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a b s t r a c t

In the paper we generalize the following characterization of beta distribution to the
symmetric cone setting: let X and Y be independent, non-degenerate random variables
with values in (0, 1), then U = 1 − XY and V =

1−X
U are independent if and only if there

exist positive numbers pi, i = 1, 2, 3, such that X and Y follow beta distributions with
parameters (p1 + p3, p2) and (p3, p1), respectively.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the paper we generalize the following characterization of beta distribution to random matrices and, more generally,
to random variables valued in the symmetric cone: let X and Y be independent, non-degenerate random variables with values
in (0, 1), then U = 1 − XY and V =

1−X
U are independent if and only if there exist positive numbers pi, i = 1, 2, 3, such that

X and Y follow beta distributions with parameters (p1 + p3, p2) and (p3, p1), respectively. This univariate result was proved
in [16] under additional assumptions that X and Y have densities, which are strictly positive on (0, 1) and are log-locally
integrable. Regularity assumption on densities was removed in the work of [10]. It turns out that the existence of densities
assumption is redundant, what was shown in [15].

Here we are interested in a generalization of density versions of the beta characterization, when random variables are
valued in the cone Ω+ of r × r positive definite symmetric real matrices. Define the analogue of (0, 1) interval in Ω+:
D+ = {x ∈ Ω+ : I − x ∈ Ω+}, where I is the identity matrix. Beta distribution on symmetric cone Ω+ with parameters
(p, q) for p, q > dimΩ+/r − 1 is defined by its density

B(p, q)(dx) =
1

BΩ+
(p, q)

(det x)p−dimΩ/r det(I − x)q−dimΩ+/r ID+
(x) dx, x ∈ Ω+,

where BΩ+(p,q) is the normalizing constant. For any x ∈ Ω+ there exists unique y ∈ Ω+ such that y2 = x. Matrix y is
denoted by y = x1/2. We will show that if X and Y are independent random variables valued in D+, having continuous
densities, which are strictly positive on D+, then U = I − X1/2

· Y · X1/2 and V = U−1/2
· (I − X) · U−1/2 are independent

if and only if there exist numbers pi > dimΩ+/r − 1, i = 1, 2, 3, such that X and Y follow matrix-variate beta distribution
with parameters (p1 + p3, p2) and (p3, p1), respectively.
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Actually, we will consider muchmore general form of transformation of random variables, which is defined through, so-
called, multiplication algorithm. A multiplication algorithm is a mapping w : Ω+ → GL(r,R) such that w(x) · w⊤(x) = x
for any x ∈ Ω+, where GL(r,R) is the group of invertible r × r matrices andw⊤(x) is the transpose ofw(x). Multiplication
algorithms (actually their inverses called division algorithms) were introduced by Olkin and Rubin [13] alongside the
characterization of Wishart probability distribution (see also [3] for generalization to symmetric cone setting). The two
basic examples of multiplication algorithms are w1(x) = x1/2 (x1/2 being the unique positive definite symmetric square
root of x) andw2(x) = tx, where tx is the lower triangular matrix from the Cholesky decomposition of x = tx · t⊤x .

Wewill consider the independence of U = I −w(X) ·Y ·w⊤(X) and V = (w(U))−1
· (I −X) · (w⊤(U))−1, wherew andw

are twomultiplication algorithms satisfying additionally some natural conditions. It turns out that, depending on the choice
of multiplication algorithms, the characterized distribution may not be the beta distribution (see Theorem 6). For example,
whenw = w = w2 the condition of independence of U and V characterizes wider family of distributions called beta-Riesz,
which include beta distribution as a special case.

As in the famous Lukacs–Olkin–Rubin Theorem (see [14] for Ω+ case and [3] for all symmetric cones) the assumption
of invariance under the group of automorphisms of distributions of X and Y is considered. The distribution of X is said to
be invariant under the group of automorphisms if O · X · O⊤ d

= X for any orthogonal matrix O. This approach leads to a
characterization of beta distribution regardless of the choice of multiplication algorithms (see Theorem 8).

We cannot give the explicit formula for densities for any multiplication algorithms. In general case, the densities are
given in terms of, so-called,w-logarithmic Cauchy functions, that is, functions that satisfy the following functional equation

f (x)+ f (w(I) · y · w⊤(I)) = f (w(x) · y · w⊤(x)), (x, y) ∈ Ω+.

The form of w-logarithmic Cauchy functions without any regularity assumptions for two basic examples of multiplication
algorithms were recently considered in [9]. Later on we will write w(x) for the linear operator acting on Ω+ such that
w(x)y = w(x) · y · w⊤(x).w(x)will also be termed a multiplication algorithm.

Analogous characterization of Wishart distribution, when densities of respective random variables are given in terms of
w-logarithmic functions is given in [8]. Unfortunately, we cannot answer the question whether there exists multiplication
algorithm resulting in characterizing other distribution than beta or beta-Riesz. Moreover, the removal of the assumption
of the existence of densities remains a challenge.

The idea of the proof is analogous to that of [16]. The independence condition gives us the functional equation for
densities, which is then solved. As was observed in [10], in univariate case, the independence condition leads to the
generalized fundamental equation of information, that is

F(x)+ G
 y
1−x


= H(y)+ K


x

1−y


,

where (x, y) ∈ D0 =

(x, y) ∈ (0, 1)2 : x + y ∈ (0, 1)


and F ,G,H, K : (0, 1) → R are unknown functions. Our proof will

heavily rely on the solution to the generalization of this equation to the coneΩ+, which was given in [7].
Similar characterization of beta distribution for random matrices was proved under numerous additional assumptions

in [6]. The characterization of 2× 2 matrix-variate beta distribution was also given by Bobecka andWesolowski [2], but the
characterization condition was of a different nature.

All above considerations can be generalized to the symmetric cones, of which Ω+ is the prime example. The paper
is organized as follows. In the next section we give necessary introduction to the theory of symmetric cones. Next, in
Section 3we define beta and beta-Riesz probability distributions on symmetric cones. Main theorems are stated and proved
in Section 4. Section 5 is devoted to the analysis of the problem, when X and Y have distributions invariant under the group
of automorphisms.

2. Preliminaries

In this section we recall basic facts of the theory of symmetric cones, which are needed in the paper. For further details
we refer to [4].

A Euclidean Jordan algebra is a Euclidean space E (endowed with scalar product denoted ⟨x, y⟩) equipped with a bilinear
mapping (product)

E × E ∋ (x, y) → xy ∈ E

and a neutral element e in E such that for all x, y, z in E:

(i) xy = yx,
(ii) x(x2y) = x2(xy),
(iii) xe = x,
(iv) ⟨x, yz⟩ = ⟨xy, z⟩.
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For x ∈ E let L(x) : E → E be linear map defined by

L(x)y = xy,

and define

P(x) = 2L2(x)− L

x2

.

Let End(E) denote the space of endomorphisms of E. The map P : E → End(E) is called the quadratic representation of E.
An element x is said to be invertible if there exists an element y in E such that L(x)y = e. Then y is called the inverse of

x and is denoted by y = x−1. Note that the inverse of x is unique. It can be shown that x is invertible if and only if P(x) is
invertible and in this case (P(x))−1

= P

x−1


.

A Euclidean Jordan algebraE is said to be simple if it is not a Cartesian product of two Euclidean Jordan algebras of positive
dimensions. Up to linear isomorphism there are only five kinds of Euclidean simple Jordan algebras. Let K denote either the
real numbers R, the complex ones C, quaternions H or the octonions O, and write Sr(K) for the space of r × r Hermitian
matrices valued in K, endowed with the Euclidean structure ⟨x, y⟩ = Trace (x · ȳ) and with the Jordan product

xy =
1
2 (x · y + y · x), (1)

where x·ydenotes the ordinary product ofmatrices and ȳ is the conjugate of y. Then Sr(R), r ≥ 1, Sr(C), r ≥ 2, Sr(H), r ≥ 2,
and the exceptional S3(O) are the first four kinds of Euclidean simple Jordan algebras. Note that in this case if K ≠ O, then

P(y)x = y · x · y. (2)

The fifth kind is the Euclidean space Rn+1, n ≥ 2, with Jordan product

(x0, . . . , xn) (y0, . . . , yn) =


n

i=0

xiyi, x0y1 + y0x1, . . . , x0yn + y0xn


. (3)

To each Euclidean simple Jordan algebra one can attach the set of Jordan squares

Ω̄ =

x2 : x ∈ E


.

The interiorΩ of Ω̄ is a symmetric cone. MoreoverΩ is irreducible, i.e. it is not the Cartesian product of two convex cones.
One can prove that an open convex cone is symmetric and irreducible if and only if it is the coneΩ of some Euclidean simple
Jordan algebra. Each simple Jordan algebra corresponds to a symmetric cone, hence there exist up to linear isomorphism
also only five kinds of symmetric cones. The cone corresponding to the Euclidean Jordan algebra Rn+1 equipped with Jordan
product (3) is called the Lorentz cone.

We denote by G(E) the subgroup of the linear group GL(E) of linear automorphisms which preservesΩ , and we denote
byG the connected component ofG(E) containing the identity. Recall that ifE = Sr(R) andGL(r,R) is the group of invertible
r × r matrices, elements of G(E) are the maps g : E → E such that there exists a ∈ GL(r,R)with

g(x) = a · x · a⊤.

We define K = G ∩ O(E), where O(E) is the orthogonal group of E. It can be shown that

K = {k ∈ G : ke = e}. (4)

Amultiplication algorithm is amapΩ → G : x → w(x) such thatw(x)e = x for all x ∈ Ω . This concept is consistent with,
so-called, division algorithm g, which was introduced by Olkin and Rubin [13] and Casalis and Letac [3], that is a mapping
Ω ∋ x → g(x) ∈ G such that g(x)x = e for any x ∈ Ω . If w is a multiplication algorithm then g = w−1 is a division
algorithm and vice versa, if g is a division algorithm then w = g−1 is a multiplication algorithm.

By [4, Proposition III.4.3], for any g in the group G,

det(gx) = (Det g)r/ dimΩ det x,

whereDet denotes the determinant in the space of endomorphisms onΩ . Inserting amultiplication algorithm g = w(y), y ∈

Ω , and x = e we obtain

Det (w(y)) = (det y)dimΩ/r (5)

and hence

det(w(y)x) = det y det x (6)

for any x, y ∈ Ω .
One of two important examples of multiplication algorithms is the map w1(x) = P


x1/2


. The remaining part of this

section is to give the necessary background for the definition of the second basic example of multiplication algorithm, the
one connected with Cholesky decomposition.
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We will now introduce a very useful decomposition in E, called spectral decomposition. An element c ∈ E is said to be a
idempotent if cc = c ≠ 0. Idempotents a and b are orthogonal if ab = 0. Idempotent c is primitive if c is not a sum of two
non-null idempotents. A complete system of primitive orthogonal idempotents is a set {c1, . . . , cr} such that

r
i=1

ci = e and cicj = δijci for 1 ≤ i ≤ j ≤ r.

The size r of such system is a constant called the rank of E. Any element x of a Euclidean simple Jordan algebra can be
written as x =

r
i=1 λici for some complete {c1, . . . , cr} system of primitive orthogonal idempotents. The real numbers

λi, i = 1, . . . , r are the eigenvalues of x. One can then define determinant of x by det x =
r

i=1 λi.
If c is a primitive idempotent of E, the only possible eigenvalues of L(c) are 0, 1

2 and 1. We denote by E(c, 0),E(c, 1
2 ) and

E(c, 1) the corresponding eigenspaces. The decomposition

E = E(c, 0)⊕ E(c, 1
2 )⊕ E(c, 1)

is called the Peirce decomposition of E with respect to c. Note that P(c) is the orthogonal projection of E onto E(c, 1).
Fix a complete system of orthogonal idempotents (ci)ri=1. Then for any i, j ∈ {1, . . . , r} we write

Eii = E(ci, 1) = Rci,

Eij = E

ci,

1
2


∩ E


cj,

1
2


if i ≠ j.

It can be proved (see [4, Theorem IV.2.1]) that

E =


i≤j

Eij

and

Eij · Eij ⊂ Eii + Ejj,

Eij · Ejk ⊂ Eik, if i ≠ k,
Eij · Ekl = {0}, if {i, j} ∩ {k, l} = ∅.

The dimension ofEij is, for any i ≠ j, a constant d called the Peirce constant.WhenE is Sr(K), if {e1, . . . , er} is an orthonormal
basis of Rr , then Eii = Reie⊤

i and Eij = K

eie⊤

j + eje⊤

i


for i < j and d is equal to dim|RK.

For 1 ≤ k ≤ r let Pk be the orthogonal projection ontoE(k) = E(c1+· · ·+ck, 1), det(k) the determinant in the subalgebra
E(k), and, for x ∈ Ω,∆k(x) = det(k)(Pk(x)). Then∆k is called the principal minor of order kwith respect to the Jordan frame
{ck}rk=1. Note that∆r(x) = det x. For s = (s1, . . . , sr) ∈ Rr and x ∈ Ω , we write

∆s(x) = ∆1(x)s1−s2∆2(x)s2−s3 . . .∆r(x)sr .

∆s is called a generalized power function. If x =
r

i=1 αici, then∆s(x) = α
s1
1 α

s2
2 . . . α

sr
r . For s ∈ Rr and λ ∈ R we will write

s + λ = (s1 + λ, . . . , sr + λ).

We will now introduce some basic facts about triangular group. For x and y inΩ , let x�y denote the endomorphism of
E defined by

x�y = L(xy)+ L(x)L(y)− L(y)L(x).

If c is an idempotent and z ∈ E(c, 1
2 )we define the Frobenius transformation τc(z) in G by

τc(z) = exp(2z�c).

Given a Jordan frame {ci}ri=1, the subgroup of G,

T =


τc1(z

(1)) . . . τcr−1(z
(r−1))P


r

i=1

αici


: αi > 0, z(j) ∈

r
k=j+1

Ejk


is called the triangular group corresponding to the Jordan frame {ci}ri=1. For any x inΩ there exists a unique tx in T such that
x = txe, that is, there exist (see [4, Theorem VI.3.5]) elements z(j) ∈

r
k=j+1 Ejk, 1 ≤ j ≤ r − 1 and positive numbers

α1, . . . , αr such that

x = τc1(z
(1)) . . . τcr−1(z

(r−1))


r

k=1

αkck


.

Mapping w2 : Ω → T , x → w2(x) = tx is the second important example of a multiplication algorithm.
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For E = Sr(R) we haveΩ = Ω+. Let us define for 1 ≤ i, j ≤ r matrix µij = (γkl)1≤k,l≤r such that γij = 1 and all other
entries are equal to 0. Then for Jordan frame {ci}ri=1, where ck = µkk, k = 1, . . . , r , we have zjk = (µjk + µkj) ∈ Ejk and
∥zjk∥2

= 2, 1 ≤ j, k ≤ r, j ≠ k. If z(i) ∈
r

j=i+1 Eij, i = 1, . . . , r − 1, then there exists α(i) = (αi+1, . . . , αr) ∈ Rr−i such
that z(i) =

r
j=i+1 αjzij. Then the Frobenius transformation reads below

τci(z
(i))x = Fi(α

(i)) · x · Fi(α
(i))⊤,

where Fi(α
(i)) is so called Frobenius matrix:

Fi(α
(i)) = I +

r
j=i+1

αjµji,

i.e. below ith one of identity matrix there is a vector α(i), particularly

F2(α
(2)) =


1 0 0 · · · 0
0 1 0 · · · 0
0 α3 1 · · · 0
...

...
...

. . .
...

0 αr 0 · · · 1

 .
It can be shown [4, Proposition VI.3.10] that for each t ∈ T , x ∈ Ω and s ∈ Rr ,

∆s(tx) = ∆s(te)∆s(x). (7)

This property actually characterizes function∆s — see Theorem 5.

3. Probability distributions

The beta-Riesz distribution on symmetric cones with parameters (s, t) ∈ Rr
×Rr for si > (i−1)d/2, ti > (i−1)d/2, i =

1, . . . , r , (d is the Peirce constant) is defined by its density

BR(s, t)(dx) =
1

BΩ(s, t)
∆s−dimΩ/r(x)∆t−dimΩ/r(e − x)ID(x) dx, x ∈ Ω,

where D = {x ∈ Ω : e − x ∈ Ω} is an analogue of (0, 1) interval on real line and

BΩ(s, t) =
ΓΩ(s)ΓΩ(t)
ΓΩ(s + t)

for gamma function of symmetric cone ΓΩ(s) = (2π)(dimΩ−r)/2r
j=1 Γ (sj − (j − 1) d2 ) (see [4, VII.1.1.]).

Beta distribution on symmetric coneΩ is a special case of beta-Riesz distribution for s1 = · · · = sr = p > dimΩ/r − 1
and t1 = · · · = tr = q > dimΩ/r − 1 with density

B(p, q)(dx) =
1

BΩ(p, q)
(det x)p−dimΩ/r det(e − x)q−dimΩ/r ID(x) dx, x ∈ Ω,

where BΩ(p, q) =
ΓΩ (p)ΓΩ (q)
ΓΩ (p+q) and ΓΩ(p) := ΓΩ(p, . . . , p). Basic properties of beta and beta-Riesz distributions onΩ+ are

given in [5,18] and of beta distribution onΩ+ in [14]. For some recent advances in extending beta distribution the reader is
referred to [12].

4. Characterization of generalized beta distribution

Henceforth we will denote byΩ an irreducible symmetric cone of rank r . The densities of generalized beta distributions
will be given in terms ofw-logarithmic functions, that is functions f : Ω → R that satisfies the following functional equation

f (x)+ f (w(e)y) = f (w(x)y), (x, y) ∈ Ω2, (8)

where w is a multiplication algorithm. If f is w-logarithmic, then ef is said to be w-multiplicative. Functional equation (8) for
w1(x) = P(x1/2) onΩ+ was already considered in [1] for differentiable functions and in [11] for continuous functions on real
or complex Hermitian positive definite matrices of rank greater than 2. Without any regularity assumptions it was solved
on the Lorentz cone by Wesolowski [17]. The general forms of w1- and w2-logarithmic functions without any regularity
assumptions were given in [9].

It should be stressed that there exists infinite number of multiplication algorithms. If w is a multiplication algorithm,
then trivial extensions are given by w(k)(x) = w(x)k, where k ∈ K is fixed and K is defined by (4). One may consider also
multiplication algorithms of the form P(xα)tx1−2α , α ∈ R, which interpolates between the two main examples: w1 (which
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is α = 1/2) and w2 (which is α = 0). In general, any multiplication algorithmmay be written in the form w(x) = P(x1/2)kx,
where kx ∈ K .

To define the transformation of random variables we will use two multiplication algorithms, w andw. Let g andg be the
corresponding division algorithms, that is, g = w−1 andg = w−1. Henceforth we will assume that w additionally satisfies
the following natural conditions

A. w is homogeneous of degree 1, that is w(sx) = sw(x) for any s > 0 and x ∈ Ω ,
B. continuity in e, that is limx→e w(x) = w(e),
C. surjectivity of the mappingΩ ∋ x → g(x)e ∈ Ω ,
D. differentiability of the mappingΩ ∋ x → w(x),

and the same is assumed forw.
Conditions A–C are assumed in order to use the result of [7] regarding generalized fundamental equation of information

onΩ (see Theorem 2) and D is assumed to ensure that the Jacobian of the considered transformation exists. By we andwe
we will denote w(e) andw(e) respectively.

We start with the direct result, where we show that if X and Y have densities of the form (9), then the transformed
variables are independent. Recall thatΩ is an irreducible symmetric cone of rank r and w-multiplicative function f satisfies
the following functional equation

f (x)f (w(e)y) = f (w(x)y)

for any (x, y) ∈ Ω .

Theorem 1. Assume that multiplication algorithms w and w are differentiable (condition D) and let X and Y be independent
random variables valued in D with densities of the form

fX (x) = cX (det x)dimΩ/r i(x)h(x)f (e − x)ID(x),
fY (x) = cYh(wex)i(e − wex)ID(x),

(9)

where

• i is w- andw-multiplicative,
• f isw multiplicative,
• h is w-multiplicative,

and cX , cY are normalizing constants. Then

U = e − w(X)Y and V =g(U)(e − X)

are independent random variables.

Proof. Define the mapping ψ : D2
→ D2 by formula

ψ(x, y) = (e − w(x)y,g(e − w(x)y)(e − x)) ,

whereg = w−1. Then we have (U, V ) = ψ(X, Y ) and the inverse mapping ψ−1
: D2

→ D2 is given by

(x, y) = ψ−1(u, v) = (e −w(u)v, g(e −w(u)v)(e − u)) ,

where g = w−1. Hence ψ is a bijection. We will find the Jacobian of ψ−1 in two steps. Let us observe that ψ−1
= φ2 ◦ φ1

with

φ1(u, v) = (e −w(u)v, e − u) = (a, b),
φ2(a, b) = (a, g(a)b) = (x, y).

Denote by Ji the Jacobian of mapping φi, i = 1, 2. We have

J1 =

da/du da/dv
db/du db/dv

 =

da/du −w(u)
−IdΩ 0

 = Det(w(u))
and

J2 =

dx/da dx/db
dy/da dy/db

 =

 IdΩ 0
dy/da g(a)

 = Det(g(a)).

Finally, by (5), we get

J = J1J2 =


detu

det(e −w(u)v)
 dimΩ

r
.
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The joint density f(U,V ) of (U, V ) is given by

f(U,V )(u, v) = fX (e −w(u)v)fY (g(e −w(u)v)(e − u))


detu
det(e −w(u)v)

 dimΩ

r
, (10)

where fX and fY denote the densities of X and Y , respectively. Inserting (9) into (10) and repeatedly using multiplicative
properties of respective functions (that is, if h is w-multiplicative, then h(x)h(weg(x)y) = h(y) for any x, y ∈ Ω), we obtain

f(U,V )(u, v) = cXcY (detu)dimΩ/r i(u)f (u)h(e − u)ID(u) · f (wev)i(e − wev)ID(v),

what completes the proof.

Remark 1. Note that if i(x) = (det x)p1−dimΩ/r , f (x) = (det x)p2−dimΩ/r and h(x) = (det x)p3−dimΩ/r with pi > dimΩ/r −

1, i = 1, 2, 3, then (X, Y ) ∼ B(p1 + p3, p2)⊗ B(p3, p1) and (U, V ) ∼ B(p1 + p2, p3)⊗ B(p2, p1), regardless of the choice
of w andw.

In order to prove the harder part of the characterization we will need the following result regarding the solution to
fundamental equation of information on symmetric cones (see [7, Theorem 3.5]). Recall that D = {x ∈ Ω : e − x ∈ Ω} and
define

D0 = {(a, b) ∈ D2
: a + b ∈ D}.

Theorem 2. Let a, b, c, d : D → R be continuous functions that satisfy the following functional equation

a(x)+ b(g(e − x)y) = c(y)+ d(g(e − y)x), (x, y) ∈ D0.

If multiplication algorithms w = g−1 andw =g−1 satisfy conditions A–C, then there exist real constants Ci, i = 1, . . . , 4, and
continuous functions hi, i = 1, 2, 3, where

• h1 is w- andw-logarithmic,
• h2 isw logarithmic,
• h3 is w-logarithmic,

such that for any x ∈ D ,

a(x) = h1(e − x)+ h2(x)+ h3(e − x)+ C1,

b(x) = h1(e − wex)+ h3(wex)+ C2,

c(x) = h1(e − x)+ h2(e − x)+ h3(x)+ C3,

d(x) = h1(e −wex)+ h2(wex)+ C4,

and C1 + C2 = C3 + C4.

We are now ready to prove the main theorem.

Theorem 3 (Characterization of Generalized Beta Distributions). Let X and Y be independent random variables valued inD with
continuous and strictly positive densities. Let additionally ψ : D2

→ D2 be a mapping defined through

ψ(x, y) = (e − w(x)y,g(e − w(x)y)(e − x)) ,

wherew = g−1 andw =g−1 aremultiplication algorithms satisfying conditions A–D. If components of vector (U, V ) = ψ(X, Y )
are independent, then there exist continuous functions i, f , g, where

• i is w- andw-multiplicative,
• f isw multiplicative,
• h is w-multiplicative,

and (9) holds.

Proof. Let us note that, as in the proof of Theorem 1, the joint density of (U, V ) has the form (10). This equality is satisfied al-
most everywherewith respect to Lebesguemeasure. According to the assumption that (U, V ) has independent components,
we have f(U,V )(u, v) = fU(u)fV (v).

Since the respective densities are continuous, (10) holds true for any u, v ∈ D . Taking logarithm of both sides of (10) (it
is permitted, since densities are strictly positive on D), we obtain

a (w(u)v)+ b (g(e −w(u)v)(e − u)) = c(e − u)+ d(v), (u, v) ∈ D2,
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where

a(u) = log fX (e − u)−
dimΩ

r
log det(e − u),

b(u) = log fY (u),

c(u) = log fU(e − u)−
dimΩ

r
log det(e − u),

d(u) = log fV (u),

for u ∈ D . Let us take u = e − y and v =g(e − y)x. Then y ∈ D , because u ∈ D . Moreover, it is clear that x ∈ Ω . Since
v ∈ D and e − v =g(e − y)(e − x − y) ∈ D , we have e − (x + y) ∈ Ω . Thus,

a(x)+ b(g(e − x)y) = c(y)+ d(g(e − y)x) (11)

for any (x, y) ∈ D0 = {(a, b) ∈ D2
: a + b ∈ D}. Theorem 2 implies that there exist continuous functions h1, h2 and h3

such that

• h1 is w- andw-logarithmic function,
• h2 isw logarithmic,
• h3 is w-logarithmic,

and

a(x) = h1(e − x)+ h2(x)+ h3(e − x)+ C1,

b(x) = h1(e − wex)+ h3(wex)+ C2,

for real constants Ci, i = 1, 2. That is, for x ∈ D we have

fX (x) = ea(e−x)+ dimΩ
r log det x

= eC1 det(x)
dimΩ

r eh1(x)eh3(x)eh2(e−x), (12)

fY (x) = eb(x) = eC2eh3(wex)eh1(e−wex), (13)

what is essentially (9) for i(x) = eh1(x), f (x) = eh2(x) and h(x) = eh3(x).

As was mentioned earlier, the general form of w-logarithmic functions is known in two basic examples, namely w =

w1 = P(x1/2) and w = w2 = tx ∈ T . These forms (see Theorems 4 and 5) will be needed in the proof of the main theorem.
The proofs of these results may be found in [9]. Function H is called generalized logarithmic, if H(ab) = H(a)+H(b) for any
positive a and b.

Theorem 4 (w1-Logarithmic Cauchy Functional Equation). Let f : Ω → R be a function such that

f (x)+ f (y) = f

P

x1/2


y

, (x, y) ∈ Ω2.

Then there exists a generalized logarithmic function H such that for any x ∈ Ω ,

f (x) = H(det x).

Theorem 5 (w2-Logarithmic Cauchy Functional Equation). Let f : Ω → R be a function satisfying

f (x)+ f (y) = f (tyx)

for any x and y in the cone Ω of rank r, ty ∈ T , where T is the triangular group with respect to the Jordan frame {ci}ri=1. Then
there exist generalized logarithmic functions H1, . . . ,Hr such that for any x ∈ Ω ,

f (x) =

r
k=1

Hk(∆k(x)),

where∆k is the principal minor of order k with respect to {ci}ri=1.

Remark 2. If we impose on f in Theorem 5 some mild conditions (eg. measurability), then there exists s ∈ Rr such that for
any x ∈ Ω ,

f (x) = log∆s(x).

We may now give the specification of Theorem 3, when (9) is known explicitly. For every generalized multiplication w

andw, the family of generalized beta measures (as defined in (9)) contains the beta laws (see Remark 1). For w = w = w1,
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there are no other distributions, while for w = w = w2 generalized beta measures consist of the beta-Riesz distributions. It
is an open question whether there is a generalized multiplication w that leads to other probability measures in this family.

Define 1 := (1, . . . , 1) ∈ Rr . Recall that Ω is an irreducible symmetric cone of rank r, d is its Peirce constant and
D = {x ∈ Ω : e − x ∈ Ω}.

Theorem 6 (Characterization of Beta and Beta-Riesz Distributions). Let X and Y be independent random variables valued in D
with continuous and strictly positive densities. Let additionally ψ : D2

→ D2 be a mapping defined through

ψ(x, y) = (e − w(x)y,g(e − w(x)y)(e − x)) ,

where w = g−1 and w = g−1 are multiplication algorithms satisfying conditions A–D. Assume that components of vector
(U, V ) = ψ(X, Y ) are independent.

If

1. w(x) = w(x) = P(x1/2), then there exist constants pi > dimΩ/r − 1, i = 1, 2, 3, such that

X ∼ B(p1 + p3, p2) and Y ∼ B(p3, p1),

2. w(x) = w(x) = tx, then there exist vectors si = (si,j)rj=1, si,j > (j − 1)d/2, i = 1, 2, 3, j = 1, . . . , r, such that

X ∼ BR(s1 + s3, s2) and Y ∼ BR(s3, s1),

3. w(x) = P(x1/2) and w(x) = tx, then there exist constants pi > dimΩ/r − 1, i = 1, 3 and vector s2 = (s2,j)rj=1, s2,j >
(j − 1)d/2, such that

X ∼ BR((p1 + p3)1, s2) and Y ∼ B(p3, p1),

4. w(x) = tx and w(x) = P(x1/2), then there exist constants pi > dimΩ/r − 1, i = 1, 2 and vector s3 = (s3,j)rj=1, s3,j >
(j − 1)d/2, such that

X ∼ BR(p11 + s3, p21) and Y ∼ BR(s3, p11).

Proof. We start with (12). If w(x) = w1(x) = P(x1/2), then by Theorem 4 we know that there exist constants κi ∈ R such
that hi(x) = κi log det x, i = 1, 2, 3. Thus X follows B(p1 + p3, p2) distribution and Y follows B(p3, p1) distribution, where
pi = κi + dimΩ/r > dimΩ/r − 1, i = 1, 2, 3.

If, in turn, w(x) = w2(x) = tx, then by Theorem 5 and Remark 2 we get the existence of vectors ti ∈ Rr such that
hi(x) = log∆ti(x), i = 1, 2, 3. So X follows BR(s1 + s3, s2) distribution and Y follows BR(s3, s1) distribution, where
si = ti + dimΩ/r, i = 1, 2, 3 are such that si,j > (j − 1)d/2, i = 1, 2, 3, j = 1, . . . , r .

Points (3) and (4) are proved analogously.

5. Distributions invariant under the group of automorphisms

In the famous Lukacs–Olkin–Rubin Theorem (see [14] forΩ+ case, [3] for all irreducible symmetric cones and [8, Remark
4.4] for its density version), the following independence property was analyzed: assume X and Y are independent random
variables valued inΩ and V = X + Y and U = g(X + Y )X (here g = w−1) are also independent (supplemented with some
technical assumptions). If the distribution of U is invariant under the group K of automorphisms, that is kU d

= U for any
k ∈ K , then X and Y follow Wishart distribution with the same scale parameter, regardless of the choice of multiplication
algorithm w = g−1. In that case U was beta distributed for any measurable division algorithm g. Similar approach in our
case also leads to the characterization of beta distribution onΩ (see Theorem 8).

Function f : Ω → R is called K -invariant if f (kx) = f (x) for any k ∈ K and x ∈ Ω . We will need the following result
of [7], where compared to Theorem 2, additional assumption of K -invariance is imposed on unknown functions.

Theorem 7. Let a, b, c, d,w,w be as in Theorem 2, but assume additionally that any two unknown functions are K-invariant.
Then, there exist constants κj, j = 1, 2, 3 and Ci, i = 1, . . . , 4, such that for any x ∈ D ,

a(x) = (κ1 + κ3) log det(e − x)+ κ2 log det x + C1,

b(x) = κ1 log det(e − x)+ κ3 log det x + C2,

c(x) = (κ1 + κ2) log det(e − x)+ κ3 log det x + C3,

d(x) = κ1 log det(e − x)+ κ2 log det x + C4,

(14)

and C1 + C2 = C3 + C4.
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Theorem 8 (Characterization of Beta Distribution). Let X and Y be independent random variables valued in D with continuous
and strictly positive densities. Assume additionally that the distributions of X and Y are invariant under the group K of
automorphisms. Let ψ : D2

→ D2 be a mapping defined through

ψ(x, y) = (e − w(x)y,g(e − w(x)y)(e − x)) ,

wherew = g−1 andw =g−1 aremultiplication algorithms satisfying conditions A–D. If components of vector (U, V ) = ψ(X, Y )
are independent, then there exist constants pi > dimΩ/r − 1, i = 1, 2, 3, such that X ∼ B(p1 + p3, p2) and Y ∼ B(p3, p1).

Proof. The proof begins exactly the same as in Theorem 3; we start with (11). If distributions of X and Y are invariant under
the group of automorphisms, then their densities are K -invariant functions, that is fX (kx) = fX (x) and fY (kx) = fY (x) for
any k ∈ K and x ∈ D . From this we conclude that a(u) = log fX (e−u)− dimΩ

r log det(e−u) and b(u) = log fY (u) are also
K -invariant, thus by Theorem 7 we get the assertion.
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