
Graphic Processors in
Computational
Applications
Part 4 – Extended CUDA Features

dr inż. Krzysztof Kaczmarski
2021



Materiały sponsorowane przez:

Projekt „NERW 2 PW. Nauka – Edukacja – Rozwój – Współpraca”
współfinansowany jest ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

Zadanie 10 pn. „Modyfikacja programów studiów na kierunkach
prowadzonych przez Wydział Matematyki i Nauk Informacyjnych”,
realizowane w ramach projektu „NERW 2 PW. Nauka – Edukacja –
Rozwój – Współpraca”, współfinansowanego jest ze środków Unii
Europejskiej w ramach Europejskiego Funduszu Społecznego

2 / 27



Part 4 – Extended CUDA Features

Advanced Warp-level Functions

Programming Model Extensions
Independent Thread Scheduling Compatibility
Cooperative Groups

CUDA 11 and Ampere Architecture
Compute Sanitizer

3 / 27



Warp vote functions
Advanced Warp-level Functions

compute capability 7.x or higher
__all_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for all of them.

__any_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for any of them.
__ballot_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return an integer whose Nth bit is
set if and only if predicate evaluates to non-zero for the Nth thread
of the warp and the Nth thread is active.
__activemask(): Returns a 32-bit integer mask of all currently
active threads in the calling warp. The Nth bit is set if the Nth
lane in the warp is active when it is called. Inactive threads are
represented by 0 bits in the returned mask. Threads which have
exited the program are always marked as inactive.

4 / 27



Warp vote functions
Advanced Warp-level Functions

compute capability 7.x or higher
__all_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for all of them.
__any_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for any of them.

__ballot_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return an integer whose Nth bit is
set if and only if predicate evaluates to non-zero for the Nth thread
of the warp and the Nth thread is active.
__activemask(): Returns a 32-bit integer mask of all currently
active threads in the calling warp. The Nth bit is set if the Nth
lane in the warp is active when it is called. Inactive threads are
represented by 0 bits in the returned mask. Threads which have
exited the program are always marked as inactive.

4 / 27



Warp vote functions
Advanced Warp-level Functions

compute capability 7.x or higher
__all_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for all of them.
__any_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for any of them.
__ballot_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return an integer whose Nth bit is
set if and only if predicate evaluates to non-zero for the Nth thread
of the warp and the Nth thread is active.

__activemask(): Returns a 32-bit integer mask of all currently
active threads in the calling warp. The Nth bit is set if the Nth
lane in the warp is active when it is called. Inactive threads are
represented by 0 bits in the returned mask. Threads which have
exited the program are always marked as inactive.

4 / 27



Warp vote functions
Advanced Warp-level Functions

compute capability 7.x or higher
__all_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for all of them.
__any_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for any of them.
__ballot_sync(unsigned mask, predicate): Evaluate predicate for all
non-exited threads in mask and return an integer whose Nth bit is
set if and only if predicate evaluates to non-zero for the Nth thread
of the warp and the Nth thread is active.
__activemask(): Returns a 32-bit integer mask of all currently
active threads in the calling warp. The Nth bit is set if the Nth
lane in the warp is active when it is called. Inactive threads are
represented by 0 bits in the returned mask. Threads which have
exited the program are always marked as inactive.

4 / 27



Warp match functions
Advanced Warp-level Functions

compute capability 7.x or higher
__match_any_sync(unsigned mask, T value): Returns mask of threads
that have same value of value in mask
__match_all_sync(unsigned mask, T value, int *pred): Returns
mask if all threads in mask have the same value for value;
otherwise 0 is returned. Predicate pred is set to true if all threads
in mask have the same value of value; otherwise the predicate is
set to false.

T can be int, unsigned int, long, unsigned long, long long,

unsigned long long, float, double

5 / 27



Warp reduce functions
Advanced Warp-level Functions

compute capability 8.x
T __reduce_*_sync(unsigned mask, T value): intrinsics perform a
reduction operation on the data provided in value after
synchronizing threads named in mask. T can be unsigned or signed
for add, min, max and unsigned only for and, or, xor operations.

6 / 27



Warp shuffle functions
Advanced Warp-level Functions

compute capability 3.x or higher
__shfl_sync, __shfl_*_sync: exchange a variable between threads
within a warp (up, down, xor).

1 \\ Direct copy from indexed lane
2 T __shfl_sync(unsigned mask, T var, int srcLane, int width=warpSize)

;
3 \\ Copy from a lane with lower ID relative to caller
4 T __shfl_up_sync(unsigned mask, T var, unsigned int delta, int width

=warpSize);
5 \\ Copy from a lane with higher ID relative to caller
6 T __shfl_down_sync(unsigned mask, T var, unsigned int delta, int

width=warpSize);
7 \\ Copy from a lane based on bitwise XOR of own lane ID
8 T __shfl_xor_sync(unsigned mask, T var, int laneMask, int width=

warpSize);

7 / 27



Warp broadcast without shared memory
Advanced Warp-level Functions

1 __global__ void bcast(int arg) {
2 int laneId = threadIdx.x & 0x1f;
3 int value;
4 if (laneId == 0) // Note unused variable for
5 value = arg; // all threads except lane 0
6 value = __shfl_sync(0xffffffff, value, 0); // Synchronize all

threads in warp, and get "value" from lane 0
7 if (value != arg)
8 printf("Thread␣%d␣failed.\n", threadIdx.x);
9 }

8 / 27



Inclusive scan across sub-partitions of 8 threads
Advanced Warp-level Functions

1 __global__ void scan4() {
2 int laneId = threadIdx.x & 0x1f;
3 // Seed sample starting value (inverse of lane ID)
4 int value = 31 - laneId;
5

6 // Loop to accumulate scan within my partition.
7 // Scan requires log2(n) == 3 steps for 8 threads
8 // It works by an accumulated sum up the warp
9 // by 1, 2, 4, 8 etc. steps.

10 for (int i=1; i<=4; i*=2) {
11 // We do the __shfl_sync unconditionally so that we
12 // can read even from threads which won’t do a
13 // sum, and then conditionally assign the result.
14 int n = __shfl_up_sync(0xffffffff, value, i, 8);
15 if ((laneId & 7) >= i)
16 value += n;
17 }
18 printf("Thread␣%d␣final␣value␣=␣%d\n", threadIdx.x, value);
19 }

9 / 27



Reduction across a warp
Advanced Warp-level Functions

1 __global__ void warpReduce() {
2 int laneId = threadIdx.x & 0x1f;
3 // Seed starting value as inverse lane ID
4 int value = 31 - laneId;
5

6 // Use XOR mode to perform butterfly reduction
7 for (int i=16; i>=1; i/=2)
8 value += __shfl_xor_sync(0xffffffff, value, i, 32);
9

10 // "value" now contains the sum across all threads
11 printf("Thread␣%d␣final␣value␣=␣%d\n", threadIdx.x, value);
12 }

10 / 27



Warp matrix functions
Advanced Warp-level Functions

warp matrix operations leverage Tensor Cores to accelerate matrix
problems of the form D = A · B + C. These operations are
supported on mixed-precision floating point data for devices of
compute capability 7.0 or higher. This requires co-operation from
all threads in a warp.

Sub-byte WMMA operations provide a way to access the
low-precision capabilities of Tensor Cores. They are considered a
preview feature i.e. the data structures and APIs for them are
subject to change and may not be compatible with future releases.

11 / 27



Warp matrix functions
Advanced Warp-level Functions

warp matrix operations leverage Tensor Cores to accelerate matrix
problems of the form D = A · B + C. These operations are
supported on mixed-precision floating point data for devices of
compute capability 7.0 or higher. This requires co-operation from
all threads in a warp.
Sub-byte WMMA operations provide a way to access the
low-precision capabilities of Tensor Cores. They are considered a
preview feature i.e. the data structures and APIs for them are
subject to change and may not be compatible with future releases.

11 / 27



Tensor cores matrix multiplication
Advanced Warp-level Functions

16x16x16 matrix multiplication in a single warp.
1 #include <mma.h>
2 using namespace nvcuda;
3 __global__ void wmma_ker(half *a, half *b, float *c) {
4 // Declare the fragments
5 wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major>

a_frag;
6 wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::row_major>

b_frag;
7 wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag;
8 // Initialize the output to zero
9 wmma::fill_fragment(c_frag, 0.0f);

10 // Load the inputs
11 wmma::load_matrix_sync(a_frag, a, 16);
12 wmma::load_matrix_sync(b_frag, b, 16);
13 // Perform the matrix multiplication
14 wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
15 // Store the output
16 wmma::store_matrix_sync(c, c_frag, 16, wmma::mem_row_major);
17 }

12 / 27



Part 4 – Extended CUDA Features

Advanced Warp-level Functions

Programming Model Extensions
Independent Thread Scheduling Compatibility
Cooperative Groups

CUDA 11 and Ampere Architecture
Compute Sanitizer

13 / 27



Part 4 – Extended CUDA Features

Advanced Warp-level Functions

Programming Model Extensions
Independent Thread Scheduling Compatibility
Cooperative Groups

CUDA 11 and Ampere Architecture
Compute Sanitizer

14 / 27



Independent Thread Scheduling Compatibility
Programming Model Extensions

The Volta and Turing architectures feature Independent Thread
Scheduling among threads in a warp. If the developer made
assumptions about warp-synchronicity, 1 this feature can alter the
set of threads participating in the executed code compared to
previous architectures.

15 / 27



Independent Thread Scheduling Compatibility
Programming Model Extensions

I To avoid data corruption, applications using warp intrinsics (__shfl*,
__any, __all, and __ballot) should transition to the new, safe,
synchronizing counterparts, with the *_sync suffix. The new warp
intrinsics take in a mask of threads that explicitly define which lanes
(threads of a warp) must participate in the warp intrinsic.

I Applications that assume reads and writes are implicitly visible to
other threads in the same warp need to insert the new __syncwarp()

warp-wide barrier synchronization instruction between steps where
data is exchanged between threads via global or shared memory.
Assumptions that code is executed in lockstep or that reads/writes
from separate threads are visible across a warp without
synchronization are invalid.

I Applications using __syncthreads() or the PTX bar.sync (and their
derivatives) in such a way that a barrier will not be reached by some
non-exited thread in the thread block must be modified to ensure
that all non-exited threads reach the barrier.

16 / 27



Part 4 – Extended CUDA Features

Advanced Warp-level Functions

Programming Model Extensions
Independent Thread Scheduling Compatibility
Cooperative Groups

CUDA 11 and Ampere Architecture
Compute Sanitizer

17 / 27



Cooperative Groups
Programming Model Extensions

Cooperative Groups is an extension to the CUDA programming
model, introduced in CUDA 9, for organizing groups of
communicating threads. Cooperative Groups allows developers to
express the granularity at which threads are communicating,
helping them to express richer, more efficient parallel
decompositions.

18 / 27



Part 4 – Extended CUDA Features

Advanced Warp-level Functions

Programming Model Extensions
Independent Thread Scheduling Compatibility
Cooperative Groups

CUDA 11 and Ampere Architecture
Compute Sanitizer

19 / 27



Part 4 – Extended CUDA Features

Advanced Warp-level Functions

Programming Model Extensions
Independent Thread Scheduling Compatibility
Cooperative Groups

CUDA 11 and Ampere Architecture
Compute Sanitizer

20 / 27



A new tool to check memory accesses
CUDA 11 and Ampere Architecture

pre CUDA 11
cuda-memcheck tool

from CUDA 11
Compute Sanitizer, a next-generation, functional correctness
checking tool that provides runtime checking for out-of-bounds
memory accesses and race condition

21 / 27



Compute Sanitizer I
Out-of-bounds array access

1 __global__ void oobAccess(int* in, int* out)
2 {
3 int bid = blockIdx.x;
4 int tid = threadIdx.x;
5 if (bid == 4)
6 out[tid] = in[dMem[tid]];
7 }
8
9 int main()

10 {
11 ...
12 // Array of 8 elements, where element 4 causes the OOB
13 std::array<int, Size> hMem = {0, 1, 2, 10, 4, 5, 6, 7};
14 cudaMemcpy(d_mem, hMem.data(), size, cudaMemcpyHostToDevice);
15
16 oobAccess<<<10, Size>>>(d_in, d_out);
17 cudaDeviceSynchronize();
18 ...
19
20 $ /usr/local/cuda-11.0/Sanitizer/compute-sanitizer --destroy-on-device-error kernel --show-backtrace

no basic
21 ========= COMPUTE-SANITIZER
22 Device: Tesla T4
23 ========= Invalid __global__ read of size 4 bytes
24 ========= at 0x480 in /tmp/CUDA11.0/ComputeSanitizer/Tests/Memcheck/basic/basic.cu:40:oobAccess(int*,

int*)
25 ========= by thread (3,0,0) in block (4,0,0)
26 ========= Address 0x7f551f200028 is out of bounds

22 / 27



Compute Sanitizer II
Race condition

1 __global__ void Basic()
2 {
3 __shared__ volatile int i;
4 i = threadIdx.x;
5 }
6
7 int main()
8 {
9 Basic<<<1,2>>>();

10 cudaDeviceSynchronize();
11 ...
12
13
14 $ /usr/local/cuda-11.0/Sanitizer/compute-sanitizer --destroy-on-device-error kernel --show-backtrace

no --tool racecheck --racecheck-report hazard raceBasic
15 ========= COMPUTE-SANITIZER
16 ========= ERROR: Potential WAW hazard detected at __shared__ 0x0 in block (0,0,0) :
17 ========= Write Thread (0,0,0) at 0x100 in /tmp/CUDA11.0/ComputeSanitizer/Tests/Racecheck/raceBasic/

raceBasic.cu:11:Basic(void)
18 ========= Write Thread (1,0,0) at 0x100 in /tmp/CUDA11.0/ComputeSanitizer/Tests/Racecheck/raceBasic/

raceBasic.cu:11:Basic(void)
19 ========= Current Value : 0, Incoming Value : 1
20 =========
21 ========= RACECHECK SUMMARY: 1 hazard displayed (1 error, 0 warnings)

23 / 27



Roofline model visualization
CUDA 11 and Ampere Architecture

Arithmetic Intensity is the most important concept in Roofline.
I Ratio of Total FLOPs performed to Total Bytes moved
I Total Bytes to/from DRAM and includes all cache and

prefetcher effects
I Can be very different from total loads/stores (bytes

requested) due to cache reuse

Pramod Ramarao. Cuda 11 features revealed. https://developer.nvidia.com/blog/cuda-11-features-revealed/, May

2020

24 / 27



L2 persistence cache access
CUDA 11 and Ampere Architecture

When a CUDA kernel accesses a data region in the global memory
repeatedly, such data accesses can be considered to be persisting.
On the other hand, if the data is only accessed once, such data
accesses can be considered to be streaming.

Starting with CUDA 11.0, devices of compute capability 8.0 and
above have the capability to influence persistence of data in the L2
cache, potentially providing higher bandwidth and lower latency
accesses to global memory.

For details please consult:

NVIDIA. Cuda c++ programming guide. www.nvidia.com/cuda

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html, 2020

25 / 27



Bibliography

NVIDIA. Cuda c++ programming guide.
www.nvidia.com/cuda.

Pramod Ramarao. Cuda 11 features revealed.
https://developer.nvidia.com/blog/cuda-11-features-revealed/,
May 2020.

NVIDIA CUDA Toolkit. Cuda c++ best practices guide.
https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html,
2020.

26 / 27



Materiały sponsorowane przez:

Projekt „NERW 2 PW. Nauka – Edukacja – Rozwój – Współpraca”
współfinansowany jest ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

Zadanie 10 pn. „Modyfikacja programów studiów na kierunkach
prowadzonych przez Wydział Matematyki i Nauk Informacyjnych”,
realizowane w ramach projektu „NERW 2 PW. Nauka – Edukacja –
Rozwój – Współpraca”, współfinansowanego jest ze środków Unii
Europejskiej w ramach Europejskiego Funduszu Społecznego

27 / 27


	Advanced Warp-level Functions
	Programming Model Extensions
	CUDA 11 and Ampere Architecture

