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1. Introduction

The multiplicative Cauchy functional equation in the space of real square ma-
trices of the form

f(x)f(y) = f(x · y),
where x and y are matrices and f is a real-valued function, was studied by [9],
and other contributors [6,11,14,15]. It is known that the general solution is of
the form

f(x) = g(Det(x)),

where g is a multiplicative function, that is g(a)g(b) = g(ab) for any positive a
and b. The cone of symmetric positive definite matrices Ω+ is not closed under
multiplication x · y, therefore it is common to consider on Ω+ multiplicative
functions of the form

f(x)f(y) = f(x1/2 · y · x1/2), (x, y) ∈ Ω2
+.

Multiplication x1/2 · y · x1/2 in the cone Ω+ is closely related to the Jordan
triple product (x, y) �→ x · y · x and can be naturally replaced by more ab-
stract operations. In this paper we are interested in finding all real functions
of symmetric positive definite matrices Ω+, satisfying
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f(x) + f(wI · y · wT
I ) = f(wx · y · wT

x ), (x, y) ∈ Ω2
+, (1)

where wx is a measurable map such that x = wx · wT
x for any x ∈ Ω+, and I is

the identity matrix. Such maps are called multiplication algorithms.
Our interest in this functional equation stems from investigations of char-

acterization problems for probabilistic measures concentrated on Ω+ or more
generally on symmetric cones—see [1,3,4,10,12,13].

We find all functions satisfying (1) with respect to two basic multiplication
algorithms. The first one is connected to the Jordan triple product: w(1)

x = x1/2,
where x1/2 is the unique symmetric positive definite square root of x = x1/2 ·
x1/2. The second is w

(2)
x = tx, where tx is the lower triangular matrix in the

Cholesky decomposition of x. We impose no regularity assumptions on f . This
problem is naturally generalized to the irreducible symmetric cones setting.

Functional equations for w(1) were already considered in [2] for differen-
tiable functions and in [16] for continuous functions of real or complex Her-
mitian positive definite matrices of rank strictly greater than 2. Without any
regularity assumptions it was solved on the Lorentz cone [18]. Molnar in his
paper wrote: “However, we suspect that the same conclusions are valid also
when r = 2. It would be interesting to find a proof for this case which would
probably give a new approach to the case r > 2 as well without invoking Glea-
son’s theorem”. Such a proof, for any of the five types of irreducible symmetric
cones, is given in Sect. 3. Moreover, we do not assume continuity of respec-
tive functions. Our approach is through Peirce decomposition on symmetric
cones. In Sect. 4 we formulate main theorems in the language of the less known
Lorentz cone framework.

The case of w(2), perhaps a bit surprisingly, leads to a different solution.
It was indirectly solved for differentiable functions in [10]. Here we solve this
functional equation under no regularity assumptions and, at the same time,
we find all real characters of the triangular group.

The problem of solving (1) for any multiplication algorithm w remains a
challenge.

2. Preliminaries

In this section we give a short introduction to the theory of symmetric cones.
For further details we refer to [7].

A Euclidean Jordan algebra is a Euclidean space E (endowed with scalar
product denoted 〈x, y〉) equipped with a bilinear mapping (product)

E × E � (x, y) �→ xy ∈ E

and a neutral element e in E so that for all x, y, z in E:
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(i) xy = yx,
(ii) x(x2y) = x2(xy),
(iii) xe = x,
(iv) 〈x, yz〉 = 〈xy, z〉.
For x ∈ E let L(x) : E → E be a linear map defined by

L(x)y = xy,

and define

P(x) = 2L2(x) − L(x2).

The map P : E �→ End(E) is called the quadratic representation of E.
An element x is said to be invertible if there exists an element y in E such

that L(x)y = e. Then y is called the inverse of x and is denoted by y = x−1.
Note that the inverse of x is unique. It can be shown that x is invertible if and
only if P(x) is invertible and in this case (P(x))−1 = P(x−1).

A Euclidean Jordan algebra E is said to be simple if it is not a Cartesian
product of two Euclidean Jordan algebras of positive dimensions. Up to linear
isomorphism there are only five kinds of Euclidean simple Jordan algebras.
Let K denote either the real numbers R, the complex ones C, quaternions H

or the octonions O, and write Sr(K) for the space of r × r Hermitian matrices
valued in K, endowed with the Euclidean structure 〈x, y〉 = Trace (x · ȳ) and
with the Jordan product

xy = 1
2 (x · y + y · x), (2)

where x · y denotes the ordinary product of matrices and ȳ is the conjugate of
y. Then Sr(R), r ≥ 1, Sr(C), r ≥ 2, Sr(H), r ≥ 2, and the exceptional S3(O)
are the first four kinds of Euclidean simple Jordan algebras. Note that in this
case

P(y)x = y · x · y. (3)

The fifth kind is the Euclidean space R
n+1, n ≥ 2, with Jordan product

(x0, x1, . . . , xn)(y0, y1, . . . , yn) =

(
n∑

i=0

xiyi, x0y1 + y0x1, . . . , x0yn + y0xn

)
.

(4)

To each Euclidean simple Jordan algebra one can attach the set of Jordan
squares

Ω̄ = {x2 : x ∈ E}.

The interior Ω is called a symmetric cone. Moreover Ω is irreducible, i.e. it is
not the Cartesian product of two convex cones. One can prove that an open
convex cone is symmetric and irreducible if and only if it is the cone Ω of some
Euclidean simple Jordan algebra. Each simple Jordan algebra corresponds to
a symmetric cone, hence there exist up to linear isomorphism also only five
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kinds of symmetric cones. The cone corresponding to the Euclidean Jordan
algebra R

n+1 equipped with Jordan product (4) is called the Lorentz cone.
We denote by G(E) the subgroup of the linear group GL(E) of linear auto-

morphisms which preserves Ω, and we denote by G the connected component
of G(E) containing the identity. Recall that if E = Sr(R) and GL(r,R) is the
group of invertible r×r matrices, the elements of G(E) are the maps g : E → E

such that there exists a ∈ GL(r,R) with

g(x) = a · x · aT .

We define K = G ∩ O(E), where O(E) is the orthogonal group of E. It can be
shown that

K = {k ∈ G : ke = e}.

A multiplication algorithm is a measurable map Ω → G : x �→ w(x) such
that w(x)e = x for all x in Ω. This concept is consistent with the so called
division algorithm, which was introduced in [17] and [5]. One of two important
examples of multiplication algorithm is the map w1(x) = P(x1/2).

We will now introduce a very useful decomposition in E, called spectral
decomposition. An element c ∈ E is said to be a primitive idempotent if cc =
c 
= 0 and if c is not a sum of two non-null idempotents. A complete system of
primitive orthogonal idempotents is a set (c1, . . . , cr) such that

r∑
i=1

ci = e and cicj = δijci for 1 ≤ i ≤ j ≤ r.

The size r of such a system is a constant called the rank of E. Any element x of
a Euclidean simple Jordan algebra can be written as x =

∑r
i=1 λici for some

complete (c1, . . . , cr) system of primitive orthogonal idempotents. The real
numbers λi, i = 1, . . . , r are the eigenvalues of x. One can then define the trace
and determinant of x by, respectively, tr x =

∑r
i=1 λi and det x =

∏r
i=1 λi. An

element x ∈ E belongs to Ω if and only if all its eigenvalues are strictly positive.
The rank r and dim Ω of an irreducible symmetric cone are connected

through the relation

dim Ω = r +
dr(r − 1)

2
,

where d is an integer called the Peirce constant.
If c is a primitive idempotent of E, the only possible eigenvalues of L(c)

are 0, 1
2 and 1. We denote by E(c, 0), E(c, 1

2 ) and E(c, 1) the corresponding
eigenspaces. The decomposition

E = E(c, 0) ⊕ E(c, 1
2 ) ⊕ E(c, 1)

is called the Peirce decomposition of E with respect to c. Note that P(c) is the
orthogonal projection of E onto E(c, 1).
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Fix a complete system of orthogonal idempotents (ci)r
i=1. Then for any

i, j ∈ {1, 2, . . . , r} we write

Eii = E(ci, 1) = Rci,

Eij = E

(
ci,

1
2

)
∩ E

(
cj ,

1
2

)
if i 
= j.

It can be proved (see [7, Theorem IV.2.1]) that

E =
⊕
i≤j

Eij

and (the symbol “·” denotes here the Jordan product)

Eij · Eij ⊂ Eii + Eij ,

Eij · Ejk ⊂ Eik, if i 
= k,

Eij · Ekl = {0}, if {i, j} ∩ {k, l} = ∅.

Moreover ([7, Lemma IV.2.2]), if x ∈ Eij , y ∈ Ejk, i 
= k, then

x2 = 1
2‖x‖2(ci + cj),

‖xy‖2 = 1
8‖x‖2‖y‖2. (5)

The dimension of Eij is the Peirce constant d for any i 
= j. When E is
Sr(K), if (e1, . . . , er) is an orthonormal basis of R

r, then Eii = Reie
T
i and

Eij = K(eie
T
j + eje

T
i ) for i < j and d is equal to dim|RK.

For 1 ≤ k ≤ r let Pk be the orthogonal projection onto E
(k) = E(c1 +

. . . + ck, 1), det(k) be the determinant in the subalgebra E
(k), and, for x ∈

Ω, Δk(x) = det(k)(Pk(x)). Then Δk is called the principal minor of order
k with respect to the Jordan frame (ck)r

k=1. Note that Δr(x) = det x. For
s = (s1, . . . , sr) ∈ R

r and x ∈ Ω, we write

Δs(x) = Δ1(x)s1−s2Δ2(x)s2−s3 . . . Δr(x)sr .

Note that the symbol Δs is the same for s being a number and a vector. Such
notation was proposed in [7] and should not result in misleading ambiguity. If
x =

∑r
i=1 αici, then Δs(x) = αs1

1 αs2
2 . . . αsr

r .
We will now introduce some basic facts about the triangular group. For x

and y in Ω, let x�y denote the endomorphism of E defined by

x�y = L(xy) + L(x)L(y) − L(y)L(x).

If c is an idempotent and z ∈ E(c, 1
2 ) we define the Frobenius transformation

τc(z) in G by

τc(z) = exp(2z�c).

Since 2z�c is nilpotent (see [7, Lemma VI.3.1]) we get

τc(z) = I + (2z�c) +
1
2
(2z�c)2. (6)
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Given a Jordan frame (ci)r
i=1, the subgroup of G,

T =

⎧⎨
⎩τc1(z

(1)) . . . τcr−1(z
(r−1))P

(
r∑

i=1

αici

)
: αi > 0, z(j) ∈

r⊕
k=j+1

Ejk

⎫⎬
⎭

is called the triangular group corresponding to the Jordan frame (ci)r
i=1. For

any x in Ω there exists a unique tx in T such that x = txe, that is, there exist
(see [7, Theorem IV.3.5]) elements z(j) ∈

⊕r
k=j+1 Ejk, 1 ≤ j ≤ r − 1 and

positive numbers α1, . . . , αr such that

x = τc1(z
(1))τc2(z

(2)) . . . τcr−1(z
(r−1))

(
r∑

k=1

αkck

)
. (7)

Mapping w2 : Ω → T , x �→ w2(x) = tx is a multiplication algorithm.
For E = Sr(R) we have Ω = Ω+. Let us define for 1 ≤ i, j ≤ r a matrix

μij = (γkl)1≤k,l≤r such that γij = 1 and all other entries are equal to 0. Then
for the Jordan frame (ci)r

i=1, where ck = μkk, k = 1, . . . , r, we have zjk =
(μjk + μkj) ∈ Ejk and ‖zjk‖2 = 2, 1 ≤ j, k ≤ r, j 
= k. If z(i) ∈

⊕r
j=i+1 Eij ,

i = 1, . . . , r − 1, then there exists α(i) = (αi+1, . . . , αr) ∈ R
r−i such that

z(i) =
∑r

j=i+1 αjzij . Then the Frobenius transformation reads as

τci(z
(i))x = Fi(α(i)) · x · Fi(α(i))T ,

where Fi(α(i)) is the so called Frobenius matrix:

Fi(α(i)) = I +
r∑

j=i+1

αjμji,

ie. bellow the ith one of the identity matrix there is a vector α(i), particularly

F2(α(2)) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
0 α3 1 · · · 0
...

...
...

. . .
...

0 αr 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ .

It can be shown ([7, Proposition VI.3.10]) that for each t ∈ T , x ∈ Ω and
s ∈ R

r,

Δs(tx) = Δs(te)Δs(x) (8)

and for any z ∈ E(ci,
1
2 ), i = 1, . . . , r,

Δs(τci(z)e) = 1, (9)

provided Δs and T are associated with the same Jordan frame (ci)r
i=1.
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3. Functional equations

As was aforementioned, the problem (1) is naturally generalized to symmetric
cone setting. We are looking for functions f : Ω → R that satisfy the following
functional equation

f(x) + f(w(e)y) = f(w(x)y), (x, y) ∈ Ω2. (10)

Such functions we will call w-logarithmic Cauchy functions. By [7, Proposition
III.4.3], for any g in the group G

det(gx) = (Det g)r/ dim Ω det x,

where Det denotes the determinant in the space of endomorphisms on Ω. In-
serting a multiplication algorithm g = g(y), y ∈ Ω, and x = e we obtain

Det(w(y)) = (det y)dim Ω/r

and hence

det(w(y)x) = det ydet x

for any x, y ∈ Ω. This means that f(x) = H(det x), where H is a generalized
logarithmic function, ie. H(ab) = H(a) + H(b) for a, b > 0, is always a solu-
tion to (10), regardless of the multiplication algorithm w. If a w-logarithmic
function f is additionally K-invariant (f(x) = f(kx) for any k ∈ K), then
H(det x) is the only possible solution (Theorem 3.8).

Remark 3.1. Consider a multiplication algorithm for which K � w(e) 
= IdΩ.
Then Eq. (10) can be written as

f(x) + f(y) = f(w̃(x)y), (x, y) ∈ Ω2,

where w̃(x) = w(x)w−1(e) and w̃(e) = IdΩ. Hence it is always enough to
consider multiplication algorithms satisfying w(e) = IdΩ.

Note that for both of the considered multiplication algorithms (w1(x) =
P(x1/2) and w2(x) = tx ∈ T ) we have wi(e) = IdΩ, i = 1, 2.

We start with the following crucial lemma.

Lemma 3.2. Let a and b be two distinct non-orthogonal primitive idempotents
in E. Then there exist a primitive idempotent c, orthogonal to a, and an ele-
ment z ∈ E(a, 1/2) ∩ E(c, 1/2) such that

b = λ2a + μ2c + λμz, (11)

where λ2 = 〈a,b〉, λ2 + μ2 = 1 and ‖z‖2 = 2.

Proof. Recall that subalgebra E(a,b) of E generated by non-orthogonal idem-
potents a and b is isomorphic to S2(R) with algebra isomorphism ρ defined by
(see [7, Proposition IV.1.6])

ρ(αa0 + βb0 + γu0) = αa + βb + γu, where u = ab,
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with a0 =
(

1 0
0 0

)
, b0 =

(
λ2 λμ
λμ μ2

)
and u0 = (a0 · b0 + b0 ·a0)/2, with λ2 = 〈a,b〉

and λ2 + μ2 = 1. The value of 〈a,b〉 is strictly positive due to the positive
definiteness of operator L(b) and

〈a,b〉 =
〈
a2,b

〉
= 〈a,L(b)a〉.

Note that

c0 :=
b0 + λ2a0 − 2u0

μ2
=

(
0 0
0 1

)
.

Therefore, there exists a primitive idempotent c, orthogonal to a, such that

c := ρ(c0) =
b + λ2a − 2u

μ2
. (12)

Since P(d) is the projection onto E(d, 1) = Rd for an arbitrary idempotent d,
we have P(a)b = λ2a and P(b)a = λ2b, which can be rewritten as (recall that
P(x) = 2L2(x) − L(x2))

au =
u + λ2a

2
, bu =

u + λ2b

2
.

Multiplying (12) by L(b) and L(c), respectively, we obtain

bc =
b + λ2u − 2bu

μ2
, c =

bc − 2cu
μ2

,

from which we deduce that

bc =
b + λ2u − (u + λ2b)

μ2
= b − u

and

cu =
bc − μ2c

2
=

b − u − μ2c

2
=

u − λ2a

2
,

where in the latter equality (12) was used. Hence, for z = 2
λμ (u − λ2a) we

obtain

az =
2

λμ
(au − λ2a) = 1

2z, cz =
2

λμ
cu = 1

2z.

Therefore z ∈ E(a, 1/2)∩E(c, 1/2). It remains to show that equality (11) holds
and ‖z‖2 = 2.

Inserting u = λμ
2 z + λ2a into (12) we obtain (11). By (5) we have z2 =

‖z‖2

2 (a + c). Square both sides of Eq. (11) to arrive at

b2 = λ4a2 + μ4c2 + λ2μ2 ‖z‖2

2
(a + c) + 2λ2μ2ac + 2λ3μaz + 2λμ3bz

= λ2

(
λ2 + μ2 ‖z‖2

2

)
a + μ2

(
λ2 ‖z‖2

2
+ μ2

)
c + λμ(λ2 + μ2)z.
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But b = b2, so ‖z‖2 = 2. �

The following Lemma is a technical result, which will be extensively used
in the proofs of theorems.

Lemma 3.3. Let a and b be primitive orthogonal idempotents and let z ∈
E(a, 1/2) ∩ E(b, 1/2).

(i) Then

τa(z)e = e + z + ‖z‖2

2 b and τa(z)a = a + z + ‖z‖2

2 b.

(ii) Suppose additionally that ‖z‖2 = 2. Then

P(αa + βb + γz)a = α2a + γ2b + αγz,

P(αa + βb + γz)z = 2αγa + 2βγb + (αβ + γ2)z,

for α, β, γ ∈ R.
(iii) If x =

∑r
i=1 αici for αi > 0, and y =

∑r
i=1 βici for a Jordan frame

(ci)r
i=1, then

P(x1/2)y = L(x)y.

Proof. We start with (i). By (6) the Frobenius transformation τa(z) is given
by

τa(z) = I + 2z�a + 2(z�a)2,

where z�a = 1
2L(z) + L(z)L(a) − L(a)L(z). It is easy to see that

I1 = (z�a)e = 1
2z + L(z)a − L(a)z = 1

2z,

I2 = (z�a)a = 1
4z + L(z)a − 1

2L(a)z = 1
2z,

I3 = (z�a)z = 1
2z

2 + 1
2z

2 − L(a)z2 = L(e − a)z2.

By (5) we obtain that z2 = ‖z‖2

2 (a + b) and

I3 = ‖z‖2

2 b.

Finally

τa(z)e = e + 2I1 + 2(z�a) 1
2z = e + 2I1 + I3,

τa(z)a = a + 2I2 + 2(z�a) 1
2z = a + 2I2 + I3.

Now we prove (ii). Denote αa + βb + γz by x and recall that P(x) =
2L2(x)−L(x2). By the definition of E(a, 1/2)∩E(b, 1/2) it follows that L(a)z =
L(b)z = 1

2z and

L(x)a = αa + γz/2.
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Moreover, by (5) we have z2 = a + b and

J1 = L
2(x)a = L(x)

(
αa + 1

2γz
)

= α
(
αa + 1

2γz
)

+ 1
2γL(x)z =

= α2a + 1
2αγz + 1

2γ
(

1
2αz + 1

2βz + γ(a + b)
)

=
(
α2 + 1

2γ2
)
a + 1

2γ2b

+ 1
4 (3α + β)γz.

Proceeding similarly we obtain

x2 = (α2 + γ2)a + (β2 + γ2)b + γ(α + β)z,
J2 = L(x2)a = (α2 + γ2)a + 1

2γ(α + β)z,

and finally

P(x)a = 2J1 − J2 = α2a + γ2b + αγz.

The second part of (ii) is proved analogously.
Let us note that if x =

∑r
i=1 αici, then x1/2 =

∑r
i=1

√
αici and

L

(
r∑

i=1

αici

)
r∑

i=1

βici =
r∑

i=1

αiβici.

Thus for y =
∑r

i=1 βici we have L
2(x1/2)y = L(x)y, which is equivalent to the

condition P(x1/2)y = L(x)y. �

Theorem 3.4. (w1-logarithmic Cauchy functional equation) Let f : Ω → R be
a function such that

f(x) + f(y) = f(P(x1/2)y), (x, y) ∈ Ω2. (13)

Then there exists a logarithmic function H such that

f(x) = H(det x)

for all x ∈ Ω.

Proof. Put x = αc + c⊥ and y = βc + c⊥ for α, β > 0 for an idempotent c,
where c⊥ = e − c. Then, by (iii) of Lemma 3.3, we have

f(αc + c⊥) + f(βc + c⊥) = f(αβc + c⊥).

The function (0,∞) � λ �→ f(λc+c⊥) ∈ R is logarithmic, hence, we may write

f(λc + c⊥) = Hc(λ), λ > 0,

where Hc is logarithmic.
Let x =

∑r
i=1 αici, αi > 0 for i = 1, . . . , r, where (ci)r

i=1 is a Jordan frame.
Note that x =

∏r
i=1(αici + c⊥

i ). Hence, by (13) and Lemma 3.3 (iii) we get
inductively
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f(x) = f

(
r∏

i=1

(αici + c⊥
i )

)
= f

(
P(α1/2

r cr + c⊥
r )

r−1∏
i=1

(αici + c⊥
i )

)

= f

(
r−1∏
i=1

(αici + c⊥
i )

)
+ f(αrcr + c⊥

r ) =
r∑

i=1

Hci(αi). (14)

Our aim is to show that Ha ≡ Hb for any primitive idempotents a and b. Then
Ha ≡ Hb ≡ H and by (14) we obtain

f(x) =
r∑

i=1

H(αi) = H

(
r∏

i=1

αi

)
= H(det x).

Consider any distinct non-orthogonal primitive idempotents a and b. By
Lemma 3.2 there exists a primitive idempotent c, orthogonal to a, and z ∈
E(a, 1/2) ∩ E(c, 1/2) such that

b = λ2a + μ2c + λμz,

where λ2 + μ2 = 1 and ‖z‖2 = 2.
Without loss of generality we may assume λ > 0.
By (13) we have

f(P(x)y2) = f(x2) + f(y2) = f(P(y)x2) (15)

for any x, y ∈ Ω. We will choose x and y so that P(x)y2 = αa + a⊥ and
P(y)x2 = αb + b⊥ for α in a nonvoid open interval.

Let

x = x1a + x2c + x3z + (a + c)⊥,

y = y1a + y2c + y3z + (a + c)⊥.

Then

y2 = (y2
1 + y2

3)a + (y2
2 + y2

3)c + y3(y1 + y2)z + (a + c)⊥.

Using Lemma 3.3 (ii), we arrive at

P(x)a = x2
1a + x2

3c + x1x3z,

P(x)c = x2
3a + x2

2c + x2x3z,

P(x)z = 2x1x3a + 2x2x3c + (x1x2 + x2
3)z,

P(x)(a + c)⊥ = (a + c)⊥.
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Thus

P(x)y2 = (y2
1 + y2

3)(x2
1a + x2

3c + x1x3z) + (y2
2 + y2

3)(x2
3a + x2

2c + x2x3z)

+y3(y1 + y2)(2x1x3a + 2x2x3c + (x1x2 + x2
3)z) + (a + c)⊥ =

= ((y2
1 + y2

3)x2
1 + (y2

2 + y2
3)x2

3 + 2y3(y1 + y2)x1x3)a
+((y2

1 + y2
3)x2

3 + (y2
2 + y2

3)x2
2 + 2y3(y1 + y2)x2x3)c

+((y2
1 + y2

3)x1x3 + (y2
2 + y2

3)x2x3 + y3(y1 + y2)(x1x2 + x2
3))z

+(a + c)⊥.

By symmetry

P(y)x2 = ((x2
1 + x2

3)y
2
1 + (x2

2 + x2
3)y

2
3 + 2x3(x1 + x2)y1y3)a

+((x2
1 + x2

3)y
2
3 + (x2

2 + x2
3)y

2
2 + 2x3(x1 + x2)y2y3)c

+((x2
1 + x2

3)y1y3 + (x2
2 + x2

3)y2y3 + x3(x1 + x2)(y1y2 + y2
3))z

+(a + c)⊥.

Let

x1 = C
√

αμ2(λ2+
√

α(1+λ2)μ2)
1+λ2μ2 , x2 = C

(
1−√

α
1+λ2μ2 − μ2

)
, x3 = C

√
αλμ,

y1 = λ−2μ−2, y2 = 1, y3 = −
√

α+λ2μ2

(1−√
α)λ3μ

,

where C = (1−√
α)λ3(1+λ2μ2)

α(1−λ4)+2
√

αλ2−λ4(1−μ4)
. Elements x and y belong to the cone Ω if

x1x2 > x2
3 and y1y2 > y2

3 (see [7, Exercise 7b)]). These conditions are satisfied
for α ∈

(
0, λ8

(1+λ2)2

)
. Thus for α ∈

(
0, λ8

(1+λ2)2

)
we have x, y ∈ Ω and

P(x)y2 = αa + c + (a + c)⊥ = αa + a⊥,

P(y)x2 = (αλ2 + μ2)a + (αμ2 + λ2)c + λμ(α − 1)z + (a + c)⊥ = αb + b⊥.

Note that there exist infinitely many such pairs (x, y)—the one presented above
is the unique one with y1 = λ−2μ−2 and y2 = 1. Inserting this result into (15),
we arrive at

Ha(α) = Hb(α)

for any α in a nonvoid open interval. This implies Ha ≡ Hb for any non-
orthogonal primitive idempotents a and b.

If a and b are orthogonal primitive idempotents, then there exists a primi-
tive idempotent c, which is non-orthogonal to a and b, so

Ha ≡ Hc ≡ Hb.

Hence, Ha ≡ Hb ≡ H for arbitrary primitive idempotents a and b, which
completes the proof. �

We will now prove the result for multiplication algorithm connected with
triangular group T . It is closely related to the problem of finding all real
characters of T —see Remark 3.6 after the proof.
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Theorem 3.5. (w2-logarithmic Cauchy functional equation) Let f : Ω → R be
a function satisfying

f(x) + f(y) = f(tyx) (16)

for any x and y in the cone Ω of rank r, ty ∈ T , where T is the triangular
group with respect to the Jordan frame (ci)r

i=1. Then there exist generalized
logarithmic functions H1, . . . , Hr such that for any x ∈ Ω,

f(x) =
r∑

k=1

Hk(Δk(x)),

where Δk is the principal minor of order k with respect to (ci)r
i=1.

Proof. Let (ci)r
i=1 be a complete system of primitive orthogonal idempotents

corresponding to T . Since tx = P(x1/2) for elements of the form x =
∑r

i=1 αici,
as in the previous proof, (14) is valid. Thus

f

(
r∑

i=1

αici

)
=

r∑
i=1

Hci(αi)

for αi > 0, where Hci(α) := f(αci + c⊥
i ), i = 1, . . . , r, are generalized logarith-

mic functions. Denote Hi ≡ Hci − Hci+1 , i = 1, . . . , r − 1 and Hr ≡ Hcr . Then
Hci ≡

∑r
k=i Hk, so

f

(
r∑

i=1

αici

)
=

r∑
i=1

r∑
k=i

Hk(αi) =
r∑

k=1

k∑
i=1

Hk(αi) =
r∑

k=1

Hk

(
k∏

i=1

αi

)
.

Take now any x ∈ Ω. By (7) there exist elements z(j) =
∑r

k=j+1 zkj , zkj ∈
Ejk, 1 ≤ j ≤ r − 1, and positive numbers α1, . . . , αr such that the triangular
decomposition reads as

x = τc1(z
(1))τc2(z

(2)) . . . τcr−1(z
(r−1))

(
r∑

k=1

αkck

)
.

By (8) we have inductively

Δj(x) = Δj(τc1(z
(1))e)Δj

(
τc2(z

(2)) . . . τcr−1(z
(r−1))

(
r∑

k=1

αkck

))

= Δj

(
r∑

k=1

αkck

)
r−1∏
i=1

Δj(τci(z
(i))e).

Recall that Δj(
∑r

k=1 αkck) =
∏j

k=1 αk and by (9) we have Δj(τci(z
(i))e) = 1

for any i = 1, . . . , r − 1. Thus

Δj(x) =
j∏

k=1

αk.
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Using (16) we arrive at

f(x) = f

(
r∑

k=1

αkck

)
+

r−1∑
j=1

f(τcj (z
(j))e) =

r∑
k=1

Hk(Δk(x)) +
r−1∑
j=1

f(τcj (z
(j))e)

for z(j) ∈
⊕r

k=j+1 Ejk. Our aim is to show that f(τ(z(j))e) = 0 for each
1 ≤ j ≤ r − 1.

For α(j) = (αj+1, . . . , αr) ∈ R
r−j define z(j)(α(j)) ∈

⊕r
k=j+1 Ejk by

z(j)(α(j)) =
r∑

k=j+1

αkzjk,

where zij are the fixed elements from the triangular decomposition of x. Since
(it can be quickly shown using 6)

τcj (z
(j)(α(j)))τcj (z

(j)(β(j))) = exp(2z(j)(α(j) + β(j))�cj)

= τcj (z
(j)(α(j) + β(j)))

we have

f(τcj (z
(j)(α(j)))e) + f(τcj (z

(j)(β(j)))e) = f(τcj (z
(j)(α(j) + β(j)))e).

The function R
r−j � α(j) �→ f(τcj (z

(j)(α(j)))e) ∈ R is therefore additive,
hence,

f(τcj (z
(j)(α(j)))e) =

r∑
k=j+1

Λ(j)
k (αk), (17)

where Λ(j)
k , j + 1 ≤ k ≤ r, are additive functions on R. We will show that

Λ(j)
k ≡ 0 for any 1 ≤ j ≤ r − 1, j + 1 ≤ k ≤ r.

Put now x = 1
α2 cj + c⊥

j for α > 0. Then by (16) we have for 1 ≤ j ≤ r − 1,
j + 1 ≤ k ≤ r

f(txτcj (zjk)x−1) = f(txe) + f(τcj (zjk)e) + f(x−1).

Since txe = x and f(x) + f(x−1) = f(e) = 0 we arrive at

f(τcj (zjk)e) = f(txτcj (zjk)x−1).

We will compute the argument of f on the right hand side of the above equa-
tion. By Lemma 3.3 (i) we obtain

τcj (zjk)x−1 = τcj (zjk)(e + (α2 − 1)cj) = e + zjk + ‖zjk‖2

2 ck

+(α2 − 1)
(
cj + zjk + ‖zjk‖2

2 ck

)
= x−1 + α2 ‖zjk‖2

2 ck + α2zjk.

Note that in this case we have tx = P(x1/2). Thus by Lemma 3.3 (ii) we get
P(x1/2)zjk = 1

αzjk and

P(x1/2)τcj (zjk)x−1 = e + α2 ‖zjk‖2

2 ck + αzjk.
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Again, by Lemma 3.3 (i), it is clear that txτcj (zjk)x−1 = τcj (αzjk)e, which
implies that

f(τcj (zjk)e) = f(τcj (αzjk)e).

But

αzjk = z(j)(0, . . . , 0, α︸︷︷︸
k

, 0, . . . , 0),

hence, by (17), we obtain for any α > 0,

Λ(j)
k (1) = Λ(j)

k (α).

Λ(j)
k is additive and constant, therefore Λ(j)

k ≡ 0, which completes the
proof. �

Remark 3.6. Note that Eq. (16) may be rewritten in the form

h(s)h(t) = h(st), (s, t) ∈ T 2,

where h(t) = exp f(te) for t ∈ T . This way we obtain the form of all real
characters of the triangular group (see also [8]):

h(t) =
r∏

k=1

Mk(Δk(te)),

where Mk, k = 1, . . . , r, are generalized multiplicative functions (Mk(ab) =
Mk(a)Mk(b), a, b > 0).

Remark 3.7. If we impose on f some mild conditions (e.g. measurability) in
Theorem 3.5, there exists s ∈ R

r such that

f(x) = log Δs(x)

for any x ∈ Ω.

In general we do not know the general form of w-logarithmic functions for
any multiplication algorithm w. But if we assume additionally that the w-
logarithmic function is K-invariant (f(x) = f(kx) for any k ∈ K and x ∈ Ω),
then we obtain the following result.

Theorem 3.8. Let f : Ω → R be a function satisfying

f(x) + f(w(e)y) = f(w(x)y), (x, y) ∈ Ω2,

where w is a multiplication algorithm. Assume additionally that f is
K-invariant. Then there exists a logarithmic function H such that

f(x) = H(det x)

for any x ∈ Ω.
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Proof. For any g ∈ G there exists its polar decompositions, ie. there exist
z ∈ Ω and k ∈ K such that g = P(z)k (see [7, Theorem III.5.1]). For g = w(x)
we obtain the identity w(x) = P(zx)kx for zx ∈ Ω and kx ∈ K. Since w(x)e = x,
we have zx = x1/2. Thus

f(x) + f(w(e)y) = f(w(x)y) = f(P(x1/2)kxy), (x, y) ∈ Ω2.

Taking y = k−1
x u we arrive at

f(x) + f(w(e)k−1
x u) = f(P(x1/2)u), (x,u) ∈ Ω2.

But w(e)k−1
x ∈ K, hence f(w(e)k−1

x u) = f(u). This means that the func-
tion f is w1-logarithmic. By Theorem 3.4 it then follows that there exists a
logarithmic function H such that f(x) = H(det x) for any x ∈ Ω. �

In the end we would like to comment on the form of w-logarithmic functions
(Eq. 10). It turns out that this a more natural form than the following one:

f(x) + f(y) = f(w(x)y), (x, y) ∈ Ω2,

which is supported by the following Lemma.

Lemma 3.9. (w-logarithmic Pexider functional equation) Assume that real
functions a, b, c are defined on the cone Ω and satisfy the following functional
equation

a(x) + b(y) = c(w(x)y), (x, y) ∈ Ω2, (18)

where w is a multiplication algorithm. Then there exist a w-logarithmic func-
tion f and real constants a0, b0 such that

a(x) = f(x) + a0,

b(x) = f(w(e)x) + b0,

c(x) = f(x) + a0 + b0.

Proof. Inserting into (18) y = e and defining b0 = b(e) we obtain for x ∈ Ω,

a(x) = c(x) − b0.

Inserting it back to (18) and taking x = e, for a0 = c(e) − b0 we have

b(y) = c(w(e)y) − a0.

Defining f(x) = c(x) − a0 − b0, we finally get

f(x) + f(w(e)y) = f(w(x)y), (x, y) ∈ Ω2.

�
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4. Multiplicative functions on the Lorentz cone

Since the Lorentz cone is less known than its matrix colleagues, in this section
we will formulate Theorems 3.4 and 3.5 using the language of the Lorentz cone
framework. One of the main pleasant properties of the Lorentz cone is that
both multiplication algorithms may be given by explicit formulas.

Recall that the fifth kind of simple Euclidean Jordan algebra is EL = R×R
n,

n ≥ 2. It is convenient to denote elements of EL by x = (x0, x), where x0 ∈ R

and x ∈ R
n. EL is endowed with Jordan product (4), which may be written as

xy = (〈x, y〉 , x0y + y0x) ∈ R × R
n,

where 〈x, y〉 = x0y0 + 〈x, y〉n and 〈x, y〉n =
∑n

i=1 xiyi is an inner product of
R

n. The norm defined by 〈·, ·〉n is denoted by ‖·‖n. The neutral element of EL

is denoted by e = (1, ∅), where ∅ is the zero of Rn.
It can be shown that (see for example [18])

P(x1/2)y =
(

〈x, y〉 ,
√

det x y + (y0 +
〈x, y〉n

x0 +
√

det x
)x

)
,

where the determinant of elements from EL takes the form det x = x2
0 − ‖x‖2

n.
The symmetric cone corresponding to EL is called the Lorentz cone and is
given by ΩL = {x ∈ EL : x0 > ‖x‖n}. The following result was previously
proved using direct calculations on the Lorentz cone in [18].

Corollary 4.1. (w1-logarithmic Cauchy functional equation on the Lorentz
cone) Let f : ΩL → R be a function such that

f(x0, x) + f(y0, y) = f

(
〈x, y〉 ,

√
det x y +

(
y0 +

〈x, y〉n

x0 +
√

det x

)
x

)
,

for any x = (x0, x), y = (y0, y) ∈ ΩL. Then there exists a logarithmic function
H such that

f(x) = H(x2
0 − ‖x‖2

n)

for all x = (x0, x) ∈ ΩL.

We are now going to give the specification of triangular group T to the
Lorentz cone case. Rank r of ΩL is 2 and any idempotent on EL is of the
form cu = 1

2 (1, u) for some u ∈ R
n with ‖u‖n = 1. Thus any Jordan frame

consists of two elements (c1, c2) = (cu, c⊥
u ), where c⊥

u = e − cu. Recall that
E12 = EL

(
c1,

1
2

)
∩ EL

(
c2,

1
2

)
consists of elements z = (z0, z) such that

1
2z = L(c1)z = cuz,
1
2z = L(c2)z = (e − cu)z.

It may by easily shown that cuz = 1
2z if and only if z0 = 0 and 〈z, u〉n = 0.

Thus
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EL

(
c1,

1
2

)
∩ EL

(
c2,

1
2

)
= EL

(
cu, 1

2

)
= {z = (0, z) ∈ EL : 〈z, u〉n = 0}.

We are ready to define the triangular group TL with respect to a fixed Jordan
frame (cu, c⊥

u ):

TL = {τcu(z)P(α1cu + α2c
⊥
u ) : α1, α2 > 0, z0 = 0, 〈z, u〉n = 0}.

Note that TL is parametrized by u ∈ R
n and this is equivalent to the choice of

basis for the Cholesky decomposition of matrices.
In order to define the multiplication algorithm w2 on the Lorentz cone we

have to find the unique ty ∈ TL such that tye = y ∈ ΩL. Using formulas
obtained in Lemma 3.3 (i), it can by shown that τcu(z)P(α1cu + α2c

⊥
u )e = y ∈

ΩL if and only if

α2
1 = y0 + 〈y, u〉n ,

α2
2 =

det y
y0 + 〈y, u〉n

,

z = (0, z) =
(

0,
y − 〈y, u〉n u

y0 + 〈y, u〉n

)
.

(19)

Note that α2
1 = y0 + 〈y, u〉n = Δ1(y), where Δ1 is the principal minor of order

1 with respect to the Jordan frame (cu, c⊥
u ). The multiplication algorithm w2

is then defined by

w2(y)x = tyx = τcu(z)P(α1cu + α2c
⊥
u )x,

where α1, α2 > 0 and z are as in (19). Carefully using [7, VI.3.1] it can be
shown that

tyx =
√

det y x + Δ1(x)y −
√

det y Δ1(x)cu + hu(x, y)c⊥
u ,

where hu(x, y) = 2
√

det y
Δ1(y)

(〈x, y〉n − 〈x, u〉n 〈y, u〉n) −
(
1 − 2 det y

Δ1(y)

)
〈x, u〉n − x0.

Thus, by Theorem 3.5 we obtain the following

Corollary 4.2. (w2-logarithmic Cauchy functional equation on the Lorentz
cone) Let f : ΩL → R be a function such that

f(x) + f(y) = f(
√

det y x + Δ1(x)y −
√

det y Δ1(x)cu + hu(x, y)c⊥
u )

for any (x, y) ∈ Ω2
L, ty ∈ TL, where TL is the triangular group with respect to

the Jordan frame (cu, c⊥
u ) and ‖u‖n = 1. Then there exist logarithmic functions

H1 and H2 such that for all x = (x0, x) ∈ ΩL,

f(x) = H1(x0 + 〈x, u〉n) + H2(x2
0 − ‖x‖2

n).

Note that although the formula for tyx may seem very complicated, the
situation for the Lorentz cone is far better than for matrix cones of size n ×
n, where explicit formulation of the Cholesky decomposition is much more
complex and only recursive algorithms are at hand.
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