
Graphic Processors in
Computational
Applications
Part 2 – CUDA Advances

dr inż. Krzysztof Kaczmarski
2021

Materiały sponsorowane przez:

Projekt „NERW 2 PW. Nauka – Edukacja – Rozwój – Współpraca”
współfinansowany jest ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

Zadanie 10 pn. „Modyfikacja programów studiów na kierunkach
prowadzonych przez Wydział Matematyki i Nauk Informacyjnych”,
realizowane w ramach projektu „NERW 2 PW. Nauka – Edukacja –
Rozwój – Współpraca”, współfinansowanego jest ze środków Unii
Europejskiej w ramach Europejskiego Funduszu Społecznego

2 / 60

Goals for today:

I Understand advanced CUDA techniques
I Get familiar with pitfalls of parallel programming

3 / 60

Part 2 – CUDA Advances
Warp threads scheduling

Advanced synchronization

Variables and Memory
Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations

Problems of parallelism
Race conditions
Volatile

Time Measurements

4 / 60

Conditional blocks: idle and active threads
Warp threads scheduling

1 instruction 1
2 if (threadIdx.x<4)
3 instruction 2
4 else
5 instruction 3
6 instruction 4

Instr. for Threads 1-3: 1 2 (3) 4
Instr. for Threads 4-8: 1 (2) 3 4

Common mistake:
Instr 2. before Instr. 3

A single thread is assigned to a single ALU.
Waste of bandwidth – some ALUs do nothing.

5 / 60

Conditional blocks: idle and active threads
Warp threads scheduling

1 instruction 1
2 if (threadIdx.x<4)
3 instruction 2
4 else
5 instruction 3
6 instruction 4

Instr. for Threads 1-3: 1 2 (3) 4
Instr. for Threads 4-8: 1 (2) 3 4

Common mistake:
Instr 2. before Instr. 3

A single thread is assigned to a single ALU.
Waste of bandwidth – some ALUs do nothing.

5 / 60

Conditional blocks: idle and active threads
Warp threads scheduling

1 instruction 1
2 if (threadIdx.x<4)
3 instruction 2
4 else
5 instruction 3
6 instruction 4

Instr. for Threads 1-3: 1 2 (3) 4
Instr. for Threads 4-8: 1 (2) 3 4

Common mistake:
Instr 2. before Instr. 3

A single thread is assigned to a single ALU.
Waste of bandwidth – some ALUs do nothing.

5 / 60

Conditional blocks: idle and active threads
Warp threads scheduling

1 instruction 1
2 if (threadIdx.x<4)
3 instruction 2
4 else
5 instruction 3
6 instruction 4

Instr. for Threads 1-3: 1 2 (3) 4
Instr. for Threads 4-8: 1 (2) 3 4

Common mistake:
Instr 2. before Instr. 3

A single thread is assigned to a single ALU.
Waste of bandwidth – some ALUs do nothing.

5 / 60

Conditional blocks: idle and active threads
Warp threads scheduling

1 instruction 1
2 if (threadIdx.x<4)
3 instruction 2
4 else
5 instruction 3
6 instruction 4

Instr. for Threads 1-3: 1 2 (3) 4
Instr. for Threads 4-8: 1 (2) 3 4

Common mistake:
Instr 2. before Instr. 3

A single thread is assigned to a single ALU.
Waste of bandwidth – some ALUs do nothing.

5 / 60

Conditional blocks: warps scheduling
Warp threads scheduling

1 instruction 1
2 if (threadIdx.x<32)
3 instruction 2
4 else
5 instruction 3
6 instruction 4

Instr. for Warp 0: 1 2 4
Instr. for Warp 1: 1 3 4

Warp-level control saves bandwidth in conditional operations.

6 / 60

Conditional blocks: warps scheduling
Warp threads scheduling

1 instruction 1
2 if (threadIdx.x<32)
3 instruction 2
4 else
5 instruction 3
6 instruction 4

Instr. for Warp 0: 1 2 4
Instr. for Warp 1: 1 3 4

Warp-level control saves bandwidth in conditional operations.

6 / 60

Conditional blocks: warps scheduling
Warp threads scheduling

1 instruction 1
2 if (threadIdx.x<32)
3 instruction 2
4 else
5 instruction 3
6 instruction 4

Instr. for Warp 0: 1 2 4
Instr. for Warp 1: 1 3 4

Warp-level control saves bandwidth in conditional operations.

6 / 60

Conditional blocks: warps scheduling
Warp threads scheduling

1 instruction 1
2 if (threadIdx.x<32)
3 instruction 2
4 else
5 instruction 3
6 instruction 4

Instr. for Warp 0: 1 2 4
Instr. for Warp 1: 1 3 4

Warp-level control saves bandwidth in conditional operations.

6 / 60

Part 2 – CUDA Advances
Warp threads scheduling

Advanced synchronization

Variables and Memory
Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations

Problems of parallelism
Race conditions
Volatile

Time Measurements

7 / 60

Advanced Threads Synchronization I
Advanced synchronization

Device side:
I int __syncthreads_count(int predicate); is identical to

__syncthreads() with the additional feature that it evaluates
predicate for all threads of the block and returns the number
of threads for which predicate evaluates to non-zero.

I int __syncthreads_and(int predicate); similarly but evaluates
predicate for all threads of the block and returns non-zero if
and only if predicate evaluates to non-zero for all of them.

I int __syncthreads_or(int predicate); . . . similarly but returns
non-zero if predicate evaluates to non-zero for any of the
threads.

I void __syncwarp(unsigned mask=0xffffffff); will cause the
executing thread to wait until all warp lanes named in mask
have executed a __syncwarp() (with the same mask) before
resuming execution. All non-exited threads named in mask
must execute a corresponding __syncwarp() with the same
mask, or the result is undefined.

8 / 60

Advanced Threads Synchronization I
Advanced synchronization

Device side:
I int __syncthreads_count(int predicate); is identical to

__syncthreads() with the additional feature that it evaluates
predicate for all threads of the block and returns the number
of threads for which predicate evaluates to non-zero.

I int __syncthreads_and(int predicate); similarly but evaluates
predicate for all threads of the block and returns non-zero if
and only if predicate evaluates to non-zero for all of them.

I int __syncthreads_or(int predicate); . . . similarly but returns
non-zero if predicate evaluates to non-zero for any of the
threads.

I void __syncwarp(unsigned mask=0xffffffff); will cause the
executing thread to wait until all warp lanes named in mask
have executed a __syncwarp() (with the same mask) before
resuming execution. All non-exited threads named in mask
must execute a corresponding __syncwarp() with the same
mask, or the result is undefined.

8 / 60

Advanced Threads Synchronization I
Advanced synchronization

Device side:
I int __syncthreads_count(int predicate); is identical to

__syncthreads() with the additional feature that it evaluates
predicate for all threads of the block and returns the number
of threads for which predicate evaluates to non-zero.

I int __syncthreads_and(int predicate); similarly but evaluates
predicate for all threads of the block and returns non-zero if
and only if predicate evaluates to non-zero for all of them.

I int __syncthreads_or(int predicate); . . . similarly but returns
non-zero if predicate evaluates to non-zero for any of the
threads.

I void __syncwarp(unsigned mask=0xffffffff); will cause the
executing thread to wait until all warp lanes named in mask
have executed a __syncwarp() (with the same mask) before
resuming execution. All non-exited threads named in mask
must execute a corresponding __syncwarp() with the same
mask, or the result is undefined.

8 / 60

Advanced Threads Synchronization I
Advanced synchronization

Device side:
I int __syncthreads_count(int predicate); is identical to

__syncthreads() with the additional feature that it evaluates
predicate for all threads of the block and returns the number
of threads for which predicate evaluates to non-zero.

I int __syncthreads_and(int predicate); similarly but evaluates
predicate for all threads of the block and returns non-zero if
and only if predicate evaluates to non-zero for all of them.

I int __syncthreads_or(int predicate); . . . similarly but returns
non-zero if predicate evaluates to non-zero for any of the
threads.

I void __syncwarp(unsigned mask=0xffffffff); will cause the
executing thread to wait until all warp lanes named in mask
have executed a __syncwarp() (with the same mask) before
resuming execution. All non-exited threads named in mask
must execute a corresponding __syncwarp() with the same
mask, or the result is undefined. 8 / 60

Advanced Threads Synchronization II
Advanced synchronization

Device side memory fence functions:
I void __threadfence_block(); waits until all global and shared

memory accesses made by the calling thread before are visible
to all threads in the thread block.

I void __threadfence(); waits until all global and shared
memory accesses made by the calling thread prior to
__threadfence() are visible to:

I All threads in the thread block for shared memory accesses,
I All threads in the device for global memory accesses.

9 / 60

Advanced Threads Synchronization II
Advanced synchronization

Device side memory fence functions:
I void __threadfence_block(); waits until all global and shared

memory accesses made by the calling thread before are visible
to all threads in the thread block.

I void __threadfence(); waits until all global and shared
memory accesses made by the calling thread prior to
__threadfence() are visible to:

I All threads in the thread block for shared memory accesses,
I All threads in the device for global memory accesses.

9 / 60

Advanced Threads Synchronization II
Advanced synchronization

Device side memory fence functions:
I void __threadfence_block(); waits until all global and shared

memory accesses made by the calling thread before are visible
to all threads in the thread block.

I void __threadfence(); waits until all global and shared
memory accesses made by the calling thread prior to
__threadfence() are visible to:
I All threads in the thread block for shared memory accesses,

I All threads in the device for global memory accesses.

9 / 60

Advanced Threads Synchronization II
Advanced synchronization

Device side memory fence functions:
I void __threadfence_block(); waits until all global and shared

memory accesses made by the calling thread before are visible
to all threads in the thread block.

I void __threadfence(); waits until all global and shared
memory accesses made by the calling thread prior to
__threadfence() are visible to:
I All threads in the thread block for shared memory accesses,
I All threads in the device for global memory accesses.

9 / 60

Part 2 – CUDA Advances
Warp threads scheduling

Advanced synchronization

Variables and Memory
Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations

Problems of parallelism
Race conditions
Volatile

Time Measurements

10 / 60

Part 2 – CUDA Advances
Warp threads scheduling
Advanced synchronization
Variables and Memory

Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations
Problems of parallelism

Race conditions
Volatile

Time Measurements

11 / 60

Accessing different types of memory
Variables and Memory

12 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__

I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__

I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)

I Accessible by all threads
I Lifetime: application

I __constant__

I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__

I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads

I Lifetime: application
I __constant__

I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__

I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__

I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__

I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__

I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__

I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space

I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__

I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads

I Lifetime: the CUDA context in which it is created
I __shared__

I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__

I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__

I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__
I Stored in on-chip shared memory (very low latency)

I Allocated by execution configuration or declared at compile
time

I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__
I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time

I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__
I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block

I Lifetime: kernel execution
I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__
I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__
I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__

I Can be referenced by both device and host
I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__
I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__
I Can be referenced by both device and host

I Lifetime: application

13 / 60

Variable Qualifiers (GPU side)
Variables and Memory

A variable declared in a kernel generally is stored in registers if
possible. Exceptions (memory space specifiers):
I __device__

I Stored in device global memory (large, high latency)
I Accessible by all threads
I Lifetime: application

I __constant__
I Stored in constant memory space
I Accessible by all threads
I Lifetime: the CUDA context in which it is created

I __shared__
I Stored in on-chip shared memory (very low latency)
I Allocated by execution configuration or declared at compile

time
I Accessible by all threads in the same thread block
I Lifetime: kernel execution

I __managed__
I Can be referenced by both device and host
I Lifetime: application 13 / 60

Part 2 – CUDA Advances
Warp threads scheduling
Advanced synchronization
Variables and Memory

Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations
Problems of parallelism

Race conditions
Volatile

Time Measurements

14 / 60

Global Memory Operations
Variables and Memory

I Memory operations are executed per warp
I 32 threads in a warp provide memory addresses
I Hardware determines into which lines those addresses fall

I Stores:
I Invalidate L1, go at least to L2, 32-byte granularity

I Three types of loads:
I Caching (default)
I Non-caching
I Read-only

15 / 60

Memory Load
Variables and Memory

I Caching (default mode)
I Attempts to hit in L1, then L2, then GMEM
I Load granularity is 128-byte line

I Non-caching
I Compile with -Xptxas -dlcm=cg option to nvcc
I Attempts to hit in L2, then GMEM

(Does not hit in L1, invalidates the line if it’s in L1 already)
I Load granularity is 32 bytes

I Read-only
I Loads via read-only cache:

(Attempts to hit in Read-only cache, then L2, then GMEM)
I Load granularity is 32 bytes

16 / 60

Coalesced Global Memory Access
Perhaps the most important optimization

Global memory loads and stores by threads of a warp are coalesced
by the device into as few as possible transactions.

Compute capability ­ 6.0 (since pascal)
The concurrent accesses of the threads of a warp will coalesce into
a number of transactions equal to the number of 32-byte
transactions necessary to service all of the threads of the warp.

Compute capability < 5.2 (before pascal)
L1-caching of accesses to global memory can be optionally
enabled. If L1-caching is enabled on these devices, the number of
required transactions is equal to the number of required 128-byte
aligned segments.

17 / 60

Simple Access Pattern (cc­6.0)
Variables and Memory

I The k-th thread accesses the k-th word in a 32-byte aligned
array.

I If the threads of a warp access adjacent 4-byte words
I . . . and not all equally participate
I . . . and/or random permuted access inside the block
I then still only four 32-byte transactions would have been

performed by a device.

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html, 2020

18 / 60

Misaligned Sequential Access Pattern (cc>6.0)
Variables and Memory

I The sequential threads
accesses sequential memory
but not aligned with a
32-byte segment,

I then five 32-byte
transactions would have
been performed by a
device.

1 __global__ void offsetCopy(float *odata,
2 float *idata,
3 int offset)
4 {
5 int xid = blockIdx.x * blockDim.x +
6 threadIdx.x + offset;
7 odata[xid] = idata[xid];
8 }

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html, 2020

19 / 60

Misaligned Sequential Access Pattern (cc>6.0)
Variables and Memory

I The sequential threads
accesses sequential memory
but not aligned with a
32-byte segment,

I then five 32-byte
transactions would have
been performed by a
device.

1 __global__ void offsetCopy(float *odata,
2 float *idata,
3 int offset)
4 {
5 int xid = blockIdx.x * blockDim.x +
6 threadIdx.x + offset;
7 odata[xid] = idata[xid];
8 }

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html, 2020

19 / 60

Misaligned Sequential Access Pattern (cc>6.0)
Variables and Memory

I The sequential threads
accesses sequential memory
but not aligned with a
32-byte segment,

I then five 32-byte
transactions would have
been performed by a
device.

1 __global__ void offsetCopy(float *odata,
2 float *idata,
3 int offset)
4 {
5 int xid = blockIdx.x * blockDim.x +
6 threadIdx.x + offset;
7 odata[xid] = idata[xid];
8 }

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html, 2020

19 / 60

Strided Access Pattern
Variables and Memory

I A stride of 2 results in a 50% of
load/store efficiency since half the
elements in the transaction are not
used and represent wasted
bandwidth.

I As the stride increases, the
effective bandwidth decreases until
the point where 32 32-byte
segments are loaded for the 32
threads in a warp.

1 __global__ void strideCopy(float *odata,
2 float *idata,
3 int stride)
4 {
5 int xid = (blockIdx.x*blockDim.x +
6 threadIdx.x)*stride;
7 odata[xid] = idata[xid];
8 }

I Avoid non-unit-stride global memory
accesses – use shared memory.

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-

guide/index.html,

2020

20 / 60

Strided Access Pattern
Variables and Memory

I A stride of 2 results in a 50% of
load/store efficiency since half the
elements in the transaction are not
used and represent wasted
bandwidth.

I As the stride increases, the
effective bandwidth decreases until
the point where 32 32-byte
segments are loaded for the 32
threads in a warp.

1 __global__ void strideCopy(float *odata,
2 float *idata,
3 int stride)
4 {
5 int xid = (blockIdx.x*blockDim.x +
6 threadIdx.x)*stride;
7 odata[xid] = idata[xid];
8 }

I Avoid non-unit-stride global memory
accesses – use shared memory.

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-

guide/index.html,

2020

20 / 60

Strided Access Pattern
Variables and Memory

I A stride of 2 results in a 50% of
load/store efficiency since half the
elements in the transaction are not
used and represent wasted
bandwidth.

I As the stride increases, the
effective bandwidth decreases until
the point where 32 32-byte
segments are loaded for the 32
threads in a warp.

1 __global__ void strideCopy(float *odata,
2 float *idata,
3 int stride)
4 {
5 int xid = (blockIdx.x*blockDim.x +
6 threadIdx.x)*stride;
7 odata[xid] = idata[xid];
8 }

I Avoid non-unit-stride global memory
accesses – use shared memory.

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-

guide/index.html,

2020
20 / 60

In older architectures
(not supported now)

21 / 60

Coalescing: Guidelines I
Variables and Memory

I Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

I For single-dimensional arrays

I array of type* accessed by BaseAddress + tid
I type* must meet the size and alignment requirements
I if size of type* is larger than 16 it must be treated with

additional care

I For two-dimensional arrays

I array of type* accessed by BaseAddress + width*tiy + tix
I width is a multiply of 16
I The width of the thread block is a multiple of half the warp

size

22 / 60

Coalescing: Guidelines I
Variables and Memory

I Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

I For single-dimensional arrays

I array of type* accessed by BaseAddress + tid
I type* must meet the size and alignment requirements
I if size of type* is larger than 16 it must be treated with

additional care
I For two-dimensional arrays

I array of type* accessed by BaseAddress + width*tiy + tix
I width is a multiply of 16
I The width of the thread block is a multiple of half the warp

size

22 / 60

Coalescing: Guidelines I
Variables and Memory

I Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

I For single-dimensional arrays
I array of type* accessed by BaseAddress + tid

I type* must meet the size and alignment requirements
I if size of type* is larger than 16 it must be treated with

additional care
I For two-dimensional arrays

I array of type* accessed by BaseAddress + width*tiy + tix
I width is a multiply of 16
I The width of the thread block is a multiple of half the warp

size

22 / 60

Coalescing: Guidelines I
Variables and Memory

I Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

I For single-dimensional arrays
I array of type* accessed by BaseAddress + tid
I type* must meet the size and alignment requirements

I if size of type* is larger than 16 it must be treated with
additional care

I For two-dimensional arrays

I array of type* accessed by BaseAddress + width*tiy + tix
I width is a multiply of 16
I The width of the thread block is a multiple of half the warp

size

22 / 60

Coalescing: Guidelines I
Variables and Memory

I Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

I For single-dimensional arrays
I array of type* accessed by BaseAddress + tid
I type* must meet the size and alignment requirements
I if size of type* is larger than 16 it must be treated with

additional care

I For two-dimensional arrays

I array of type* accessed by BaseAddress + width*tiy + tix
I width is a multiply of 16
I The width of the thread block is a multiple of half the warp

size

22 / 60

Coalescing: Guidelines I
Variables and Memory

I Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

I For single-dimensional arrays
I array of type* accessed by BaseAddress + tid
I type* must meet the size and alignment requirements
I if size of type* is larger than 16 it must be treated with

additional care
I For two-dimensional arrays

I array of type* accessed by BaseAddress + width*tiy + tix
I width is a multiply of 16
I The width of the thread block is a multiple of half the warp

size

22 / 60

Coalescing: Guidelines I
Variables and Memory

I Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

I For single-dimensional arrays
I array of type* accessed by BaseAddress + tid
I type* must meet the size and alignment requirements
I if size of type* is larger than 16 it must be treated with

additional care
I For two-dimensional arrays

I array of type* accessed by BaseAddress + width*tiy + tix

I width is a multiply of 16
I The width of the thread block is a multiple of half the warp

size

22 / 60

Coalescing: Guidelines I
Variables and Memory

I Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

I For single-dimensional arrays
I array of type* accessed by BaseAddress + tid
I type* must meet the size and alignment requirements
I if size of type* is larger than 16 it must be treated with

additional care
I For two-dimensional arrays

I array of type* accessed by BaseAddress + width*tiy + tix
I width is a multiply of 16

I The width of the thread block is a multiple of half the warp
size

22 / 60

Coalescing: Guidelines I
Variables and Memory

I Align data to fit equal segments in memory
(arrays allocated with cudaMalloc... are positioned to
appropriate addresses automatically)

I For single-dimensional arrays
I array of type* accessed by BaseAddress + tid
I type* must meet the size and alignment requirements
I if size of type* is larger than 16 it must be treated with

additional care
I For two-dimensional arrays

I array of type* accessed by BaseAddress + width*tiy + tix
I width is a multiply of 16
I The width of the thread block is a multiple of half the warp

size

22 / 60

Coalescing: Guidelines II
Variables and Memory

I If proper memory alignment is impossible:

I Use structures of arrays instead of arrays of structures
AoS x1 y1 z1 w1 x2 y2 z2 w2

x3 y3 z3 w3 x4 y4 z4 · · ·

SoA x1 x2 x3 x4 · · · · · · · · · · · ·
y1 y2 y3 y4 · · · · · · · · · · · ·
z1 z2 z3 z4 · · · · · · · · · · · ·
w1 w2 w3 w4 · · · · · · · · · · · ·

I Use __align(4), __align(8) or __align(16) in structure
declarations

23 / 60

Coalescing: Guidelines II
Variables and Memory

I If proper memory alignment is impossible:
I Use structures of arrays instead of arrays of structures

AoS x1 y1 z1 w1 x2 y2 z2 w2

x3 y3 z3 w3 x4 y4 z4 · · ·

SoA x1 x2 x3 x4 · · · · · · · · · · · ·
y1 y2 y3 y4 · · · · · · · · · · · ·
z1 z2 z3 z4 · · · · · · · · · · · ·
w1 w2 w3 w4 · · · · · · · · · · · ·

I Use __align(4), __align(8) or __align(16) in structure
declarations

23 / 60

Coalescing: Guidelines II
Variables and Memory

I If proper memory alignment is impossible:
I Use structures of arrays instead of arrays of structures

AoS x1 y1 z1 w1 x2 y2 z2 w2

x3 y3 z3 w3 x4 y4 z4 · · ·

SoA x1 x2 x3 x4 · · · · · · · · · · · ·
y1 y2 y3 y4 · · · · · · · · · · · ·
z1 z2 z3 z4 · · · · · · · · · · · ·
w1 w2 w3 w4 · · · · · · · · · · · ·

I Use __align(4), __align(8) or __align(16) in structure
declarations

23 / 60

Coalescing: Guidelines II
Variables and Memory

I If proper memory alignment is impossible:
I Use structures of arrays instead of arrays of structures
AoS x1 y1 z1 w1 x2 y2 z2 w2

x3 y3 z3 w3 x4 y4 z4 · · ·

SoA x1 x2 x3 x4 · · · · · · · · · · · ·
y1 y2 y3 y4 · · · · · · · · · · · ·
z1 z2 z3 z4 · · · · · · · · · · · ·
w1 w2 w3 w4 · · · · · · · · · · · ·

I Use __align(4), __align(8) or __align(16) in structure
declarations

23 / 60

Coalescing: Guidelines II
Variables and Memory

I If proper memory alignment is impossible:
I Use structures of arrays instead of arrays of structures
AoS x1 y1 z1 w1 x2 y2 z2 w2

x3 y3 z3 w3 x4 y4 z4 · · ·

SoA x1 x2 x3 x4 · · · · · · · · · · · ·
y1 y2 y3 y4 · · · · · · · · · · · ·
z1 z2 z3 z4 · · · · · · · · · · · ·
w1 w2 w3 w4 · · · · · · · · · · · ·

I Use __align(4), __align(8) or __align(16) in structure
declarations

23 / 60

Coalescing: Guidelines II
Variables and Memory

I If proper memory alignment is impossible:
I Use structures of arrays instead of arrays of structures
AoS x1 y1 z1 w1 x2 y2 z2 w2

x3 y3 z3 w3 x4 y4 z4 · · ·

SoA x1 x2 x3 x4 · · · · · · · · · · · ·
y1 y2 y3 y4 · · · · · · · · · · · ·
z1 z2 z3 z4 · · · · · · · · · · · ·
w1 w2 w3 w4 · · · · · · · · · · · ·

I Use __align(4), __align(8) or __align(16) in structure
declarations

23 / 60

Coalescing example I
Variables and Memory

Misaligned memory access with float3 data
1 __global__ void accessFloat3(float3 *d_in, float3 *d_out)
2 {
3 int index = blockIdx.x * blockDim.x + threadIdx.x;
4 float3 a = d_in[index];
5 a.x += 2;
6 a.y += 2;
7 a.z += 2;
8 d_out[index] = a;
9 }

I Each thread reads 3 floats = 12 bytes
I Half warp reads 16 ∗ 12 = 192 bytes

(three 64B non-contiguous segments)

NVIDIA. Cuda whitepapers. www.nvidia.com/cuda

24 / 60

Coalescing example II
Variables and Memory

Coalesced memory access with float3 data
1 __global__ void accessFloat3Shared(float *g_in, float *g_out)
2 {
3 int index = 3 * blockIdx.x * blockDim.x + threadIdx.x;
4 __shared__ float s_data[256*3];
5 s_data[threadIdx.x] = g_in[index];
6 s_data[threadIdx.x+256] = g_in[index+256];
7 s_data[threadIdx.x+512] = g_in[index+512];
8 __syncthreads();
9 float3 a = ((float3*)s_data)[threadIdx.x];

10 a.x += 2;
11 a.y += 2;
12 a.z += 2;
13 ((float3*)s_data)[threadIdx.x] = a;
14 __syncthreads();
15 g_out[index] = s_data[threadIdx.x];
16 g_out[index+256] = s_data[threadIdx.x+256];
17 g_out[index+512] = s_data[threadIdx.x+512];
18 }

NVIDIA. Cuda whitepapers. www.nvidia.com/cuda 25 / 60

Part 2 – CUDA Advances
Warp threads scheduling
Advanced synchronization
Variables and Memory

Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations
Problems of parallelism

Race conditions
Volatile

Time Measurements

26 / 60

Allocating shared memory
Variables and Memory

Static way
Device side:

1 __constant__ uint blockSize = 64;
2 __global__ void kernel(...)
3 {
4 ...
5 __shared__ short array0[blockSize];
6 __shared__ float array1[blockSize];
7 __shared__ int array2[blockSize];
8 ...
9 }

Host side:
1 kernel<<< nBlocks, blockSize >>>(...);

Dynamic way
Device side:

1 __constant__ uint blockSize = 64;
2 __global__ void kernel(...)
3 {
4 extern __shared__ float array[];
5 //All variables declared in this fashion,

start at the same address in memory, so:
6
7 short* array0 = (short*)array;
8 float* array1 = (float*)&array0[blockSize];
9 int* array2 = (int*)&array1[blockSize];
10 }

Host side:
1 smBytes = blockSize*sizeof(float)
2 + blockSize*sizeof(short)
3 + blockSize*sizeof(int);
4
5 kernel<<< nBlocks, blockSize, smBytes >>>(...);

Note that pointers need to be aligned to the type they point to.
Error: array1 is not aligned to 4 bytes:

1 short* array0 = (short*)array;
2 float* array1 = (float*)&array0[127];

27 / 60

Allocating shared memory
Variables and Memory

Static way
Device side:

1 __constant__ uint blockSize = 64;
2 __global__ void kernel(...)
3 {
4 ...
5 __shared__ short array0[blockSize];
6 __shared__ float array1[blockSize];
7 __shared__ int array2[blockSize];
8 ...
9 }

Host side:
1 kernel<<< nBlocks, blockSize >>>(...);

Dynamic way
Device side:

1 __constant__ uint blockSize = 64;
2 __global__ void kernel(...)
3 {
4 extern __shared__ float array[];
5 //All variables declared in this fashion,

start at the same address in memory, so:
6
7 short* array0 = (short*)array;
8 float* array1 = (float*)&array0[blockSize];
9 int* array2 = (int*)&array1[blockSize];
10 }

Host side:
1 smBytes = blockSize*sizeof(float)
2 + blockSize*sizeof(short)
3 + blockSize*sizeof(int);
4
5 kernel<<< nBlocks, blockSize, smBytes >>>(...);

Note that pointers need to be aligned to the type they point to.
Error: array1 is not aligned to 4 bytes:

1 short* array0 = (short*)array;
2 float* array1 = (float*)&array0[127];

27 / 60

Allocating shared memory
Variables and Memory

Static way
Device side:

1 __constant__ uint blockSize = 64;
2 __global__ void kernel(...)
3 {
4 ...
5 __shared__ short array0[blockSize];
6 __shared__ float array1[blockSize];
7 __shared__ int array2[blockSize];
8 ...
9 }

Host side:
1 kernel<<< nBlocks, blockSize >>>(...);

Dynamic way
Device side:

1 __constant__ uint blockSize = 64;
2 __global__ void kernel(...)
3 {
4 extern __shared__ float array[];
5 //All variables declared in this fashion,

start at the same address in memory, so:
6
7 short* array0 = (short*)array;
8 float* array1 = (float*)&array0[blockSize];
9 int* array2 = (int*)&array1[blockSize];
10 }

Host side:
1 smBytes = blockSize*sizeof(float)
2 + blockSize*sizeof(short)
3 + blockSize*sizeof(int);
4
5 kernel<<< nBlocks, blockSize, smBytes >>>(...);

Note that pointers need to be aligned to the type they point to.
Error: array1 is not aligned to 4 bytes:

1 short* array0 = (short*)array;
2 float* array1 = (float*)&array0[127];

27 / 60

Organization of shared memory
Variables and Memory

I Shared memory is divided into equally sized memory modules,
called banks.

I Different banks can be accessed simultaneously.
I Read or write to n addresses in n banks multiplies bandwidth

of a single bank by n.
I If many threads refers the same bank the access is serialized –

hardware splits a memory request that has bank conflicts into
as many separate conflict-free requests as necessary.

I There is one exception if all threads within a half-warp
accesses the same address.

28 / 60

Organization of shared memory
Variables and Memory

I Shared memory is divided into equally sized memory modules,
called banks.

I Different banks can be accessed simultaneously.

I Read or write to n addresses in n banks multiplies bandwidth
of a single bank by n.

I If many threads refers the same bank the access is serialized –
hardware splits a memory request that has bank conflicts into
as many separate conflict-free requests as necessary.

I There is one exception if all threads within a half-warp
accesses the same address.

28 / 60

Organization of shared memory
Variables and Memory

I Shared memory is divided into equally sized memory modules,
called banks.

I Different banks can be accessed simultaneously.
I Read or write to n addresses in n banks multiplies bandwidth

of a single bank by n.

I If many threads refers the same bank the access is serialized –
hardware splits a memory request that has bank conflicts into
as many separate conflict-free requests as necessary.

I There is one exception if all threads within a half-warp
accesses the same address.

28 / 60

Organization of shared memory
Variables and Memory

I Shared memory is divided into equally sized memory modules,
called banks.

I Different banks can be accessed simultaneously.
I Read or write to n addresses in n banks multiplies bandwidth

of a single bank by n.
I If many threads refers the same bank the access is serialized –

hardware splits a memory request that has bank conflicts into
as many separate conflict-free requests as necessary.

I There is one exception if all threads within a half-warp
accesses the same address.

28 / 60

Organization of shared memory
Variables and Memory

I Shared memory is divided into equally sized memory modules,
called banks.

I Different banks can be accessed simultaneously.
I Read or write to n addresses in n banks multiplies bandwidth

of a single bank by n.
I If many threads refers the same bank the access is serialized –

hardware splits a memory request that has bank conflicts into
as many separate conflict-free requests as necessary.

I There is one exception if all threads within a half-warp
accesses the same address.

28 / 60

Bank conflicts
Variables and Memory

Shared memory banks are organized in such a way that successive
32-bit words are assigned to successive banks and each bank has a
bandwidth of 32 bits per clock cycle. The bandwidth of shared
memory is 32 bits per bank per clock cycle.

29 / 60

Access with no bank conflicts
Variables and Memory

left: stride = 1
right: stride random

NVIDIA. Cuda whitepapers. www.nvidia.com/cuda

30 / 60

Access with bank conflicts
Variables and Memory

left: stride = 2 (2 way bank conflict)
right: stride = 8 (8 way bank conflict)
NVIDIA. Cuda whitepapers. www.nvidia.com/cuda

I Padding – adding extra space between array elements in order
to brake cyclic access to same bank.

31 / 60

Example of bank conflicts removal in reduction I
Variables and Memory

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

32 / 60

Example of bank conflicts removal in reduction II
Variables and Memory

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007 33 / 60

Padding implementation I
Variables and Memory

We need more space in shared memory:
1 unsigned int extra_space = num_elements / NUM_BANKS;

Padding macro:
1 #define NUM_BANKS 16
2 #define LOG_NUM_BANKS 4
3

4 #ifdef ZERO_BANK_CONFLICTS
5 #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS \
6 + (index) >> (2 * LOG_NUM_BANKS))
7 #else
8 #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS)
9 #endif

Zero bank conflicts requires even more additional space:
1 #ifdef ZERO_BANK_CONFLICTS
2 extra_space += extra_space / NUM_BANKS;
3 #endif

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

34 / 60

Padding implementation I
Variables and Memory

We need more space in shared memory:
1 unsigned int extra_space = num_elements / NUM_BANKS;

Padding macro:
1 #define NUM_BANKS 16
2 #define LOG_NUM_BANKS 4
3

4 #ifdef ZERO_BANK_CONFLICTS
5 #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS \
6 + (index) >> (2 * LOG_NUM_BANKS))
7 #else
8 #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS)
9 #endif

Zero bank conflicts requires even more additional space:
1 #ifdef ZERO_BANK_CONFLICTS
2 extra_space += extra_space / NUM_BANKS;
3 #endif

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

34 / 60

Padding implementation I
Variables and Memory

We need more space in shared memory:
1 unsigned int extra_space = num_elements / NUM_BANKS;

Padding macro:
1 #define NUM_BANKS 16
2 #define LOG_NUM_BANKS 4
3

4 #ifdef ZERO_BANK_CONFLICTS
5 #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS \
6 + (index) >> (2 * LOG_NUM_BANKS))
7 #else
8 #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS)
9 #endif

Zero bank conflicts requires even more additional space:
1 #ifdef ZERO_BANK_CONFLICTS
2 extra_space += extra_space / NUM_BANKS;
3 #endif

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

34 / 60

Padding implementation I
Variables and Memory

We need more space in shared memory:
1 unsigned int extra_space = num_elements / NUM_BANKS;

Padding macro:
1 #define NUM_BANKS 16
2 #define LOG_NUM_BANKS 4
3

4 #ifdef ZERO_BANK_CONFLICTS
5 #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS \
6 + (index) >> (2 * LOG_NUM_BANKS))
7 #else
8 #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS)
9 #endif

Zero bank conflicts requires even more additional space:
1 #ifdef ZERO_BANK_CONFLICTS
2 extra_space += extra_space / NUM_BANKS;
3 #endif

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007
34 / 60

Padding implementation II
Variables and Memory

Loading data into shared memory:
1 int ai = thid, bi = thid + (n/2);
2

3 // compute spacing to avoid bank conflicts
4 int bankOffsetA = CONFLICT_FREE_OFFSET(ai);
5 int bankOffsetB = CONFLICT_FREE_OFFSET(bi);
6

7 TEMP(ai + bankOffsetA) = g_idata[ai];
8 TEMP(bi + bankOffsetB) = g_idata[bi];

Algorithm:
1 int ai = offset*(2*thid+1)-1;
2 int bi = offset*(2*thid+2)-1;
3

4 ai += CONFLICT_FREE_OFFSET(ai);
5 bi += CONFLICT_FREE_OFFSET(bi);
6

7 TEMP(bi) += TEMP(ai);

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

35 / 60

Padding implementation II
Variables and Memory

Loading data into shared memory:
1 int ai = thid, bi = thid + (n/2);
2

3 // compute spacing to avoid bank conflicts
4 int bankOffsetA = CONFLICT_FREE_OFFSET(ai);
5 int bankOffsetB = CONFLICT_FREE_OFFSET(bi);
6

7 TEMP(ai + bankOffsetA) = g_idata[ai];
8 TEMP(bi + bankOffsetB) = g_idata[bi];

Algorithm:
1 int ai = offset*(2*thid+1)-1;
2 int bi = offset*(2*thid+2)-1;
3

4 ai += CONFLICT_FREE_OFFSET(ai);
5 bi += CONFLICT_FREE_OFFSET(bi);
6

7 TEMP(bi) += TEMP(ai);

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007

35 / 60

Padding implementation II
Variables and Memory

Loading data into shared memory:
1 int ai = thid, bi = thid + (n/2);
2

3 // compute spacing to avoid bank conflicts
4 int bankOffsetA = CONFLICT_FREE_OFFSET(ai);
5 int bankOffsetB = CONFLICT_FREE_OFFSET(bi);
6

7 TEMP(ai + bankOffsetA) = g_idata[ai];
8 TEMP(bi + bankOffsetB) = g_idata[bi];

Algorithm:
1 int ai = offset*(2*thid+1)-1;
2 int bi = offset*(2*thid+2)-1;
3

4 ai += CONFLICT_FREE_OFFSET(ai);
5 bi += CONFLICT_FREE_OFFSET(bi);
6

7 TEMP(bi) += TEMP(ai);

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007
35 / 60

Part 2 – CUDA Advances
Warp threads scheduling
Advanced synchronization
Variables and Memory

Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations
Problems of parallelism

Race conditions
Volatile

Time Measurements

36 / 60

Matrix Multiplication
No shared memory used

1 // Matrix multiplication kernel called by MatMul()
2 __global__ void MatMulKernel(Matrix A,
3 Matrix B,
4 Matrix C)
5 {
6 // Each thread computes one element of C
7 // by accumulating results into Cvalue
8 float Cvalue = 0;
9 int row = blockIdx.y * blockDim.y + threadIdx.y;
10 int col = blockIdx.x * blockDim.x + threadIdx.x;
11 for (int e = 0; e < A.width; ++e)
12 Cvalue += A.elements[row * A.width + e]
13 * B.elements[e * B.width + col];
14 C.elements[row * C.width + col] = Cvalue;
15 }

37 / 60

Matrix Multiplication
Host program for clarity

1 void MatMul(const Matrix A,
2 const Matrix B,
3 Matrix C)
4 {
5 // Load A and B to device memory
6 Matrix d_A;
7 d_A.width = A.width; d_A.height = A.height;
8 size_t size = A.width * A.height
9 * sizeof(float);

10
11 cudaMalloc(&d_A.elements, size);
12 cudaMemcpy(d_A.elements, A.elements, size,
13 cudaMemcpyHostToDevice);
14 Matrix d_B;
15 d_B.width = B.width;
16 d_B.height = B.height;
17 size = B.width * B.height * sizeof(float);
18
19 cudaMalloc(&d_B.elements, size);
20 cudaMemcpy(d_B.elements, B.elements, size,
21 cudaMemcpyHostToDevice);

22 // Allocate C in device memory
23 Matrix d_C;
24 d_C.width = C.width; d_C.height = C.height;
25 size = C.width * C.height * sizeof(float);
26 cudaMalloc(&d_C.elements, size);
27
28 // Invoke kernel
29 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
30 dim3 dimGrid(B.width / dimBlock.x,
31 A.height / dimBlock.y);
32 MatMulKernel<<<dimGrid, dimBlock>>>
33 (d_A, d_B, d_C);
34
35 // Read C from device memory
36 cudaMemcpy(C.elements, d_C.elements, size,
37 cudaMemcpyDeviceToHost);
38
39 // Free device memory
40 cudaFree(d_A.elements);
41 cudaFree(d_B.elements);
42 cudaFree(d_C.elements);
43 }

38 / 60

Matrix Multiplication
with shared memory used I

NVIDIA. Cuda c++ programming guide.

www.nvidia.com/cuda

1 typedef struct {
2 int width;
3 int height;
4 int stride;
5 float* elements;
6 } Matrix;
7
8 __device__ float GetElement(const Matrix A,
9 int row, int col)
10 {
11 return A.elements[row * A.stride + col];
12 }
13
14 __device__ void SetElement(Matrix A, int row,
15 int col, float value)
16 {
17 A.elements[row * A.stride + col] = value;
18 }
19
20 // Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub
21 // of A located col sub-matrices to the right and
22 // row sub-matrices down from the upper-left corner
23 // of A
24 __device__ Matrix GetSubMatrix(Matrix A, int row,

int col)
25 {
26 Matrix Asub;
27 Asub.width = BLOCK_SIZE;
28 Asub.height = BLOCK_SIZE;
29 Asub.stride = A.stride;
30 Asub.elements = &A.elements[A.stride
31 * BLOCK_SIZE * row
32 + BLOCK_SIZE * col];
33 return Asub;
34 }

39 / 60

Matrix Multiplication
with shared memory used II

NVIDIA. Cuda c++ programming guide.

www.nvidia.com/cuda

35 __global__ void MatMulKernel(Matrix A,
36 Matrix B,
37 Matrix C)
38 {
39 // Block row and column
40 int blockRow = blockIdx.y;
41 int blockCol = blockIdx.x;
42
43 // Each thread block computes one sub-matrix
44 // Csub of C
45 Matrix Csub = GetSubMatrix(C, blockRow,
46 blockCol);
47
48 // Each thread computes one element of Csub
49 // by accumulating results into Cvalue
50 float Cvalue = 0;
51
52 // Thread row and column within Csub
53 int row = threadIdx.y;
54 int col = threadIdx.x;

40 / 60

Matrix Multiplication
with shared memory used III

NVIDIA. Cuda c++ programming guide.

www.nvidia.com/cuda

51 for (int m = 0; m < (A.width / BLOCK_SIZE); ++m)
52 {
53 // Get sub-matrix Asub of A
54 Matrix Asub = GetSubMatrix(A, blockRow, m);
55
56 // Get sub-matrix Bsub of B
57 Matrix Bsub = GetSubMatrix(B, m, blockCol);
58
59 // Shared memory used to store Asub and Bsub
60 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
61 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
62
63 // Each thread loads one element of each sub

-matrix
64 As[row][col] = GetElement(Asub, row, col);
65 Bs[row][col] = GetElement(Bsub, row, col);
66
67 // Synchronize to make sure the sub-matrices
68 // are loaded before starting the

computation
69 __syncthreads();
70
71 // Multiply Asub and Bsub together
72 for (int e = 0; e < BLOCK_SIZE; ++e)
73 Cvalue += As[row][e] * Bs[e][col];
74
75 // Synchronize to asure that the preceding
76 // computation is done before loading new
77 // sub-matrices of A and B
78 __syncthreads();
79 }
80 // Write Csub to device memory, one thread, one

element
81 SetElement(Csub, row, col, Cvalue);
82 }

41 / 60

Part 2 – CUDA Advances
Warp threads scheduling

Advanced synchronization

Variables and Memory
Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations

Problems of parallelism
Race conditions
Volatile

Time Measurements

42 / 60

Streams API
Asynchronous operations

I Applications manage concurrency through streams.

I A stream is a sequence of commands that execute in order.
I Different streams may execute their commands out of order

with respect to one another or concurrently.

I cudaStream_t – stream type
I cudaStreamCreate(&stream)

I cudaStreamDestroy(&stream) – waits for all tasks to complete
before destroying a stream;

I cudaStreamQuery() – checks if all preceding commands in a
stream have completed

I cudaStreamSynchronize() – forces the run-time to wait until all
preceding commands in a stream have completed.

I cudaThreadSynchronize() – forces the run-time to wait until all
preceding device tasks in all streams have completed

43 / 60

Streams API
Asynchronous operations

I Applications manage concurrency through streams.
I A stream is a sequence of commands that execute in order.

I Different streams may execute their commands out of order
with respect to one another or concurrently.

I cudaStream_t – stream type
I cudaStreamCreate(&stream)

I cudaStreamDestroy(&stream) – waits for all tasks to complete
before destroying a stream;

I cudaStreamQuery() – checks if all preceding commands in a
stream have completed

I cudaStreamSynchronize() – forces the run-time to wait until all
preceding commands in a stream have completed.

I cudaThreadSynchronize() – forces the run-time to wait until all
preceding device tasks in all streams have completed

43 / 60

Streams API
Asynchronous operations

I Applications manage concurrency through streams.
I A stream is a sequence of commands that execute in order.
I Different streams may execute their commands out of order

with respect to one another or concurrently.

I cudaStream_t – stream type
I cudaStreamCreate(&stream)

I cudaStreamDestroy(&stream) – waits for all tasks to complete
before destroying a stream;

I cudaStreamQuery() – checks if all preceding commands in a
stream have completed

I cudaStreamSynchronize() – forces the run-time to wait until all
preceding commands in a stream have completed.

I cudaThreadSynchronize() – forces the run-time to wait until all
preceding device tasks in all streams have completed

43 / 60

Streams API
Asynchronous operations

I Applications manage concurrency through streams.
I A stream is a sequence of commands that execute in order.
I Different streams may execute their commands out of order

with respect to one another or concurrently.

I cudaStream_t – stream type

I cudaStreamCreate(&stream)

I cudaStreamDestroy(&stream) – waits for all tasks to complete
before destroying a stream;

I cudaStreamQuery() – checks if all preceding commands in a
stream have completed

I cudaStreamSynchronize() – forces the run-time to wait until all
preceding commands in a stream have completed.

I cudaThreadSynchronize() – forces the run-time to wait until all
preceding device tasks in all streams have completed

43 / 60

Streams API
Asynchronous operations

I Applications manage concurrency through streams.
I A stream is a sequence of commands that execute in order.
I Different streams may execute their commands out of order

with respect to one another or concurrently.

I cudaStream_t – stream type
I cudaStreamCreate(&stream)

I cudaStreamDestroy(&stream) – waits for all tasks to complete
before destroying a stream;

I cudaStreamQuery() – checks if all preceding commands in a
stream have completed

I cudaStreamSynchronize() – forces the run-time to wait until all
preceding commands in a stream have completed.

I cudaThreadSynchronize() – forces the run-time to wait until all
preceding device tasks in all streams have completed

43 / 60

Streams API
Asynchronous operations

I Applications manage concurrency through streams.
I A stream is a sequence of commands that execute in order.
I Different streams may execute their commands out of order

with respect to one another or concurrently.

I cudaStream_t – stream type
I cudaStreamCreate(&stream)

I cudaStreamDestroy(&stream) – waits for all tasks to complete
before destroying a stream;

I cudaStreamQuery() – checks if all preceding commands in a
stream have completed

I cudaStreamSynchronize() – forces the run-time to wait until all
preceding commands in a stream have completed.

I cudaThreadSynchronize() – forces the run-time to wait until all
preceding device tasks in all streams have completed

43 / 60

Streams API
Asynchronous operations

I Applications manage concurrency through streams.
I A stream is a sequence of commands that execute in order.
I Different streams may execute their commands out of order

with respect to one another or concurrently.

I cudaStream_t – stream type
I cudaStreamCreate(&stream)

I cudaStreamDestroy(&stream) – waits for all tasks to complete
before destroying a stream;

I cudaStreamQuery() – checks if all preceding commands in a
stream have completed

I cudaStreamSynchronize() – forces the run-time to wait until all
preceding commands in a stream have completed.

I cudaThreadSynchronize() – forces the run-time to wait until all
preceding device tasks in all streams have completed

43 / 60

Streams API
Asynchronous operations

I Applications manage concurrency through streams.
I A stream is a sequence of commands that execute in order.
I Different streams may execute their commands out of order

with respect to one another or concurrently.

I cudaStream_t – stream type
I cudaStreamCreate(&stream)

I cudaStreamDestroy(&stream) – waits for all tasks to complete
before destroying a stream;

I cudaStreamQuery() – checks if all preceding commands in a
stream have completed

I cudaStreamSynchronize() – forces the run-time to wait until all
preceding commands in a stream have completed.

I cudaThreadSynchronize() – forces the run-time to wait until all
preceding device tasks in all streams have completed

43 / 60

Streams API
Asynchronous operations

I Applications manage concurrency through streams.
I A stream is a sequence of commands that execute in order.
I Different streams may execute their commands out of order

with respect to one another or concurrently.

I cudaStream_t – stream type
I cudaStreamCreate(&stream)

I cudaStreamDestroy(&stream) – waits for all tasks to complete
before destroying a stream;

I cudaStreamQuery() – checks if all preceding commands in a
stream have completed

I cudaStreamSynchronize() – forces the run-time to wait until all
preceding commands in a stream have completed.

I cudaThreadSynchronize() – forces the run-time to wait until all
preceding device tasks in all streams have completed

43 / 60

Streams API – example
Asynchronous operations

NVIDIA. Cuda c++ programming guide. www.nvidia.com/cuda

1 cudaStream_t stream[2];
2 for (int i = 0; i < 2; ++i)
3 cudaStreamCreate(&stream[i]);
4 float* hostPtr;
5 cudaMallocHost((void**)&hostPtr, 2 * size, cudaHostAllocDefault);
6 cudaMalloc((void**)&inputDevPtr, 2 * size);
7 cudaMalloc((void**)&outputDevPtr, 2 * size);
8 for (int i = 0; i < 2; ++i)
9 cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,

10 size, cudaMemcpyHostToDevice, stream[i]);
11 for (int i = 0; i < 2; ++i)
12 myKernel<<<100, 512, 0, stream[i]>>>
13 (outputDevPtr + i * size, inputDevPtr + i * size, size);
14 for (int i = 0; i < 2; ++i)
15 cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
16 size, cudaMemcpyDeviceToHost, stream[i]);
17 cudaThreadSynchronize();
18 for (int i = 0; i < 2; ++i)
19 cudaStreamDestroy(&stream[i]);

44 / 60

Part 2 – CUDA Advances
Warp threads scheduling

Advanced synchronization

Variables and Memory
Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations

Problems of parallelism
Race conditions
Volatile

Time Measurements

45 / 60

Part 2 – CUDA Advances
Warp threads scheduling
Advanced synchronization
Variables and Memory

Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations
Problems of parallelism

Race conditions
Volatile

Time Measurements

46 / 60

Race conditions
Problems of parallelism

Simplest possible operation (*x is a global memory pointer)
Let int *x point to global memory. *x++ happens in 3 steps:
1. Read the value in *x into a register.
2. Add 1 to the value in the register.
3. Write the result back to *x.

1 A: *x++
2 B: *x++

1 A: a = *x //a=7
2 B: b = *x //b=7
3 A: a++ //8
4 A: *x = a //8
5 B: b++ //8
6 B: *x = b //8

47 / 60

Race conditions
Problems of parallelism

Simplest possible operation (*x is a global memory pointer)
Let int *x point to global memory. *x++ happens in 3 steps:
1. Read the value in *x into a register.
2. Add 1 to the value in the register.
3. Write the result back to *x.

1 A: *x++
2 B: *x++

1 A: a = *x //a=7
2 B: b = *x //b=7
3 A: a++ //8
4 A: *x = a //8
5 B: b++ //8
6 B: *x = b //8

47 / 60

Race conditions
Problems of parallelism

Simplest possible operation (*x is a global memory pointer)
Let int *x point to global memory. *x++ happens in 3 steps:
1. Read the value in *x into a register.
2. Add 1 to the value in the register.
3. Write the result back to *x.

1 A: *x++
2 B: *x++

1 A: a = *x //a=7
2 B: b = *x //b=7
3 A: a++ //8
4 A: *x = a //8
5 B: b++ //8
6 B: *x = b //8

47 / 60

Race conditions
Problems of parallelism
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <cuda.h>
4 #include <cuda_runtime.h>
5
6 __global__ void colonel(int *d_a){
7 *d_a += 1;
8 }
9

10 int main(){
11 int a = 0, *d_a;
12 cudaMalloc((void**) &a_d, sizeof(int));
13 cudaMemcpy(d_a, &a, sizeof(int), cudaMemcpyHostToDevice);
14 float elapsedTime;
15 cudaEvent_t start, stop;
16 cudaEventCreate(&start);
17 cudaEventCreate(&stop);
18 cudaEventRecord(start, 0);
19
20 colonel<<<1000,1000>>>(d_a);
21
22 cudaEventRecord(stop, 0);
23 cudaEventSynchronize(stop);
24 cudaEventElapsedTime(&elapsedTime, start, stop);
25 cudaEventDestroy(start);
26 cudaEventDestroy(stop);
27 printf("GPU␣Time␣:␣%f␣ms\n", elapsedTime);
28
29 cudaMemcpy(&a, d_a, sizeof(int), cudaMemcpyDeviceToHost);
30
31 printf("a␣=␣%d\n", a);
32 cudaFree(d_a);
33 } 48 / 60

Race condition results
Problems of parallelism

Output:
1 > nvcc race_condition.cu -o race_condition
2 > ./race_condition
3 GPU Time : 0.148 ms
4 a = 88

Modification:
1 __global__ void colonel(int *d_a){
2 atomicAdd(d_a, 1);
3 }

Output:
1 GPU Time : 14.85 ms
2 a = 1000000

Atomic functions can only be used in device functions.

49 / 60

Race condition results
Problems of parallelism

Output:
1 > nvcc race_condition.cu -o race_condition
2 > ./race_condition
3 GPU Time : 0.148 ms
4 a = 88

Modification:
1 __global__ void colonel(int *d_a){
2 atomicAdd(d_a, 1);
3 }

Output:
1 GPU Time : 14.85 ms
2 a = 1000000

Atomic functions can only be used in device functions.

49 / 60

Race condition results
Problems of parallelism

Output:
1 > nvcc race_condition.cu -o race_condition
2 > ./race_condition
3 GPU Time : 0.148 ms
4 a = 88

Modification:
1 __global__ void colonel(int *d_a){
2 atomicAdd(d_a, 1);
3 }

Output:
1 GPU Time : 14.85 ms
2 a = 1000000

Atomic functions can only be used in device functions.

49 / 60

Atomic operations I
(for all devices CC>2.0)

Device-wide atomics: atomic for all CUDA threads in the current
program executing in the same compute device as the current
thread:

1 atomicAdd()
2 atomicSub()
3 atomicMin()
4 atomicMax()
5 atomicInc()
6 atomicDec()
7 atomicAdd()
8 atomicExch()
9 atomicAnd()

10 atomicOr()
11 atomicXor()
12 int atomicCAS(int* address, int compare, int val); // Compare And

Swap (returns old value)

An atomic function performs a read-modify-write atomic operation on
one 32-bit or 64-bit word residing in global or shared memory.

50 / 60

Atomic operations II
(for all devices CC­6.0)

System-wide atomics: atomic for all threads in the current
program including other CPUs and GPUs in the system. These are
suffixed with _system. Like: atomicAdd_system().

Block-wide atomics: atomic for all CUDA threads in the current
program executing in the same thread block as the current thread.
These are suffixed with _block. Like: atomicAdd_block().

51 / 60

Part 2 – CUDA Advances
Warp threads scheduling
Advanced synchronization
Variables and Memory

Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations
Problems of parallelism

Race conditions
Volatile

Time Measurements

52 / 60

Volatile variables and specific compiler optimizations
Problems of parallelism

I One of the compiler’s tricks: reuse references to memory
location

I Result: A reused value may be changed by another thread in
the background

1 // myArray is an array of non-zero integers
2 // located in global or shared memory
3 __global__ void myKernel(int* result)
4 {
5 int tid = threadIdx.x;
6 int ref1 = myArray[tid] * 1;
7 myArray[tid + 1] = 2;
8 int ref2 = myArray[tid] * 1;
9 result[tid] = ref1 * ref2;

10 }

I the first reference to myArray[tid] compiles into a memory
read instruction

I the second reference does not as the compiler simply reuses
the result of the first read

53 / 60

Volatile variables and specific compiler optimizations
Problems of parallelism

I One of the compiler’s tricks: reuse references to memory
location

I Result: A reused value may be changed by another thread in
the background

1 // myArray is an array of non-zero integers
2 // located in global or shared memory
3 __global__ void myKernel(int* result)
4 {
5 int tid = threadIdx.x;
6 int ref1 = myArray[tid] * 1;
7 myArray[tid + 1] = 2;
8 int ref2 = myArray[tid] * 1;
9 result[tid] = ref1 * ref2;

10 }

I the first reference to myArray[tid] compiles into a memory
read instruction

I the second reference does not as the compiler simply reuses
the result of the first read

53 / 60

Volatile variables and specific compiler optimizations
Problems of parallelism

I One of the compiler’s tricks: reuse references to memory
location

I Result: A reused value may be changed by another thread in
the background

1 // myArray is an array of non-zero integers
2 // located in global or shared memory
3 __global__ void myKernel(int* result)
4 {
5 int tid = threadIdx.x;
6 int ref1 = myArray[tid] * 1;
7 myArray[tid + 1] = 2;
8 int ref2 = myArray[tid] * 1;
9 result[tid] = ref1 * ref2;

10 }

I the first reference to myArray[tid] compiles into a memory
read instruction

I the second reference does not as the compiler simply reuses
the result of the first read

53 / 60

Volatile variables and specific compiler optimizations
Problems of parallelism

I One of the compiler’s tricks: reuse references to memory
location

I Result: A reused value may be changed by another thread in
the background

1 // myArray is an array of non-zero integers
2 // located in global or shared memory
3 __global__ void myKernel(int* result)
4 {
5 int tid = threadIdx.x;
6 int ref1 = myArray[tid] * 1;
7 myArray[tid + 1] = 2;
8 int ref2 = myArray[tid] * 1;
9 result[tid] = ref1 * ref2;

10 }

I the first reference to myArray[tid] compiles into a memory
read instruction

I the second reference does not as the compiler simply reuses
the result of the first read

53 / 60

Volatile variables and specific compiler optimizations
Problems of parallelism

I One of the compiler’s tricks: reuse references to memory
location

I Result: A reused value may be changed by another thread in
the background

1 // myArray is an array of non-zero integers
2 // located in global or shared memory
3 __global__ void myKernel(int* result)
4 {
5 int tid = threadIdx.x;
6 int ref1 = myArray[tid] * 1;
7 myArray[tid + 1] = 2;
8 int ref2 = myArray[tid] * 1;
9 result[tid] = ref1 * ref2;

10 }

I the first reference to myArray[tid] compiles into a memory
read instruction

I the second reference does not as the compiler simply reuses
the result of the first read

53 / 60

Part 2 – CUDA Advances
Warp threads scheduling

Advanced synchronization

Variables and Memory
Memory types
Global Memory Access
Shared Memory
Example of shared memory utilization – matrices

Asynchronous operations

Problems of parallelism
Race conditions
Volatile

Time Measurements

54 / 60

Timers API
Time Measurements

I cudaEvent_t – event type
I cudaEventSynchronize() – blocks CPU until given event records
I cudaEventRecord() – records given event in given stream
I cudaEventElapsedTime() – calculates time in milliseconds

between events
I cudaEventCreate() – creates an event
I cudaEventDestroy() – destroys an event

55 / 60

Timers Example
Time Measurements

1 cudaEvent_t start, stop; float time;
2 cudaEventCreate(&start);
3 cudaEventCreate(&stop);
4

5 cudaEventRecord(start, 0);
6

7 kernel<<<grid,threads>>> (d_odata, d_idata, size_x, size_y);
8

9 cudaEventRecord(stop, 0);
10

11 cudaEventSynchronize(stop);
12

13 cudaEventElapsedTime(&time, start, stop);
14

15 cudaEventDestroy(start);
16 cudaEventDestroy(stop);

56 / 60

Theoretical Bandwidth Calculation
Time Measurements

TB = (Clock× 106 ×MemInt× 2)/109

I TB – theoretical bandwidth [GB/s]
I Clock – memory clock rate [MHz]
I MemInt – width of memory interface [B]
I 2 – DDR – Double Data Rate Memory

For NVIDIA GeForce GTX 280 we get:

(1107× 106 × 512/8× 2)/109 = 141.6 [GB/s]

57 / 60

Theoretical Bandwidth Calculation
Time Measurements

TB = (Clock× 106 ×MemInt× 2)/109

I TB – theoretical bandwidth [GB/s]
I Clock – memory clock rate [MHz]
I MemInt – width of memory interface [B]
I 2 – DDR – Double Data Rate Memory

For NVIDIA GeForce GTX 280 we get:

(1107× 106 × 512/8× 2)/109 = 141.6 [GB/s]

57 / 60

Effective Bandwidth Calculation
Time Measurements

EB = (Br + Bw)× 10−9

t

I EB – effective bandwidth [GB/s]
I Br – bytes read
I Bw – bytes written
I t – time of the test [s]

58 / 60

Bibliography

Mark Harris. Parallel prefix sum (scan) with CUDA.
www.nvidia.com/cuda, 2007.

NVIDIA. Cuda c++ programming guide.
www.nvidia.com/cuda.

NVIDIA. Cuda whitepapers. www.nvidia.com/cuda.

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.
https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html,
2020.

59 / 60

Materiały sponsorowane przez:

Projekt „NERW 2 PW. Nauka – Edukacja – Rozwój – Współpraca”
współfinansowany jest ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

Zadanie 10 pn. „Modyfikacja programów studiów na kierunkach
prowadzonych przez Wydział Matematyki i Nauk Informacyjnych”,
realizowane w ramach projektu „NERW 2 PW. Nauka – Edukacja –
Rozwój – Współpraca”, współfinansowanego jest ze środków Unii
Europejskiej w ramach Europejskiego Funduszu Społecznego

60 / 60

	Warp threads scheduling
	Advanced synchronization
	Variables and Memory
	Asynchronous operations
	Problems of parallelism
	Time Measurements

