kernel execution requires asynchronous
(non-blocking) memory copying and execution streams (cuda streams).

29 / 51



Parallel kernel and memory copying
Introduction to CUDA and GPGPU

▶ Parallel memory copying and kernel execution requires asynchronous
(non-blocking) memory copying and execution streams (cuda streams).

29 / 51



Parallel kernel and memory copying
Introduction to CUDA and GPGPU

▶ Parallel memory copying and kernel execution requires asynchronous
(non-blocking) memory copying and execution streams (cuda streams).

29 / 51



Parallel kernel and memory copying
Introduction to CUDA and GPGPU

▶ Parallel memory copying and kernel execution requires asynchronous
(non-blocking) memory copying and execution streams (cuda streams).

29 / 51



Part 1 – Introduction

Semester Schedule

GPU and modern HPC

Introduction to CUDA and GPGPU
Threads and Processes
CUDA Programming Language
Memory Management
Synchronization
Error reporting
Example

30 / 51



CUDA Language Characteristics
Introduction to CUDA and GPGPU

▶ Modified C++ language

▶ A program is build of C++ functions (executed in CPU or
GPU)

▶ Function running in GPU (streaming processor) is called
kernel.

▶ Kernel properties:

▶ can only access GPU memory or CPU memory with special
allocation

▶ no variable number of arguments
▶ no static variables
▶ limited recursion
▶ must be void

▶ Kernel launches are asynchronous
(return to CPU immediately).

▶ Kernel executes after all previous CUDA calls have completed.
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CUDA Language Characteristics
Threads Identification

▶ Each kernel contains local variables defining the execution
context:

▶ threadIdx – three dimensional value unique within a block
▶ blockIdx – three dimensional value unique within a grid
▶ blockDim – three dimensional value describing a block

dimensions
▶ gridDim – three dimensional value describing a grid dimensions
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CUDA Language Characteristics
Defining Grid and Blocks

▶ Thread block (composed of thread warps) is a group of
threads that can:

▶ synchronize their execution
▶ communicate via shared memory

▶ Single block is assigned to a single SM for all its lifetime.
▶ Grid = all blocks for given launch
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CUDA Language Elements
Introduction to CUDA and GPGPU

Kernel launch syntax:

kernel_name<<<gridDim, blockDim, sharedMem, strId>>>(p1,... pN)

▶ kernel_name – name of a kernel function with __global__

declaration

▶ gridDim – dim3 value describing number of blocks in a grid
▶ blockDim – dim3 value describing number of threads in each

block
▶ sharedMem – (optional) size of shared memory allocated for

each block in bytes
▶ strId – (optional) identification of a stream for parallel kernel

execution (default 0)
▶ p1,... pN – kernel parameters

(automatically copied to a device through the constant memory)
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CUDA Language Elements
Introduction to CUDA and GPGPU

▶ dim3 type:
▶ used for indexing and describing blocks of threads and grids
▶ can be constructed from one, two and three values
▶ based on uint[3], default value: (1,1,1)

▶ other built-in vector types:
▶ [u]{char,short,int,long}{1..4}, float{1..4}
▶ Structures accessed with x, y, z, w fields:

uint4 param;
int y = param.y;

▶ They all come with a constructor, for example:
int2 make_int2(int x, int y);
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CUDA Language Elements
Introduction to CUDA and GPGPU

▶ functions qualifiers:
▶ __global__ launched by CPU on device (must return void)
▶ __device__ called from other GPU functions (never CPU)
▶ __host__ can be executed by CPU

(can be used together with __device__)
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Two dimensional block execution I
(one block only)

1 __global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])
2 {
3 int i = threadIdx.x;
4 int j = threadIdx.y;
5 C[i][j] = A[i][j] + B[i][j];
6 }
7

8 int main()
9 {

10 ...
11 // Kernel invocation with one block of N * N * 1 threads
12

13 int numBlocks = 1;
14 dim3 threadsPerBlock(N, N);
15 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
16 ...
17 }
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Two dimensional block execution II
(more blocks require global threads identification)

1 __global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])
2 {
3 int i = blockIdx.x * blockDim.x + threadIdx.x;
4 int j = blockIdx.y * blockDim.y + threadIdx.y;
5 if (i < N && j < N)
6 C[i][j] = A[i][j] + B[i][j];
7 }
8

9 int main()
10 {
11 ...
12 // Kernel invocation with multiple blocks according to the

problem size (please note integer division)
13

14 dim3 threadsPerBlock(16, 16);
15 dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
16 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
17 ...
18 }
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Allocating and deallocating memory
Classical (manual) approach

1 int n = 1024;
2 int nbytes = n*sizeof(int);
3 int *d_array = 0;

▶ cudaMalloc((void**)&d_array, nbytes)

▶ cudaMemset(d_array, 0, nbytes)

▶ cudaFree(d_array)

▶ cudaMemcpy(void *dst, void *src, size_t nBytes, enum
cudaMemcpyKind direction)

▶ HostToDevice
▶ DeviceToHost
▶ DeviceToDevice

CPU blocking version (also assures that kernels have completed).
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Memory Management
Classical (manual) approach

De-referencing normal CPU pointer on GPU will crash
(and vice versa).

Good naming practices

d_ – device pointers
h_ – host pointers
s_ – shared memory
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Threads Synchronization I
Basics

▶ Device side: __syncthreads()

▶ Synchronizes all threads in a block
▶ No thread can pass this barrier until all threads in the block

reach it
▶ Used to avoid conflicts when accessing shared memory
▶ Allowed in conditional code only if the conditional is uniform

across the entire thread block
▶ Host side: cudaDeviceSynchronize()

▶ Blocks the current CPU thread until all GPU calls are finished.
▶ Including all streams.
▶ (formerly cudaThreadSynchronize())

Note
There are other more advanced device synchronization methods
which will be discussed later
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Device Threads Synchronization
Deprecation Warning

cudaThreadSynchronize() is now deprecated:
„Note that this function is deprecated because its name does not
reflect its behavior. Its functionality is similar to the non-deprecated
function cudaDeviceSynchronize(), which should be used instead.”
NVIDIA. Cuda toolkit documentation. https://docs.nvidia.com/cuda/
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CUDA Error Check API
Introduction to CUDA and GPGPU

▶ All CUDA calls return error code: cudaError_t

(Except for kernel launches)

▶ cudaError_t cudaGetLastError(void)

– Returns the code for the last error
▶ char* cudaGetErrorString(cudaError_t code)

– Returns a null-terminated character string describing the
error
printf("%s\n", cudaGetErrorString( cudaGetLastError()));

Check for the error only after a kernel has finished executing
– kernel calls are asynchronous.
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CUDA Debugging
Introduction to CUDA and GPGPU

1 #ifdef DEBUG
2 cudaThreadSynchronize();
3 cudaError_t error = cudaGetLastError();
4 if(error != cudaSuccess)
5 {
6 printf("CUDA error: %s\n", cudaGetErrorString(error));
7 exit(-1);
8 }
9 #endif

Compile with: $ nvcc -DDEBUG program.cu
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First kernel – Host code completed
Introduction to CUDA and GPGPU
1 #include<cuda.h>
2
3 int main()
4 {
5 cudaSetDevice(cutGetMaxGflopsDeviceId());
6 int N = 4096;
7 int numBytes = N*N * sizeof(int);
8 cudaMalloc((void**)&d_A, numbytes);
9 cudaMalloc((void**)&d_B, numbytes);

10 cudaMalloc((void**)&d_C, numbytes);
11
12 cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);
13 cudaMemcpy(d_B, h_B, numBytes, cudaMemcpyHostToDevice);
14 cudaMemset(d_C, 0, numBytes);
15
16 dim3 threadsPerBlock(16, 16);
17 dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
18 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
19
20 cudaMemcpy(h_C, d_C, numBytes, cudaMemcpyDeviceToHost);
21
22 cudaFree(d_A);
23 cudaFree(d_B);
24 cudaFree(d_C);
25 }
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