Graphic Processors in
Computational
Applications

Part 1 — Introduction

dr inz. Krzysztof Kaczmarski
2024

Materiaty sponsorowane przez:

Projekt ,,NERW 2 PW. Nauka — Edukacja — Rozwéj — Wspédtpraca”
wspotfinansowany jest ze srodkéw Unii Europejskiej w ramach
Europejskiego Funduszu Spotecznego

Zadanie 10 pn. ,Modyfikacja programoéw studiéw na kierunkach
prowadzonych przez Wydziat Matematyki i Nauk Informacyjnych”,
realizowane w ramach projektu ,NERW 2 PW. Nauka — Edukacja —
Rozwdj — Wspdtpraca”, wspétfinansowanego jest ze srodkéw Unii
Europejskiej w ramach Europejskiego Funduszu Spotecznego

Eﬂ?g[‘)jesjzsekie szeczpospolita Politechnika Unia Europejska
¢ .
e, o B Polska Warszawska Europejski Fundusz Spoteczny

N

a

Goals for today:

» Understand course passing requirements

» Get basic knowledge on GPU programming

51

Part 1 — Introduction

Semester Schedule

©

=\ Faculty of Mathematics
/ and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

Lectures
Technical part:

@ XN = & H &

. GPU threads basics

Process/Thread/Kernel, Host/Device

Memory management
Global/Local/Shared/Registers/Constant

Threads synchronization

Advanced memory management
Multiple GPU - HPC

Advanced parallel execution problems

Inter-warp communication
Thrust API

Lectures
Algorithms:

S B O

Model of vector processing
Parallel scalability models
Prefix-sums

Parallel sorting

Optimal matrix multiplication

Particle interactions

6

51

Obligatory Laboratories

Semester Schedule

1 Tutorial: Play in the playground — choose your toys
2 Tutorial: Can you reduce? (3p)
3 Tutorial: Touch a fractal border (3p)
4 Tutorial: Trust in Thrust (3p)
5-9 Project 1 (40-60p)
10-14 Project 2 (40-60p)

~

51

Projects
Grading |

» Choose two projects from the list:
> A (easy): 40 points
»> B (moderate): 60 points

» You must report progress every two weeks.

» Deadline for the projects: the last week of the semester.

Projects
Grading Il

» If a project contains no mistakes it gets 100% of the possible
points.

» There are penalty points for misuse of GPU concepts:
—10% : processor occupancy not achieved or too few
threads running
—10% : memory allocation or deallocation problems
—10% : AoS if SoA is possible
—5% : shared memory conflicts
—5% : ugly code, no comments, mess in files

—5% : no makefile (cmake is ok)

Part 1 — Introduction f@p Faculty of Mathematics
27 and Information Science

zJ
WARSAW UNIVERSITY OF TECHNOLOGY

GPU and modern HPC

10/51

The most powerful computers use GPU devices
GPU and modern HPC

Site: RIKEN Center for Comp. Sci. DOE/SC/Oak Ridge Nat. Lab. DOE/NNSA/LLNL

Manufacturer: Fujitsu IBM IBM / NVIDIA / Mellanox

Cores: 7,299,072 2,414,592 1,572,480

Memory: 4,866,048 GB 2,801,664 GB 1,382,400 GB

Processor: A64FX 48C 2.2GHz IBM POWER9 22C 3.07GHz IBM POWER9 22C 3.1GHz

Interconnect: Tofu interconnect D Dual-rail Infiniband Dual-rail Infiniband
Performance

Linpack 415,530 TFlop/s 148,600 TFlop/s 94,640 TFlop/s

Theoretical Peak

513,855 TFlop/s

200,795 TFlop/s

125,712 TFlop/s

Nmax 20,459,520 16,473,600 11,902,464

HPCG [TFlop/s] 13,366.4 2,025.75 1,795.67
Power Consumption

Power: 28,334.50 kW 10,096.00 kW 7,438.28 kW
Software

Operating System: Red Hat Enterprise Linux RHEL 7.4 RHEL 7.4

Compiler: FUJITSU Soft. V4.0 XLC, nvecc IBM XLC

Math Library:
MPI:

FUJITSU Soft. V4.0
FUJITSU Soft. V4.0

ESSL, CUBLAS 9.2
Spectrum MPI

ESSL, CUBLAS 9.2
IBM Spectrum MPI

Table: June 2020: www.top500.org

In order to read about FUGAKU get the report: Jack Dongarra’'s FUGAKU Report, 22 June 2020

51

www.top500.org
https://www.dropbox.com/s/aqntdb43p6so0z5/fugaku-report.pdf

GPU

Share

and modern HPC

- Share

-/ C

2006

2008

2010
10 NVIDIA Tesia V100
NVIDIA Tesla V100 SXM2
M widia vaita V100
B tntel Xeon Phi 51200
W vore
|77 NVIDIA Quadro RTX8000
| PezY-Sc2 700Mhz
B \VIDIA Tesia k20m
I NVIDIA Tesia K40/Intel Xeon Phi 7120P
AMD Vega 20
| Deep Computing Processor
I intel Xeon phi 5110
[NVIDIA Tesia k4om
I trtel Xeon phi 7120
171 pezv-sc
Intel MIC
[tntel xeon phi

I 41D Firepro 59150

2012 2014 2016 2018
NVIDIA Testa P100

I WIDIA vorta Gvi00

I WIDIA Tesia k4o

1 WIDIA Tesia k8o
NVIDIA 2050

W vv-core

. NVIDIA Tesla P100 NVLink:

17 WIDIA A100

1 et eon phi 31517

17 NVIDIA Tesia K20x

W vtrix-2000

0 tocet xeon phi 71200

I WIDIA Tesia GP100

I widia Titan Biack

1 pezv-sca soomhz

10 tocet xeon phi 3120p

W Ay

0 VIDIA Testa P4

2020

NVIDIA Supercomputer

POD Architecture

NVIDIA website

http://https://www.nvidia.com/en-us/data-center/dgx-a100/

DGX A100 HPC Server

GPU and modern HPC

2X More than Previ

NVIDIA website

http://https://www.nvidia.com/en-us/data-center/dgx-a100/

GPU computing applications
GPU and modern HPC

GPU Computing Applications

Libraries and Middleware

CuFFT.
CuDNN CUBLAS CULA Thrust = MATLAB
TensorRT CURAND MAGMA NPP - Mathematica
CUSPARSE

Programming Languages

Directives
(e.g. OpenACC)

CUDA-Enabled NVIDIA GPUs

NVIDIA Ampere Architecture Tesla A Series
(compute capabilities 8.x)

NVIDIA Turing Architecture. GeForce 2000 Series | Quadro RTX Series Tesla T Series
(compute capabilities 7.x)

NVIDIA Volta Architecture DRIVE/JETSON Quadro GV Series Tesla V Series
(compute capabilities 7.x) AGX Xavier

NVIDIA Pascal Architecture GeForce 1000 Series | Quadro P Series Tesla P Series
(compute capabilities 6.x)

4 s 4 =3 = 77 7. -
Embedded St " Professional W | B Center
Workstation

NVIDIA website

15 /51

http://

NVIDIA Processors Evolution
GPU and modern HPC

Product Architecture P100 V100 A100 H100
Announcement date April 2016 December 2017 May 2020 September 2022
GPU Codename GP100 GV100 GA100 GH100
GPU Architecture Pascal Volta Ampere Hopper
SMs 56 80 108 132

TPCs 28 40 54 66

FP32 Cores / SM 64 64 64 128

FP32 Cores / GPU 3584 5120 6912 16896

FP64 Cores / SM 32 32 32 64

FP64 Cores / GPU 1792 2560 3456 8448

INT32 Cores / SM NA 64 64 64

INT32 Cores / GPU NA 5120 6912 8448
Tensor Cores / SM NA 8 4 4

Tensor Cores / GPU NA 640 432 576

GPU Boost Clock 1480 MHz 1530 MHz 1410 MHz Not finalized
Peak FP16 TFLOPS 21.2 314 78 120

Peak FP32 TFLOPS 10.6 15.7 19.5 60

Peak FP64 TFLOPS 553 7.8 9.7 30

Texture Units 224 320 432 528
Memory Interface 4096-bit HBM2 4096-bit HBM2 5120-bit HBM2 5120-bit HBM3
Memory Size 16 GB 32GB /16 GB 40 GB / 80 GB 80 GB
Memory Data Rate 703 MHz DDR 877.5 MHz DDR 1215 MHz DDR Not finalized
Memory Bandwidth 720 GB/sec 900 GB/sec 1.6 TB/sec 3.0 TB/sec
L2 Cache Size 4096 KB 6144 KB 40960 KB 50 MB
Shared Memory Size / SM 64 KB up to 96 KB up to 164 KB 228 KB
Register File Size / SM 256 KB 256 KB 256 KB 256 KB
Register File Size / GPU 14336 KB 20480 KB 27648 KB 33792 KB
TDP 300 Watts 300 Watts 400 Watts 700 Watts
Transistors 15.3 billion 21.1 billion 54.2 billion 80 billion
GPU Die Size 610 mm? 815 mm? 826 mm? 814 mm2

TSMC Manufact. Proc. 16 nm FinFET+ 12 nm FFN 7 nm N7 4N cust. for NVIDIA 16 /51

Part 1 — Introduction

2 laculty of Nathematics
v und Information Sicience

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Introduction to CUDA and GPGPU
Threads and Processes
CUDA Programming Language
Memory Management
Synchronization
Error reporting
Example

17 /51

General Components of a GPU Processor
Introduction to CUDA and GPGPU

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

L2 Cache

DRAM

DRAM

CPU GPU

NVIDIA CUDA Programming Guide

18 /51

Architecture of GA100 Processor
Introduction to CUDA and GPGPU

GA100 Full GPU with 128 SMs (A100 Tensor Core GPU has 108 SMs)

NVIDIA A100 Tensor Core GPU Architecture

GP100 Streaming Multiprocessor Internals
Introduction to CUDA and GPGPU

Pascal SM consists of:

» 64 (cc 6.0) or 128 (6.1 and 6.2)
CUDA cores for arithmetic
operations,

» 16 (cc 6.0) or 32 (6.1 and 6.2)
special function units for
single-precision floating-point,

—— == > 2(6.0) or 4 (6.1 and 6.2) warp
schedulers.

648 Shared Mamory.

NVIDIA

20 /51

GA100 Streaming Multiprocessor Internals
Introduction to CUDA and GPGPU

Tz sz Fad Frad

Wiz wrsz Fraz sz

Tz nrsz Fraz sz

rse rsd [FP38 Fad

Tz oz a2 Frad

raz nraz a2 Frad

T2 rsz a2 oz

rse nrsz FPa2 oz

Nra2 a2 Fraz sz

Tz rsz Frag Frsa

Tz wrsz Pz Frad

Lo nstruction Cache

Register File (16,384 x 32-bit)

nvsz nraz FPE FoSE
inrsz sz PP Fesg
nrsz nraz FPad Fesg
sz sz PP s

TENSOR CORE
sz sz FPad Fpad
sz sz PP resg
sz sz PP Fesd

sz sz FPo Fesd

Fosa

Fre

Fos

Foo

Foo

Fro

TENSOR CORE

Register File (18,384 x 32-bit)

nvsz nraz FPE Fosd
sz sz PP Fesg
sz raz PP Fesg
sz sz o Fesd

TENSOR CORE
sz sz FPad Feag
sz sz o Fesd
sz sz o Fesg

sz sz Fpa Fesd

e e

152KB L1 Data Cache / Shared Memory.

Tex Tox

NVIDIA

Fos

Fro

Fos

Feo

Foe

TENSOR CORE

>

Ampere SM consists of:

64 FP32 cores for single-precision
arithmetic operations,

32 FP64 cores for double-precision
arithmetic operations,

64 INT32 cores for integer math,
4 mixed-precision Tensor Cores,

16 special function units for
single-precision floating-point
transcendental functions,

4 warp schedulers.

21/51

Part 1 — Introduction

Introduction to CUDA and GPGPU
Threads and Processes

7= Faculty of Nlathematics
2 and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

23 /51

Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

23 /51

Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads

23 /51

Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1. Threads are coupled in groups called
warps

2. Threads in a warp can only perform
the same instruction

3. A warp is build of 32 threads
4. Warps are gathered in blocks

23 /51

Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1.

Threads are coupled in groups called
warps

. Threads in a warp can only perform

the same instruction

. A warp is build of 32 threads

Warps are gathered in blocks

. One block is assigned to single SM

only

23 /51

Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1.

Threads are coupled in groups called
warps

. Threads in a warp can only perform

the same instruction

. A warp is build of 32 threads

Warps are gathered in blocks

. One block is assigned to single SM

only

. One SM may execute many blocks

23 /51

Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1.

Threads are coupled in groups called
warps

. Threads in a warp can only perform

the same instruction

. A warp is build of 32 threads

Warps are gathered in blocks

. One block is assigned to single SM

only

. One SM may execute many blocks

23 /51

Threads Execution
Introduction to CUDA and GPGPU

Simplification:

1.

Threads are coupled in groups called
warps

Threads in a warp can only perform
the same instruction

A warp is build of 32 threads
Warps are gathered in blocks

One block is assigned to single SM
only

One SM may execute many blocks

Streamin
Multiprocessor (SM)

nEeeaal

SM Instruction

scheduler

Time

NVIDIA

23 /51

Kernels — Threads definitions
Introduction to CUDA and GPGPU

Simplification:
» special C++ function with __global__ declaration
» compiler runs N CUDA threads in parallel

24 /51

Kernels — Threads definitions
Introduction to CUDA and GPGPU

Simplification:
» special C++ function with __global__ declaration
» compiler runs N CUDA threads in parallel

Definition of a kernel:

__global__ void VecAdd(float* A, float* B, float* C)
{

int i = threadIldx.x;
C[il = A[i] + B[il;

[T N O N I

Invocation of a kernel:

int main()

1
2 {
3 VecAdd<<<1, N>>>(A, B, C);
4}

24 /51

SIMD processing model

Introduction to CUDA and GPGPU

SIMD Instruction Pool

———|PU|~

———|PU|«

Data Pool

———|PU|

SIMD processing model

Introduction to CUDA and GPGPU

SIMD Instruction Pool

— +

22— |PU|—

24 LIpy|e

Data Pool

%pu._

2 4 ,Ipy|-

SIMD processing model

Introduction to CUDA and GPGPU

SIMD Instruction Pool

— +

Data Pool

SISD, MIMD, MISD - Flynn Taxonomy

Introduction to CUDA and GPGPU

SISD Instruction Pool

——

Data Pool

26 /51

SISD, MIMD, MISD - Flynn Taxonomy

Introduction to CUDA and GPGPU

SISD Instruction Pool MIMD

]

Data Pool

—[pu]-

- [ry]

—[pu]-

~[r]

Data Pool

—[Pu]-

~p

—[pu|-

kY

26

51

SISD, MIMD, MISD - Flynn Taxonomy

Introduction to CUDA and GPGPU

SISD Instruction Pool MIMD Instruction Pool MISD Instruction Pool

—rol4 L[y
—ul4 L[y
—pul- L[py
~f- Ly

]

Data Pool

Data Pool
Data Pool

Automatic threads scalability
Introduction to CUDA and GPGPU

Multithreaded QUDAProgram
Bok0 Bkl Bock? Beck3
Bock4 BockS BockG Bock?.
1. Thread blocks are | |
automatically assigned to l l
SMs.

GPU with 2 SMs GPU with 4SMs

|9|Il||9|1| ‘MCIHSIIHSIZHSI:;‘

L] llil@lilj

ek s |) ks ok k7

NVIDIA

27/51

Automatic threads scalability
Introduction to CUDA and GPGPU

Multithreaded QUDAProgram
[Block® Bkl Black2 |Block3.
[Block4 BlockS Black6 | Block7.
1. Thread blocks are | |
automatically assigned to l l
SMS‘ GPU with 2SMs GPU with 4 SMs
2. Programmers have no el | |
control on this process. [Bock® [Biockd| | ks Bock Bloeks [aecks |
Bk ok | ok e ks [k

NVIDIA

27/51

Automatic threads scalability
Introduction to CUDA and GPGPU

Multithreaded QUDAProgram
[Block® Bkl Black2 |Block3.
[Block4 BlockS Black6 | Block7.
1. Thread blocks are | |
automatically assigned to l l
SMS‘ GPU with 2SMs GPU with 4 SMs
2. Programmers have no el | |

control on this process. (Blockd Bock1 l@@_@

3. Subsequent kernel execution L] [k ks ke [eock7.
may result in different
assignment.

NVIDIA

27/51

Heterogeneous programming with host and device

Introduction to CUDA and GPGPU

Serial code

Parallel kernel

Kernel0<<<>>>()

N

Serial code

Host

Device

Grid 0

Block (0, 0) || Block (1,0) || Block (2, 0)

SR

Block (0, 1) || Block (1,1) || Block (2, 1)

S S

Host

NVIDIA

28 /51

Parallel kernel and memory copying
Introduction to CUDA and GPGPU

TIME

e e e

Parallel kernel and memory copying
Introduction to CUDA and GPGPU

TIME

i steney | i e |
improved latency kernel memcpy | memcpy kernel

Parallel kernel and memory copying
Introduction to CUDA and GPGPU

TIME

S S |
improved latency kernel memcpy | memcpy kernel

kemet
kemel

high latency

parallel execution

Parallel kernel and memory copying
Introduction to CUDA and GPGPU

TIME

S S |
improved latency kernel memcpy | memcpy kernel

kemet
kemel

high latency

parallel execution

» Parallel memory copying and kernel execution requires asynchronous
(non-blocking) memory copying and execution streams (cuda streams).

Part 1 — Introduction G@) Facutty of Mathematics
27 and Information Science

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Introduction to CUDA and GPGPU

CUDA Programming Language

30 /51

CUDA Language Characteristics
Introduction to CUDA and GPGPU

» Modified C++ language

31/51

CUDA Language Characteristics
Introduction to CUDA and GPGPU

» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

31/51

CUDA Language Characteristics
Introduction to CUDA and GPGPU
» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

» Function running in GPU (streaming processor) is called
kernel.

31/51

CUDA Language Characteristics
Introduction to CUDA and GPGPU
» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

» Function running in GPU (streaming processor) is called
kernel.

» Kernel properties:

31/51

CUDA Language Characteristics

Introduction to CUDA and GPGPU

» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

» Function running in GPU (streaming processor) is called
kernel.

» Kernel properties:

» can only access GPU memory or CPU memory with special
allocation

31/51

CUDA Language Characteristics

Introduction to CUDA and GPGPU

» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

» Function running in GPU (streaming processor) is called
kernel.
» Kernel properties:

» can only access GPU memory or CPU memory with special
allocation
» no variable number of arguments

31/51

CUDA Language Characteristics

Introduction to CUDA and GPGPU

» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

» Function running in GPU (streaming processor) is called
kernel.

» Kernel properties:

» can only access GPU memory or CPU memory with special
allocation

» no variable number of arguments

P no static variables

31/51

CUDA Language Characteristics

Introduction to CUDA and GPGPU

» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

» Function running in GPU (streaming processor) is called
kernel.

» Kernel properties:

» can only access GPU memory or CPU memory with special
allocation

» no variable number of arguments

P no static variables

» limited recursion

31/51

CUDA Language Characteristics

Introduction to CUDA and GPGPU

» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

» Function running in GPU (streaming processor) is called
kernel.
» Kernel properties:
» can only access GPU memory or CPU memory with special
allocation
no variable number of arguments
no static variables
limited recursion
must be void

vVVyyvyy

31/51

CUDA Language Characteristics

Introduction to CUDA and GPGPU

» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

» Function running in GPU (streaming processor) is called
kernel.
» Kernel properties:

» can only access GPU memory or CPU memory with special
allocation

» no variable number of arguments

P no static variables

» limited recursion

» must be void

» Kernel launches are asynchronous
(return to CPU immediately).

31/51

CUDA Language Characteristics

Introduction to CUDA and GPGPU

» Modified C++ language

» A program is build of C++ functions (executed in CPU or
GPU)

» Function running in GPU (streaming processor) is called
kernel.
» Kernel properties:

» can only access GPU memory or CPU memory with special
allocation

» no variable number of arguments

P no static variables

» limited recursion

» must be void

» Kernel launches are asynchronous
(return to CPU immediately).

» Kernel executes after all previous CUDA calls have completed.

31/51

CUDA Language Characteristics

Threads ldentification

» Each kernel contains local variables defining the execution
context:

32/51

CUDA Language Characteristics

Threads ldentification

» Each kernel contains local variables defining the execution
context:

» threadIdx — three dimensional value unique within a block

32/51

CUDA Language Characteristics

Threads ldentification

» Each kernel contains local variables defining the execution
context:

» threadIdx — three dimensional value unique within a block
» blockIdx — three dimensional value unique within a grid

32 /51

CUDA Language Characteristics

Threads ldentification

» Each kernel contains local variables defining the execution
context:
» threadIdx — three dimensional value unique within a block
» blockIdx — three dimensional value unique within a grid
» blockDim — three dimensional value describing a block
dimensions

32 /51

CUDA Language Characteristics

Threads ldentification

» Each kernel contains local variables defining the execution

context:
» threadIdx — three dimensional value unique within a block
» blockIdx — three dimensional value unique within a grid
» blockDim — three dimensional value describing a block
dimensions
» gridDim — three dimensional value describing a grid dimensions

32 /51

CUDA Language Characteristics
Defining Grid and Blocks

» Thread block (composed of thread warps) is a group of
threads that can:

33 /51

CUDA Language Characteristics
Defining Grid and Blocks

» Thread block (composed of thread warps) is a group of
threads that can:

» synchronize their execution

33 /51

CUDA Language Characteristics

Defining Grid and Blocks

» Thread block (composed of thread warps) is a group of
threads that can:
» synchronize their execution
» communicate via shared memory

33 /51

CUDA Language Characteristics

Defining Grid and Blocks

» Thread block (composed of thread warps) is a group of
threads that can:
» synchronize their execution
» communicate via shared memory

» Single block is assigned to a single SM for all its lifetime.

33 /51

CUDA Language Characteristics

Defining Grid and Blocks

» Thread block (composed of thread warps) is a group of
threads that can:
» synchronize their execution
» communicate via shared memory

» Single block is assigned to a single SM for all its lifetime.

» Grid = all blocks for given launch

33 /51

CUDA Language Elements

Introduction to CUDA and GPGPU

Kernel launch syntax:

kernel_name<<<gridDim, blockDim, sharedMem, strId>>>(pl,... pN)

» kernel_name — name of a kernel function with __global__
declaration

34 /51

CUDA Language Elements

Introduction to CUDA and GPGPU

Kernel launch syntax:

kernel_name<<<gridDim, blockDim, sharedMem, strId>>>(pl,... pN)

» kernel_name — name of a kernel function with __global__
declaration

» griddim — dim3 value describing number of blocks in a grid

34 /51

CUDA Language Elements

Introduction to CUDA and GPGPU

Kernel launch syntax:

kernel_name<<<gridDim, blockDim, sharedMem, strId>>>(pl,... pN)

» kernel_name — name of a kernel function with __global__
declaration

» griddim — dim3 value describing number of blocks in a grid

P blockDim — dim3 value describing number of threads in each
block

34 /51

CUDA Language Elements

Introduction to CUDA and GPGPU

Kernel launch syntax:

kernel_name<<<gridDim, blockDim, sharedMem, strId>>>(pl,... pN)

» kernel_name — name of a kernel function with __global__
declaration

» griddim — dim3 value describing number of blocks in a grid

P blockDim — dim3 value describing number of threads in each
block

» sharedMem — (optional) size of shared memory allocated for
each block in bytes

34 /51

CUDA Language Elements

Introduction to CUDA and GPGPU

Kernel launch syntax:

kernel_name<<<gridDim, blockDim, sharedMem, strId>>>(pl,... pN)

| 2

>
>

kernel_name — name of a kernel function with __global__
declaration

gridDim — dim3 value describing number of blocks in a grid

blockDim — dim3 value describing number of threads in each
block

sharedMen — (optional) size of shared memory allocated for
each block in bytes

strId — (optional) identification of a stream for parallel kernel
execution (default 0)

34 /51

CUDA Language Elements

Introduction to CUDA and GPGPU

Kernel launch syntax:

kernel_name<<<gridDim, blockDim, sharedMem, strId>>>(pl,... pN)

| 2

>
>

kernel_name — name of a kernel function with __global__
declaration

gridDim — dim3 value describing number of blocks in a grid

blockDim — dim3 value describing number of threads in each
block

sharedMen — (optional) size of shared memory allocated for
each block in bytes

strId — (optional) identification of a stream for parallel kernel
execution (default 0)

pl,... pN — kernel parameters
(automatically copied to a device through the constant memory)

CUDA Language Elements

Introduction to CUDA and GPGPU

> dim3 type:
» used for indexing and describing blocks of threads and grids
» can be constructed from one, two and three values
» based on uint[3], default value: (1,1,1)

35/51

CUDA Language Elements

Introduction to CUDA and GPGPU

> dim3 type:
» used for indexing and describing blocks of threads and grids
» can be constructed from one, two and three values
» based on uint[3], default value: (1,1,1)
» other built-in vector types:
» [u]{char,short,int,long}{1..4}, float{l..4}
» Structures accessed with x, y, z, w fields:
uint4 param;
int y = param.y;
» They all come with a constructor, for example:
int2 make_int2(int x, int y);

51

CUDA Language Elements

Introduction to CUDA and GPGPU

» functions qualifiers:

» __global__ launched by CPU on device (must return void)
» __device__ called from other GPU functions (never CPU)
» _ _host__ can be executed by CPU

(can be used together with __device__)

36 /51

Two dimensional block execution |
(one block only)

1 __global__ void MatAdd(float A[N][N], float B[N][N], float C[N][NJ)
2 {

3 int i = threadldx.x;

4 int j = threadIdx.y;

5 Cclil[j1 = A[i1[3]1 + B[il[j];

6

7

8

9

}
int main()
{
10 .
11 // Kernel invocation with one block of N * N * 1 threads
12
13 int numBlocks = 1;
14 dim3 threadsPerBlock (N, N);
15 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
16
17 }

37 /51

Two dimensional block execution I

(more blocks require global threads identification)

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][NI)
{

blockIdx.x * blockDim.x + threadIdx.x;
int j blockIdx.y * blockDim.y + threadldx.y;

1

2

3 int i

4

5 if (A <N& j<N
6

7

8

9

Clil (31 = A[i1[3]1 + BLil[jl;

}
int main()
10 {
11 ..
12 // Kernel invocation with multiple blocks according to the
problem size (please note integer division)
13
14 dim3 threadsPerBlock (16, 16);
15 dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
16 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
17
18 }

38 /51

Part 1 — Introduction G@) Foculty of Mathematics
27 and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

Introduction to CUDA and GPGPU

Memory Management

39 /51

Allocating and deallocating memory

Classical (manual) approach

1 int n = 1024;
2 int nbytes = n*sizeof (int);
3 int *d_array = 0O;

P cudaMalloc((void**)&d_array, nbytes)

40 /51

Allocating and deallocating memory

Classical (manual) approach

1 int n = 1024;
2 int nbytes = n*sizeof (int);
3 int *d_array = 0O;
P cudaMalloc((void**)&d_array, nbytes)

» cudaMemset(d_array, O, nbytes)

40 /51

Allocating and deallocating memory

Classical (manual) approach

1 int n = 1024;

2 int nbytes = n*sizeof (int);

3 int *d_array = 0O;
P cudaMalloc((void**)&d_array, nbytes)
» cudaMemset(d_array, O, nbytes)

» cudaFree(d_array)

40 /51

Allocating and deallocating memory

Classical (manual) approach

1 int n = 1024;

2 int nbytes = n*sizeof (int);

3 int *d_array = 0O;
P cudaMalloc((void**)&d_array, nbytes)
» cudaMemset(d_array, O, nbytes)

» cudaFree(d_array)

> cudaMemcpy(void *dst, void *src, size_t nBytes, enum

cudaMemcpyKind direction)

40 /51

Allocating and deallocating memory

Classical (manual) approach

1 int n = 1024;
2 int nbytes = n*sizeof (int);
3 int *d_array = 0O;

P cudaMalloc((void**)&d_array, nbytes)

» cudaMemset(d_array, O, nbytes)

» cudaFree(d_array)

> cudaMemcpy(void *dst, void *src, size_t nBytes, enum
cudaMemcpyKind direction)

» HostToDevice

40 /51

Allocating and deallocating memory

Classical (manual) approach

1 int n = 1024;
2 int nbytes = n*sizeof (int);
3 int *d_array = 0O;

P cudaMalloc((void**)&d_array, nbytes)
» cudaMemset(d_array, O, nbytes)

» cudaFree(d_array)
> cudaMemcpy(void *dst, void *src, size_t nBytes, enum
cudaMemcpyKind direction)
» HostToDevice
» DeviceToHost

40 /51

Allocating and deallocating memory

Classical (manual) approach

1 int n = 1024;
2 int nbytes = n*sizeof (int);
3 int *d_array = 0O;

P cudaMalloc((void**)&d_array, nbytes)
» cudaMemset(d_array, O, nbytes)

» cudaFree(d_array)
> cudaMemcpy(void *dst, void *src, size_t nBytes, enum
cudaMemcpyKind direction)
» HostToDevice
» DeviceToHost
» DeviceToDevice

40 /51

Allocating and deallocating memory

Classical (manual) approach

1 int n = 1024;
2 int nbytes = n*sizeof (int);
3 int *d_array = 0O;

P cudaMalloc((void**)&d_array, nbytes)
» cudaMemset(d_array, O, nbytes)

» cudaFree(d_array)
> cudaMemcpy(void *dst, void *src, size_t nBytes, enum
cudaMemcpyKind direction)
» HostToDevice
» DeviceToHost
» DeviceToDevice

40 /51

Allocating and deallocating memory

Classical (manual) approach

1 int n = 1024;
2 int nbytes = n*sizeof (int);
3 int *d_array = 0O;

P cudaMalloc((void**)&d_array, nbytes)
» cudaMemset(d_array, O, nbytes)

» cudaFree(d_array)
> cudaMemcpy(void *dst, void *src, size_t nBytes, enum
cudaMemcpyKind direction)
» HostToDevice
» DeviceToHost
» DeviceToDevice

CPU blocking version (also assures that kernels have completed).

40 /51

Memory Management

Classical (manual) approach

De-referencing normal CPU pointer on GPU will crash
(and vice versa).

d_ — device pointers

h_ — host pointers

s_ — shared memory

41 /51

Part 1 — Introduction G@) Foculty of Mathematics
27 and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

Introduction to CUDA and GPGPU

Synchronization

42 /51

Threads Synchronization |

Basics

» Device side: __syncthreads()

43 /51

Threads Synchronization |

Basics

» Device side: __syncthreads()

» Synchronizes all threads in a block

43 /51

Threads Synchronization |

Basics

» Device side: __syncthreads()

» Synchronizes all threads in a block
» No thread can pass this barrier until all threads in the block
reach it

43 /51

Threads Synchronization |

Basics

» Device side: __syncthreads()

» Synchronizes all threads in a block

» No thread can pass this barrier until all threads in the block
reach it

» Used to avoid conflicts when accessing shared memory

43 /51

Threads Synchronization |

Basics

» Device side: __syncthreads()

» Synchronizes all threads in a block

» No thread can pass this barrier until all threads in the block
reach it

» Used to avoid conflicts when accessing shared memory

» Allowed in conditional code only if the conditional is uniform
across the entire thread block

43 /51

Threads Synchronization |

Basics

» Device side: __syncthreads()
» Synchronizes all threads in a block
» No thread can pass this barrier until all threads in the block
reach it
» Used to avoid conflicts when accessing shared memory
» Allowed in conditional code only if the conditional is uniform

across the entire thread block

» Host side: cudaDeviceSynchronize ()

43 /51

Threads Synchronization |

Basics

» Device side: __syncthreads()
» Synchronizes all threads in a block
» No thread can pass this barrier until all threads in the block
reach it
» Used to avoid conflicts when accessing shared memory
» Allowed in conditional code only if the conditional is uniform

across the entire thread block

» Host side: cudaDeviceSynchronize ()

» Blocks the current CPU thread until all GPU calls are finished.

43 /51

Threads Synchronization |

Basics

» Device side: __syncthreads()
» Synchronizes all threads in a block
» No thread can pass this barrier until all threads in the block
reach it
» Used to avoid conflicts when accessing shared memory
» Allowed in conditional code only if the conditional is uniform

across the entire thread block

» Host side: cudaDeviceSynchronize ()

» Blocks the current CPU thread until all GPU calls are finished.

» Including all streams.

43

Threads Synchronization |

Basics

» Device side: __syncthreads()

» Synchronizes all threads in a block

» No thread can pass this barrier until all threads in the block
reach it

» Used to avoid conflicts when accessing shared memory

» Allowed in conditional code only if the conditional is uniform
across the entire thread block

» Host side: cudaDeviceSynchronize ()

» Blocks the current CPU thread until all GPU calls are finished.

» Including all streams.
» (formerly cudaThreadSynchronize())

43

Threads Synchronization |

Basics

» Device side: __syncthreads()

» Synchronizes all threads in a block

» No thread can pass this barrier until all threads in the block
reach it

» Used to avoid conflicts when accessing shared memory

» Allowed in conditional code only if the conditional is uniform
across the entire thread block

» Host side: cudaDeviceSynchronize ()

» Blocks the current CPU thread until all GPU calls are finished.

» Including all streams.
» (formerly cudaThreadSynchronize())

43

Threads Synchronization |

Basics

» Device side: __syncthreads()
» Synchronizes all threads in a block
» No thread can pass this barrier until all threads in the block
reach it
» Used to avoid conflicts when accessing shared memory
» Allowed in conditional code only if the conditional is uniform

across the entire thread block

» Host side: cudaDeviceSynchronize ()

» Blocks the current CPU thread until all GPU calls are finished.
» Including all streams.
» (formerly cudaThreadSynchronize())

Note

There are other more advanced device synchronization methods
which will be discussed later

Device Threads Synchronization

Deprecation Warning

cudaThreadSynchronize () iS now deprecated:

»Note that this function is deprecated because its name does not
reflect its behavior. Its functionality is similar to the non-deprecated
function cudaDeviceSynchronize(), which should be used instead.”

NVIDIA. Cuda toolkit documentation. https://docs.nvidia.com/cuda/

Part 1 — Introduction

Introduction to CUDA and GPGPU

Error reporting

7= Faculty of Mathematics
2 and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

CUDA Error Check API

Introduction to CUDA and GPGPU

» All CUDA calls return error code: cudaError_t
(Except for kernel launches)

46 /51

CUDA Error Check API

Introduction to CUDA and GPGPU

» All CUDA calls return error code: cudaError_t
(Except for kernel launches)

» cudaError_t cudaGetLastError (void)
— Returns the code for the last error

46 /51

CUDA Error Check API

Introduction to CUDA and GPGPU

» All CUDA calls return error code: cudaError_t
(Except for kernel launches)

» cudaError_t cudaGetLastError (void)
— Returns the code for the last error
P» char* cudaGetErrorString(cudaError_t code)

— Returns a null-terminated character string describing the
error

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

46

51

CUDA Error Check API

Introduction to CUDA and GPGPU

» All CUDA calls return error code: cudaError_t
(Except for kernel launches)

» cudaError_t cudaGetLastError (void)
— Returns the code for the last error
P» char* cudaGetErrorString(cudaError_t code)

— Returns a null-terminated character string describing the
error

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

46

51

CUDA Error Check API

Introduction to CUDA and GPGPU

» All CUDA calls return error code: cudaError_t
(Except for kernel launches)

» cudaError_t cudaGetLastError (void)
— Returns the code for the last error

P» char* cudaGetErrorString(cudaError_t code)

— Returns a null-terminated character string describing the
error

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

Check for the error only after a kernel has finished executing
— kernel calls are asynchronous.

46 /51

CUDA Debugging

Introduction to CUDA and GPGPU

1 #ifdef DEBUG

2 cudaThreadSynchronize() ;

3 cudaError_t error = cudaGetLastError();

4 if (error != cudaSuccess)

5 1

6 printf ("CUDA error: %s\n", cudaGetErrorString(error));
7 exit(-1);

s}

9 #endif

Compile with: $ nvcc -DDEBUG program.cu

47 /51

Part 1 — Introduction G@) Foculty of Mathematics
27 and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

Introduction to CUDA and GPGPU

Example

48 /51

First kernel — Host code completed
Introduction to CUDA and GPGPU

1 #include<cuda.h>

2
8
4
b)
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25 }

int main()

cudaSetDevice(cutGetMaxGflopsDeviceId());
int N = 4096;

int numBytes = N*N * sizeof (int);
cudaMalloc((void**)&d_A, numbytes);
cudaMalloc((void**)&d_B, numbytes);
cudaMalloc ((void**)&d_C, numbytes);

cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice) ;
cudaMemcpy (d_B, h_B, numBytes, cudaMemcpyHostToDevice);
cudaMemset (d_C, O, numBytes);

dim3 threadsPerBlock (16, 16);
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

cudaMemcpy (h_C, d_C, numBytes, cudaMemcpyDeviceToHost) ;
cudaFree(d_A);

cudaFree(d_B);
cudaFree(d_C);

49 /51

Bibliography

[4 Multiple Authors. GPU Gems.
https://developer.nvidia.com/gpugems/gpugems/contributors.

[NVIDIA. Cuda toolkit documentation.
https://docs.nvidia.com/cuda/.

[NVIDIA CUDA Toolkit. Cuda c++ best practices guide.
https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html, 2020.

51

Materiaty sponsorowane przez:

Projekt ,,NERW 2 PW. Nauka — Edukacja — Rozwéj — Wspédtpraca”
wspotfinansowany jest ze srodkéw Unii Europejskiej w ramach
Europejskiego Funduszu Spotecznego

Zadanie 10 pn. ,Modyfikacja programoéw studiéw na kierunkach
prowadzonych przez Wydziat Matematyki i Nauk Informacyjnych”,
realizowane w ramach projektu ,NERW 2 PW. Nauka — Edukacja —
Rozwdj — Wspdtpraca”, wspétfinansowanego jest ze srodkéw Unii
Europejskiej w ramach Europejskiego Funduszu Spotecznego

Eﬂ?g[‘)jesjzsekie szeczpospolita Politechnika Unia Europejska
¢ .
e, o B Polska Warszawska Europejski Fundusz Spoteczny

	Semester Schedule
	GPU and modern HPC
	Introduction to CUDA and GPGPU

