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ON PERPETUITIES WITH LIGHT TAILS

BARTOSZ KOŁODZIEJEK,∗ Warsaw University of Technology

Abstract

In this paper we consider the asymptotics of logarithmic tails of a perpetuity R
d=∑∞

j=1Qj
∏j−1
k=1 Mk, where (Mn,Qn)

∞
n=1 are independent and identically distributed

copies of (M,Q), for the case when P(M ∈ [0, 1)) = 1 and Q has all exponential
moments. IfM andQ are independent, under regular variation assumptions, we find the
precise asymptotics of − log P(R > x) as x →∞. Moreover, we deal with the case of
dependentM andQ, and give asymptotic bounds for− log P(R > x). It turns out that the
dependence structure between M and Q has a significant impact on the asymptotic rate
of logarithmic tails of R. Such a phenomenon is not observed in the case of heavy-tailed
perpetuities.
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1. Introduction

In the present paper, we consider a random variable R defined as a solution of the affine
stochastic equation

R
d= MR +Q, R and (M,Q) independent. (1.1)

Under suitable assumptions (see (1.4) below) on (M,Q), we can think of R as a limit in
distribution of the iterative scheme

Rn = MnRn−1 +Qn, n ≥ 1, (1.2)

where (Mn,Qn)n≥1 are independent and identically distributed (i.i.d.) copies of (M,Q), andR0
is arbitrary and independent of (Mn,Qn)n≥1. Writing out the above recurrence and renumbering
the random variables (Mn,Qn), we see that R may also be defined by

R
d=
∞∑
j=1

Qj

j−1∏
k=1

Mk, (1.3)

provided that the series above converges in distribution. For a detailed discussion of sufficient
and necessary conditions in the one-dimensional case, we refer the reader to [12] and [31]; here
we only note that the conditions

E log+ |Q| <∞ and E log |M| < 0 (1.4)
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1120 B. KOŁODZIEJEK

suffice for the almost-sure convergence of the series in (1.3) and for uniqueness of a solution
to (1.1). For a systematic approach to the probabilistic properties of the fixed point equation
(1.1) and much more, we recommend two recent books, [3] and [17].

When R is the solution of (1.1), then following a custom from insurance mathematics, we
call R a perpetuity. In this scheme, let Q represent a random payment and let M be a random
discount factor. ThenR is the present value of a commitment to pay the value ofQ every year in
the future; see (1.3). Such a stochastic equation appears in many areas of applied mathematics;
for a broad list of references, consult, for example, [8] and [31]. If (R,M,Q) satisfy (1.1), we
will say that perpetuity R is generated by (M,Q) and that the random vector (M,Q) is the
generator of R.

For the sake of simplicity, we consider only the case when

P(M ≥ 0, Q ≥ 0) = 1, (1.5)

which implies that P(R ≥ 0) = 1.
The main focus of research on perpetuities is their tail behaviour. Assume for a moment that

Q = 1 almost surely (a.s.). Then, for x ≥ 1, on the set{
M1 > 1− 1

x
, . . . ,M�x� > 1− 1

x

}
,

we have

R ≥
�x�+1∑
k=1

M1 · · ·Mk−1 ≥
�x�+1∑
k=1

(
1− 1

x

)k−1

> (1− e−1)x,

which gives a lower bound for the tails P(R > (1− e−1)x) of the form

P

(
M1 > 1− 1

x
, . . . ,M�x� > 1− 1

x

)
= P

(
M > 1− 1

x

)�x�
.

It turns out that such an approach, proposed in [11], gives the appropriate logarithmic asymp-
totics for constantQ; in [21] (with an earlier contribution in [16]), under some weak assumptions
on the distribution of M near 1−, it was proved that

log P(R > x) ∼ cx log P

(
M > 1− 1

x

)
(1.6)

for an explicitly given positive constant c. As usual, we write f (x) ∼ g(x) if f (x)/g(x)
converges to 1 as x →∞.

The next step in [11] was to consider nonconstant Q. If Q and M are independent, and M
has a distribution equivalent at 1 to uniform distribution, that is,

− log P

(
M > 1− 1

x

)
∼ log x,

then (see [11, Theorem 3.1])

lim
x→∞

log P(R > x)

x log P(M > 1− 1/x)
= 1

q+
,

where q+ = ess supQ ∈ (0,∞].
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On perpetuities with light tails 1121

Two natural questions then arise.

1. What is the precise asymptotic if q+ = ∞?

2. What is the asymptotic if M and Q are not independent?

This paper is devoted to answering both these questions in a unified manner. We will be
particularly interested in the asymptotic behaviour of log P(R > x) as x → ∞, which is
closely related to the asymptotic behaviour of logMR(t), whereMR is the moment generating
function of R. It is known that if P(M > 1) > 0 then R is necessarily heavy tailed. In the
present paper we are interested in the case when P(M ∈ [0, 1]) = 1 and when

MQ(t) = EetQ <∞ for all t ∈ R. (1.7)

In this case, R is always light tailed; by [1] and [4],

MR(t) = EetR is finite on the set (−∞, t0),
where t0 := sup{t : EetQ 1{M=1} < 1}, which is positive since P(M = 1) < 1. If t0 is finite
then, by [6, Lemma 5],

lim inf
x→∞

− log P(R > x)

x
= sup{t > 0 : MR(t) <∞} = t0, (1.8)

which means that this case is completely solved. We have t0 = ∞ if and only if either
P(M = 1) = 0 or PQ |M=1 = δ0, but the second case can be reduced to the first case. To see this,
assume that P(M = 1) > 0 and P(Q = 0 | M = 1) = 1, and define N = inf{n : Mn < 1}.
It is easy to see that N is a stopping time with respect to Fn := σ((Mk,Qk) : k ≤ n) and
P(N <∞) = 1. Then the distribution of

(
M1 · · ·MN−1,

N∑
k=1

M1 · · ·Mk−1Qk

)

is the same as the conditional distribution of (M,Q) given {M < 1}. Thus, if (M ′,Q′) d= (M,
Q) | M < 1, by [31, Lemma 1.2], we have

R
d= M ′R +Q′, R and (M ′,Q′) independent,

and P(M ′ = 1) = 0. Therefore, to exclude the case of finite t0, we assume that

P(M ∈ [0, 1)) = 1. (1.9)

Observe that the case whenM ≤ m+ < 1 andQ ≤ q+ <∞ a.s. is uninteresting, since then
R has no tail (actually, R ≤ q+/(1−m+) a.s.). We will always exclude this case by assuming
that

Q

1−M is not bounded. (1.10)

We note here that the structure of dependence betweenM andQ does not have a significant
impact on the tails of heavy-tailed perpetuities. If

P(r = Mr +Q) < 1, r ∈ R, (1.11)
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1122 B. KOŁODZIEJEK

then, in the cases considered in [7], [9], [10], [13], and [19], the rate of asymptotics of P(R > x)

is not influenced by the dependence structure of (M,Q) (with possible exception in the very
special unsolved case of [7] if EMαQα−η = ∞ for all η ∈ (0, α)). The problem becomes
more complicated if (M,Q) have lighter tails, that is, if the moment generating function of R
exists in a neighbourhood of 0 (but not in R), but there is still a relatively high insensitivity to
the dependence structure of the tail of R for given marginals (this is because in such cases Q
dominates M); see, e.g. [4, Theorem 1.3] and (1.8). If the moment generating function of R is
finite over all R, we will see that the dependence structure may have significant impact on the
rate of convergence even for logarithmic tails; this can be observed in the following example
(see also Example 5.2).

Example 1.1. Consider (M,Q) = (U,U) and (M ′,Q′) = (U, 1−U), where U is uniformly
distributed on [0, 1] (note that (1.10) and (1.11) are not satisfied here). Let R and R′ be the
perpetuities generated by (M,Q) and (M ′,Q′), respectively. We have

− log P(R > x) ∼ x log x,

while P(R′ = 1) = 1. To see the first result, observe that R̃ = R + 1 satisfies

R̃
d= UR̃ + 1, R̃ and U are independent;

thus, the results of [11] and [21] apply. For this example, the asymptotics of P(R > x) as
x →∞ are also known [30].

Finally, we would like to mention here [28], where the authors considered generators
fulfilling a certain dependence structure which somehow resembles the notion of asymptotic
independence from [24]. A similar and significantly weaker, but still restrictive, condition was
considered in [4, Equation (5)]. Here we will be able to give bounds for the logarithmic tails
even if large values of M exclude large values of Q (and vice versa), which is in opposition to
the asymptotic independence.

The paper is organized as follows. In Section 2 we give a short introduction to the theories that
will be extensively exploited, that is, regular variation, convex analysis, Tauberian theorems,
and concepts of dependence. In Section 3 we find precise asymptotics of the logarithmic
tail of R when M and Q are independent, and Q is unbounded (Theorem 3.1) and bounded
(Theorem 3.2). Particularly, we assume that

x �→ − log P

(
1

1−M > x

)
∈ Rr−1, r > 1,

and
x �→ − log P(Q > x) ∈ Rα, α > 1, or P(Q ≤ q+) = 1,

where Rγ denotes the class of regularly varying functions with index γ . Under these assump-
tions, (1.7), (1.9), and (1.10) are satisfied. We show that

− log P(R > x) ∼ c h(x),
where the constant c > 0 is given explicitly and

h(x) := inf
t≥1

{
−t log P

(
1

1−M > t, Q >
x

t

)}
. (1.12)
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On perpetuities with light tails 1123

Observe that ifQ = 1 a.s. then h(x) = −x log P(M > 1−1/x), so we recover (1.6). Thus, we
generalize the results of [11] and [21], but with new proofs, which are very different from those
in [11] and [21]. Our proofs are based on a new formulation of the classical Tauberian theorems;
see Section 2.4. The appearance of the function h is probably the most interesting phenomenon
here. It should be noted that the function h (in the simple form when Q is degenerate) in the
two-sided bounds for log P(R > x) appeared for the first time in [15].

Section 4 is devoted to explaining some informal heuristics, which show that the function h
is a natural candidate for describing the asymptotic of − log P(R > x) when M and Q are not
independent. In Theorem 4.1 we give basic properties of the function h. In Section 5 we find
a lower bound for log P(R > x) as x → ∞ also in the case when we allow M and Q to be
dependent. In Theorem 5.1, under some regularity assumptions on h, we are able to show that

lim inf
x→∞

log P(R > x)

h(x)
≥ −c,

where the constant c is explicit and depends on properties of the function h. The constant c
agrees with the results of Section 3, where independent M and Q are considered. In Section 6
we show that if R is generated by (M,Q) with an arbitrary dependence structure then

lim sup
x→∞

log P(R > x)

hco(x)
≤ lim
x→∞

log P(Rco > x)

hco(x)
= −c,

where Rco is a perpetuity generated by the so-called comonotonic (M,Q) (see Section 2.3)
and hco is the corresponding function h. The constant c is given explicitly (see Theorem 6.1).
We also give stronger results under additional assumptions that the vector (M,Q) is positively
or negatively quadrant dependent (Theorem 6.2). Finally, Section 7 contains proofs of some
results from preceding sections.

2. Preliminaries

2.1. Regular variation

In this section we give a brief introduction to the theory of regular variation. For further
details, we refer the reader to [2].

A positive measurable function L defined in a neighbourhood of +∞ is said to be slowly
varying if

lim
x→∞

L(tx)

L(x)
= 1 for all t > 0. (2.1)

A positive measurable function f defined in a neighbourhood of +∞ is said to be regularly
varying with index ρ ∈ R if f (x) = xρL(x) with L slowly varying. We denote the class
of regularly varying functions with index ρ by Rρ , so that R0 is the class of slowly varying
functions.

We say that a positive function f varies smoothly with index ρ (f ∈ SRρ) if f ∈ C∞ and,
for all n ∈ N,

lim
x→∞

xnf (n)(x)

f (x)
= ρ(ρ − 1) · · · (ρ − n+ 1). (2.2)

It is clear that SRρ ⊂ Rρ . Moreover, if f ∈ SRρ then x2f ′′(x)/f (x)→ ρ(ρ − 1); hence,
f is ultimately strictly convex if ρ > 1; ultimately here and later means ‘in the vicinity of
infinity’. Furthermore, if f ∈ SRρ with ρ > 0 then, in the neighbourhood of infinity, f has
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1124 B. KOŁODZIEJEK

an inverse in SR1/ρ (see [2, Theorem 1.8.5]). For any f ∈ Rρ, there exist f , f ∈ SRρ with
f (x) ∼ f (x) andf ≤ f ≤ f in the neighbourhood of infinity (the smooth variation theorem [2,
Theorem 1.8.2]).

If f ∈ SRγ with γ > 0 then

lim
x→∞

f (x + uf (x)/f ′(x))
f (x)

=
(

1+ u

γ

)γ
. (2.3)

This follows by the fact that convergence in (2.1) and (2.2) is locally uniform; see, e.g. [2,
Theorem 1.2.1]. In [21, Lemma 2.1] it was shown that, if f ∈ Rρ with ρ > 0 and g(x)→∞
as x →∞, then the condition

lim
x→∞

f (x)

f (g(x))
= L implies that lim

x→∞
x

g(x)
= L1/ρ.

This fact will be used several times.
We say that a measurable function f is rapidly varying (f ∈ R∞) if

lim
x→∞

f (tx)

f (x)
= ∞ for all t > 1.

It is the subclass of R∞ that we are interested in. The class � consists of nondecreasing and
right-continuous functions f for which there exists a measurable function g : R → (0,∞)
such that (see [2, Section 3.10])

lim
x→∞

f (x + ug(x))
f (x)

= eu for all u ∈ R. (2.4)

The function g in (2.4) is called an auxiliary function and if f has nondecreasing positive
derivative, then we may take g = f/f ′ (compare with (2.3)). It can be shown that if f ∈ �
and t > 1 then limx→∞ f (tx)/f (x) = ∞; thus, � ⊂ R∞.

The class � is very rich. If f1 ∈ Rρ, ρ > 0, and f2 ∈ �, then f1 ◦ f2 ∈ � (see [2,
Proposition 3.10.12]). The same holds if f1 ∈ � and f ′2 ∈ Rρ with ρ > −1 or if f1, f

′
2 ∈ �

(see [2, p. 191]).
Finally, we note that the convergence in (2.3) is uniform on compact subsets of (−γ,∞) and

that the convergence in (2.4) is uniform on compact subsets of R (see [2, Proposition 3.10.2]).

2.2. Convex conjugate

For a function f : (0,∞) → R, we define its convex conjugate (or the Fenchel–Legendre
transform) by

f ∗(x) = sup{xz− f (z) : z > 0}. (2.5)

It is standard that f ∗ is convex, nondecreasing, and lower semicontinuous. Moreover, if f
is convex and lower semicontinuous then (f ∗)∗ = f (see [26]). Convex conjugacy is order
reversing, that is, if f ≤ g then f ∗ ≥ g∗.

If f is differentiable and strictly convex then supremum (2.5) is attained at z = (f ′)−1(x)

and, thus, f ∗(x) = x(f ′)−1(x)− f ((f ′)−1(x)). Moreover, f ′ ◦ (f ∗)′ = (f ∗)′ ◦ f ′ = Id and
so

f ∗(x) = x(f ∗)′(x)− f ((f ∗)′(x)). (2.6)
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On perpetuities with light tails 1125

We will be interested in the relation between f and f ∗ when f is regularly varying. We say
that α and β are conjugate numbers if α, β > 1 and α−1 + β−1 = 1. LetL be a slowly varying
function. Then (see [2, Theorem 1.8.10, Corollary 1.8.11])

f (x) ∼ 1

α
xαL(xα)1/β ∈ Rα

if and only if

f ∗(z) ∼ 1

β
zβL#(zβ)1/α ∈ Rβ,

where L# is a dual, unique up to asymptotic equivalence, slowly varying function with

L(x)L#(xL(x))→ 1, L#(x)L(xL#(x))→ 1, as x →∞.
By the very definition of f ∗ we obtain Young’s inequality:

f (s)+ f ∗(t) ≥ st for all s, t > 0.

If f and f ∗ are invertible then, taking s = f−1(x) and t = (f ∗)−1(x) for x > 0, we have

(f ∗)−1(x)f−1(x)

x
≤ 2.

We will show that the left-hand side above has a limit as x → ∞. If f ∈ Rρ with ρ > 0
then there exists a function g such that f (g(x)) ∼ g(f (x)) ∼ x. Such a g is unique up to
asymptotic equivalence (see [2, Theorem 1.5.12]) and is called the asymptotic inverse of f . If
f is locally bounded on (0,∞) then we can take g = f←, where

f←(x) = inf{y ∈ (0,∞) : f (y) > x}.
Lemma 2.1. Let f ∈ Rα with α > 1, and let β be a conjugate number to α. Then

f←(x)(f ∗)←(x)
x

→ α(β − 1)1/β as x →∞.

The proof is postponed to Section 7.
The following theorem will be important. For a formulation in R

n, see [14, Theorem 2.5.1].

Theorem 2.1. Assume that functions a and b are lower semicontinuous and convex on (0,∞).
If a is additionally nondecreasing then, for x > 0, we have

(a ◦ b)∗(x) = inf
z>0

{
a∗(z)+ zb∗

(
x

z

)}
.

2.3. Dependence structure of random vectors

A function f : R2 → R is said to be supermodular if

f (min{u, v})+ f (max{u, v}) ≥ f (u)+ f (v) for all u, v ∈ R
2,

where the minimum and maximum are calculated componentwise. If f has continuous second-
order partial derivatives then f is supermodular if and only if ∂2f /∂x∂y ≥ 0. An important
example of supermodular functions is f (x1, x2) = g(x1 + x2), when g is convex. We will use
this fact in the proof of Lemma 2.2 below.
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1126 B. KOŁODZIEJEK

A random vector (X, Y ) is said to be smaller than a random vector (X′, Y ′) in the super-
modular order if Ef (X, Y ) ≤ Ef (X′, Y ′) for all supermodular functions f for which the
expectations exist. The following theorem has many formulations with different assumptions
(see, e.g. [23] and [29]), but we will use that given in [5].

Theorem 2.2. Let f : R
2 → R be a continuous supermodular function. Let (X, Y ) and

(X′, Y ′) be random vectors with the same marginal distributions. Assume that

P(X ≤ x, Y ≤ y) ≤ P(X′ ≤ x, Y ′ ≤ y) for all x, y ∈ R.

If the expectations Ef (X, y0) and Ef (x0, Y ) are finite for some x0 and y0, then

Ef (X, Y ) ≤ Ef (X′, Y ′),

provided that the above expectations exist (even if infinite valued).

Assume that X and Y are random variables defined on the same probability space. Let FX
and FY denote the cumulative distribution functions (CDFs) of X and Y , respectively. Define
F(x, y) = (FX(x) + FY (y) − 1)+ and F(x, y) = min{FX(x), FY (y)}. It is clear that F and
F are two-dimensional CDFs. Moreover, F and F have the same marginal distributions and,
for any F with the same marginals, we have (Fréchet—Hoeffding bounds)

F ≤ F ≤ F .
If a random variable or vectorX has a CDFF , we writeX

d∼ F . We say that a vector (X, Y )
d∼ F

is comonotonic if F = F and that it is countermonotonic if F = F . Thus, Theorem 2.2 implies
that comonotonic (countermonotonic) random vectors are maximal (minimal) with respect to
the supermodular order. For a CDF F, define

F−1(x) = inf{y ∈ R : F(y) ≥ x} for x ∈ [0, 1].
It is known that if U is uniformly distributed on [0, 1] then

(F−1
X (U), F−1

Y (U))
d∼ F

and
(F−1
X (U), F−1

Y (1− U)) d∼ F .
We say that the pair (X, Y ) is positively quadrant dependent (see [20] and [22]) if

P(X ≤ x, Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) for all x, y ∈ R.

Similarly, (X, Y ) is negatively quadrant dependent if the above holds with the inequality sign
reversed. We say that a function f is weakly monotonic if it is nondecreasing or nonincreasing.

Lemma 2.2. Assume that (1.5) holds, and let (M ′,Q′) be a random vector such that

P(M ≤ x, Q ≤ y) ≤ P(M ′ ≤ x, Q′ ≤ y) for all x, y ∈ R,

with M ′ d= M and Q′ d= Q. Let R and R′ denote the perpetuities generated by (M,Q) and
(M ′,Q′), respectively. Then

Ef (R) ≤ Ef (R′) for all convex and weakly monotonic functions f on R, (2.7)

provided that the above expectations exist (even if infinite valued).

The proof of Lemma 2.2 is postponed to Section 7.
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On perpetuities with light tails 1127

Remark 2.1. Assume additionally that

EM < 1 and EQ <∞.
In this case ER and ER′ are finite, and

ER = EQ

1− EM
= EQ′

1− EM ′
= ER′. (2.8)

For convex and nondecreasing fx(r) = (r − x)+ with x > 0, we have

Efx(R) =
∫ ∞
x

P(R > t) dt,

and, thus, (2.7) gives ∫ ∞
x

(P(R′ > t)− P(R > t)) dt ≥ 0 for all x.

But, by (2.8) we obtain∫ ∞
0
(P(R′ > t)− P(R > t)) dt = E(R′ − R) = 0,

which implies that ∫ x

−∞
(FR′(t)− FR(t)) dt ≥ 0 for all x,

which is equivalent to saying that R is second-order stochastically dominant over R′; see [27].

2.4. Useful Tauberian theorems

The Tauberian theorems presented below are classical, but here we formulate them in a new
way. To see that these formulations are equivalent to the classical formulations, see Section 7.

Theorem 2.3. (Kasahara’s Tauberian theorem.) LetX be an a.s. nonnegative random variable
such that the moment generating function

M(z) = EezX

is finite for all z > 0. Let k ∈ Rρ with ρ > 1. Then

− log P(X > x) ∼ k(x)
if and only if

logM(z) ∼ k∗(z).
Moreover, the limits of oscillation satisfy

B1 ≤ lim inf
x→∞

− log P(X > x)

k(x)
≤ lim sup

x→∞
− log P(X > x)

k(x)
≤ B2

for some constants 0 < B1 < B2 <∞ if and only if

B̃1 ≤ lim inf
z→∞

logM(z)

f ∗(z)
≤ lim sup

z→∞
logM(z)

f ∗(z)
≤ B̃2

for some constants 0 < B̃1 < B̃2 <∞ (the above result can be strengthened by specifying the
relation between Bi and B̃i; see [2, Corollary 4.12.8]).
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1128 B. KOŁODZIEJEK

Theorem 2.4. (de Bruijn’s Tauberian theorem.) Let Y be a nonnegative random variable. Let
f ∈ Rρ with ρ > 1. Then

−x log P

(
Y <

1

x

)
∼ f (x) as x →∞

if and only if
− log Ee−λY ∼ (f ∗)←(λ) as λ→∞.

3. Independent generators

In this section we consider M and Q independent under two regimes:

• both 1/(1−M) and Q are unbounded (Theorem 3.1),

• 1/(1−M) is unbounded, while Q is bounded (Theorem 3.2).

Both of the proofs use the two Tauberian theorems introduced in the previous section.

Theorem 3.1. Let M and Q be independent, and assume that (1.5) holds. Let

k(x) := − log P(Q > x) and f (x) := −x log P

(
M > 1− 1

x

)
,

and assume that f ∈ Rr and k ∈ Rα with r, α > 1. Let r∗ and β denote the conjugate numbers
to r and α, respectively. Then (f ∗ ◦ k∗)∗ ∈ Rγ and

− log P(R > x) ∼
(

γ

γ − 1

)γ−1

(f ∗ ◦ k∗)∗(x) (3.1)

with γ = βr∗/(βr∗ − 1).

As will be seen in Remark 4.1 and Theorem 4.1 below, the function (f ∗ ◦ k∗)∗ coincides
with the function h introduced in (1.12).

Similarly, we can handle the case of bounded Q.

Theorem 3.2. Let M and Q be independent, and assume that (1.5) holds. Let

q+ := ess supQ <∞ and f (x) := −x log P

(
M > 1− 1

x

)
,

and assume that f ∈ Rr with r > 1. Then

− log P(R > x) ∼
(

r

r − 1

)r−1

f

(
x

q+

)
.

Proof of Theorem 3.1. Since M , Q, and R are independent on the right-hand side of R
d=

MR +Q, for
ψ(z) := log EezR,

we have
eψ(z) = EezMREezQ = Eeψ(zM)EezQ (3.2)

upon conditioning on M .
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On perpetuities with light tails 1129

In view of Kasahara’s Tauberian theorem, Theorem 2.3, it is enough to show that

ψ(z) ∼ (βr∗)−1(f ∗ ◦ k∗)(z). (3.3)

Indeed, observe that in this case

− log P(R > x) ∼ ψ∗(x) ∼ sup
z>0
{zx − (βr∗)−1(f ∗ ◦ k∗)(z)} = (βr∗)−1(f ∗ ◦ k∗)∗(βr∗x).

(3.4)
Since f ∗ ◦ k∗ ∈ Rβr∗ , (3.1) then follows by the regular variation of (f ∗ ◦ k∗)∗ ∈ Rγ .

Moreover, by theAbelian (direct) parts of the Kasahara’s and de Bruijn’s Tauberian theorems
(put X = Q and Y = 1−M) we have

log EezQ ∼ k∗(z) ∈ Rβ

and
− log Ee−(1−M)z ∼ (f ∗)←(z) ∈ R1/r∗ .

Assume for the moment that

log EezQ ∼ − log Ee−zψ ′(z)(1−M). (3.5)

Then by the above considerations we obtain

k∗(z) ∼ (f ∗)←(zψ ′(z)),
or, equivalently (recall the definition of the asymptotic inverse in Section 2.2),

(f ∗ ◦ k∗)(z) ∼ zψ ′(z).
This implies that ψ ′ ∈ Rβr∗−1 and so zψ ′(z) ∼ βr∗ψ(z), which, together with the above
equation, gives (3.3) after applying Kasahara’s Tauberian theorem (see (3.4)).

It remains to show that (3.5) holds. By the convexity of ψ we have

Eeψ(zM)−ψ(z) ≥ Ee−zψ ′(z)(1−M). (3.6)

Moreover, since R is a.s. nonnegative, ψ is nondecreasing. Thus, for any m ∈ (0, 1), by the
monotonicity and again by the convexity of ψ , we obtain

Eeψ(zM)−ψ(z) ≤ Ee−zψ ′(zM)(1−M) 1{M>m} +eψ(zm)−ψ(z)P(M ≤ m) =: I1 + I2.

Since ψ is strictly convex, we have

I1 ≤ Ee−zψ ′(zm)(1−M) 1{M>m} ≤ Ee−zψ ′(zm)(1−M) and I2 ≤ e−zψ ′(zm)(1−m).

But
Ee−zψ ′(zm)(1−M)

e−zψ ′(zm)(1−m)
= Ee−zψ ′(zm)(m−M)→∞ as z→∞,

since P(M > m) > 0; hence,

Eeψ(zM)−ψ(z) ≤ I1 + I2 ≤ Ee−zψ ′(zm)(1−M)(1+ o(1)) ≤ Ee−mzψ ′(zm)(1−M)(1+ o(1)),
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1130 B. KOŁODZIEJEK

because m < 1. Thus, by (3.2) we obtain

log EezQ/m = − log Eeψ(zM/m)−ψ(z/m) ≥ − log Ee−zψ ′(z)(1−M) − log(1+ o(1)).
Hence, by (3.6) and the above inequality, for any m ∈ (0, 1), we have

log EezQ ≤ − log Ee−zψ ′(z)(1−M) ≤ log Eez/mQ + o(1).
By the regular variation of z �→ log EezQ, we finally conclude that

1 ≤ lim inf
z→∞

− log Ee−zψ ′(z)(1−M)

log EezQ
≤ lim sup

z→∞
− log Ee−zψ ′(z)(1−M)

log EezQ
≤ m−β

for any m ∈ (0, 1), which is (3.5). �

Proof of Theorem 3.2. The proof proceeds in the same way as previously, but here we have
z �→ log EezQ ∈ R1 so that β = 1. Indeed, for any q ∈ (0, q+), we have

zq+ ≥ log EezQ ≥ log EezQ 1{Q>q} ≥ zq + log P(Q > q),

which means that log EezQ ∼ zq+. Let r∗ be the conjugate number to r . Similarly as before,
we show that

zq+ ∼ log EezQ = − log Eeψ(zM)−ψ(z) ∼ − log Ee−zψ ′(z)(1−M) ∼ (f ∗)←(zψ ′(z)),
so that

zψ ′(z) ∼ f ∗(zq+) ∼ r∗ψ(z)
since f ∗ ∈ Rr∗ . Then by Kasahara’s Tauberian theorem we conclude that

− log P(R > x) ∼ ψ∗(x) ∼ sup
z>0

{
zx − 1

r∗
f ∗(q+z)

}
= 1

r∗
f

(
r∗ x
q+

)
. �

4. Heuristics and the function h

In this section we present some informal heuristics, which show that the function h defined
in (1.12) is a natural candidate for explaining the asymptotic of− log P(R > x) even ifM and
Q are not independent. By Kasahara’s theorem we know that x �→ − log P(R > x) is regularly
varying with index γ > 1 if and only if z �→ ψ(z) := log EezR is regularly varying with index
γ /(γ − 1), where ψ is uniquely determined by the equation

EezQ+ψ(zM)−ψ(z) = 1.

In this case, we expect that in some sense as z→∞ we have

EezQ−ψ(z)(1−Mγ/(γ−1)) ≈ 1,

and, from this point, it is not far to considering a function λ defined by the equation

EezQ−λ(z)(1−M) = 1 for z > 0.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2018.53
Downloaded from https://www.cambridge.org/core. IP address: 95.160.157.222, on 29 Nov 2018 at 18:43:09, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2018.53
https://www.cambridge.org/core


On perpetuities with light tails 1131

It seems reasonable to expect that, for large z and some constants Bi, i = 1, 2, we have (this
is true if m− = ess inf M > 0)

0 < B1 ≤ ψ(z)
λ(z)

≤ B2 <∞.

Assume now that λ is regularly varying. By Kasahara’s Tauberian theorem, this would imply
that (recall that − log P(R > x) ∼ ψ∗(x))

0 < B̃1 ≤ lim inf
x→∞

− log P(R > x)

λ∗(x)
≤ lim sup

x→∞
− log P(R > x)

λ∗(x)
≤ B̃2 <∞

for some constants B̃i , i = 1, 2. However, the definition of λ does not seem much more
appealing than that of ψ , but it is the function λ∗ that is of interest. By the definition of λ we
have

1 = EezQ−λ(z)(1−M) ≥ EezQ−λ(z)(1−M) 1{1−M<1/t} ≥ EezQ 1{1−M<1/t} e−λ(z)/t ,

which gives, for any t > 0,

λ(z) ≥ t log EezQ 1{1−M<1/t} . (4.1)

Furthermore, by the exponential Markov inequality we have, for z > 0,

P

(
1−M <

1

t
, Q >

x

t

)
≤ EezQ 1{1−M<1/t}

ezx/t
,

which gives, together with (4.1),

−t log P

(
1

1−M > t, Q >
x

t

)
≥ zx − t log EezQ 1{M>1−1/t} ≥ zx − λ(z)

for any positive x, t, and z. Taking inf t≥1 and supz>0 of both sides, we obtain (recall the
definition of h in (1.12))

h(x) ≥ λ∗(x) for all x > 0.

In general, we are not able to prove that h(x) ∼ λ∗(x) (or lim supx→∞ h(x)/λ∗(x) <∞), but
there is strong evidence that such a claim holds for a wide class of distributions of (M,Q).
This would eventually imply that− log P(R > x) is comparable, up to a constant, with h(x) as
x →∞. Moreover, if M and Q are independent, then Theorems 3.1 and 3.2 give asymptotics
for − log P(R > x) in terms of h; see below.

Remark 4.1. Every convex conjugate is convex, nondecreasing, and lower semicontinuous.
Thus, under the assumptions of Theorem 3.1, by Theorem 2.1 we have

(f ∗ ◦ k∗)∗(x) = inf
t>0

{
f (t)+ tk

(
x

t

)}
∼ inf
t≥1

{
−t log P

((
M > 1− 1

t

)
P

(
Q >

x

t

))}
,

since f (t) = 0 for t ∈ (0, 1). In particular, if f (x) = cxr and k(x) = dxα for some c, d > 0
and r, α > 1, then direct calculation gives

(f ∗ ◦ k∗)∗(x) = d α + r − 1

r

(
c

d

r

α − 1

)(α−1)/(α+r−1)

xαr/(α+r−1).
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1132 B. KOŁODZIEJEK

We gather the properties of the function h in the following theorem. Its proof is postponed
to Section 7.

Theorem 4.1. Assume that (1.5) holds, and define

f (x) := −x log P

(
M > 1− 1

x

)
, k(x) := − log P(Q > x).

(a) There exists a function t such that

h(x) = −t (x) log P

(
1

1−M > t(x), Q >
x

t(x)

)
+ o(1). (4.2)

Moreover, if (1.10) holds then

t (x) ≤ h(x)+ o(1)
− log P(Q/(1−M) > x)

. (4.3)

(b) We have
hco ≤ h ≤ hcounter,

where

hco(x) := inf
t≥1

{
−t log min

{
P

(
1

1−M > t

)
,P

(
Q >

x

t

)}}
and

hcounter(x) := inf
t≥1

{
−t log

[
P

(
1

1−M > t

)
+ P

(
Q >

x

t

)
− 1

]}
are functions corresponding to comonotonic and countermonotonic vectors (M,Q).

(c) Let

hind(x) := inf
t≥1

{
f (t)+ tk

(
x

t

)}
be the h function corresponding to independent M and Q. Then

hind(x) ∼ (f ∗ ◦ k∗)∗(x).
If f ∈ Rr and k ∈ Rα with r, α > 1, then

hind ∈ Rγ ,

where γ = αr/(α + r − 1) and x �→ t (x) ∈ Rα/(α+r−1). If f ∈ Rr with r > 0 and
q+ = ess supQ <∞, then k∗(z) ∼ zq+ and

hind(x) ∼ f
(
x

q+

)
.

(d) We have

hco(x) = inf
t≥1

{
max

{
f (t), tk

(
x

t

)}}
.

If f ∈ Rr and k ∈ Rα with r, α > 1, then

hco(x) ∼ α − 1

α + r − 1

(
r

α − 1

)r/(α+r−1)

hind(x)

and x �→ t (x) ∈ Rα/(α+r−1).
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On perpetuities with light tails 1133

(e) If f ∈ Rr and k ∈ Rα with r, α > 1 and q− = ess inf Q > 0, then

hcounter(x) ∼ min

{
f

(
x

q−

)
,
k((1−m−)x)

1−m−
}
∈ Rmin{r,α}, (4.4)

where m− = ess inf M .

Remark 4.2. The function t satisfying (4.2) is not unique, it is not necessarily monotone,
nor may have a limit. An easy example may be constructed using Theorem 4.1(e), where
t (x) ∈ {t1(x), t2(x)} and t1(x) ∼ x/q− for t2(x) ∼ (1−m−)−1.

Another important example can be constructed as follows. Let γ > 1. Assume that (M,Q)
has an atom P(M = 0, Q = 1) = 1−e−1 and an absolutely continuous part on (0, 1)×(1,∞)
given by

P(M > x, Q > y) = exp

(
− yγ

(1− x)γ−1

)
, (x, y) ∈ [0, 1)× [1,∞),

so that P(M > 0, Q > 1) = e−1. For x > 1, we have

f (x) = −x log P

(
M > 1− 1

x

)
= xγ and k(x) = −x log P(Q > x) = xγ .

If M and Q were independent then we would have hind ∈ Rγ 2/(2γ−1). However, in our case
they are not independent and it is easy to see that, for any x, t ≥ 1,

−t log P

(
1

1−M > t, Q >
x

t

)
= max{x, t}γ ,

so that h(x) = xγ for x > 1 and

h(x) = −t log P

(
1

1−M > t, Q >
x

t

)

for any t = t (x) ∈ [1, x].
Remark 4.3. If

R =
∞∑
k=1

M1 · · ·Mk−1Qk

then

R ≥ R(1) :=
∞∑
k=1

mk−1− Qk

and (assume that q− > 0)

R ≥ R(2) :=
∞∑
k=1

M1 · · ·Mk−1q−.

Let f and k be defined as in Theorem 4.1, and assume that f ∈ Rr and k ∈ Rα with r, α > 1.
We have

log EezR
(1)

log EezQ
=
∞∑
k=1

log Eezm
k−1− Q

log EezQ
.
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1134 B. KOŁODZIEJEK

Using the regular variation of log EezQ ∼ k∗(z) and Potter bounds (see [2, Theorem 1.5.6]),
we may take the limit under the sum to obtain

lim
z→∞

log EezR
(1)

k∗(z)
=
∞∑
k=1

m
(k−1)β
− = 1

1−mβ−
.

Thus, by Kasahara’s theorem,

log P(R > x) ≥ log P(R(1) > x) ∼ − sup
z>0

{
zx − 1

1−mβ−
k∗(z)

}
= −k((1−m

β
−)x)

1−mβ−
.

On the other hand, by [21] we have

log P(R > x) ≥ log P(R(2) > x) ∼ −
(

r

r − 1

)r−1

f

(
x

q−

)
,

which gives, by Theorem 4.1(e),

lim inf
x→∞

log P(R > x)

hcounter(x)
≥ −C

for some C > 0. In the next section we give a more accurate lower bound.

5. Lower bound

By Theorem 4.1(a) we know that there exists a function t such that

h(x) = −t (x) log P

(
1

1−M > t(x), Q >
x

t(x)

)
+ o(1); (5.1)

however, the function t is not unique. An eye-opener example was introduced in Remark 4.2,
where we had

h(x) = −t log P

(
1

1−M > t, Q >
x

t

)
= xγ for all t ∈ [1, x].

Below we present a lower bound for the logarithmic asymptotics of the tail of R. The rate
of convergence is described by the regularly varying function h, while the constant depends on
the index of h and the limit of a function t . If there is no uniqueness of the function t then the
following result holds for any such function provided that it converges to a limit at infinity.

Theorem 5.1. Assume that (1.5) holds. Assume that the function h defined in (1.12) belongs
to Rγ with γ ∈ [1,∞]. If γ = ∞, assume additionally that h ∈ � ⊂ R∞. Finally, assume
that h is such that (5.1) holds for a function t with limx→∞ t (x) = t∞ ∈ (1,∞]. Then

lim inf
x→∞

log P(R > x)

h(x)
≥ −ct∞,γ ,

where ct,γ is a finite positive constant given below; if t ∈ (1,∞) and γ ∈ (1,∞) then

ct,1 = c∞,1 = 1, (5.2)

ct,γ =
[
t

{
1−

(
1− 1

t

)γ /(γ−1)}]γ−1

; (5.3)
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On perpetuities with light tails 1135

otherwise,

c∞,γ =
(

γ

γ − 1

)γ−1

, (5.4)

c∞,∞ = e, ct,∞ =
(

1+ 1

t

)1+t
.

Example 5.1. Let us consider a perpetuity R generated by (M,Q) such that P(M = m) = 1
with m ∈ (0, 1) and x �→ − log P(Q > x) =: k(x) ∈ Rα with α > 1. Then we have
t (x) = t∞ = 1/(1−m) and

h(x) = −t∞ log P

(
Q >

x

t∞

)
∼ t1−α∞ k(x).

On the other hand (by calculations from Remark 4.3),

log P(R > x) ∼ −(1−mβ)α−1k(x) ∼ −(1−mβ)α−1tα−1∞ h(x)

with β = α/(α − 1). Finally, we see that

(1−mβ)α−1tα−1∞ = ct∞,γ ,
where γ = α. This means that the constant obtained in (5.3) is optimal.

Proof of Theorem 5.1. Without loss of generality, we may assume that h is differentiable
and, if γ > 1, ultimately convex. For γ ∈ [1,∞), use the smooth variation theorem; for
γ = ∞, use the arguments given in [21, p. 5].

Case 1: t∞ <∞ and γ = 1. Observe that, on the set

n⋂
k=1

{Mk > 1− δ, Qk > q},

we have

R ≥
n∑
k=1

M1 · · ·Mk−1Qk > q
1− (1− δ)n

δ
,

which means that, for any δ ∈ (0, 1), q > 0, and n ∈ N, we have

log P

(
R > q

1− (1− δ)n
δ

)
≥ log P

( n⋂
k=1

{Mk > 1− δ, Qk > q}
)

= n log P(M > 1− δ, Q > q). (5.5)

For given x > 0, set

δ = δ(x) = 1

t (x)
, q = q(x) = x

t (x)
, and n = 1,

so that

log P(M > 1− δ(x), Q > q(x)) ∼ −h(x)
t∞

and

q
1− (1− δ)n

δ
= x

t (x)
.
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1136 B. KOŁODZIEJEK

Then (5.5) gives

log P(R > x/t (x))

h(x/t (x))
≥ log P(M > 1− δ(x), Q > q(x))

h(x)

h(x)

h(x/t (x))
∼ − 1

t∞
1

1/t∞
= −1.

We will show that this implies that lim infx→∞ log P(R > x)/h(x) ≥ −1. Let x0 be such that
t (x)/t∞ ∈ (1 − ε, 1 + ε) for ε ∈ (0, 1) and all x > x0. Then x/(t∞(1 + ε)) ≤ x/t (x) ≤
x/(t∞(1− ε)) and

log P(R > x/t (x))

h(x/t (x))
≤ log P(R > x/t∞(1+ ε))

h(x/t∞(1− ε)) (5.6)

for x > x0; thus,

lim inf
x→∞

log P(R > x)

h(x)
= lim inf

x→∞
log P(R > x/t∞(1+ ε))

h(x/t∞(1+ ε))
≥ lim inf

x→∞
log P(R > x/t (x))

h(x/t (x))

h(x/t∞(1− ε))
h(x/t∞(1+ ε))

≥ −1
1+ ε
1− ε

by (5.6) and the regular variation of h. Letting ε→ 0 we obtain the first part of (5.2).
Case 2: t∞ = ∞ and γ = 1. We proceed similarly as in case 1. For arbitrary α > 0, set

δ = 1

t (x)
, q = x

t (x)
, and n = �αt(x)�

in (5.5) to obtain, for any x > 0,

log P(R > x(1− (1− 1/t (x))�αt(x)�))
h(x(1− (1− 1/t (x))�αt(x)�))

≥ n log P(M > 1− δ, Q > q)

h(x)

h(x)

h(x(1− (1− 1/t (x))�αt(x)�))
.

Since t (x) → ∞ as x → ∞, by the regular variation of h, we see that the right-hand side
converges to

− α

1− e−α
.

Using a similar approach as in the t∞ <∞ case, we show that

lim inf
x→∞

log P(R > x)

h(x)
≥ − α

1− e−α
.

Considering the limit as α→ 0, we obtain the second part of (5.2).
Case 3: t∞ < ∞ and γ ∈ (1,∞). For given n ∈ N, consider sequences (δk)nk=1 and

(qk)
n
k=1 satisfying

x≤
n∑
k=1

(1− δ1) · · · (1− δk−1)qk. (5.7)

Then we have

log P(R > x) ≥
n∑
k=1

log P(M > 1− δk, Q > qk). (5.8)
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On perpetuities with light tails 1137

For k = 1, . . . , n, set

yk = ukx, δk = 1

t (yk)
, and qk = yk

t (yk)
,

where u1, . . . , un are some positive constants such that (compare with (5.7))

1≤
n∑
k=1

πk(x)uk, (5.9)

where

πk(x) = (1− δ1) · · · (1− δk−1)
1

t (yk)
→

(
1− 1

t∞

)k−1 1

t∞
as x →∞,

since yi → ∞ for i = 1, . . . , n. Considering the limit as x → ∞ in the right-hand side of
(5.9) we obtain

1

t∞

n∑
k=1

(
1− 1

t∞

)k−1

uk. (5.10)

We will choose (uk)k in such a way that the above expression is strictly greater than 1 and this
will ensure that (5.9) holds for large x. Let us consider

uk = t∞(1− t−1∞ )1−kABk−1, k = 1, . . . , n, (5.11)

for positive A and B ∈ (0, 1). Substituting into (5.10) we get

A
1− Bn
1− B .

If, additionally, A > 1− B then there exists N such that, for all n ≥ N, the above expression
is strictly larger than 1. Thus, (5.9) is established for large x. Moreover, by the definitions of
h and the function t , we have, for any ε > 0 and x > 0,

h(x) ≤ −t (x) log P

(
M > 1− 1

t (x)
, Q >

x

t(x)

)
≤ (1+ ε)h(x),

and so, by (5.8),
log P(R > x)

h(x)
≥ −(1+ ε)

n∑
k=1

h(ukx)

t (yk)h(x)
. (5.12)

Taking lim infx of both sides of (5.12), we obtain, for any n ≥ N ,

lim inf
x→∞

log P(R > x)

h(x)
≥ −1+ ε

t∞

n∑
k=1

u
γ

k ,

and taking the limit as n→∞ along with the substitution of (5.11) we obtain

lim inf
x→∞

log P(R > x)

h(x)
≥ −(1+ ε)tγ−1∞

Aγ

1− (Bt∞/t∞ − 1)γ
.

The above inequality holds for any A > 1− B ∈ (0, 1). Let us set A = 1− B + ε. Then the
expression on the right-hand side above attains its supremum for

Bε = (1+ ε)1/(1−γ )
(

1− 1

t∞

)γ /(γ−1)

,
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1138 B. KOŁODZIEJEK

and, for such B, this supremum equals

−tγ−1∞ (1− Bε + ε)γ−1.

Letting ε→ 0 we obtain (5.3).
Case 4: t∞ = ∞ and γ ∈ (1,∞]. Let x0 = 0 andR0 = Q0, and define a random sequence

(Rn)n≥1 and a sequence of scalars (xn)n≥1 through

Rn = MnRn−1 +Qn and xn = (1− δn)xn−1 + qn, n ≥ 1,

where (Mn,Qn)n≥0 is an i.i.d. sequence of the generic element (M,Q), and (δn)n≥1 and
(qn)n≥1 are scalar sequences yet to be determined.

Since M and Q are assumed to be a.s. nonnegative and

R =
∞∑
k=1

Qk

k−1∏
j=1

Mj ≥
n+1∑
k=1

Qk

k−1∏
j=1

Mj
d= Rn,

we have
P(R > x) ≥ P(Rn > x).

Moreover, since (Mn,Qn) and Rn−1 are independent, we have

P(Rn > xn) ≥ P(MnRn−1 +Qn > (1− δn)xn−1 + qn, Mn > 1− δn, Qn > qn)

≥ P(Mn > 1− δn, Qn > qn)P(Rn−1 > xn−1)

≥
n∏
k=1

P(M > 1− δk, Q > qk)P(Q > 0) (5.13)

and P(Q > 0) > 0. If (xn)n is strictly increasing and xn−1 < x ≤ xn, then

log P(R > x)

h(x)
≥ log P(R > xn)

h(xn−1)
,

and, therefore, if additionally (xn)n is divergent and h(xn)/h(xn−1) has a limit as n→∞, we
have

lim inf
x→∞

log P(R > x)

h(x)
≥ lim inf

n→∞
log P(R > xn)

h(xn−1)

(5.13)≥ lim inf
n→∞

h(xn)

h(xn−1)

∑n
k=1 log P(M > 1− δk, Q > qk)

h(xn)

≥ lim
n→∞

h(xn)

h(xn−1)
lim inf
n→∞

∑n
k=1 log P(M > 1− δk, Q > qk)

h(xn)

≥ lim
n→∞

h(xn)

h(xn−1)
lim inf
n→∞

log P(M > 1− δn, Q > qn)

h(xn)− h(xn−1)
,

where the last inequality follows by the Stoltz–Cesàro theorem (recall that h(x) → ∞ as
x →∞).

We now choose the sequences (δn)n≥1 and (qn)n≥1 in such a way that xn → ∞ and the
above limit is finite and negative. Set

In := log P(M > 1− δn, Q > qn)

h(xn)− h(xn−1)
,
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On perpetuities with light tails 1139

and let

δn = 1

t (yn)
and qn = yn

t (yn)
,

where

yn = xn−1 + c h(xn−1)

h′(xn−1)

for some positive constant c. Inserting the above into the definition of (xn)n≥1 we obtain

xn − xn−1 = qn − δnxn−1 = c

t (yn)

h(xn−1)

h′(xn−1)
. (5.14)

Since the right-hand side of (5.14) is positive, xn is strictly increasing. This means that xn has
a limit, possibly infinite. Assume that p := limn xn <∞. Then yn→ p+ ch(p)/h′(p) <∞
and, by (5.14), we see that

0 = lim
n→∞

c

t (yn)

h(xn−1)

h′(xn−1)
= ch(p)

h′(p)
lim
n→∞

1

t (yn)
.

But this is impossible because, for any finite x > 0, t (x) is finite (Theorem 4.1(a)). Thus,
xn→∞.

Furthermore,

In = −Cn h(yn)

t (yn)(h(xn)− h(xn−1))
,

where

Cn := −t (yn) log P(M > 1− 1/t (yn), Q > yn/t (yn))

h(yn)
→ 1 as n→∞.

Using the convexity of h, we obtain

In ≥ −Cn h(yn)

t (yn)(xn − xn−1)h′(xn−1)
= −Cn h(xn−1 + ch(xn−1)/h

′(xn−1))

ch(xn−1)
.

Letting n→∞, we have (see (2.3) and (2.4))

lim inf
n→∞ In ≥

⎧⎪⎨
⎪⎩
−1

c

(
c + γ
γ

)γ
if γ ∈ [1,∞),

−ec

c
if γ = ∞.

If γ ∈ (1,∞) then the supremum on the right-hand side above is attained at c = γ /(γ − 1)
and this supremum equals −(γ /(γ − 1))γ−1. For γ = ∞, the supremum is attained at c = 1
and then equals −e. It remains to show that limn→∞ h(xn)/h(xn−1) = 1. We have

h(xn)

h(xn−1)
= h(xn−1 + ch(xn−1)/t (yn)h

′(xn−1))

h(xn−1)
→ 1,

since limn→∞ t (yn) = ∞ (the convergence in (2.4) is uniform; see [2, Proposition 3.10.2]).
Case 5: t∞ <∞ and γ = ∞. Proceeding in the same way as in case 4, we obtain

lim inf
x→∞

log P(R > x)

h(x)
≥ lim
n→∞

h(xn)

h(xn−1)
lim inf
n→∞ In,
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1140 B. KOŁODZIEJEK

where xn→∞ and

In = − Cn

t(yn)

h(xn−1 + ch(xn−1)/h
′(xn−1))

h(xn−1 + ch(xn−1)/t (yn)h′(xn−1))− h(xn−1)
,

where Cn→ 1 as n→∞. Thus, using (2.4), we obtain

lim
n→∞ In = −

ec

t∞(ec/t∞ − 1)

and

lim
n→∞

h(xn)

h(xn−1)
= ec/t∞ .

Thus,

lim inf
x→∞

log P(R > x)

h(x)
≥ − inf

c>0
{ec/t∞ ec

t∞(ec/t∞ − 1)
} = −

(
1+ 1

t∞

)t∞+1

. �

Remark 5.1. In the example introduced in Remark 4.2, we have h ∈ Rγ with γ ∈ (1,∞) and

h(x) ∼ −t log P

(
1

1−M > t, Q >
x

t

)

for any t ∈ (1,∞), so that Theorem 5.1 gives, for any t > 1,

lim inf
x→∞

log P(R > x)

h(x)
≥ −

[
t

{
1−

(
1− 1

t

)γ /(γ−1)}]γ−1

.

We have

inf
t>1

[
t

{
1−

(
1− 1

t

)γ /(γ−1)}]γ−1

= 1,

so that

lim inf
x→∞

log P(R > x)

h(x)
≥ −1.

Below we give an example of two perpetuities with logarithmic tails of different asymptotic
order whose generators have the same marginals.

Example 5.2. LetX = (X(t))t≥0 be a drift-free nonkilled subordinator with Laplace exponent
�(s) = − log Ee−sX(1), s ≥ 0, and let T be an exponentially distributed random variable of
parameter 1 which is independent ofX. The random variableR := ∫∞

0 e−X(t) dt is a perpetuity
generated by

(M,Q) :=
(

e−X(T ),
∫ T

0
e−X(t) dt

)
.

A semi-explicit formula for the joint moments of M and Q is given in [18, Equation (2.6)].
Assume now that � ∈ Rα with α ∈ (0, 1). Then it was proved in [25] that

− log P(R > x) ∼ (1− α)�(x) as t →∞, (5.15)

with �(x) := inf{s > 0 : s/�(s) > x}.
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On perpetuities with light tails 1141

If the Lévy measure of X is of the form

ν(dt) = e−t/α

(1− e−t/α)α+1 1(0,∞)(t) dt

then

�(s) =
∫
[0,∞)

(1− e−st )ν(dt) = �(1− α)�(1+ αs)
�(1+ α(s − 1))

− 1 ∼ αα�(1− α)sα,

and we can find marginal distributions of (M,Q) (see Example 2.1.2 of [17]). In this special
case, Q has a Mittag-Leffler distribution with parameter α and M1/α has a beta distribution
with parameters 1− α and α. This implies that

f (x) := −x log P

(
M > 1− 1

x

)
∼ αx log x,

and (see, e.g. [2, Theorem 8.1.12])

k(x) := − log P(Q > x) ∼ (1− α)αα/(1−α)x1/(1−α),

that is, k ∈ R1/(1−α) and f ∈ R1.
Let us now consider a perpetuity Rind generated by independent M and Q with the same

distributions. We can show that the corresponding function hind = (f ∗ ◦ k∗)∗ belongs to R1.
Thus, by Theorem 5.1 we have

− log P(Rind > x) � Chind(x)

for some C > 0. On the other hand, (5.15) implies that x �→ − log P(R > x) is regularly
varying at∞with index (1−α)−1 > 1 (� = ρ←, where ρ(s) = s/�(s) ∈ R1−α). Therefore,
we obtain

lim
x→∞

log P(Rind > x)

log P(R > x)
= 0.

6. Upper bound

In this section we give asymptotic upper bounds for log P(R > x) when (M,Q) is nega-
tively quadrant dependent (Theorem 6.2) and when (M,Q) is dependent in an arbitrary way
(Theorem 6.1, which is the most important result of this section).

Let us assume that

k(x) = − log P(Q > x) ∈ Rα, f (x) = −x log P

(
M ≥ 1− 1

x

)
∈ Rr , α, r > 1.

(6.1)
Let r∗ and β denote the conjugate numbers to r and α, respectively and denote

γ = βr∗

βr∗ − 1
.

Let Rco and Rind denote perpetuities generated by comonotonic and independent (M,Q),
respectively, and let hco and hind denote h functions corresponding to these two cases. Recall
that in Theorem 4.1 we showed that

(f ∗ ◦ k∗)∗(x) ∼ hind(x) ∼ α + r − 1

α − 1

(
α − 1

r

)r/(α+r−1)

hco(x). (6.2)
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1142 B. KOŁODZIEJEK

Theorem 6.1. Assume that (1.5) and (6.1) hold. Then

lim sup
x→∞

log P(R > x)

hco(x)
≤ −

(
γ

γ − 1

)γ−1

(6.3)

and

lim
x→∞

log P(Rco > x)

hco(x)
= −

(
γ

γ − 1

)γ−1

. (6.4)

If we additionally assume that (M,Q) is negatively or positively quadrant dependent, then
we can prove slightly stronger results.

Theorem 6.2. Assume that (1.5) and (6.1) hold.

(i) If (M,Q) is negatively quadrant dependent then

lim sup
x→∞

log P(R > x)

hind(x)
≤ −

(
γ

γ − 1

)γ−1

.

(ii) If (M,Q) is positively quadrant dependent then

−
(

γ

γ − 1

)γ−1

≤ lim inf
x→∞

log P(R > x)

hind(x)

≤ lim sup
x→∞

log P(R > x)

hind(x)

≤ − α − 1

α + r − 1

(
r

α − 1

)r/(α+r−1)(
γ

γ − 1

)γ−1

. (6.5)

To prove (6.3), we will need the following lemma, whose proof is postponed to Section 7.

Lemma 6.1. Assume that there exists a function φ such that

1φ(z) := EezQ+φ(zM)−φ(z) ≤ 1

for large values of z. Then there exists a constant C > 0 such that

EezR ≤ eφ(z)+C

for large enough z.

Proof of Theorem 6.1. Observe that (6.4) follows by (6.3). Indeed, by Theorem 5.1 (see
(5.4)) we have

lim inf
x→∞

log P(Rco > x)

hco(x)
≥ −

(
γ

γ − 1

)γ−1

.

Since r �→ exp(zr) is convex and monotonic, by Lemma 2.2 we see that

E exp(zR) ≤ E exp(zRco), z ≥ 0,

where
Rco

d= MRco +Q, (M,Q) and Rco are independent,
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On perpetuities with light tails 1143

and (M,Q)
d= (F−1

M (U), F−1
Q (U)), U

d∼ U([0, 1]), is a comonotonic vector with given marg-
inals. Let ψ(z) := log E exp(zRco). By the exponential Markov inequality,

P(R > x) ≤ EezR

ezx
≤ EezRco

ezx
.

After taking log and infz>0 of both sides we arrive at

log P(R > x) ≤ −ψ∗(x). (6.6)

By the smooth variation theorem, there exist f , f ∈ SRr and k, k ∈ SRα with

f (x) ∼ f (x) and k(x) ∼ k(x),
and

f ≤ f ≤ f and k ≤ k ≤ k
in a neighbourhood of infinity. Define

φ = f ∗ ◦ k∗ and φB(x) = Bφ
(
x

B

)
for B > 0,

and

Bco = α − 1

α + r − 1

(
r

α − 1

)r/(α+r−1)(
γ

γ − 1

)γ−1

.

Assume for the moment that, for any B ∈ (0, Bco),

IB(z) := EezQ+φB(zM)−φB(z)→ 0 as z→∞. (6.7)

By Lemma 6.1, this implies that, for any B < Bco,

ψ(z) ≤ φB(z)+ CB
for large z and some constant CB . Since convex conjugation is order reversing, we have

ψ
∗
(x) ≥ (φB + CB)∗(x) = φ∗B(x)− CB.

Moreover,
φ∗B(x) = Bφ∗(x) = B(f ∗ ◦ k∗)∗(x).

The above, together with (6.6), imply that, for any B < Bco, we have

lim sup
x→∞

log P(R > x)

φ∗(x)
≤ −B.

Taking the limit as B ↑ Bco, we obtain

lim sup
x→∞

log P(R > x)

(f ∗ ◦ k∗)∗(x) ≤ −
α − 1

α + r − 1

(
r

α − 1

)r/(α+r−1)(
γ

γ − 1

)γ−1

,

and, by (6.2), this is equivalent to (6.3).
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1144 B. KOŁODZIEJEK

It remains to show that (6.7) holds. For any ε ∈ (0, 1), we have

IB(z) = EezQ+φB(zM)−φB(z) 1{M≤1−ε} +EezQ+φB(zM)−φB(z) 1{M>1−ε} =: K1(z)+K2(z).

Since ψB ∈ Rβr∗ and, by Kasahara’s Tauberian theorem, z �→ log EezQ ∼ k∗(z) ∈ Rβ , we
have

K1(z) ≤ elog E exp(zQ)+φB(z(1−ε))−φB(z) = o(1).
By the definition of the generalized inverse we have

U ≤ FM(F−1
M (U)) and F−1

M (U)
d= M.

Thus,

K2 = EezF
−1
Q (U)+φB(zF−1

M (U))−φB(z) 1{F−1
M (U)>1−ε}

≤ EezF
−1
Q (FM(M))+φB(zM)−φB(z) 1{M>1−ε} .

Let us define s(x) := F−1
Q (FM(x)). By the definitions of f and k we have, for x ∈ (0, 1),

(1− x)f
(

1

1− x
)
= − log(1− FM(x)) and F−1

Q (x) ≤ k−1(− log(1− x)).

Hence, it is easy to see that in a left neighbourhood of 1 we have s ≤ s, where

s(x) := k−1
(
(1− x)f

(
1

1− x
))
. (6.8)

Since φ is ultimately convex, we have, for x ∈ (1− ε, 1],
φB(zx)− φB(z) ≤ −zφ′B(zx)(1− x) ≤ −zφ′B(z(1− ε))(1− x) = −zφ′Bε (z)(1− x),

where Bε := B/(1− ε). Thus,

K2(z) ≤
∫
(1−ε,1]

exp(zs(x)− zφ′Bε (z)(1− x)) dFM(x)

=
∫
(1−ε,1]

exp

(
zs(x)− zφ′Bε (z)(1− x)− η(1− x)f

(
1

1− x
))

× 1

(1− FM(x))η dFM(x)

since log P(M > x) = −(1− x)f (1/(1− x)). Furthermore,

K2(z) ≤ exp

(
sup
t∈[0,ε)

{
zs(1− t)− ztφ′Bε (z)− ηtf

(
1

t

)}) ∫
(1−ε,1]

dFM(x)

(1− FM(x))η ,

and the integral is finite for any η ∈ (0, 1).
Since all functions involved are smooth, we can show that, for small enough ε, the expression

under sup as a function of t ∈ (0, ε) is concave (calculate the second derivative and use the fact
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On perpetuities with light tails 1145

that x �→ s(1− 1/x) ∈ R(r−1)/α and x �→ f (x)/x ∈ Rr−1). Hence, the supremum above is
attained at t0 = t0(z) such that

zs′(1− t0)+ zφ′Bε (z) = η
1

t0
f ′

(
1

t0

)
− ηf

(
1

t0

)
. (6.9)

Put t0 = 1/(f ∗)′(k∗(x)). Then, by (2.6),

zs′
(

1− 1

(f ∗)′(k∗(x))

)
+ zφ′Bε (z) = ηf ∗(k∗(x)) = ηφ(x).

It is clear that if z→∞ thenx = x(z)→∞ and t0 → 0. Moreover, sinceφ= f ∗ ◦ k∗ ∈ Rβr∗ ,
we have

zφ′Bε (z) ∼ βr∗φBε (z) ∼ βr∗B1−βr∗
ε φ(z)

and (see Lemma 6.2 below)

s′
(

1− 1

(f ∗)′(k∗(x))

)
∼ r1/β(β − 1)1/β

φ(x)

x
.

Thus,

r1/β(β − 1)1/β
z

x
(1+ o(1))+ βr∗B1−βr∗

ε

φ(z)

φ(x)
(1+ o(1)) = η.

Take an arbitrary sequence zn→∞, set xn = x(zn), and define yn = zn/xn. We have

C1
zn

xn
+ C2

φ(zn)

φ(xn)
≤ η ≤ C1

zn

xn
+ C2

φ(zn)

φ(xn)
(6.10)

for some positive constants Ci, Ci, i = 1, 2. Thus, by the first inequality above we quickly
infer that yn = zn/xn ≤ η/C1. By the Potter bounds (see [2, Theorem 1.5.6]) we have, for any
A > 1 and δ > 0,

φ(z)

φ(x)
≤ Amax

{(
z

x

)βr∗+δ
,

(
z

x

)βr∗−δ}
for sufficiently large z and x. Hence, the second inequality in (6.10) gives

0 < η ≤ max{C1, AC2}max{yn, yβr∗±δn },
and so λ1 ≤ yn ≤ λ2 for some positive constants λ1 and λ2. Thus, there exists a convergent
subsequence ynk to D, say, for which we also have (xn = zn/yn)

r1/β(β − 1)1/βynk (1+ o(1))+ βr∗B1−βr∗
ε

φ(znk )

φ(znk /ynk )
(1+ o(1)) = η,

where o(1) is with respect to znk → ∞. Thanks to the uniform convergence in (2.1), we see
that

φ(znk )

φ(znk /ynk )
→ Dβr

∗

and D = D(B, η, ε) satisfies

r1/β(β − 1)1/βD + βr∗B1−βr∗
ε Dβr

∗ = η. (6.11)

Since such a D is unique (the left-hand side of (6.11) is strictly increasing for D > 0), we
conclude that z ∼ Dx.
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1146 B. KOŁODZIEJEK

Recall that we have

K2(z) ≤ Cη exp

(
zs(1− t0)− zt0φ′Bε (z)− ηt0f

(
1

t0

))

for some finite constant Cη. By (6.9),

zs(1− t0)− zt0φ′Bε (z)− ηt0f
(

1

t0

)
= zs(1− t0)+ zt0s′(1− t0)− ηf ′

(
1

t0

)
.

By Lemma 6.2 below we have

zs(1− t0 ∼ α(β − 1)1/βr−1/αDk∗(x)

and

zt0s
′(1− t0) ∼ Dx 1

(f ∗)′(k∗(x))
r1/β(β − 1)1/βf ∗(k∗(x))

x

∼ r1/β(β − 1)1/β(r∗)−1Dk∗(x).

Thus,

lim sup
z→∞

logK2(z)

k∗(x)
≤ α(β − 1)1/βr−1/αD + r1/β(β − 1)1/β(r∗)−1D − η. (6.12)

If the right-hand side above is negative then, for some ζ > 0 and large z, we have K2(z) ≤
exp(−ζk∗(x(z)))→ 0 as z→∞, and the same holds for IB . We will show that if B < Bco
then the right-hand side of (6.12) is negative for some η, ε ∈ (0, 1). The right-hand side of
(6.12) is negative if

D < η
r1/α

(α + r − 1)(β − 1)1/β
=: D,

where we have used the fact that

αr−1/α + r1/β(r∗)−1 = r−1/α(α + r − 1).

We will show that, for fixed η and ε, the function B �→ D(B, η, ε) is strictly increasing. Let
0 < B1 < B2, and put Di = D(Bi, η, ε), i = 1, 2. Then by (6.11) we obtain (recall that
1− βr∗ < 0)

0 = r1/β(β − 1)1/β(D1 −D2)+ βr∗

(1− ε)1−βr∗ (B
1−βr∗
1 D

βr∗
1 − B1−βr∗

2 D
βr∗
2 )

> r1/β(β − 1)1/β(D1 −D2)+ βr∗

(1− ε)1−βr∗ B
1−βr∗
2 (D

βr∗
1 −Dβr∗2 ),

which implies that D2 > D1. Moreover, after tedious but straightforward calculations we can
show that, for

B := η(1− ε) α − 1

α + r − 1

(
r

α − 1

)r/(α+r−1)(
γ

γ − 1

)γ−1

= η(1− ε)Bco,

we have D(B, η, ε) = D. To see this, insert the definition of D into (6.11) and calculate the
corresponding B. It is equal to B. Thus, for any B < Bco, there exists η, ε ∈ (0, 1) such that
B < B and, thus, D(B, η, ε) < D. �
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On perpetuities with light tails 1147

Lemma 6.2. Under the assumptions of Theorem 6.1, assume that z and t0 are related by (6.9).
Let t0 = 1/(f ∗)′(k∗(x)), φ = f ∗ ◦ k∗, and function s be defined as in (6.8). Then, as z→∞,
we have

(a) s(1− t0) ∼ α(β − 1)1/βr−1/αk∗(x)/x,

(b) s′(1− t0) ∼ r1/β(β − 1)1/βφ(x)/x.

Proof. (a) Since f is regularly varying and f ∼ f , we have f ∗ ∼ f ∗. Thus,

t0f (t
−1
0 ) ∼ f

′
(t−1

0 )

r
∼ k∗(x)

r
.

Hence,

xs(1− t0) = xk−1
(
t0f

(
1

t0

))
∼ xk−1

(
k∗(x)
r

)
∼ xr−1/αk−1(k∗(x)).

Moreover, by Lemma 2.1, with the substitution x �→ k∗(x), we have

k−1(k∗(x)) ∼ α(β − 1)1/β
k∗(x)
x

.

(b) We have

s′(1− t0) = f
′
(1/t0)/t0 − f (1/t0)
k′(s(1− t0)) .

By (2.6), the numerator equals

f
∗
(
f
′
(

1

t0

))
= f ∗(f ′(f ′(k∗(x)))) ∼ φ(x).

By (a),
s(1− t0) ∼ α(β − 1)1/βr−1/αβ−1(k∗)′(x),

and, thus,

k′(s(1− t0)) ∼ k′(α(β − 1)1/βr−1/αβ(k∗)′(x)) ∼ (α(β − 1)1/βr−1/αβ−1)α−1x,

where the latter asymptotic equivalence follows from the fact that k′ ∈Rα−1 and k′ ◦ (k∗)′ = Id.
Finally, observe that, since α−1 + β−1 = 1, we have

r1/β(β − 1)1/β = (α(β − 1)1/βr−1/αβ−1)1−α. �

Proof of Theorem 6.2. (i) Since r �→ ezr is convex, by Lemma 2.2 we see that

EezR ≤ EezRind , z ≥ 0.

Let ψind(z) := log EezRind . By the exponential Markov inequality,

P(R > x) ≤ EezR

ezx
≤ EezRind

ezx
.

After taking log and infz>0 of both sides we arrive at

log P(R > x) ≤ −ψ∗ind(x).

By Kasahara’s Tauberian theorem we conclude that −ψ∗ind(x) ∼ − log P(Rind > x). The
assertion follows from Theorem 3.1.
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1148 B. KOŁODZIEJEK

(ii) The upper bound follows by Theorem 6.1. The lower bound in (6.5) is immediate if we
examine the proof of Theorem 5.1. By positive quadrant dependence we have

log P(M > δk, Q > qk) ≥ log[P(M > δk)P(Q > qk)].
Thus, using the above inequality and repeating the steps in the proof of Theorem 5.1 (case
t∞ = ∞) with h(x) = (f ∗ ◦ k∗)∗(x) ∈ Rγ , we arrive at the lower bound in (6.5). �

7. Proofs of the auxiliary results

Proof of Lemma 2.1. Suppose first that f ∈ SRα . Then f ′ ∈ SRα−1 has an inverse in
some neighbourhood of infinity. Since (f ∗)′ = (f ′)−1, we see that (f ∗)′ ∈ SR1/(α−1), and
so f ∗ ∈ SRβ . By (2.2) and (2.6) we have

f ((f ∗)′(x))
f ∗(x)

= x(f ∗)′(x)− f ∗(x)
f ∗(x)

→ β − 1 as x →∞.

Since (f ′)−1 = (f ∗)′, setting above x(z) = f (f−1(z))→∞ we obtain

z

f ∗(x(z))
→ β − 1.

Thus, e.g. [21, Lemma 2.1] gives

(f ∗)−1(z) ∼ (β − 1)1/βx(z) = (β − 1)1/βf ′(f−1(z))

and
f−1(x)(f ∗)−1(x)

x
∼ (β − 1)1/β

f−1(x)f ′(f−1(x))

x
→ (β − 1)1/βα,

by the definition of SRα .
In the general case, the smooth variation theorem yields the existence of f , f ∈ SRα with

f ≤ f ≤ f on some neighbourhood of infinity. Since conjugacy is order reversing, we have
f
∗ ≤ f ∗ ≤ f ∗. Moreover, f

−1 ≤ f← ≤ f−1 in a vicinity of infinity, and similar inequalities
hold for (f ∗)←. The conclusion follows from the fact that f (x) ∼ f (x). �

Proof of Lemma 2.2. We will use the fact that a stochastic recursion (1.2) converges in
distribution to the solution of an affine equation. Take R0 = R′0 = 0 a.s. We proceed by
induction. Assume that, for some n ∈ N, we have

Ef (Rn) ≤ Ef (R′n) for all convex functions f on R. (7.1)

Let f be a convex function. By the fact that r �→ Ef (Mr +Q) is convex and by the inductive
assumption, we first infer that

Ef (Mn+1Rn +Qn+1) ≤ Ef (Mn+1R
′
n +Qn+1).

Furthermore, for any r ≥ 0, the function hr(m, q) := f (mr + q) is supermodular. Note that,
since R′0 = 0 and M and Q are a.s. nonnegative, R′n is a.s. nonnegative as well. Then

Ef (Rn+1) ≤ Ef (Mn+1R
′
n +Qn+1)

= EhR′n(Mn+1,Qn+1)

≤ EhR′n(M
′
n+1,Q

′
n+1)

= Ef (R′n+1).
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Thus, we have established (7.1) for any n ∈ N. Observe that (Rn)n is stochastically nonde-
creasing, that is,

Rn+1
d=
n+1∑
k=1

M1 · · ·Mk−1Qk ≥
n∑
k=1

M1 · · ·Mk−1Qk
d= Rn.

Thus, for any weakly monotonic function f , (f (Rn))n is stochastically monotonic as well, and
the same holds for (f (R′n))n. The assertion follows from the fact that Ef (Rn) and Ef (R′n) are
monotonic and so have a limit (possibly infinite) as n→∞. �

Proof of Theorem 2.3. In [2, Theorem 4.12.7] a different formulation of the same result was
proposed. Namely, for α ∈ (0, 1) and φ ∈ Rα , define ψ(z) = z/φ(z) ∈ R1−α . Then

− log P(X > x) ∼ φ←(x)
if and only if

logM(z) ∼ (1− α)αα/(1−α)ψ←(z).
We have to show that

k(x) ∼ φ←(x) if and only if k∗(z) ∼ (1− α)αα/(1−α)ψ←(z).
Let ρ = 1/α, and put f = φ← ∈ Rρ . By Lemma 2.1 we have

f←(x)(f ∗)←(x)
x

→ ρ(ρ − 1)−(ρ−1)/ρ = α−α(1− α)−(1−α) as x →∞. (7.2)

But
f←(x)(f ∗)←(x)

x
∼ (f ∗)←(x)

ψ(x)
,

and so (7.2) is equivalent to (use the definition of the asymptotic inverse and Lemma 2.1 of
[21])

f ∗(z) ∼ (1− α)αα/(1−α)ψ←(z). �
Proof of Theorem 2.4. Recall that h ∈ Rρ(0+) if x �→ h(1/x) ∈ R−ρ . Moreover, if

h ∈ Rρ(0+) then h← ∈ R1/ρ . Indeed, we have h(1/x) = x−ρL(x) for some slowly varying
functionL. The (asymptotic) inverse g of x �→ x−ρL(x) is regularly varying with index−1/ρ.
But then we have h←(x) ∼ 1/g(x).

In [2, Theorem 4.12.9] the following result was proved. For α < 0 and φ ∈ Rα(0+), define
ψ(z) = φ(z)/z ∈ Rα−1(0+). Then

− log P(Y ≤ x) ∼ 1

φ←

(
1

x

)
as x → 0+

if and only if

− log Ee−λY ∼ (1− α)(−α)α/(1−α)
ψ←(λ)

as λ→∞.
First observe that, under regular variation, asymptotics of− log P(Y ≤ 1/x) and− log P(Y <

1/x) are the same. Indeed, for any ε > 0, we have − log P(Y ≤ 1/(x + ε)) ∼ − log P(Y ≤
1/(x − ε)). Furthermore, it is easy to see that if f is regularly varying then

f (x) ∼ x

φ←(x)
if and only if f←(x) ∼ xψ←(x).
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1150 B. KOŁODZIEJEK

It remains to show that

f (x) ∼ x

φ←(x)
if and only if (f ∗)←(λ) ∼ (1− α)(−α)α/(1−α)

ψ←(λ)
.

Since x �→ φ(1/x) ∈ R−α , we see that φ← ∈ R1/α, and so f ∈ Rρ with ρ = 1 − α−1. By
Lemma 2.1 we have

f←(x)(f ∗)←(x)
x

→ (1− α)(−α)α/(1−α) as x →∞,
which completes the proof. �

Proof of Theorem 4.1. (a) By the definition of h, for any x and any positive number g(x),
there exists a number t (x) such that

h(x) ≤ −t (x) log P

(
1

1−M > t(x), Q >
x

t(x)

)
≤ h(x)+ g(x).

If g(x) = o(1), we obtain the first part of the assertion.
Using the fact that

P

(
1

1−M > t(x), Q >
x

t(x)

)
≤ P

(
Q

1−M > x

)
,

we obtain (4.3).
(b) The assertion follows from the Fréchet–Hoeffding bounds:

P

(
1

1−M > t

)
+ P

(
Q >

x

t

)
− 1 ≤ P

(
1

1−M > t, Q >
x

t

)

≤ min

{
P

(
1

1−M > t

)
,P

(
Q >

x

t

)}
.

(c) The first part follows quickly by Theorem 2.1; see Remark 4.1. Moreover, we already
know that, if f ∈ Rr and k ∈ Rα with r, α > 1, then (f ∗ ◦ k∗)∗ ∈ Rγ . Thanks to the smooth
variation theorem, we may only consider the case when f ∈ SRr and k ∈ SRα . The infimum
in the definition of hind(x) is attained at a point t1 = t1(x) such that

f ′(t1) = x

t1
k′

(
x

t1

)
− k

(
x

t1

)
= k∗

(
k′

(
x

t1

))
, (7.3)

where the last equality is (2.6). Thus, by the regular variation of f and k, we obtain

x = t1[(k∗)′ ◦ (k∗)−1 ◦ f ′](t1) = t (r+α−1)/α
1 L(t1)

for some slowly varying function L. This means that t1 →∞ and x/t1 →∞ as x →∞ and
that x �→ t1(x) ∈ Rα/(r+α−1).

Consider now the case when ess supQ = q+ <∞. In this case k(x) = ∞ if x ≥ q+, and
so

k∗(z) = sup
x>0
{zx − k(x)} = sup

x<q+
{zx − k(x)} ≤ sup

x<q+
{zx} = zq+.

On the other hand, for any x < q+,

k∗(z)
z
≥ x − k(x)

z
→ x as z→∞.
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Then we have
(f ∗ ◦ k∗)∗(x) = sup

z>0
{zx − f ∗(k∗(z))}

∼ sup
z>0
{zx − f ∗(q+z)}

= sup
y>0

{
x

q+
y − f ∗(y)

}

= f
(
x

q+

)
.

(d) As previously, we work with f ∈ SRr and k ∈ SRα . Let us first make a simple
observation that if functions a and b are continuous, a(x0) < b(x0) and a(x1) > b(x1), a
is increasing and b is decreasing, then there exists a unique t0 such that a(t0) = b(t0) and,
moreover, inf t∈[x0,x1]max{a(t), b(t)} = a(t0). Our first step here will be to show that the
infimum in the definition of

hco = inf
t≥1

{
max

{
f (t), tk

(
x

t

)}}

is (for large enough x) attained at a point t2 = t2(x) such that f (t2) = t2k(x/t2). In our
case, the function [1,∞) � t �→ tk(x/t) may not be decreasing and so we cannot use our
observation directly. However, note that, since k ∈ SRα , the limit

lim
z→∞

zk′(z)
k(z)

= α

is strictly larger than 1 and so k(z) < zk′(z) for large enough z, say z ≥ 1/T for some T > 0.
Calculating the derivative of t �→ tk(x/t) we obtain

k

(
x

t

)
− x
t
k′

(
x

t

)
,

which is strictly negative if x/t ≥ 1/T , that is, t ≤ T x. Hence, for t ∈ [1, T x), f (t)
is increasing and tk(x/t) is decreasing. Moreover, for large x, we have f (1) < k(x) and
f (x) > xk(1), and so

inf
t∈[1,T x]

{
max

{
f (t), tk

(
x

t

)}}
= f (t2).

It is enough to show that, for large enough x, the infimum in the definition of hco is not attained
on the set (T x,∞). We have

inf
t>T x

{
max

{
f (t), tk

(
x

t

)}}
≥ max

{
f (T x), T x sup

z∈(0,1/T )
k(z)

}
∼ T rf (x) ∈ Rr .

Let us assume for the moment that

x �→ f (t2(x)) ∈ Rαr/(α+r−1). (7.4)

Since r > αr/(α + r − 1), we see that, under (7.4), our claim holds and we have

hco(x) = inf
t∈[1,T x]

{
max

{
f (t), tk

(
x

t

)}}
= f (t2(x)).
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The equality f (t2) = t2k(x/t2) is equivalent to x = m(t2), where m(t) := t k−1(f (t)/t) ∈
R(r+α−1)/α . This implies that x �→ t2(x) ∈ Rα/(r+α−1), so it is easy to see that, as before, t2
and x/t2 go to infinity as x →∞. Thus,

k

(
x

t2

)
= f (t2)

t2
∼ 1

r
f ′(t2).

Hence,

x ∼ t2g(t2)

r1/α ,

where g = k−1 ◦ f ′ ∈ R(r−1)/α . In this way we have established (7.4).
On the other hand, in the case of independent M and Q, (7.3) implies that

f ′(t1) ∼ (α − 1)k

(
x

t1

)
,

and so

x ∼ t1g(t1)

(α − 1)1/α
.

Thus, r−1/αt2g(t2) ∼ (α − 1)−1/αt1g(t1), t �→ tg(t) ∈ R(r+α−1)/α, and so by Lemma 2.1 of
[21] we obtain

t2 ∼ t1
(

r

α − 1

)1/(α+r−1)

.

Finally,

hco(x) = f (t2) ∼
(

r

α − 1

)r/(α+r−1)

f (t1) ∼ α − 1

α + r − 1

(
r

α − 1

)r/(α+r−1)

hind(x),

since

hind(x) = f (t1)+ t1k
(
x

t1

)
∼ f (t1)+ (α − 1)−1t1f

′(t1) ∼
(

1+ r

α − 1

)
f (t1).

(e) The infimum in the definition of hcounter(x) is calculated for t > 0 such that

P

(
M > 1− 1

t

)
+ P

(
Q >

x

t

)
> 1. (7.5)

We will show that, as x →∞, the infimum is actually calculated for

t ∈ Ix := [1, (1−m−)−1] ∪
[
x

q−
,∞

)
.

Take t ∈ [1,∞) \ Ix . Then there exist m ∈ (m−,m+) and q > q− with t ∈ (1/(1−m), x/q).
We have P(M > m) < 1 and P(Q > q) < 1. Consider first the case when t ∈ (1/(1−m),√x].
Then

P

(
M > 1− 1

t

)
+ P

(
Q >

x

t

)
≤ P(M > m)+ P(Q >

√
x),

and we obtain a contradiction with (7.5) as x →∞. Similarly, if t ∈ [√x, x/q) then we obtain

P

(
M > 1− 1√

x

)
+ P(Q > q) > 1,

and this yields a contradiction as well if x →∞.
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So far, we have shown that

hcounter(x) ∼ inf
t∈Ix

{
−t log

[
P

(
M > 1− 1

t

)
+ P

(
Q >

x

t

)
− 1

]}

= min
{

inf
t∈[1,1/(1−m−)]

{· · · }, inf
t≥x/q−

{· · · }
}
.

If P(M = m−) = 0 = P(Q = q−), this is exactly (4.4) since (f and k are right continuous
and nondecreasing)

inf
t≥x/q−

{· · · } = inf
t≥x/q−

f (t) = f
(
x

q−

)
,

and, similarly,

inf
t∈[1,1/(1−m−)]

{· · · } = inf
t≤1/(1−m−)

tk

(
x

t

)
= k((1−m−)x)

1−m− .

On the other hand, if P(Q = q−) > 0 then by (7.5) we see that t = x/q− is impossible as
x → ∞ and, thus, the infimum is calculated for t ∈ (x/q−,∞). However, this introduces
virtually no changes to the proof since inf1≤t<x/q−f (t) ∼ f (x/q−). If P(M = m−) > 0 then
t = 1/(1−m−) is impossible and we eventually obtain (4.4). �

Proof of Lemma 6.1. Assume that 1φ(z) ≤ 1 for z > N, and define

φ(x) =
{
ax, x ≤ N,
φ(x)+ C, x > N.

We will show that, for sufficiently large a and C,

1φ(z) ≤ 1 for all z ≥ 0. (7.6)

Observe that 1φ(0) = 1. If a > EQ(1− EM)−1 then 1′
φ
(0) = EQ− a + aEM < 0; thus,

there exists ε > 0 such that 1φ(z) ≤ 1 for z ∈ [0, ε). For z ∈ [ε,N ], we have

1φ(z) ≤ EeNQ−aε(1−M),

and the right-hand side tends to 0 as a → ∞. Thus, for sufficiently large a, we also have
1φ(z) ≤ 1 for z ∈ [ε,N ]. Furthermore, for z > N , we have

1φ(z) = 1φ(z)+ EezQ(eazM−φ(z)−C − eφ(zM)−φ(z)) 1{zM≤N},

and we may find C such that ax − C ≤ φ(x) for any x ∈ [0, N ], so the second term above is
nonpositive.

Proceeding by induction, assume that EezRn≤eφ(z) for all z ≥ 0 and some n ∈ N. Then, for
z ≥ 0,

EezRn+1) = EezMn+1Rn+zQn+1 ≤ Eeφ(zM)+zQ ≤ eφ(z)

by (7.6). Moreover, we can start the induction since R0 can be chosen arbitrarily and, thus,
passing to the limit as n→∞, we obtain the assertion. �
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