@ IFaculty of Mathematics

\ZJ and Information $cience

WARSAW UNIVERSITY OF TECHNOLOGY

Graphic Processors in
Computational
Applications

Part 2 — CUDA Advances

dr inz. Krzysztof Kaczmarski
2021

Eoreparerie e ool |
A M B Poiska \Varszawska Europejski Fundusz Spoteczny

Materiaty sponsorowane przez:

Projekt ,,NERW 2 PW. Nauka — Edukacja — Rozwéj — Wspédtpraca”
wspotfinansowany jest ze srodkéw Unii Europejskiej w ramach
Europejskiego Funduszu Spotecznego

Zadanie 10 pn. ,Modyfikacja programoéw studiéw na kierunkach
prowadzonych przez Wydziat Matematyki i Nauk Informacyjnych”,
realizowane w ramach projektu ,NERW 2 PW. Nauka — Edukacja —
Rozwdj — Wspdtpraca”, wspétfinansowanego jest ze srodkéw Unii
Europejskiej w ramach Europejskiego Funduszu Spotecznego

Eﬂ?g[‘)jesjzsekie szeczpospolita Politechnika Unia Europejska
¢ .
e, o B Polska Warszawska Europejski Fundusz Spoteczny

Goals for today:

» Understand advanced CUDA techniques
» Get familiar with pitfalls of parallel programming

3/60

7= Faculty of Mathematics
2 and Information Science

Part 2 — CUDA Advances
Warp threads scheduling

4 /60

[N, B N U R R

Conditional blocks: idle and active threads
Warp threads scheduling

instruction 1
if (threadIdx.x<4)
instruction 2
else
instruction 3
instruction 4

60

o O A W N R

instruction 1
if (threadIdx.x<4)
instruction 2
else
instruction 3
instruction 4

Conditional blocks: idle and active threads
Warp threads scheduling

Warp of Threads

Active threads Inactive threads

¥
S
SRS

o O A W N R

Conditional blocks: idle and active threads

Warp threads scheduling

instruction 1
if (threadIdx.x<4)
instruction 2
else
instruction 3
instruction 4

Instr. for Threads 1-3: 1 2 (3) 4
Instr. for Threads 4-8: 1 (2) 3 4

Warp of Threads

Active threads Inactive threads

¥
S
SRS

o O A W N R

Conditional blocks: idle and active threads

Warp threads scheduling

instruction 1
if (threadIdx.x<4)
instruction 2
else
instruction 3
instruction 4

Instr. for Threads 1-3: 1 2 (3) 4
Instr. for Threads 4-8: 1 (2) 3 4

A single thread is assigned to a single ALU.
Waste of bandwidth — some ALUs do nothing.

Warp of Threads

Active threads Inactive threads

¥
S
SRS

o O A W N R

Conditional blocks: idle and active threads

Warp threads scheduling

instruction 1
if (threadIdx.x<4)
instruction 2
else
instruction 3
instruction 4

Instr. for Threads 1-3: 1 2 (3) 4
Instr. for Threads 4-8: 1 (2) 3 4

Common mistake:
Instr 2. before Instr. 3

A single thread is assigned to a single ALU.
Waste of bandwidth — some ALUs do nothing.

Warp of Threads

Active threads Inactive threads

¥
S
SRS

Conditional blocks: warps scheduling

Warp threads scheduling

o A W N =

instruction 1
if (threadIdx.x<32)
instruction 2
else
instruction 3
instruction 4

60

Conditional blocks: warps scheduling

Warp threads scheduling

instruction 1
if (threadIdx.x<32)
instruction 2
else
instruction 3
instruction 4

o A W N R

Instr. 1

R

Instr. 2

Conditional blocks: warps scheduling
Warp threads scheduling

o A W N R

Warp 0 Warp 1

instruction 1
if (threadIdx.x<32)
instruction 2
else
instruction 3
instruction 4

Instr. for Warp 0: 1 2 4
Instr. for Warp 1: 1 3 4

Instr. 1

33556099 8356090

Instr. 2

Conditional blocks: warps scheduling
Warp threads scheduling

o A W N R

Warp 0 Warp 1

Instr. 1

i 33556099 8356090

if (threadIdx.x<32) S
instruction 2

5595555
instruction 3

instruction 4 Instr. 3

e o p 0124 56559595
58959555 95555555

Warp-level control saves bandwidth in conditional operations.

Part 2 — CUDA Advances

Advanced synchronization

7= Faculty of Mathematics
2 and Information Science

7 /60

Advanced Threads Synchronization |
Advanced synchronization
Device side:

P int __syncthreads_count(int predicate); is identical to
__syncthreads () with the additional feature that it evaluates
predicate for all threads of the block and returns the number
of threads for which predicate evaluates to non-zero.

8 /60

Advanced Threads Synchronization |
Advanced synchronization
Device side:

P int __syncthreads_count(int predicate); is identical to
__syncthreads () with the additional feature that it evaluates
predicate for all threads of the block and returns the number
of threads for which predicate evaluates to non-zero.

P int __syncthreads_and(int predicate); similarly but evaluates

predicate for all threads of the block and returns non-zero if
and only if predicate evaluates to non-zero for all of them.

8 /60

Advanced Threads Synchronization |
Advanced synchronization
Device side:

P int __syncthreads_count(int predicate); is identical to
__syncthreads () with the additional feature that it evaluates
predicate for all threads of the block and returns the number
of threads for which predicate evaluates to non-zero.

P int __syncthreads_and(int predicate); similarly but evaluates
predicate for all threads of the block and returns non-zero if
and only if predicate evaluates to non-zero for all of them.

» int __syncthreads_or(int predicate); ...similarly but returns
non-zero if predicate evaluates to non-zero for any of the
threads.

8 /60

Advanced Threads Synchronization |
Advanced synchronization
Device side:

P int __syncthreads_count(int predicate); is identical to
__syncthreads () with the additional feature that it evaluates
predicate for all threads of the block and returns the number
of threads for which predicate evaluates to non-zero.

P int __syncthreads_and(int predicate); similarly but evaluates
predicate for all threads of the block and returns non-zero if
and only if predicate evaluates to non-zero for all of them.

» int __syncthreads_or(int predicate); ...similarly but returns
non-zero if predicate evaluates to non-zero for any of the
threads.

P void __syncwarp(unsigned mask=0xffffffff); will cause the
executing thread to wait until all warp lanes named in mask
have executed a __syncwarp() (with the same mask) before
resuming execution. All non-exited threads named in mask
must execute a corresponding __syncwarp() with the same
mask, or the result is undefined.

Advanced Threads Synchronization Il

Advanced synchronization

Device side memory fence functions:

P void __threadfence_block(); waits until all global and shared
memory accesses made by the calling thread before are visible
to all threads in the thread block.

9 /60

Advanced Threads Synchronization Il

Advanced synchronization

Device side memory fence functions:

P void __threadfence_block(); waits until all global and shared
memory accesses made by the calling thread before are visible
to all threads in the thread block.

P> void __threadfence(); waits until all global and shared

memory accesses made by the calling thread prior to
__threadfence() are visible to:

9 /60

Advanced Threads Synchronization Il

Advanced synchronization

Device side memory fence functions:

P void __threadfence_block(); waits until all global and shared
memory accesses made by the calling thread before are visible
to all threads in the thread block.

P> void __threadfence(); waits until all global and shared

memory accesses made by the calling thread prior to
__threadfence() are visible to:

» All threads in the thread block for shared memory accesses,

9 /60

Advanced Threads Synchronization Il

Advanced synchronization

Device side memory fence functions:

P void __threadfence_block(); waits until all global and shared
memory accesses made by the calling thread before are visible
to all threads in the thread block.

P> void __threadfence(); waits until all global and shared

memory accesses made by the calling thread prior to
__threadfence() are visible to:

» All threads in the thread block for shared memory accesses,
» All threads in the device for global memory accesses.

9 /60

WARSAW UNIVERSITY OF TECHNOLOGY

Part 2 — CUDA Advances

Variables and Memory
Memory types
Global Memory Access

Shared Memory
Example of shared memory utilization — matrices

10 /60

7= Faculty of Mathematics
2 and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

Part 2 — CUDA Advances

Variables and Memory
Memory types

11 /60

Accessing different types of memory

Variables and Memory

GPU Grid

Block (0, 0) Block (1, 0)

mm| |

Thread (0,0) Thread (1,0) || Thread (0,0) Thread (1,0)

yve i Fyyy b4 i Fyy N

4 A 4 4 v

4..

4.;

CPU)

1

12 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads

13 /60

Variable Qualifiers (GPU side)
Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application

13 /60

Variable Qualifiers (GPU side)
Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__
» Stored in constant memory space

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__
» Stored in constant memory space
» Accessible by all threads

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__
» Stored in constant memory space
» Accessible by all threads
» Lifetime: the CUDA context in which it is created

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__
» Stored in constant memory space
» Accessible by all threads
» Lifetime: the CUDA context in which it is created
» shared__

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__
» Stored in constant memory space
» Accessible by all threads
» Lifetime: the CUDA context in which it is created
» shared__
» Stored in on-chip shared memory (very low latency)

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__
» Stored in constant memory space
» Accessible by all threads
» Lifetime: the CUDA context in which it is created
» shared__
» Stored in on-chip shared memory (very low latency)
» Allocated by execution configuration or declared at compile
time

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__
» Stored in constant memory space
» Accessible by all threads
» Lifetime: the CUDA context in which it is created
» shared__
» Stored in on-chip shared memory (very low latency)
» Allocated by execution configuration or declared at compile
time
» Accessible by all threads in the same thread block

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__
» Stored in constant memory space
» Accessible by all threads
» Lifetime: the CUDA context in which it is created
» shared__
» Stored in on-chip shared memory (very low latency)
» Allocated by execution configuration or declared at compile
time
» Accessible by all threads in the same thread block
» Lifetime: kernel execution

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
» _ device__
» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application
» constant__
» Stored in constant memory space
» Accessible by all threads
» Lifetime: the CUDA context in which it is created
» shared__
» Stored in on-chip shared memory (very low latency)
» Allocated by execution configuration or declared at compile
time
» Accessible by all threads in the same thread block
» Lifetime: kernel execution
> __managed__

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):

| 2

| 2

>

>

__device__

» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application

__constant__

» Stored in constant memory space
» Accessible by all threads
» Lifetime: the CUDA context in which it is created

__shared__

» Stored in on-chip shared memory (very low latency)

» Allocated by execution configuration or declared at compile
time

» Accessible by all threads in the same thread block

» Lifetime: kernel execution

__managed__

» Can be referenced by both device and host

13 /60

Variable Qualifiers (GPU side)

Variables and Memory
A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):

| 2

| 2

>

>

__device__

» Stored in device global memory (large, high latency)
» Accessible by all threads
» Lifetime: application

__constant__

» Stored in constant memory space
» Accessible by all threads
» Lifetime: the CUDA context in which it is created

__shared__

» Stored in on-chip shared memory (very low latency)

» Allocated by execution configuration or declared at compile
time

» Accessible by all threads in the same thread block

» Lifetime: kernel execution

__managed__

» Can be referenced by both device and host
» Lifetime: application

13 /60

7= Faculty of Mathematics
2 and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

Part 2 — CUDA Advances

Variables and Memory

Global Memory Access

14 /60

Global Memory Operations

Variables and Memory

» Memory operations are executed per warp

» 32 threads in a warp provide memory addresses
» Hardware determines into which lines those addresses fall

» Stores:
» Invalidate L1, go at least to L2, 32-byte granularity
» Three types of loads:

» Caching (default)
» Non-caching
» Read-only

Memory Load

Variables and Memory

» Caching (default mode)
» Attempts to hit in L1, then L2, then GMEM
» Load granularity is 128-byte line
» Non-caching
» Compile with -Xptxas -dlcm=cg option to nvcc
» Attempts to hit in L2, then GMEM
(Does not hit in L1, invalidates the line if it's in L1 already)
» Load granularity is 32 bytes
» Read-only

» Loads via read-only cache:
(Attempts to hit in Read-only cache, then L2, then GMEM)
» Load granularity is 32 bytes

16 /60

Coalesced Global Memory Access

Perhaps the most important optimization

Global memory loads and stores by threads of a warp are coalesced
by the device into as few as possible transactions.

Compute capability > 6.0 (since pascal)

The concurrent accesses of the threads of a warp will coalesce into
a number of transactions equal to the number of 32-byte
transactions necessary to service all of the threads of the warp.

Compute capability < 5.2 (before pascal)

L1-caching of accesses to global memory can be optionally
enabled. If L1-caching is enabled on these devices, the number of
required transactions is equal to the number of required 128-byte
aligned segments.

Simple Access Pattern (cc>6.0)
Variables and Memory

addresses from a warp

o 32 &4 96 12B 160 192 224 756 2BE 320 357 384

» The k-th thread accesses the k-th word in a 32-byte aligned
array.

» If the threads of a warp access adjacent 4-byte words
» . ..and not all equally participate

» ...and/or random permuted access inside the block
>

then still only four 32-byte transactions would have been
performed by a device.

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html, 2020

18 /60

Misaligned Sequential Access Pattern (cc>6.0)

Variables and Memory

addresses from a warp

o 31 64 9 128 160 192 224 1256 288 120 351 384

» The sequential threads
accesses sequential memory
but not aligned with a
32-byte segment,

» then five 32-byte
transactions would have
been performed by a
device.

19 /60

Misaligned Sequential Access Pattern (cc>6.0)

Variables and Memory

o

addresses from a warp

31 64 9 128 160 192 224 1256 288 120 351 384

» The sequential threads
accesses sequential memory
but not aligned with a
32-byte segment,

» then five 32-byte
transactions would have
been performed by a
device.

©ONO O WN

__global__ void offsetCopy(float *odata,
float *idata,
int offset)

int xid = blockIdx.x * blockDim.x +
threadldx.x + offset;
odata[xid] = idatal[xid];

19 /60

Misaligned Sequential Access Pattern (cc>6.0)

Variables and Memory

addresses from a warp

1 __global__ void offsetCopy(float *odata,
2 float *idata,
a 32 64 96 128 160 192 224 156 288 1310 352 384 i { int OffSEt)
5 int xid = blockIdx.x * blockDim.x +
6 threadIdx.x + offset;
» The Sequential threads 7 odata[xid] = idatal[xid];
8
accesses sequential memory
but not aligned with a
Copy with Offset (Tesla V100-5XM2-16GB)
32-byte segment,
. N N e AN
» then five 32-byte -
transactions would have =
been performed by a
device.

0123245678 05101112131415161718192021 222324252627 282830 3132
Offset.

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html, 2020

Strided Access Pattern

Variables and Memory

|

» A stride of 2 results in a 50% of
load/store efficiency since half the
elements in the transaction are not
used and represent wasted
bandwidth.

» As the stride increases, the
effective bandwidth decreases until
the point where 32 32-byte
segments are loaded for the 32
threads in a warp. -

Strided Access Pattern

Variables and Memory

__global__ void strideCopy(float *odata,
float *idata,
int stride)

{

int xid = (blockIdx.x*blockDim.x +
threadIdx.x)*stride;
odata[xid] = idatal[xid];

¥

0NN WN =

|

» A stride of 2 results in a 50% of
load/store efficiency since half the
elements in the transaction are not
used and represent wasted
bandwidth.

» As the stride increases, the
effective bandwidth decreases until
the point where 32 32-byte
segments are loaded for the 32
threads in a warp. -

Strided Access Pattern

Variables and l\/Iemor 1 __global__ void strideCopy(float *odata,
Y 2 float *idata,
3 int stride)
4 A
5) int xid = (blockIdx.x*blockDim.x +
6 threadIdx.x)*stride;
7 odata[xid] = idatal[xid];
h 8 3
Copy with Stride (Tesla V100-5XM2-16GB)
i
QE:
> A stride of 2 results in a 50% of Fao
load/store efficiency since half the 7
elements in the transaCtion are nOt : 12345 67 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
used and represent wasted of
bandwidth. » Avoid non-unit-stride global memory

ol accesses — use shared memory.
» As the stride increases, the y

eﬂ.‘ective bandwidth decreases until NVIDIA CUDA Toolkit. Cuda c++ best practices guide.
the point where 32 32_byte https://docs.nvidia.com/cuda/cuda-c-best-practices-
segments are loaded for the 32 erdejfitealiut

. 2020
threads in a warp. 20/60

In older architectures

(not supported now)

Aligned and
Addresses: 96 128 160 192 224 256
[I
Threads: o 3
‘Compute capability: 1.0and 1.1 1.2and 1.3 2.xand 3.x
Memory transactions: Uncached Uncached Cached
1x 648 at 128 1x 64B at 128 1x 32B at 128 1x 128B at 128
1x 648 at 192 1x 64B at 192 1x 328 at 160
1x 328 at 192
1x 328 at 224
Aligned and
Addresses: 96 128 160 192 224 256 288
T
reads: o 3
‘Compute capability: 1.0and 1.1 1.2and 1.3 2.xand 3.x
Memory transactions: Uncached Uncached Cached
8x 32B at 128 1x 64B at 128 1x 32B at 128 1x 128B at 128
8x 328 at 192 1x 32B at 192
Mis-aligned and
Addresses: 96 128 160 192 224 256 288
T
Threads: o 3
Compute capability: 1.0and 1.1 1.2and 1.3 2.xand 3.x
Memory transactions: Uncached Uncached Cached
7x32B at 128 1x 128B at 128 1x 32B at 128 1x 128B at 128
8x 328 at 192 1x 32B at 256 1x 328 at 192
1x 32B at 256 1x 328 at 256

21 /60

Coalescing: Guidelines |

Variables and Memory

> Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

22 /60

Coalescing: Guidelines |

Variables and Memory

> Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

» For single-dimensional arrays

22 /60

Coalescing: Guidelines |

Variables and Memory

> Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)
» For single-dimensional arrays
» array of type* accessed by BaseAddress + tid

22 /60

Coalescing: Guidelines |

Variables and Memory

> Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

» For single-dimensional arrays

» array of type* accessed by BaseAddress + tid
P> type*x must meet the size and alignment requirements

22 /60

Coalescing: Guidelines |

Variables and Memory

> Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)
» For single-dimensional arrays
» array of type* accessed by BaseAddress + tid
P> type*x must meet the size and alignment requirements

» if size of typex* is larger than 16 it must be treated with
additional care

22 /60

Coalescing: Guidelines |

Variables and Memory

> Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

» For single-dimensional arrays

» array of type* accessed by BaseAddress + tid

P> type*x must meet the size and alignment requirements

» if size of typex* is larger than 16 it must be treated with
additional care

» For two-dimensional arrays

22 /60

Coalescing: Guidelines |

Variables and Memory

> Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)
» For single-dimensional arrays
» array of type* accessed by BaseAddress + tid
P> type*x must meet the size and alignment requirements
» if size of typex* is larger than 16 it must be treated with
additional care
» For two-dimensional arrays

» array of type* accessed by BaseAddress + width*tiy + tix

22 /60

Coalescing: Guidelines |

Variables and Memory

> Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

» For single-dimensional arrays

» array of type* accessed by BaseAddress + tid

P> type*x must meet the size and alignment requirements

» if size of typex* is larger than 16 it must be treated with
additional care

» For two-dimensional arrays

» array of type* accessed by BaseAddress + width*tiy + tix
» yidth is a multiply of 16

22 /60

Coalescing: Guidelines |

Variables and Memory

> Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)
» For single-dimensional arrays
» array of type* accessed by BaseAddress + tid
P> type*x must meet the size and alignment requirements
» if size of typex* is larger than 16 it must be treated with
additional care
» For two-dimensional arrays

» array of type* accessed by BaseAddress + width*tiy + tix

» yidth is a multiply of 16

» The width of the thread block is a multiple of half the warp
size

Coalescing: Guidelines Il

Variables and Memory

» If proper memory alignment is impossible:

23 /60

Coalescing: Guidelines Il

Variables and Memory

» If proper memory alignment is impossible:
» Use structures of arrays instead of arrays of structures

23 /60

Coalescing: Guidelines Il

Variables and Memory

» If proper memory alignment is impossible:
» Use structures of arrays instead of arrays of structures

23 /60

Coalescing: Guidelines |l

Variables and Memory

» If proper memory alignment is impossible:
» Use structures of arrays instead of arrays of structures

AOS‘JEl‘yl‘21‘101‘902‘@!2‘22‘102‘

‘963‘213‘23‘1113‘384‘2/4‘24"“‘

23 /60

Coalescing: Guidelines |l

Variables and Memory

» If proper memory alignment is impossible:
» Use structures of arrays instead of arrays of structures

AoS ‘ &l ‘ Y1 ‘ 21 ‘ w1 ‘ T2 ‘ Y2 ‘ 22 ‘ wa ‘
‘ T3 ‘ Y3 ‘ z3 ‘ w3 ‘ T4 ‘ Y4 ‘ 24 ‘ ‘
SoA‘ 1 ‘ Z2 ‘ x3 ‘ 24 ‘ o0 ‘ - ‘ . ‘ = ‘
Cw [o | » [wl] | | | |
(o | = | » | &] | | —] |

Coalescing: Guidelines |l

Variables and Memory

» If proper memory alignment is impossible:

» Use structures of arrays instead of arrays of structures

AoS ‘ &l ‘ Y1 ‘ 21 ‘ w1 ‘ T2 ‘ Y2 ‘ 22 ‘ wa ‘
‘ T3 ‘ Y3 ‘ z3 ‘ w3 ‘ Ty ‘ Ya ‘ 24 ‘ ‘
SA| @ | a2 | m | o | | T
‘ Y1 ‘ Y2 ‘ Y3 ‘ Ya ‘ ‘ ‘ ‘ ‘
L2 [» | = | & | | [1]
[w [w | ws | wi] |]

» Use __align(4)
declarations

align(8) or __align(16) in structure

Coalescing example |

Variables and Memory

Misaligned memory access with float3 data

__global__ void accessFloat3(float3 *d_in, float3 *d_out)

1

2 {

3 int index = blockIdx.x * blockDim.x + threadIdx.x;
4 float3 a = d_in[index];

5 a.x += 2;

6 a.y += 2;

7 a.z += 2;

8 d_out[index] = a;

9 }

» Each thread reads 3 floats = 12 bytes

» Half warp reads 16 * 12 = 192 bytes
(three 64B non-contiguous segments)

NVIDIA. Cuda whitepapers. www.nvidia.com/cuda

24 /60

Coalescing example Il

Variables and Memory

© ® N o O A W N =

10
11
12
13
14
15
16
17
18

Coalesced memory access with float3 data

__global__ void accessFloat3Shared(float *g_in, float *g_out)

int index = 3 * blockIdx.x * blockDim.x + threadldx.x;
__shared__ float s_data[256%3];

s_data[threadIdx.x] = g_in[index];
s_data[threadIdx.x+256] = g_in[index+256];
s_data[threadIdx.x+512] = g_in[index+512];

__syncthreads();

float3 a = ((float3*)s_data) [threadIdx.x];
a.x += 2;

a.y += 2;

a.z += 2;

((float3#*)s_data) [threadldx.x] = a;
__syncthreads() ;

g_out[index] = s_data[threadIdx.x];
g_out [index+256] s_data[threadIdx.x+256];
g_out [index+512] = s_data[threadIdx.x+512];

NVIDIA. Cuda whitepapers. www.nvidia.com/cuda

25

60

7= Faculty of Mathematics
2 and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

Part 2 — CUDA Advances

Variables and Memory

Shared Memory

26 /60

Allocating shared memory

Variables and Memory
Static way

Device side:
1 __constant__ uint blockSize = 64;
2 __global__ void kernel(...)
3 {
4 coa
5 __shared__ short arrayO[blockSize];
6 __shared__ float arrayl[blockSize];
7 __shared__ int array2[blockSizel;
8
9 }
Host side:

1 kernel<<< nBlocks, blockSize >>>(...);

27 /60

Allocating shared memory

Variables and Memory
Static way

Dynamic way

Device side: Device side:
1 __constant__ uint blockSize = 64; 1 __constant__ uint blockSize = 64;
2 __global__ void kernel(...) 2 __global__ void kernel(...)
3 { 38 {
4 . 4 extern __shared__ float array[];
5 __shared__ short arrayO[blockSizel; b //All variables declared in this fashion,
6 __shared__ float arrayl [blockSize] ; start at the same address in memory, so:
7 __shared__ int array2[blockSizel; 6
8 7 short* array0 = (shortx)array;
9 8 float* arrayl = (float*)&arrayO[blockSize];
9 int* array2 = (int*)&arrayl[blockSize];
Host side: Lo
1 kernel<<< nBlocks, blockSize >>>(...); HOSt Slde:
1 smBytes = blockSize*sizeof (float)
2 + blockSize*sizeof (short)
8 + blockSize*sizeof (int);
4
5 kernel<<< nBlocks, blockSize, smBytes >>>(...);

N
~
=)
o

Allocating shared memory

Variables and Memory

Static way Dynamic way
Device side: Device side:
1 __constant__ uint blockSize = 64; 1 __constant__ uint blockSize = 64;
2 __global__ void kernel(...) 2 __global__ void kernel(...)
3 { 38 {
4 . 4 extern __shared__ float array[];
5 __shared__ short arrayO[blockSizel; b //All variables declared in this fashion,
6 __shared__ float arrayl[blocksize]; start at the same address in memory, so:
7 __shared__ int array2[blockSizel; 6
8 7 short* array0 = (shortx)array;
9 } 8 float* arrayl = (float*)&arrayO[blockSize];
9 int* array2 = (int*)&arrayl[blockSize];
Host side: Lo
1 kernel<<< nBlocks, blockSize >>>(...); P{OSt S|de:
1 smBytes = blockSize*sizeof (float)
2 + blockSize*sizeof (short)
3 + blockSize*sizeof (int) ;
4
5 kernel<<< nBlocks, blockSize, smBytes >>>(...);

Note that pointers need to be aligned to the type they point to.
Error: array1 is not aligned to 4 bytes:

1 short* array0 = (shortx)array;
2 float* arrayl = (floatx)&array0[127];

N

7 /60

Organization of shared memory

Variables and Memory

» Shared memory is divided into equally sized memory modules,
called banks.

28 /60

Organization of shared memory

Variables and Memory

» Shared memory is divided into equally sized memory modules,
called banks.

» Different banks can be accessed simultaneously.

28 /60

Organization of shared memory

Variables and Memory

» Shared memory is divided into equally sized memory modules,
called banks.

» Different banks can be accessed simultaneously.

» Read or write to n addresses in n banks multiplies bandwidth
of a single bank by n.

28 /60

Organization of shared memory

Variables and Memory

v

Shared memory is divided into equally sized memory modules,
called banks.

Different banks can be accessed simultaneously.

Read or write to n addresses in n banks multiplies bandwidth
of a single bank by n.

If many threads refers the same bank the access is serialized —
hardware splits a memory request that has bank conflicts into
as many separate conflict-free requests as necessary.

28 /60

Organization of shared memory

Variables and Memory

v

Shared memory is divided into equally sized memory modules,
called banks.

Different banks can be accessed simultaneously.

Read or write to n addresses in n banks multiplies bandwidth
of a single bank by n.

If many threads refers the same bank the access is serialized —
hardware splits a memory request that has bank conflicts into
as many separate conflict-free requests as necessary.

There is one exception if all threads within a half-warp
accesses the same address.

Bank conflicts

Variables and Memory

Shared memory banks are organized in such a way that successive
32-bit words are assigned to successive banks and each bank has a
bandwidth of 32 bits per clock cycle. The bandwidth of shared
memory is 32 bits per bank per clock cycle.

29 /60

Access with no bank conflicts

Variables and Memory

° °
left: stride =1
right: stride random

NVIDIA. Cuda whitepapers. www.nvidia.com/cuda

30/60

Access with bank conflicts

Variables and Memory

left: stride = 2 (2 way bank conflict)
right: stride = 8 (8 way bank conflict)

NVIDIA. Cuda whitepapers. www.nvidia.com/cuda

» Padding — adding extra space between array elements in order
to brake cyclic access to same bank.

31/60

Example of bank conflicts removal in reduction |
Variables and Memory

AddreSSing int ai = offset* (2%thid+1)-1;
. . int bi = offset* (2*thid+2)-1;
Without Padding temprbi += templail;

offset = 1: Address (ai) stride i5 2, resulting in 2-way bank conflicts

Bank | 0 1 ‘ 2 3 ‘ 4 5 g [0 | 11 | 12 | 13 [14 | 15
- - —v—
- / Yo
\
/
ai [0 | 2 [4] 6\ e..\ m'--| EEEEEE \-."20 |22 [2 \26 [] £
thia | 0 [1 [2 [3 [a5 |6 7 [a9 [w[n[2]mn]mu]rns

8 10

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

Example of bank conflicts removal in reduction Il

Vet alEs ersl Memory int ai = offset* (2*thid+l)-1;

Addressing int bi = offset* (2*thid+2)-1;

ai += ai / NUM BANKS;

With Padding bi += bi / NUM_BANKS;

temp[bi] += templail;

offset = 1: Padding addresses every 16 elements removes bank conflicts

Bank | 0 1 ‘ 2 3 ‘ 4 0 | 1 | 12| 13| 14 | 15 ‘
| S]
./ B V A
r ..\._
ai [0 |2:\4 ‘64‘| 8 [27 [2 [31 |
thia| 0 | 1 2 3 [4 [3 [1] s

Offset = 2: Padding addresses every 16 elements removes bank conflicts

Padding increment: [o [1 [2]

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

Padding implementation |

Variables and Memory

34/60

Padding implementation |
Variables and Memory
We need more space in shared memory:

1 unsigned int extra_space = num_elements / NUM_BANKS;

34 /60

Padding implementation |

Variables and Memory

© ® N o O~ W N =

We need more space in shared memory:

unsigned int extra_space = num_elements / NUM_BANKS;

Padding macro:

#define NUM_BANKS 16
#define LOG_NUM_BANKS 4

#ifdef ZERO_BANK_CONFLICTS

#define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS \
+ (index) >> (2 * LOG_NUM_BANKS))

#else

#define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS)

#endif

34 /60

Padding implementation |

Variables and Memory

© ® N o O~ W N =

We need more space in shared memory:

unsigned int extra_space = num_elements / NUM_BANKS;

Padding macro:

#define NUM_BANKS 16
#define LOG_NUM_BANKS 4

#ifdef ZERO_BANK_CONFLICTS

#define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS \
+ (index) >> (2 * LOG_NUM_BANKS))

#else

#define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS)

#endif

Zero bank conflicts requires even more additional space:

#ifdef ZERO_BANK_CONFLICTS
extra_space += extra_space / NUM_BANKS;
#endif

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

34 /60

Padding implementation Il

Variables and Memory

35 /60

Padding implementation Il
Variables and Memory
Loading data into shared memory:

int ai = thid, bi = thid + (n/2);

1

2

3 // compute spacing to avoid bank conflicts
4 int bankOffsetA = CONFLICT_FREE_OFFSET(ai);
5 int bankOffsetB CONFLICT_FREE_OFFSET (bi) ;
6
7
8

TEMP(ai + bankOffsetA) = g_idatalail;
TEMP (bi + bankOffsetB) = g_idatalbil;

35 /60

Padding implementation Il

Variables and Memory

® N o GO A W N H

N o g A W N R

Loading data into shared memory:

int ai = thid, bi = thid + (n/2);

// compute spacing to avoid bank conflicts
int bankOffsetA = CONFLICT_FREE_OFFSET(ai);
int bankOffsetB = CONFLICT_FREE_OFFSET(bi);

TEMP(ai + bankOffsetA) = g_idatalail;
TEMP (bi + bankOffsetB) = g_idatalbil;

Algorithm:

int ai = offset*(2*thid+1)-1;
int bi offset*x(2xthid+2)-1;

ai += CONFLICT_FREE_OFFSET(ai);
bi += CONFLICT_FREE_OFFSET(bi);

TEMP(bi) += TEMP(ai);

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

35

60

7= Faculty of Mathematics
2 and Information Science

WARSAW UNIVERSITY OF TECHNOLOGY

Part 2 — CUDA Advances

Variables and Memory

Example of shared memory utilization — matrices

36 /60

Matrix Multiplication

No shared memory used

= B.width-1

B.height

row =]

©OONOOHAWN -

Aheight

Aheight-1

// Matriz multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A,

Matrix B,
Matrix C)

// Each thread computes one element of C
// by accumulating results into Cvalue
float Cvalue = 0;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
for (int e = 0; e < A.width; ++e)

Cvalue += A.elements[row * A.width + e]

* B.elements[e * B.width + coll;

C.elements[row * C.width + col] = Cvalue;

37

Matrix Multiplication

Host program for clarity

void MatMul(const Matrix A,
const Matrix B,
Matrix C)

// Load A and B to device memory
Matrix d_A;
d_A.width = A.width; d_A.height = A.height;
size_t size = A.width * A.height
* sizeof (float);

cudaMalloc(&d_A.elements, size);

cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;

Matrix d_B;

d_B.width = B.width;

d_B.height = B.height;

size = B.width * B.height * sizeof(float);

cudaMalloc(&d_B.elements, size);
cudaMemcpy (d_B.elements, B.elements, size,
cudaMemcpyHostToDevice) ;

22
23
24
25
26
27
28
29
30
31
32
33
34
35)
36
37
38
39
40
41
42
43

// Allocate C in device memory

Matrix d_C;

d_C.width = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);

// Invoke kernel
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width / dimBlock.x,
A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>
(d_A, d_B, d_C);

// Read C from device memory
cudaMemcpy (C.elements, d_C.elements, size,
cudaMemcpyDeviceToHost) ;

// Free device memory

cudaFree(d_A.elements) ;
cudaFree(d_B.elements) ;
cudaFree(d_C.elements) ;

38

Matrix Multiplication

with shared memory used |

i
COWNOUTHWN K

B.height
== e
wWN R

-
~

BLOCK SIZE BLOCK SIZE

-
o1

= e e
© N

NN
=1

N
N

BLOCK_SIZE
Aheight

N
W

BLOCK_SIZE-1.

N
=

BLOCK SIZE BLOCK_SIZE BLOCK_SIZE

B.width 25
26
27
28
. . 29
NVIDIA. Cuda c++ programming guide. 30

iy 31
www.nvidia.com/cuda 3

83}
34

A.width

typedef struct {

int width;
int height;
int stride;
float* elements;
} Matrix;
__device__ float GetElement(const Matrix A,
int row, int col)
{
return A.elements[row * A.stride + coll;
}
__device__ void SetElement(Matrix A, int row,
int col, float value)
{
A.elements[row * A.stride + col] = value;
}

// Get the BLOCK_SIZExBLOCK_SIZE sub-matriz Asub

// of A located col sub-matrices to the right and

// row sub-matrices down from the upper-left corner

// of A

__device__ Matrix GetSubMatrix(Matrix A, int row,
int col)

Matrix Asub;

Asub.width = BLOCK_SIZE;

Asub.height = BLOCK_SIZE;

Asub.stride = A.stride;

Asub.elements = &A.elements[A.stride
* BLOCK_SIZE * row
+ BLOCK_SIZE * coll;

return Asub;

39

60

Matrix Multiplication

with shared memory used Il

OCK_SIZE-1,

o
B

[BLOCK_SIZE-

BLOCK SIZE BLOCK_SIZE BLOCK_SIZE

A.width B.width

BLOCK_SIZE

BLOCK SIZE BLOCK SIZE

B.height

Aheight

NVIDIA. Cuda c++ programming guide.

www.nvidia.com/cuda

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

__global__ void MatMulKernel(Matrix A,

Matrix B,
Matrix C)

// Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;

// Each thread block computes one sub-matriz

// Csub of C

Matrix Csub = GetSubMatrix(C, blockRow,
blockCol);

// Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0;

// Thread row and column within Csub

int row = threadIdx.y;
int col = threadIdx.x;

40

60

Matrix Multiplication

with shared memory used |1l

BLOCK SIZE BLOCK SIZE

B.height

BLOCK_SIZE-1.

BLOCK SIZE BLOCK_SIZE

A.width

BLOCK_SIZE

B.width

BLOCK_SIZE

Aheight

NVIDIA. Cuda c++ programming guide.

www.nvidia.com/cuda

51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68

69
70
71
72
73
74
75
76
7
78
79

81
82

for (int m = 0; m < (A.width / BLOCK_SIZE); ++m)

{

}

// Get sub-matriz Asub of A
Matrix Asub = GetSubMatrix(A, blockRow, m);

// Get sub-matriz Bsub of B
Matrix Bsub = GetSubMatrix(B, m, blockCol);

// Shared memory used to store Asub and Bsub
__shared__ float As[BLOCK_SIZE] [BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE] [BLOCK_SIZE];

// Each thread loads one element of each sub
-matriz

As[row] [col]l = GetElement(Asub, row, col);

Bs[row] [col] = GetElement(Bsub, row, col);

// Synchronize to make sure the sub-matrices
// are loaded before starting the
computation
__syncthreads();
// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK_SIZE; ++e)
Cvalue += As[row][e] * Bs[e][coll;

// Synchronize to asure that the preceding
// computation is done before loading new
// sub-matrices of A and B

syncthreads () ;

// Write Csub to device memory, one thread, one

element

SetElement (Csub, row, col, Cvalue);

41

60

//fii\~\ IFaculty of Mathematics
(@) and Information Sicience

=z

Part 2 — CUDA Advances

Asynchronous operations

42 /60

Streams API

Asynchronous operations

» Applications manage concurrency through streams.

43 /60

Streams API

Asynchronous operations
» Applications manage concurrency through streams.
» A stream is a sequence of commands that execute in order.

43 /60

Streams API

Asynchronous operations
» Applications manage concurrency through streams.
» A stream is a sequence of commands that execute in order.

» Different streams may execute their commands out of order
with respect to one another or concurrently.

43 /60

Streams API

Asynchronous operations
» Applications manage concurrency through streams.
» A stream is a sequence of commands that execute in order.

» Different streams may execute their commands out of order
with respect to one another or concurrently.

P> cudaStream_t — Stream type

43 /60

Streams API

Asynchronous operations

>
>
>

Applications manage concurrency through streams.
A stream is a sequence of commands that execute in order.

Different streams may execute their commands out of order
with respect to one another or concurrently.

cudaStream_t — Stream type

cudaStreamCreate(&stream)

43 /60

Streams API

Asynchronous operations

>
>
>

v

Applications manage concurrency through streams.
A stream is a sequence of commands that execute in order.

Different streams may execute their commands out of order
with respect to one another or concurrently.

cudaStream_t — Stream type
cudaStreamCreate(&stream)

cudaStreamDestroy (&stream) — waits for all tasks to complete
before destroying a stream;

Streams API

Asynchronous operations

>
>
>

v

Applications manage concurrency through streams.
A stream is a sequence of commands that execute in order.

Different streams may execute their commands out of order
with respect to one another or concurrently.

cudaStream_t — Stream type

cudaStreamCreate(&stream)

cudaStreamDestroy (&stream) — waits for all tasks to complete
before destroying a stream;

cudaStreamQuery() — checks if all preceding commands in a
stream have completed

Streams API

Asynchronous operations

>
>
>

v

Applications manage concurrency through streams.
A stream is a sequence of commands that execute in order.

Different streams may execute their commands out of order
with respect to one another or concurrently.

cudaStream_t — Stream type

cudaStreamCreate(&stream)

cudaStreamDestroy (&stream) — waits for all tasks to complete
before destroying a stream;

cudaStreamQuery() — checks if all preceding commands in a
stream have completed

cudaStreamSynchronize() — forces the run-time to wait until all
preceding commands in a stream have completed.

Streams API

Asynchronous operations

>
>
>

v

Applications manage concurrency through streams.
A stream is a sequence of commands that execute in order.

Different streams may execute their commands out of order
with respect to one another or concurrently.

cudaStream_t — Stream type

cudaStreamCreate(&stream)

cudaStreamDestroy (&stream) — waits for all tasks to complete
before destroying a stream;

cudaStreamQuery() — checks if all preceding commands in a
stream have completed

cudaStreamSynchronize() — forces the run-time to wait until all
preceding commands in a stream have completed.
cudaThreadSynchronize() — forces the run-time to wait until all
preceding device tasks in all streams have completed

Streams API| — example

Asynchronous operations

NVIDIA. Cuda c++ programming guide. www.nvidia.com/cuda

cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
cudaStreamCreate (&stream[i]) ;
float* hostPtr;
cudaMallocHost ((void**)&hostPtr, 2 * size, cudaHostAllocDefault);
cudaMalloc ((void**)&inputDevPtr, 2 * size);
cudaMalloc ((void**)&outputDevPtr, 2 * size);
for (int i = 0; i < 2; ++i)
cudaMemcpyAsync (inputDevPtr + i * size, hostPtr + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
for (int i = 0; i < 2; ++i)
myKernel<<<100, 512, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);
for (int i = 0; i < 2; ++i)
cudaMemcpyAsync (hostPtr + i * size, outputDevPtr + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);
cudaThreadSynchronize() ;
for (int i = 0; i < 2; ++i)
cudaStreamDestroy(&stream[i]) ;

44

60

7= Faculty of Mathematics
2 and Information Science

Part 2 — CUDA Advances

Problems of parallelism
Race conditions
Volatile

45 /60

//fii\~\ IFaculty of Mathematics
(@) and Information Sicience

=z
WARSAW UNIVERSITY OF TECHNOLOGY

Part 2 — CUDA Advances

Problems of parallelism
Race conditions

46 / 60

Race conditions

Problems of parallelism
Simplest possible operation (*x is a global memory pointer)
Let int *x point to global memory. *x++ happens in 3 steps:
1. Read the value in *x into a register.

2. Add 1 to the value in the register.
3. Write the result back to *x.

Race conditions

Problems of parallelism

Simplest possible operation (*x is a global memory pointer)

Let int *x point to global memory. *x++ happens in 3 steps:
1. Read the value in *x into a register.
2. Add 1 to the value in the register.
3. Write the result back to *x.

1 A kx++
2 B: xx++

Race conditions

Problems of parallelism
Simplest possible operation (*x is a global memory pointer)

Let int *x point to global memory. *x++ happens in 3 steps:
1. Read the value in *x into a register.
2. Add 1 to the value in the register.
3. Write the result back to *x.

1 A kx++
*X++

N
oo

a = *x //a=7
*x //b=7
at+ //8

*x = a //8
b++ //8

*x = b //8

o
]

o g b W N e
[ssBoc -~ oo I

Race conditions

Problems of parallelism

WNOUAWN

WWWWRRNNRNNRONNNNN B R e
WRNROOOVOGTRWNROOONOUAWN - O ©

#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cuda_runtime.h>

__global__ void colonel(int *d_a){
*d_a += 1;

}

int main(){
int a = 0, *d_a;
cudaMalloc((void**) &a_d, sizeof(int));
cudaMemcpy(d_a, &a, sizeof(int), cudaMemcpyHostToDevice);
float elapsedTime;
cudaEvent_t start, stop;
cudaEventCreate (&start) ;
cudaEventCreate (&stop) ;
cudaEventRecord(start, 0);

colonel<<<1000,1000>>>(d_a);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
cudaEventDestroy(start);

cudaEventDestroy(stop);

printf ("GPU Time, : %f ms\n", elapsedTime);

cudaMemcpy(&a, d_a, sizeof(int), cudaMemcpyDeviceToHost) ;

printf("a = %d\n", a);
cudaFree(d_a);

48 /60

Race condition results

Problems of parallelism

Output:

1 > nvcc race_condition.cu -o race_condition
2 > ./race_condition

3 GPU Time : 0.148 ms

4 a = 88

49 /60

Race condition results

Problems of parallelism

Output:

1 > nvcc race_condition.cu -o race_condition
2 > ./race_condition

3 GPU Time : 0.148 ms

4 a = 88

Modification:

1 __global__ void colonel(int *d_a){
2 atomicAdd(d_a, 1);
3 7

49 /60

Race condition results

Problems of parallelism

Output:

1 > nvcc race_condition.cu -o race_condition
2 > ./race_condition

3 GPU Time : 0.148 ms

4 a = 88

Modification:

1 __global__ void colonel(int *d_a){
2 atomicAdd(d_a, 1);
3 7

Output:

1 GPU Time : 14.85 ms
2 a = 1000000

Atomic functions can only be used in device functions.

49 /60

Atomic operations |
(for all devices CC>2.0)

© ©® N o O B~ W N =

=
N = O

Device-wide atomics: atomic for all CUDA threads in the current
program executing in the same compute device as the current
thread:

atomicAdd ()

atomicSub()

atomicMin()

atomicMax ()

atomicInc()

atomicDec ()

atomicAdd ()

atomicExch()

atomicAnd ()

atomicOr ()

atomicXor ()

int atomicCAS(int* address, int compare, int val); // Compare And

Swap (returns old wvalue)

An atomic function performs a read-modify-write atomic operation on
one 32-bit or 64-bit word residing in global or shared memory.

50 /60

Atomic operations ||
(for all devices CC>6.0)

System-wide atomics: atomic for all threads in the current
program including other CPUs and GPUs in the system. These are
suffixed with _system. Like: atomicAdd_system().

Block-wide atomics: atomic for all CUDA threads in the current

program executing in the same thread block as the current thread.
These are suffixed with _block. Like: atomicAdd_block().

51 /60

7= Faculty of Mathematics
2 and Information Science

Z
WARSAW UNIVERSITY OF TECHNOLOGY

Part 2 — CUDA Advances

Problems of parallelism

Volatile

52 /60

Volatile variables and specific compiler optimizations
Problems of parallelism
» One of the compiler’s tricks: reuse references to memory
location

53 /60

Volatile variables and specific compiler optimizations
Problems of parallelism
» One of the compiler’s tricks: reuse references to memory
location
» Result: A reused value may be changed by another thread in
the background

53 /60

Volatile variables and specific compiler optimizations
Problems of parallelism
» One of the compiler’s tricks: reuse references to memory
location
» Result: A reused value may be changed by another thread in
the background

53 /60

Volatile variables and specific compiler optimizations

Problems of parallelism

© 0 N O U A W N e

=
o

» One of the compiler’s tricks: reuse references to memory
location

» Result: A reused value may be changed by another thread in
the background

// myArray is an array of mon-zero integers
// located in global or shared memory
__global__ void myKernel(int* result)

{

int tid = threadIdx.x;

int refl = myArray[tid] * 1;
myArray[tid + 1] = 2;

int ref2 = myArray[tid] * 1;
result[tid] = refl * ref2;

» the first reference to myArray[tid] compiles into a memory
read instruction

53 /60

Volatile variables and specific compiler optimizations

Problems of parallelism

© 0 N O U A W N e

=
o

» One of the compiler’s tricks: reuse references to memory
location

» Result: A reused value may be changed by another thread in
the background

// myArray is an array of mon-zero integers
// located in global or shared memory
__global__ void myKernel(int* result)

{

int tid = threadIdx.x;

int refl = myArray[tid] * 1;
myArray[tid + 1] = 2;

int ref2 = myArray[tid] * 1;
result[tid] = refl * ref2;

» the first reference to myArray[tid] compiles into a memory
read instruction

» the second reference does not as the compiler simply reuses
the result of the first read

53 /60

‘/’\Q‘\ I'aculty of Mathematics
© / and Information Science

Part 2 — CUDA Advances s ——

Time Measurements

54 /60

Timers API

Time Measurements

vvyyypy

vy

cudaEvent_t — event type
cudaEventSynchronize() — blocks CPU until given event records
cudaEventRecord() — records given event in given stream

cudaEventElapsedTime() — calculates time in milliseconds
between events

cudaEventCreate() — creates an event

cudaEventDestroy() — destroys an event

Timers Example

Time Measurements

© 0 N O U A W N e

e e = =
o o0 A W N R O

cudaEvent_t start, stop; float time;

cudaEventCreate (&start) ;

cudaEventCreate (&stop) ;

cudaEventRecord(start, 0);

kernel<<<grid,threads>>> (d_odata, d_idata, size_x, size_y);
cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);

cudaEventDestroy(start);
cudaEventDestroy(stop);

56

60

Theoretical Bandwidth Calculation

Time Measurements

TB = (Clock x 10° x Memint x 2)/10°

» TB — theoretical bandwidth [GB/s]

» Clock — memory clock rate [MHz]

» Memlnt — width of memory interface [B]
» 2 — DDR — Double Data Rate Memory

57 /60

Theoretical Bandwidth Calculation

Time Measurements

TB = (Clock x 10° x Memint x 2)/10°

» TB — theoretical bandwidth [GB/s]

» Clock — memory clock rate [MHz]

» Memlnt — width of memory interface [B]
» 2 — DDR — Double Data Rate Memory

For NVIDIA GeForce GTX 280 we get:

(1107 x 10° x 512/8 x 2)/10° = 141.6 [GB/s]

57 /60

Effective Bandwidth Calculation

Time Measurements

(B, + By) x 107
t

EB =

» EB - effective bandwidth [GB/s]
» B, — bytes read

» B, — bytes written

» t — time of the test [s]

58 /60

Bibliography

[

E

Mark Harris. Parallel prefix sum (scan) with CUDA.
www.nvidia.com/cuda, 2007.

NVIDIA. Cuda c++ programming guide.
www.nvidia.com/cuda.

NVIDIA. Cuda whitepapers. www.nvidia.com/cuda.

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html,
2020.

59 /60

Materiaty sponsorowane przez:

Projekt ,,NERW 2 PW. Nauka — Edukacja — Rozwéj — Wspédtpraca”
wspotfinansowany jest ze srodkéw Unii Europejskiej w ramach
Europejskiego Funduszu Spotecznego

Zadanie 10 pn. ,Modyfikacja programoéw studiéw na kierunkach
prowadzonych przez Wydziat Matematyki i Nauk Informacyjnych”,
realizowane w ramach projektu ,NERW 2 PW. Nauka — Edukacja —
Rozwdj — Wspdtpraca”, wspétfinansowanego jest ze srodkéw Unii
Europejskiej w ramach Europejskiego Funduszu Spotecznego

Eﬂ?g[‘)jesjzsekie szeczpospolita Politechnika Unia Europejska
¢ .
e, o B Polska Warszawska Europejski Fundusz Spoteczny

60 /60

	Warp threads scheduling
	Advanced synchronization
	Variables and Memory
	Asynchronous operations
	Problems of parallelism
	Time Measurements

