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Goals for today:

I Get familiar with parallel algorithms building blocks
I Understand several interesting algorithms

3 / 77



Part 3 – Algorithms
Introduction

Scatter/Gather
Map
Scan
Scan of arbitrary size arrays

Sample applications of scan
Sorting networks

Comparators and simple networks
Bitonic sort

Physical Simulations
Particles
Tree-Based Barnes Hut n-Body Algorithm
Summary of optimizations

Building radix trees

4 / 77



Taxonomy of parallel machines
Introduction

RAM – Random Access Machine
PRAM – Parallel Random Access Machine

(EREW, CREW, ERCW, CRCW)
E{R,W} – Exclusive read/write – two processors

cannot access the same memory
address in the same time

C{R,W} – Concurrent read/write

It is also important to know if execution of all commands is
synchronized or not.

I in case of GPU (CUDA) we may assure synchronization only
within a block of threads.

I this property may spoil algorithms and needs additional work
I in several cases it is enough to separate input and output

(see array reverse example)

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2001
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Parallelization of Sequential Code
Introduction

Speedup
T – time, W – work, N – number of processors,
∗s – before improvement (sequential),
∗p – after improvement (parallel)

ST (N) = Ts

Tp

SW (N) = Wp

Ws
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Parallelization of Sequential Code
Amdahl’s Law

Constant Problem Size: Wp = Ws

T – time, P – fraction of parallelized program,
N – number of processors

Tp(N) = (1− P ) Ts + P
Ts

N

ST (N) = Ts

Tp(N) = Ts

(1− P ) Ts + P Ts
N

ST (N) = 1
(1− P ) + P

N
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Parallelization of Sequential Code
Amdahl’s Law – examples

I P = 1
2 , N = 2→ S = 1

(1− 1
2 )+

1
2
2

= 1.25

I P = 1→ S = N

I P = 1
2 , N = 20→ S = 1

(1− 1
2 )+

1
2

20

≈ 1.904

If N is large then we can omit P
N :

I P = 3
4 → S = 1

(1− 3
4 ) = 4

I P = 1
6 → S = 1

(1− 1
6 ) = 6

5 = 1.2
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Parallelization of Sequential Code
Amdahl’s Law

Figure: Speedup limits by Amhdl’s Law

Daniels220. English Wikipedia, CC BY-SA 3.0. https://commons.wikimedia.org/w/index.php?curid=6678551
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Parallelization of Sequential Code
Gustafson’s Law

Constant Total Computation Time: Ts=Tp

T – time, P – portion of parallel program time,
N – Number of processors

Ws = (1− P )Ws + P ·Ws

Wp(N) = (1− P )Ws + N · P ·Ws

SW (N) = Wp(N)
Ws

= (1− P )Ws + N · P ·Ws

Ws

SW (N) = 1− P + N · P

I P = 1
2 , N = 2→ S = 1− 1

2 + 2 · 1
2 = 1.5

I P = 1
2 , N = 20→ S = 1− 1

2 + 20 · 1
2 = 10.5
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Heterogeneous programming with host and device
Introduction

NVIDIA. Cuda c++ programming guide. www.nvidia.com/cuda
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Scatter/Gather Operations
Introduction

Parallel threads may easily access any location in global or shared
memory with two possible behaviors:

Gather
Single thread reads from many locations writes to one. Can
accumulate data in private registers. Possible shared memory
utilization while reading.

Scatter
Single thread reads from one location writes to many.
Scatter leads to possible write conflicts:
I use atomic writes (slow down)
I change to gather if possible
I privatization (more memory)

13 / 77



Scatter/Gather Operations
Introduction

Parallel threads may easily access any location in global or shared
memory with two possible behaviors:

Gather
Single thread reads from many locations writes to one. Can
accumulate data in private registers. Possible shared memory
utilization while reading.

Scatter
Single thread reads from one location writes to many.
Scatter leads to possible write conflicts:
I use atomic writes (slow down)
I change to gather if possible
I privatization (more memory)

13 / 77



Examples of scatter and gather
Introduction

scatter: electrons-protons one thread per particle, naive histogram
gather: electrons-protons one thread per output pixel, matrix

multiplication, fish simulation one thread per a fish

14 / 77
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Map
Introduction

Definition (Map)
The map operation takes a function F (well defined for given input
values) and an array of n elements [x0, x1, . . . , xn−1], and returns
the array

[F (x0), F (x1), . . . , F (xn−1)].

I This task is one of embarrassingly parallel problems.

I One of possible optimizations –
map(F ) ◦map(G) = map(F ◦G)

I Also an idea for loops parallelism
(if subsequent iterations are independent).

I In CUDA F must be defined as __device__ function.
I CUDA supports 2d and 3d arrays of threads .
I . . . more dimensions must be simulated.
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Prefix sums
Introduction

Definition (Scan – Array all-prefix-sums)
The scan operation takes a binary associative operator ⊕, and an
array of n elements [x0, x1, . . . , xn−1], and returns the array

[x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−1)].

Definition (Prescan)
The prescan operation takes a binary associative operator ⊕ with
identity I, and an array of n elements [x0, x1, . . . , xn−1], and
returns the array

[I, x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−2)].

Guy E Blelloch. Prefix sums and their applications, 1990
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Scan – naive solution
Introduction

1 for d := 1 to log2 n do
2 forall k in parallel do
3 if k ­ 2d then x[k] := x[k − 2d−1] + x[k]

0 x0 x1 x2 x3 x4 x5 x6 x7

1
∑0

0 xi
∑1

0 xi
∑2

1 xi
∑3

2 xi
∑4

3 xi
∑5

4 xi
∑6

5 xi
∑7

6 xi

2
∑0

0 xi
∑1

0 xi
∑2

0 xi
∑3

0 xi
∑4

1 xi
∑5

2 xi
∑6

3 xi
∑7

4 xi

3
∑0

0 xi
∑1

0 xi
∑2

0 xi
∑3

0 xi
∑4

0 xi
∑5

0 xi
∑6

0 xi
∑7

0 xi

Not work-efficient: O(n log(n)) compared to sequential O(n)

W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Commun. ACM, 29(12):1170–1183, 1986
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Scan – work-efficient solution (I)
Introduction

Up-sweep (reduce) phase (scan)
1 for d := 0 to log2 n− 1 do
2 for k from 0 to n− 1 by 2d + 1 in parallel do
3 x[k + 2d+1 − 1] := x[k + 2d − 1] + x [k + 2d+1 − 1]

3 x0
∑1

0 xi x2
∑3

0 xi x4
∑5

4 xi x6
∑7

0 xi

2 x0
∑1

0 xi x2
∑3

0 xi x4
∑5

4 xi x6
∑7

4 xi

1 x0
∑1

0 xi x2
∑3

2 xi x4
∑5

4 xi x6
∑7

6 xi

x0 x1 x2 x3 x4 x5 x6 x7

Guy E Blelloch. Prefix sums and their applications, 1990
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Scan – work-efficient solution (II)
Introduction

Down-sweep (reduce) phase (prescan)
1 x[n− 1] := 0
2 for d := log2 n down to 0 do
3 for k from 0 to n− 1 by 2d+1 in parallel do
4 t := x[k + 2d − 1]
5 x[k + 2d − 1] := x [k + 2d+1 − 1]
6 x[k + 2d+1 − 1] := t + x [k + 2d+1 − 1]

1 x0
∑1

0 xi x2
∑3

0 xi x4
∑5

4 xi x6 0

2 x0
∑1

0 xi x2 0 x4
∑5

4 xi x6
∑3

0 xi

3 x0 0 x2
∑1

0 xi x4
∑3

0 xi x6
∑5

0 xi

4 0 x0
∑1

0 xi
∑2

0 xi
∑3

0 xi
∑4

0 xi
∑5

0 xi
∑6

0 xi

Guy E Blelloch. Prefix sums and their applications, 1990
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Scan – work-efficient solution (III)
Introduction

I Work-efficient O(n)

I Prescan result may be converted to scan by:
scan[i] = prescan[i]⊕ xi or by shifting the result by one
element left and adding the last element of prescan to the last
element of the original input.

I Additional care for bigger arrays since blocks of threads must
be synchronized.
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Scan of arbitrary size arrays
Introduction

Mark Harris. Parallel prefix sum (scan) with CUDA. www.nvidia.com/cuda, 2007
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Applications of prefix sums algorithm
Sample applications of scan

I Computation of minimum, maximum, average, etc. of an array
I Lexical comparison of strings of characters
I Addition of multi-precision numbers that cannot be

represented in a single machine word
I Evaluation of polynomials
I Solving of recurrence equations
I Radix sort
I Quick sort
I Solving tridiagonal linear systems
I Removal of marked elements from an array
I Dynamical allocation of processors
I Lexical analysis (parsing into tokens)
I Searching for regular expressions
I Implementation of some tree operations

26 / 77



Pack operation
Sample applications of scan

Definition (Pack)
For given array of input values A and flags array F (true/false),
pack returns array with elements from A array which are marked as
true in flags array only.

Definition (Enumerate)
For given input vector of true/false flags F enumerate returns
vector containing at each position a number of predeceasing true
values in F .

Example:
A 6 3 4 8 1 2 4 2
F 0 0 0 1 1 0 0 1

prescan(F) 0 0 0 0 1 2 2 2
pack(A,F) 8 1 2

27 / 77
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Radix sort
Sample applications of scan

1 procedure split_radix_sort(A, number_of_bits)
2 for i from 0 to (number_of_bits - 1)
3 A := split(A, A<i>)

A 5 7 3 1 4 2 7 2

A<0> 1 1 1 1 0 0 1 0

split(A, A<0>) 4 2 2 5 7 3 1 7

A<1> 0 1 1 0 1 1 0 1

split(A, A<1>) 4 5 1 2 2 7 3 7

A<2> 1 1 0 0 0 1 0 1

split(A, A<2>) 1 2 2 3 4 5 7 7

Guy E Blelloch. Prefix sums and their applications, 1990
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Split with scan
Sample applications of scan
1 procedure split(A, Flags)
2 I_down := sum_prescan(not(Flags))
3 I_up := n - sum_scan(reverse_order(Flags))
4 forall i in parallel do
5 if (Flags[i])
6 Index[i] := I_up[i]
7 else
8 Index[i] := I_down[i]
9 result := permute(A, Index)

A 5 7 3 1 4 2 7 2

Flags 1 1 1 1 0 0 1 0

I_down 0 0 0 0 0 1 2 2

I_up 3 4 5 6 6 6 7 7

Index 3 4 5 6 0 1 7 2

permute(A, Index) 4 2 2 5 7 3 1 7
Guy E Blelloch. Prefix sums and their applications, 1990
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Segmented scan
Sample applications of scan

Guy E Blelloch. Prefix sums and their applications, 1990

Definition (Segmented scan)
For given array of input values [a0, . . . , an−1] and array of flags
[f0, . . . , fn−1] segmented scan returns array [x0, . . . , xn−1]
satisfying the equation:

xi =


a0 i = 0{

ai fi = 1
(xi−1 ⊕ ai) fi = 0

0 < i < n

I Original scan may be segmented in such a way that the scan
starts again at each segment boundary.

I Implementation of this method is much slower than original
unsegmented scan.
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Example of segmented scan (Up-sweep phase)
Sample applications of scan

1 for d = 1 to log2 n− 1 do
2 for k = 0 to n− 1 by 2d+1 in parallel do
3 if f[k + 2d+1 − 1] = false then
4 x[k + 2d+1 − 1] := x[k + 2d − 1] + x[k + 2d+1 − 1]
5 f[k + 2d+1 − 1] := f[k + 2d − 1] | f[k + 2d+1 − 1]

f 1 0 0 1 0 0 0 0

x x0
∑1

0 xi x2 x3 x4
∑5

4 xi x6
∑7

3 xi

x x0
∑1

0 xi x2 x3 x4
∑5

4 xi x6
∑7

4 xi

x x0
∑1

0 xi x2 x3 x4
∑5

4 xi x6
∑7

6 xi

x x0 x1 x2 x3 x4 x5 x6 x7

Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan primitives for gpu computing. In Mark

Segal and Timo Aila, editors, Graphics Hardware, pages 97–106. Eurographics Association, 2007
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Example of segmented scan (Down-sweep phase)
Sample applications of scan
1 x[n− 1] := 0
2 for d := log2 n− 1 down to 0 do
3 for k from 0 to n− 1 by 2d+1 in parallel do
4 t := x[k + 2d − 1]
5 x[k + 2d − 1] := x [k + 2d+1 − 1]
6 if f[k + 2d] = true then
7 x[k + 2d+1 − 1] := 0
8 else if f[k + 2d − 1] = true then
9 x[k + 2d+1 − 1] := t
10 else
11 x[k + 2d+1 − 1] := t + x [k + 2d+1 − 1]
12 f[k + 2d − 1] := false

f 1 0 0 1 0 0 0 0
x x0

∑1
0 xi x2 x3 x4

∑5
4 xi x6 0

x x0
∑1

0 xi x2 0 x4
∑5

4 xi x6 x3

f 1 0 0 0 0 0 0 0
x x0 0 x2

∑1
0 xi x4 x3 x6

∑5
3 xi

x 0 x0
∑1

0 xi
∑2

0 xi x3
∑4

3 xi
∑5

3 xi
∑6

3 xi
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Parallel Quicksort
Sample applications of scan
1 procedure quicksort(keys)
2 seg_flags[0] := 1
3 while not_sorted(keys)
4 pivots := seg_copy(keys, seg_flags)
5 f := pivots <=> keys
6 keys := seg_split(keys, f, seg_flags)
7 seg_flags := new_seg_flags(keys, pivots, seg_flags)

key 6.4 9.2 3.4 1.6 8.7 4.1 9.2 3.4
seg_flags 1 0 0 0 0 0 0 0

pivots 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4
f = > < < > < > <

key:=split(key, f) 3.4 1.6 4.1 3.4 6.4 9.2 8.7 9.2
seg_flags 1 0 0 0 1 1 0 0

pivots 3.4 3.4 3.4 3.4 6.4 9.2 9.2 9.2
f = < > = = = < =

key:=split(key, f) 1.6 3.4 3.4 4.1 6.4 8.7 9.2 9.2
seg_flags 1 1 0 1 1 1 1 0

Guy E Blelloch. Prefix sums and their applications, 1990
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Quicksort notes
Sample applications of scan

I Assures equal load for all processors.

I However rises many implementation problems:

I segmented scan is much (4 times) slower than normal scan
I flags vector must be stored with additional care

I Theoretical time complexity: O(n
p log2 n + log2

2 n)
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Part 3 – Algorithms
Introduction

Scatter/Gather
Map
Scan
Scan of arbitrary size arrays

Sample applications of scan
Sorting networks

Comparators and simple networks
Bitonic sort

Physical Simulations
Particles
Tree-Based Barnes Hut n-Body Algorithm
Summary of optimizations

Building radix trees
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Sorting networks
Sorting networks

Definition (Comparator)
Comparator is a device with two inputs (x and y) and two outputs
(x′ and y′) calculating in time O(1) the following function:

x′ = min(x, y)
y′ = max(x, y)

Comparator may calculate results only if both input values are
available.

Definition (Sorting network)
Sorting network contains n inputs a1, . . . , an and n outputs
b1, . . . , bn. For any given input vector, the output vector is sorted
(b1 ¬ b2 ¬ · · · ¬ bn). Data flow inside the network has no circles.
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Sorting networks
Sorting networks

Sorting networks can be compared by number of elements or
depth.
I Odd-even sorting network – depth: O(n), comparators: O(n2)

I Merger, bitonic and shell sorting network – depth: O(log2 n),
comparators: O(n log2 n)

I Optimal AKS network – depth: O(log n), comparators:
O(n log n) (impractical)
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Comparators and simple networks
Sorting networks

Theorem (Zero-one principle)
If a comparison network with n inputs sorts all 2n possible
sequences of 0’s and 1’s correctly, then it sorts all sequences of
arbitrary numbers correctly.
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Odd-even sort kernel example
Sorting networks

1 __global__ static void sort_shared_mem(float *g_idata, int num_elements)
2 {
3 extern __shared__ float temp[];
4 uint thid = threadIdx.x;
5 uint m = thid, n = m + 1, off = 0;
6
7 temp[thid] = g_idata[thid];
8 __syncthreads();
9

10 if ((m & 1) == 0)
11 for (unsigned int i=0; i<num_elements; ++i)
12 {
13 if ( n <= (num_elements-1) )
14 if (temp[m] > temp[n])
15 swap( temp[m], temp[n] );
16 off = off xor 1;
17 m = thid + off;
18 n = m + 1;
19 __syncthreads();
20 }
21 __syncthreads();
22 g_idata[thid] = temp[thid];
23 }
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Half-Cleaner[n] network
Sorting networks

Half-Cleaner: input – bitonic,
output – one bitonic, one bitonic-clean.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2001

Donald Knuth. The Art Of Computer Programming, vol. 3: Sorting And Searching. Addison-Wesley, 1973
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Half-Cleaner[n] and Merger[n] networks
Sorting networks

Merger: input – two sorted,
output – two bitonic, one clean.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2001

Donald Knuth. The Art Of Computer Programming, vol. 3: Sorting And Searching. Addison-Wesley, 1973
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Parallel implementation of bitonic sort
Sorting networks

Nvidia cuda sdk. www.nvidia.com/cuda

1 __global__ static void bitonicSort(int * values)
2 {
3 extern __shared__ int shared[];
4 const unsigned int tid = threadIdx.x;
5 shared[tid] = values[tid];
6 __syncthreads();
7 for (unsigned int k = 2; k <= NUM; k *= 2)
8 for (unsigned int j = k / 2; j>0; j /= 2)
9 {

10 unsigned int ixj = tid ^ j;
11 if (ixj > tid) {
12 if ((tid & k) == 0){
13 if (shared[tid] > shared[ixj])
14 swap(shared[tid], shared[ixj]);
15 }
16 else {
17 if (shared[tid] < shared[ixj])
18 swap(shared[tid], shared[ixj]);
19 }
20 }
21 __syncthreads();
22 }
23 values[tid] = shared[tid];
24 }
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Bitonic sort network
Sorting networks
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Interaction of particles
Physical Simulations

1. Integration – Calculate particle properties

2. Update helper structures – Create grid
3. Process interactions – Calculate collisions

Ad. 1. Relatively simple task – forces influence velocity, velocity
updates position.

Ad. 3. There are generally three types of interactions:

I no interaction – each particle is independent and can be
simulated in parallel

I unlimited interaction – when all particles influence all other
(gravitation)

I interaction limited in distance – when force (or influence)
drops off with distance

I spatial subdivision improves performance – uniform grids
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Creating uniform grid of particles in space
Physical Simulations

I Grid subdivides space into uniformly sized cells

I A single cell contains indices of contained particles (according
to particle’s center)

I We set one thread for each particle
I However we get conflicts if more particles fall into the same

cell
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Creating grid with atomic operations
Physical Simulations

Simon Green. CUDA particles. www.nvidia.com/cuda, 2008

1 forall k in parallel do
2 j := calcCellNo(k)
3 p := gridCounters[j]
4 gridCounters[j]++
5 gridCells[j][p] := k

Notes:
I gridCells and gridCounters are in global memory.

I Global memory access is random and coalesced access will not
work.

I Updating arrays may be done by many threads in the same
time – atomicAdd must be used.
p = atomicAdd( &gridCounters[j], 1 )

In some devices atomic functions must be turned on by compiling
with -arch sm_11 nvcc option.
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Creating grid without atomic operations I
Physical Simulations

Simon Green. CUDA particles. www.nvidia.com/cuda, 2008
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Creating grid without atomic operations II
Physical Simulations

Simon Green. CUDA particles. www.nvidia.com/cuda, 2008

1 forall k in parallel do
2 j := calcCellNo(k)
3 particlesGrid[k].cellNo := j
4 particlesGrid[k].particle := k
5

6 parallelSortByCellNo( particlesGrid )
7

8 forall 0 < k in parallel do
9 if particlesGrid[k].cellNo <> particlesGrid[k − 1].cellNo
10 cellStart[particlesGrid[k].cellNo] = k
11 cellStart[particlesGrid[0].cellNo] = 0

Notes:
I The method with sorting is about 40% faster than the

previous one.
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Barnes Hut force-calculation for n-body
Physical Simulations

The tree-based algorithm reduces O(n2) to O(n log n)
It is a challenge since:
1. it repeatedly builds and traverses an irregular tree-based data

structure,
2. it performs a lot of pointer-chasing memory operations,
3. it is typically expressed recursively.
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General schema of the algorithm
Physical Simulations

1. Read input data and transfer to GPU
2. for each timestep do:

2.1 Compute bounding box around all bodies
2.2 Build hierarchical decomposition by inserting each body into octree
2.3 Summarize body information in each internal octree node
2.4 Approximately sort the bodies by spatial distance
2.5 Compute forces acting on each body with help of octree
2.6 Update body positions and velocities

3. Transfer result to CPU and output

Based on:
Martin Burtscher and Keshav Pingali. An efficient cuda implementation of the tree-based barnes hut n-body algorithm. GPU

Computing Gems Emerald Edition, 12 2011
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Memory structures
Physical Simulations

I n-body objects converted to SoA: fields grouped in separated arrays
I Allocate bodies at the beginning and the cells at the end of the

arrays
I Use an index of -1 as a null pointer.
I Advantages:

I A simple comparison of the array index with the number of bodies
determines whether the index points to a cell or a body.

I In some code sections, we need to find out whether an index refers to
a body or to null. Because -1 is also smaller than the number of
bodies, a single integer comparison suffices to test both conditions.

BC array: b1 b2 b3 ... ... c3 c2 c1
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General schema of the algorithm – kernels
Kernel 1

Compute bounding box around all bodies:

I Break data into equal chunks.
I Perform reduction operation in blocks.
I Use min() and max() since they are

faster than if... statement.
I The last block combines results and

generates the root of the tree.
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General schema of the algorithm – kernels
Kernel 2

Build hierarchical decomposition by inserting each body into octree:

I Implements an iterative tree-building algorithm that uses lightweight locks
I Bodies are assigned to the blocks and threads within a block in round-robin

fashion.
I Each thread inserts its bodies one after the other by:

I traversing the tree from the root to the desired last-level cell
I attempting to lock the appropriate child pointer (an array index) by

writing an otherwise unused value to it using an atomic operation
I If the lock succeeds, the thread inserts the new body and release the
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General schema of the algorithm – kernels
Kernel 2 – pseudocode

Repeat to get the success flag true:
1 // initialize
2 cell = find_insertion_point(body); // nothing is locked, cell cached

for retries
3 child = get_insertion_index(cell, body);
4 if (child != locked) {
5 if (child == atomicCAS(&cell[child], child, lock)) {
6 if (child == null) {
7 cell[child] = body; // insert body and release lock
8 } else {
9 new_cell =...; // atomically get the next unused cell
10 // insert the existing and new body into new cell
11 threadfence(); // make sure new cell subtree is visible
12 cell[child] = new_cell; // insert new cell and release

lock
13 }
14 success = true; // flag indicating that insertion succeeded
15 }
16 }
17 syncthreads(); // wait for other warps to finish insertion
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General schema of the algorithm – kernels
Kernel 3

Summarize body information in each internal octree node:

I traverses the unbalanced octree from
the bottom up to compute the center
of gravity and the sum of the masses
of each cell’s children

I Cells are assigned to blocks and
threads in a round-robin fashion.

I Ensure load-balance, Start from leaves
so avoid deadlocks, Allow some
coalescing
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General schema of the algorithm – kernels
Kernel 3 – pseudocode

1 // initialize
2 if (missing == 0) {
3 // initialize center of gravity
4 for (/*iterate over existing children*/) {
5 if (/*child is ready*/) {
6 // add its contribution to center of gravity
7 } else {
8 // cache child index
9 missing++;

10 }
11 }
12 }
13 if (missing != 0) {
14 do {
15 if (/*last cached child is now ready*/) {
16 // remove from cache and add its contribution to center of gravity
17 missing--;
18 }
19 } while (/*missing changed*/ && (missing != 0));
20 }
21 if (missing == 0) {
22 // store center of gravity
23 __threadfence(); // make sure center of gravity is visible
24 // store cumulative mass
25 success = true; // local flag indicating that computation for cell is done
26 }
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General schema of the algorithm – kernels
Kernel 4

Approximately sort the bodies by spatial distance.
Kernel 4 is not needed for correctness but for optimization.
I It is done by in-order traversal of the tree.
I Typically places spatially close bodies close together.
I It is based on the number of bodies in each subtree, which

was computed in kernel 3.
I It concurrently places the bodies into an array such that the

bodies appear in the same order in the array as they would
during an in-order traversal of the octree.
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General schema of the algorithm – kernels
Kernel 5

Compute forces acting on each body with help of octree:

I For each body, the corresponding
thread traverses some prefix of the
octree to compute the force acting
upon this body.
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General schema of the algorithm – kernels
Kernel 5 – pseudocode
1 // precompute and cache info
2 // determine first thread in each warp
3 for (/*sorted body indexes assigned to me*/) {
4 // cache body data
5 // initialize iteration stack
6 depth = 0;
7 while (depth >= 0) {
8 while (/*there are more nodes to visit*/) {
9 if (/*I’m the first thread in the warp*/) {

10 // move on to next node
11 // read node data and put in shared memory
12 }
13 __threadfence_block();
14 if (/*node is not null*/) {
15 // get node data from shared memory
16 // compute distance to node
17 if ((/*node is a body*/) || all(/*distance >= cutoff*/)) {
18 // compute interaction force contribution
19 } else {
20 depth++; // descend to next tree level
21 if (/*I’m the first thread in the warp*/) {
22 // push node’s children onto iteration stack
23 }
24 __threadfence_block();
25 }
26 } else {
27 depth = max(0, depth-1); // early out because remaining nodes are also null
28 }
29 }
30 depth--;
31 }
32 // update body data
33 } 64 / 77



General schema of the algorithm – kernels
Kernel 6

Update velocities and positions of all bodies:

I It is a straightforward, fully coalesced, nondivergent streaming
kernel.

I As in the other kernels, the bodies are assigned to the blocks and
threads within a block in round-robin fashion.
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Summary of optimizations
Physical Simulations

MAIN MEMORY
Minimize Accesses
I Let one thread read common data and distribute data to

other threads via shared memory
I When waiting for multiple data items to be computed, record

which items are ready and only poll the missing items
I Cache data in registers or shared memory
I Use thread throttling (see control-flow section)
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Summary of optimizations
Physical Simulations

MAIN MEMORY
Maximize Coalescing
I Use multiple aligned arrays, one per field, instead of arrays of

structs or structs on heap
I Use a good allocation order for data items in arrays

Reduce Data Size
I Share arrays or elements that are known not to be used at the

same time
Minimize CPU/GPU Data Transfer
I Keep data on GPU between kernel calls
I Pass kernel parameters through constant memory
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Summary of optimizations
Physical Simulations

CONTROL FLOW
Minimize Thread Divergence
I Group similar work together in the same warp

Combine Operations
I Perform as much work as possible per traversal, i.e., fuse

similar traversals
Throttle Threads
I Insert barriers to prevent threads from executing likely useless

work
Minimize Control Flow
I Use compiler pragma to unroll loops
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Summary of optimizations
Physical Simulations

LOCKING
Minimize Locks
I Lock as little as possible (e.g., only a child pointer instead of

entire node, only last node instead of entire path to node)
Use Lightweight Locks
I Use flags (barrier/store and load) where possible
I Use atomic operation to lock but barrier/store or just store to

unlock
Reuse Fields
I Use existing data field instead of separate lock field
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Summary of optimizations
Physical Simulations

HARDWARE
Exploit Special Instructions
I Use min, max, threadfence, threadfence block, syncthreads,

all, rsqft, etc. operations
Maximize Thread Count
I Parallelize code across threads
I Limit shared memory and register usage to maximize thread

count
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Building a radix search tree
Radix search tree

At each level we consider r bits of the vectors.
We get 2r possible children of each node.

0 1 3

0 2 2 1

0 1 3 0 2 3

x x̃
00 00 00 000
00 10 01 021
01 10 11 123
11 01 00 310
11 01 10 312
11 01 11 313

r = 2.
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Parallel Tree Building
Top-down (level 0)

I sort input vectors

I transpose data vectors – columns are rows now

0 1 3 001333
x̃T 022111

013023

I Marking existence of children c0 c1 c2 c3
1 1 0 1

I Pre-scan array 0 1 2 2
I Number of children in the next level: 2 + 1 = 3
I In parallel for each existing child node(blocks):

74 / 77



Parallel Tree Building
Top-down (level 0)

I sort input vectors
I transpose data vectors – columns are rows now

0 1 3 001333
x̃T 022111

013023

I Marking existence of children c0 c1 c2 c3
1 1 0 1

I Pre-scan array 0 1 2 2
I Number of children in the next level: 2 + 1 = 3
I In parallel for each existing child node(blocks):

74 / 77



Parallel Tree Building
Top-down (level 0)

I sort input vectors
I transpose data vectors – columns are rows now

0 1 3 001333
x̃T 022111

013023

I Marking existence of children c0 c1 c2 c3
1 1 0 1

I Pre-scan array 0 1 2 2
I Number of children in the next level: 2 + 1 = 3
I In parallel for each existing child node(blocks):

74 / 77



Parallel Tree Building
Top-down (level 0)

I sort input vectors
I transpose data vectors – columns are rows now

0 1 3 001333
x̃T 022111

013023

I Marking existence of children c0 c1 c2 c3
1 1 0 1

I Pre-scan array 0 1 2 2
I Number of children in the next level: 2 + 1 = 3
I In parallel for each existing child node(blocks):

74 / 77



Parallel Tree Building
Top-down (level 0)

I sort input vectors
I transpose data vectors – columns are rows now

0 1 3 001333
x̃T 022111

013023

I Marking existence of children c0 c1 c2 c3
1 1 0 1

I Pre-scan array 0 1 2 2
I Number of children in the next level: 2 + 1 = 3
I In parallel for each existing child node(blocks):

74 / 77



Parallel Tree Building
Top-down (level 0)

I sort input vectors
I transpose data vectors – columns are rows now

0 1 3 001333
x̃T 022111

013023

I Marking existence of children c0 c1 c2 c3
1 1 0 1

I Pre-scan array 0 1 2 2

I Number of children in the next level: 2 + 1 = 3
I In parallel for each existing child node(blocks):

74 / 77



Parallel Tree Building
Top-down (level 0)

I sort input vectors
I transpose data vectors – columns are rows now

0 1 3 001333
x̃T 022111

013023

I Marking existence of children c0 c1 c2 c3
1 1 0 1

I Pre-scan array 0 1 2 2
I Number of children in the next level: 2 + 1 = 3

I In parallel for each existing child node(blocks):

74 / 77



Parallel Tree Building
Top-down (level 0)

I sort input vectors
I transpose data vectors – columns are rows now

0 1 3 001333
x̃T 022111

013023

I Marking existence of children c0 c1 c2 c3
1 1 0 1

I Pre-scan array 0 1 2 2
I Number of children in the next level: 2 + 1 = 3
I In parallel for each existing child node(blocks):

74 / 77



Parallel Tree Building
Top-down (level 1)

0 2 2 1 001333
x̃T 022111

013023

I Marking existence of children
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
1 0 1 0 0 0 1 0 0 1 0 0

I Pre-scan array
0 1 1 2 2 2 2 3 3 3 4 4

I Number of children in the next level: 4 + 0 = 4
I Repeat in parallel for each existing child node (blocks). . .
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