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The Lukacs–Olkin–Rubin theorem on symmetric cones
through Gleason’s theorem

by

Bartosz Kołodziejek (Warszawa)

Abstract. We prove the Lukacs characterization of the Wishart distribution on non-
octonion symmetric cones of rank greater than 2. We weaken the smoothness assumptions
in the version of the Lukacs theorem of [Bobecka–Wesołowski, Studia Math. 152 (2002),
147–160]. The main tool is a new solution of the Olkin–Baker functional equation on sym-
metric cones, under the assumption of continuity of respective functions. It was possible
thanks to the use of Gleason’s theorem.

1. Introduction. The Lukacs theorem ([Lu55]) is one of the most cel-
ebrated characterizations of probability distributions. It states that if X
and Y are independent, positive, non-degenerate random variables such that
their sum and quotient are also independent then X and Y have gamma
distributions with the same scale parameter. This theorem has many gener-
alizations. The most important ones in the multivariate setting were given
in [OR62] and [CL96], where the authors extended the characterization to
matrix and symmetric cones variate distributions, respectively. There is no
unique way of defining the quotient of elements of the cone and in those
papers the authors have considered a very general form

U = [w(X + Y )]−1X[wT (X + Y )]−1,

where w is the so called division algorithm, that is, w(a)wT (a) = a for any
element a of the cone. The drawback of their extension was that the addi-
tional strong assumption of invariance of the distribution of the “quotient”
under a group of automorphisms was imposed.

To avoid this assumption Bobecka and Wesołowski [BW02] have devel-
oped another approach based on densities ofX and Y . Assuming existence of
strictly positive, twice differentiable densities on the cone of positive definite
symmetric matrices they proved a characterization of Wishart distribution
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for U = (X+Y )−1/2X(X+Y )−1/2, where a1/2 denotes the unique symmet-
ric root of a positive definite matrix a. Among all division algorithms the
choice w(a) = a1/2 is possibly the most natural one.

Exploiting the same approach, with the same technical assumptions on
densities it was proven in [HLZ08] that the independence of X + Y and
the quotient defined through the Cholesky decomposition, i.e. U = [W (X +
Y )]−1X[W T (X + Y )]−1, where W (X + Y ) is an upper triangular matrix in
the decomposition of X + Y , characterizes a wider family of distributions
called Riesz–Wishart. This fact shows that the invariance property assumed
in [OR62] and [CL96] is not of technical nature only. Analogous results for
homogeneous cones were obtained in [Bo09] and [BHM11].

In this paper we attempt to weaken the smoothness assumptions in the
[BW02] version of the Lukacs theorem. Our approach is based on the new
solution of the Olkin–Baker equation and is very different from theirs. We
succeed in proving the characterization theorem assuming the continuity of
densities only. This was possible thanks to an approach developed by Molnár
[Mo06]. He proposed a method of solving functional equations for functions
of matrix arguments consisting of two steps. First, an equation is solved
for mutually orthogonal idempotents and afterwards a beautiful connection
with Gleason’s theorem is exploited.

This paper is organized as follows. We start in the next section with basic
definitions and theorems regarding analysis on symmetric cones and a short
introduction to Gleason’s theorem. The statement and proof of the main
result are given in Section 4. Section 3 is devoted to solving two functional
equations and is the technical core of the paper. It should be stressed, how-
ever, that we limit our considerations to symmetric cones of rank strictly
greater than 2 and exclude the octonion cone, due to the use of Gleason’s
theorem.

2. Preliminaries. In this section we give a short introduction to the
theory of symmetric cones and quantum logic. For further details refer, re-
spectively, to [FK94] and [Dv93].

A Euclidean Jordan algebra is a Euclidean space E (endowed with a scalar
product denoted 〈x,y〉) equipped with a bilinear mapping (product)

E× E 3 (x,y) 7→ xy ∈ E

and a neutral element e in E such that for all x, y, z in E:

• xy = yx,
• x(x2y) = x2(xy),
• xe = x,
• 〈x,yz〉 = 〈xy, z〉.
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For x ∈ E let L(x) : E→ E be the linear map defined by

L(x)y = xy,

and define

P(x) = 2L2(x)− L(x2).

The map P : E→ End(E) is called the quadratic representation of E.
An element x is said to be invertible if there exists an element y in E

such that L(x)y = e. Then y is called the inverse of x and is denoted by
y = x−1. Note that the inverse of x is unique. It can be shown that x is
invertible if and only if P(x) is invertible and in this case (P(x))−1 = P(x−1).

A Euclidean Jordan algebra E is said to be simple if it is not a Cartesian
product of two Euclidean Jordan algebras of positive dimensions. Up to
linear isomorphism there are only five kinds of Euclidean simple Jordan
algebras. Let K denote either the real numbers R, the complex ones C,
the quaternions H or the octonions O, and write Sr(K) for the space of
r× r Hermitian matrices valued in K, endowed with the Euclidean structure
〈x,y〉 = Trace(x · ȳ) and with the Jordan product

xy = 1
2(x · y + y · x),(2.1)

where x · y denotes the ordinary product of matrices and ȳ is the conjugate
of y. Then Sr(R), r ≥ 1, Sr(C), r ≥ 2, Sr(H), r ≥ 2, and the exceptional
S3(O) are the first four kinds of Euclidean simple Jordan algebras. Note that
in this case

P(y)x = y · x · y.(2.2)

The fifth kind is the Euclidean space Rn+1, n ≥ 2, with Jordan product

(2.3) (x0, x1, . . . , xn)(y0, y1, . . . , yn)

=
( n∑
i=0

xiyi, x0y1 + y0x1, . . . , x0yn + y0xn

)
.

To each Euclidean simple Jordan algebra E one can attach the set of
Jordan squares

V̄ = {x ∈ E : there exists y in E such that x = y2}.
The interior V is a symmetric cone. Moreover V is irreducible, i.e. it is not the
Cartesian product of two convex cones. One can prove that an open convex
cone is symmetric and irreducible if and only if it is the cone V of some
Euclidean simple Jordan algebra. Each simple Jordan algebra corresponds
to a symmetric cone, hence there exist up to linear isomorphism also only five
kinds of symmetric cones. The cone corresponding to the Euclidean Jordan
algebra Rn+1 equipped with Jordan product (2.3) is called the Lorentz cone.



4 B. Kołodziejek

We will now introduce a very useful decomposition in E, called spectral
decomposition. An element c ∈ E is said to be a primitive idempotent if
cc = c 6= 0 and if c is not a sum of two non-null idempotents. A complete
system of primitive orthogonal idempotents is a set {c1, . . . , cr} such that

r∑
i=1

ci = e and cicj = δijci for 1 ≤ i < j ≤ r.

The size r of such a system is a constant called the rank of E. Any element
x of a Euclidean simple Jordan algebra can be written as x =

∑r
i=1 λici

for some complete system {c1, . . . , cr} of primitive orthogonal idempotents.
The real numbers λi, i = 1, . . . , r, are the eigenvalues of x. One can then
define the trace and determinant of x by, respectively, tr(x) =

∑r
i=1 λi and

det(x) =
∏r
i=1 λi. An element x ∈ E belongs to V if and only if all its

eigenvalues are strictly positive. The logarithm a of a given element b ∈ V is
defined by exp(a) = b and we denote it by a = logb. For V 3 x =

∑r
i=1 λici

we have logx =
∑r

i=1 ci log λi.
The rank r and dimV are connected through

dimV = r + dr(r − 1)/2,

where d is an integer called the Peirce constant.
The Wishart distribution γp,a in V̄ is defined for any a ∈ V and any p in

the set

{0, d/2, d, . . . , d(r − 1)/2} ∪ (d(r − 1)/2,∞)

by its Laplace transform�

V̄

exp(−〈t,y〉) γp,a(dy) = (det(e + ta−1))−p

for any t + a ∈ V. If p > (dimV)/r − 1 then γp,a is absolutely continuous
with respect to the Lebesgue measure and has density

γp,a(dy) =
(det(a))p

ΓV(p)
(det(y))p−dimV/r exp(−〈a,y〉)IV(y) dy,

where ΓV is the Gamma function of the symmetric cone V (see, for instance,
[FK94, p. 122].

One of the crucial elements in the proof of the main theorem is the use
of Gleason’s theorem which originated from quantum logic theory. Now we
introduce the necessary basics.

Let L(H) be the set of all closed subspaces of a real, complex or left
quaternionic Hilbert space H of finite dimension. We define a charge to be
a mapping m : L(H)→ R ∪ {−∞,∞} such that

m(0) = 0, m
(⋃
t∈T

at

)
=
∑
t∈T

m(at),
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for any system of mutually orthogonal subspaces {at}t∈T from L(H) with
any finite index set T .

We denote by P1(H) ⊂ L(H) the set of all one-dimensional subspaces
of H. We say that the charge m is P1(H)-semibounded if

inf{m(M) : M ∈ P1(H)} > −∞.
Theorem 2.1 (Gleason’s theorem). For every P1(H)-semibounded charge

m on L(H), where 3 ≤ dimH <∞, there exists a unique Hermitian operator
t on H such that

m(M) = Trace(t · pM ), M ∈ L(H),

where pM is the orthogonal projection onto M and Trace is the trace of a
linear operator on H.

For a fuller description of the above mentioned theory we refer to [Dv93]
(real and complex case) and [Va85] (quaternionic case).

3. Olkin–Baker functional equation. In this section we solve the
functional equation derived from the condition of independence of corre-
sponding random variables. For details see Section 4. The following theorem
is of independent interest in the functional equations theory and is the tech-
nical core of the paper.

Main Theorem 3.1 (Olkin–Baker equation on symmetric cones). Let
a, b, c and d be real continuous functions on a non-octonion symmetric cone
V of rank r 6= 2. Assume

a(x) + b(y) = c(x + y) + d(P((x + y)−1/2)x), (x,y) ∈ V2.(3.1)

Then there exist constants k1, k2 ∈ R, Λ ∈ E, Ci ∈ R, i ∈ {1, 2, 3, 4}, such
that

a(x) = 〈Λ,x〉+ k1 log det(x) + C1,

b(x) = 〈Λ,x〉+ k2 log det(x) + C2,

c(x) = 〈Λ,x〉+ (k1 + k2) log det(x) + C3,

d(u) = k1 log det(u) + k2 log det(e− u) + C4,

(3.2)

for all x ∈ V and u ∈ D := {z ∈ V : e− z ∈ V}.
The problem of solving

f(x)g(y) = p(x+ y)q(x/y), (x, y) ∈ (0,∞)2,(3.3)

for unknown positive functions f , g, p and q was first posed in [Ol75]. Its
general solution was given in [Ba76], and later analyzed in [La79] using a
different approach. Recently, in [Me10] and [LM12] the equation (3.3) was
solved assuming that it is satisfied almost everywhere on (0,∞)2 for mea-
surable functions which are non-negative on its domain or positive on some
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sets of positive Lebesgue measure, respectively. Finally, a new derivation of
solution to (3.3), when the equation holds almost everywhere on (0,∞)2 and
no regularity assumptions on unknown positive functions are imposed, was
given in [GMW13]. The equation (3.1) is an adaptation of (3.3) (after taking
the logarithm) to the symmetric cone case.

The proof is divided into two propositions and two lemmas. In Proposi-
tion 3.3 we show that each of the functions a, b and c is a sum of a function
in the expected form, as in (3.2), and a homogeneous one, satisfying the
same functional equation (3.1). In Proposition 3.5 we show that these ho-
mogeneous functions are actually constant.

We start with a simple lemma, which will be useful in the proof of the
first proposition.

Lemma 3.2 (Pexider functional equation on symmetric cones). Let a, b
and c be measurable functions on a symmetric cone V satisfying

a(x) + b(y) = c(x + y), ∀(x,y) ∈ V2.(3.4)

Then there exist constants α, β ∈ R and λ ∈ E such that for all x ∈ V,

a(x) = 〈λ,x〉+ α,

b(x) = 〈λ,x〉+ β,

c(x) = 〈λ,x〉+ α+ β.

(3.5)

Proof. First we will show that c satisfies the Jensen functional equation.
For x,y ∈ V we have

a(x) + b(y) = c(x + y) = a(y) + b(x).

Hence, a(x)− b(x) = a(y)− b(y) = const =: A1. Plugging a(x) = b(x) +A1

into (3.4) for y = x ∈ V we get 2b(x) = c(2x)−A1 and so

c(2x) + c(2y) = 2c(x + y),

i.e. c is Jensen on the symmetric cone V. Following the standard approach
(see, for instance, [GK11]) we infer that there exists a constant A2 such that
c(x) = f(x) +A2, where f is additive on V, i.e.

f(x) + f(y) = f(x + y), x,y ∈ V.

We define an extension f̄ of f to the whole E as follows:

f̄(x) =

{
f(x) for x ∈ V,
f(x + txe)− f(txe) for x /∈ V,

where tx = 1 − mini λi, λi being the ith eigenvalue of x. Observe that for
x /∈ V the element x+txe belongs to V. Indeed, x+txe has all its eigenvalues
positive, actually greater than 1. Note that if x /∈ V then at least one of its
eigenvalues is non-positive. Since tx > 0 we have txe ∈ V.
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It can be easily verified that f̄ is additive on E. Take for example x ∈ V,
y /∈ V and suppose x + y /∈ V. Then

L = f̄(x) + f̄(y) = f(x) + f(y + tye)− f(tye),

R = f̄(x + y) = f(x + y + tx+ye)− f(tx+ye).

Since

f(x) + f(y + tye) + f(tx+ye) = f(x + y + tye + tx+ye)

= f(x + y + tx+ye) + f(tye)

we see that L = R. Hence, there exists a constant λ ∈ E such that

f̄(x) = 〈λ,x〉
for all x ∈ E. Since f(x) = f̄(x) on V the proof is complete. One gets the
form of (3.5) for A1 = α− β and A2 = α+ β.

Proposition 3.3. Let a, b, c and d be continuous real functions on a
symmetric cone V of rank r. Assume

a(x) + b(y) = c(x + y) + d(P((x + y)−1/2)x), (x,y) ∈ V2.(3.6)

Then there exist constants k1, k2 ∈ R and Λ ∈ E such that for all x ∈ V and
u ∈ D,

a(x) = 〈Λ,x〉+ k1 log det(x) + e(x),

b(x) = 〈Λ,x〉+ k2 log det(x) + f(x),

c(x) = 〈Λ,x〉+ (k1 + k2) log det(x) + g(x),

d(u) = k1 log det(u) + k2 log det(e− u) + h(u),

where e, f , g and h are continuous functions satisfying

e(x) + f(y) = g(x + y) + h(P((x + y)−1/2)x)(3.7)

for (x,y) ∈ V2 and

e(sx) = e(x), f(sx) = f(x), g(sx) = g(x)(3.8)

for any s ∈ (0,∞) and x ∈ V.

Proof. The following proof adapts the argument given in [GMW13],
where the analogous result on (0,∞) was analyzed, to the symmetric cone
setting.

For any s > 0 and (x,y) ∈ V2 we get

a(sx) + b(sy) = c(s(x + y)) + d(P((x + y)−1/2)x).(3.9)

Subtracting now (3.6) from (3.9) for any s > 0 we arrive at the additive
Pexider equation on the symmetric cone V,

as(x) + bs(y) = cs(x + y), (x,y) ∈ V2,
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where as, bs and cs are functions defined by as(x) := a(sx)− a(x), bs(x) :=
b(sx)− b(x) and cs(x) := c(sx)− c(x).

Due to continuity of a, b and c and Lemma 3.2 it follows that for any
s > 0 there exist constants λ(s) ∈ E, α(s) ∈ R and β(s) ∈ R such that for
any x ∈ V,

as(x) = 〈λ(s),x〉+ α(s),

bs(x) = 〈λ(s),x〉+ β(s),

cs(x) = 〈λ(s),x〉+ α(s) + β(s).

By the definition of as and the above observation it follows that for any
(s, t) ∈ (0,∞)2 and z ∈ V,

ast(z) = at(sz) + as(z).

Hence,

〈λ(st), z〉+ α(st) = 〈λ(t), sz〉+ α(t) + 〈λ(s), z〉+ α(s).(3.10)

Since (3.10) holds for any z ∈ V we see that α(st) = α(s) + α(t) for all
(s, t) ∈ (0,∞)2. That is, α(s) = k1 log s for s ∈ (0,∞), where k1 is a real
constant.

On the other hand,

〈λ(st), z〉 = 〈λ(s), z〉+ 〈λ(t), sz〉 = 〈λ(t), z〉+ 〈λ(s), tz〉(3.11)

since one can interchange s and t on the left hand side. Putting s = 2 and
denoting Λ = λ(2) we obtain

〈λ(t), z〉 = 〈Λ, z〉(t− 1)

for t > 0 and z ∈ V. It then follows that for all s ∈ (0,∞) and z ∈ V,
as(z) = a(sz)− a(z) = 〈Λ, z〉(s− 1) + k1 log s.(3.12)

Note that det(αx) = αr det(x). Define a new function e by

a(x) = e(x) + 〈Λ,x〉+
k1

r
log det(x).

By (3.12) we obtain e(sx) = e(x) for s > 0 and x ∈ V.
An analogous derivation shows that there exist functions f and g such

that f(sx) = f(x), g(sx) = g(x) for s > 0 and x ∈ V, and

b(x) = 〈Λ,x〉+
k2

r
log det(x) + f(x),

c(x) = 〈Λ,x〉+
k1 + k2

r
log det(x) + g(x),

for x ∈ V.
The definition of h completes the proof:

h(x) = d(x)− k1

r
log det(x)− k2

r
log det(e− x).
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In order to show (3.7) the Cauchy theorem on the determinant of the product
det(P(x)y) = det(x)2 det(y) is used.

The aim of the following proposition is to show that the functions e,
f , g and h obtained in the previous proposition are actually constant. As
mentioned before, we limit our considerations to symmetric cones of rank
r > 2 except the octonion cone; this allows us to use Gleason’s theorem.

We start with a crucial lemma about the form of orthogonally additive
functions on the set of idempotents. Since every symmetric cone of rank r > 2
is isomorphic to the r × r Hermitian positive semidefinite matrices over K,
we will identify the trace tr with the trace of a linear operator, Trace.

Lemma 3.4. Let E = Sr(K) where K is either R, C or H with Jordan
product (2.1) and V be the cone of E.

(a) Suppose that for a continuous function f : E→ R the equality

f(p) + f(q) = f(p + q)

holds for all mutually orthogonal idempotents p and q in E. If r > 2
then there exists a unique Hermitian operator t ∈ E such that

f(p) = Trace(t · p), ∀p ∈ E.
(b) If for any x,y ∈ V,

(3.13) Trace(t · logx) + 2 Trace(t · logy) = Trace(t · log(P(y)x))

then there exists a constant ϑ ∈ R such that t = ϑe.

Proof. (a) f is an orthogonally additive R-valued function on the set of
all idempotents. The set of all idempotents on E is compact in the norm
topology, hence f is bounded on this set. Let H be an r-dimensional Hilbert
space over K. For any closed subspace M ⊂ H define

m(M) = f(pM ),

where pM is the orthogonal projection ontoM . Note that for anyM ∈ L(H)
there exists a unique idempotent pM ∈ E, and any idempotent p ∈ E is the
orthogonal projection onto a subspace of H. Hence, there is a one-to-one
correspondence between L(H) and the set of idempotents of E.

It can be easily verified that m is a charge on L(H). From Gleason’s
theorem we conclude that there exists a Hermitian operator t such that

m(M) = f(pM ) = Trace(t · pM ), ∀M ⊂ L(H).

(b) By (2.2) the right hand side of equation (3.13) can be written as
Trace(t · log(y ·x ·y)). Such an equation was considered in [Mo06, (2)], where
the assertion was proven for real and complex positive definite matrices only.
Molnár’s proof can be rewritten virtually unchanged in our case. Here we
will repeat this argument for completeness.
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Let us pick any idempotents p and q. Set x = e+ tp and y = e+ tq for
any t > −1. Easy computations show that

y · x · y = e + t(2q + p) + t2(q + p · q + q · p) + t3(q · p · q).

Then for suitable t we can expand the operators log(x·y·x), log(x) and log(y)
into power series of t with operator coefficients according to the formula

log(e + a) =
∞∑
n=1

(−1)n+1an

n
, 〈a,a〉 < 1.

Equating the coefficients of t3 on both sides of (3.13), after some calculations
we arrive at

Trace(t · p · q · p) = Trace(t · q · p · q)

for any idempotents p and q. LetH be a Hilbert space as in (a) and take unit
vectors u, v ∈ H. Since E is a matrix Jordan algebra we may put p = u⊗ u
and q = v ⊗ v, where ⊗ is the tensor product. Then we obtain

Trace(t · u⊗ u) = Trace(t · v ⊗ v),

provided that u and v are not orthogonal to each other. This equality implies
that there exists a constant ϑ such that Trace(t · u ⊗ u) = ϑ for any unit
vector u ∈ H. Inserting u = x/

√
Trace(x⊗ x) we get

Trace(t · x⊗ x) = Trace(ϑ · x⊗ x),

for all x ∈ H, which gives t = ϑe. Hence we get Molnár’s result for elements
of V also.

Proposition 3.5. Let e, f , g and h be continuous functions on a non-
octonion symmetric cone V of rank r 6= 2. Assume that (3.7) and (3.8) hold
true. Then e, f , g and h are real constants.

Proof. The case r = 1 is trivial, since e(x) = e(sx) = e(1) for s = x−1.
Assume that r > 2. Pick any idempotent p (not necessarily primitive)

on E and denote p⊥ = e − p. Put x = αp + p⊥ and y = βp + p⊥ for
(α, β) ∈ (0,∞)2. Since

(x + y)−1/2 = ((α+ β)p + 2p⊥)−1/2 =
1√
α+ β

p +
1√
2
p⊥

we obtain

e(αp + p⊥) + f(βp + p⊥) = g((α+ β)p + 2p⊥) + h

(
α

α+ β
p +

1

2
p⊥
)
.

This is a one-dimensional version of the main equation (3.6) in functions of
variables α and β, so we already know its complete solution:
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e(αp + p⊥) = λ(p)α+ κ1(p) log α+ C1(p),

f(αp + p⊥) = λ(p)α+ κ2(p) log α+ C2(p),

g(αp + 2p⊥) = λ(p)α+ (κ1(p) + κ2(p)) logα+ C3(p),

h
(
γp + 1

2p
⊥) = κ1(p) log γ + κ2(p) log(1− γ) + C4(p),

C1(p) + C2(p) = C3(p) + C4(p),

(3.14)

for α > 0, γ ∈ (0, 1) and any idempotent p ∈ E.
Observe that utilizing the homogeneity of e and the above result we arrive

at e(αp + p⊥) = e
(

1
αp
⊥ + p

)
and thus

λ(p)α+ κ1(p) logα+ C1(p) = λ(p⊥)
1

α
+ κ1(p⊥) log

1

α
+ C1(p⊥)

for all α > 0. From this we conclude that λ(p) = 0, κ1(p⊥) = −κ1(p)
and C1(p⊥) = C1(p). Analogous properties can be proved for κ2 and C2.
Moreover, putting α = 1 in the first equation of (3.14) we get

e(e) = C1(p)

for all idempotents p ∈ E. Therefore Ci(p) = Ci, i = 1, 2, for any idempo-
tent p.

Putting α = 2 in the third equation of (3.14) gives

g(2e) = (κ1(p) + κ2(p)) log 2 + C3(p) =: C3

for all idempotents p ∈ E. This results in

C3(p) = C3 − (κ1(p) + κ2(p)) log 2

and so

g(αp + p⊥) = g(2αp + 2p⊥) = (κ1(p) + κ2(p)) log α+ C3.

We will now derive a formula for h(xp + yp⊥) for (x, y) ∈ (0, 1)2. From
(3.7) we have

e(αp + p⊥) + f(p + βp⊥)

= g
(
(α+ 1)p + (β + 1)p⊥

)
+ h

(
α

α+ 1
p +

1

β + 1
p⊥
)

for α, β > 0. Taking x = α
α+1 and y = 1

β+1 one gets

h(xp + yp⊥) = κ1(p) log
x

y
+ κ2(p) log

1− x
1− y

+ C1 + C2 − C3

for x, y ∈ (0, 1).
Summarizing the above calculations, formulas for e, f , g and h simplify

to
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e(αp + p⊥) = κ1(p) logα+ C1,

f(αp + p⊥) = κ2(p) logα+ C2,

g(αp + p⊥) = (κ1(p) + κ2(p)) logα+ C3,

h(xp + yp⊥) = κ1(p) log
x

y
+ κ2(p) log

1− x
1− y

+ C4,

C1 + C2 = C3 + C4,

for α > 0, x, y ∈ (0, 1) and any idempotent p ∈ E. Note that the above
solution is also valid for cones of rank r = 2.

The next step is to consider two mutually orthogonal idempotents p and
q such that p + q 6= e. Such choice is possible only if r ≥ 3, because there
must exist at least three non-null idempotents.

Now we will rewrite the main equation (3.7) in the variables v = x + y
and u = P((x + y)−1/2)x:

e(P(v1/2)u) + f(P(v1/2)(e− u)) = g(v) + h(u).

Put v = tq + q⊥ and u = β(tp + p⊥) for t > 0 and β, βt ∈ (0, 1). Then

x = P(v1/2)u = β(t(p + q) + (p + q)⊥),

y = P(v1/2)(e− u) = (1− β)

(
tq +

1− βt
1− β

p + (p + q)⊥
)
.

(3.15)

After some easy but tedious computations one gets

f(y) = f

(
tq +

1− βt
1− β

p + (p + q)⊥
)

(3.16)

=
(
κ2(q) + κ1(q) + κ1(p)− κ1(p + q)

)
log t

+ κ2(p) log
1− βt
1− β

+ C2.

Due to the non-symmetry in (3.16) we also have

f(y) =
(
κ2(p) + κ1(q) + κ1(p)− κ1(p + q)

)
log

1− βt
1− β

+ κ2(q) log t+ C2

for t > 0 and β, βt ∈ (0, 1). Hence, κ1(q) + κ1(p) = κ1(p + q) for mutually
orthogonal idempotents p and q on E. By the continuity of f we get the
continuity of κ1. By Lemma 3.4(a) there exists a self-adjoint linear operator
t1 ∈ E such that

κ1(p) = Trace(t1 · p)

for any idempotent p. Similarly for κ2 (just replace u by e−u in the above
considerations)

κ2(p) = Trace(t2 · p).
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Note that Trace(ti) = 0, by the previously proven property ki(p) = −ki(p⊥)
for i = 1, 2.

The aim is to show that t1 = t2 = 0. As a first step, we prove

e
( k∑
i=1

λipi

)
=

k∑
i=1

Trace(t1 · pi) log λi + C1,

f
( k∑
i=1

λipi

)
=

k∑
i=1

Trace(t2 · pi) log λi + C2,

g
( k∑
i=1

λipi

)
=

k∑
i=1

Trace((t1 + t2) · pi) log λi + C3,

h
( k∑
i=1

γipi

)
=

k∑
i=1

(Trace(t1 · pi) log γi

+ Trace
(
t2 · pi

)
log(1− γi)) + C4,

(3.17)

for any system {pi}ki=1 of orthogonal idempotents such that
∑k

i=1 pi = e,
k ≤ r, λi > 0 and γi ∈ (0, 1) for i = 1, . . . , k. We use induction on k:

• (Basis) For k = 3 the formulas for e and f were shown previously. For
g and h the formulas are obvious since

g(x) = g(2x) = e(x) + f(x)− h(1
2e),

h(x) = e(x) + f(e− x)− g(x).
(3.18)

• (Inductive step) Suppose now the formulas (3.17) are correct for k =
n < r. We will deduce their validity for n + 1. Put v = tpn + p⊥n and
u = βtp1 +

∑n−1
i=2 βipi + β(p1 + · · · + pn−1)⊥ for t > 0, β, βt, βi, i =

1, . . . , n− 1, different and all in (0, 1). Then we have the following analogue
of (3.15):

P(v1/2)u = βt(p1 + pn) +

n−1∑
i=2

βipi + β(p1 + · · ·+ pn)⊥,

P(v1/2)(e− u) = (1− βt)p1 +

n−1∑
i=2

(1− βi)pi + t(1− β)pn

+ (1− β)(p1 + · · ·+ pn)⊥.

Now the result follows from similar calculations to those in (3.16) and (3.18).
We see now that the above formulas for e, f , g and h can be rewritten

in a simpler form:
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e(x) = Trace(t1 · logx) + C1,

f(x) = Trace(t2 · logx) + C2,

g(x) = Trace((t1 + t2) · logx) + C3,

h(u) = Trace(t1 · logu) + Trace(t2 · log(e− u)) + C4,

C1 + C2 = C3 + C4,

for x ∈ V and u ∈ D. Plug them into (3.7) for (rx,y), r > 0, x,y ∈ V. Since
log(rx) = log(re) + logx = log(r)e + logx for any x ∈ V, we get

Trace(t1 · log(x)) + Trace(t2 · logy) = Trace((t1 + t2) · log(rx + y))

+ Trace(t1 · log(P((rx + y)−1/2)x))

+ Trace(t2 · log(P((rx + y)−1/2)y)).

Letting r → 0, after some computations we obtain, for x,y ∈ V,
Trace(t1 · log(x))− Trace(t1 · logy) = Trace(t1 · log(P(y−1/2)x))

and finally by putting y−2 in place of y we arrive at

Trace(t1 · logx) + 2 Trace(t1 · logy) = Trace(t1 · log(P(y)x))

for x,y ∈ V. From Lemma 3.4(b) we deduce that there exists a real constant
ϑ1 such that t1 = ϑ1e. Since Trace t1 = 0 we get ϑ1 = 0. A similar argument
holds for t2 and thus the proof is complete.

Note that Proposition 3.3 holds true with weaker assumptions, when
the equation is satisfied only almost everywhere for measurable, rather than
continuous functions (see, e.g., [GMW13] for the (0,∞) case and [Ko10] for
the Lorentz cone case). The proof of Proposition 3.3 is valid for all symmetric
cones including the Lorentz cone, while the proof of Proposition 3.5 is limited
to cones of rank not equal to 2 and the octonion cone is not covered.

Proof of Theorem 3.1. Follows immediately from Propositions 3.3 and
3.5.

4. Lukacs–Olkin–Rubin theorem with densities on symmetric
cones. The main result of the paper is the following theorem. We relax
the smoothness assumptions on respective densities from twice differentia-
bility in [BW02] to continuity on symmetric cones. Relaxing the regularity
assumption in the multivariate case to measurability or even removing the
assumption of density, without invoking the invariance of the quotient as in
[OR62] and [CL96], remains a challenge.

Main Theorem 4.1 (Lukacs–Olkin–Rubin theorem with densities on
symmetric cones). Let X and Y be independent rv’s valued in a non-octonion
symmetric cone V of rank r > 2 with strictly positive and continuous densi-
ties. Set V = X+Y and U = P((X+Y )−1/2)X. If U and V are independent
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then there exist a ∈ V and p1, p2 > (dimV)/r − 1 such that X ∼ γp1,a and
Y ∼ γp2,a.

Proof. Let ψ : V × V → D × V be the bijection defined by

ψ(x,y) = (u,v) = (P((x + y)−1/2)x,x + y).

We have (U, V ) = ψ(X,Y ). The inverse mapping ψ−1 is defined by

(x,y) = ψ−1(u,v) = (P(v1/2)u,P(v1/2)(e− u)).

We are looking for the Jacobian of the map ψ−1, that is, the determinant of
the linear map (

du

dv

)
7→
(
dx

dy

)
=

(
dx/du dx/dv

dy/du dy/dv

)(
du

dv

)
.

We have

J =

∣∣∣∣ P(v1/2) dx/dv

−P(v1/2) IdV − dx/dv

∣∣∣∣ =

∣∣∣∣P(v1/2) dx/dv

0 IdV

∣∣∣∣ = Det(P(v1/2)),

where Det denotes the determinant in the space of endomorphisms of V.
From [FK94, Proposition III.4.2] we get

Det(P(v1/2)) = (det(v))(dimV)/r.

Now we can find the joint density of (U, V ). Since (X,Y ) and (U, V ) have in-
dependent components, the following identity holds almost everywhere with
respect to Lebesgue measure:

(det(x + y))(dimV)/rfX(x)fY (y) = fU (P((x + y)−1/2)x)fV (x + y),

where fX , fY , fU and fV denote the densities ofX, Y , U and V , respectively.
Since the densities are assumed to be continuous, the above equation holds
for all x,y ∈ V. Taking the logarithms of both sides of the above equation
we get

a(x) + b(y) = c(x + y) + d(P((x + y)−1/2)x),(4.1)

where

a(x) = log fX(x),

b(x) = log fY (x),

c(x) = log fV (x)− dimV
r

log det(x),

d(u) = log fU (u),

for x ∈ V and u ∈ D.
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The conclusion follows now directly from Theorem 3.1. Thus there exist
constants k1, k2 ∈ R, Λ ∈ E, Ci ∈ R, i ∈ {1, 2, 3, 4} such that

fX(x) = ea(x) = eC1e〈Λ,x〉(det(x))k1 ,

fY (x) = eb(x) = eC2e〈Λ,x〉(det(x))k2 ,

for all x ∈ V. Since fX and fY are densities it follows that a = −Λ ∈ V,
ki = pi − (dimV)/r > −1 and eCi = (det(a))pi/ΓV(pi), i = 1, 2.

Acknowledgements. The author thanks J. Wesołowski for helpful com-
ments and discussions.
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