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solution of the functional equation associated to the characterization problem under 
weak assumptions.
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1. Introduction

Bernstein [2] proved, under some technical assumptions, that if random variables X and Y are indepen-
dent, then random variables U = X + Y and V = X − Y are independent if and only if X and Y are 
Gaussian. Under additional assumptions that X and Y have densities, this result is equivalent to finding 
the general solution of the following functional equation

fX(x)fY (y) = 2fU (x + y)fV (x− y), a.e. (x, y) ∈ R
2,

where fX , fY , fU and fV are unknown densities (thus measurable and a.e. non-negative) of respective 
random variables. Under mild regularity conditions, this functional equation has a solution

fX(x) = exp{Ax2 + B1x + C1}, fU (x) = exp{1
2Ax2 + 1

2 (B1 + B2)x + C3},

fY (x) = exp{Ax2 + B2x + C2}, fV (x) = exp{1
2Ax2 + 1

2 (B1 −B2)x + C4},
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for a.e. x ∈ R, for some A, Bi, Ci ∈ R with C1 + C2 = C3 + C4 + log(2). Since fX , fY , fU and fV have to 
be integrable on R, A has to be strictly negative so that X and Y are Gaussian with the same variance.

Many similar examples of the so-called independence characterizations have been identified throughout 
the years. They follow the following general scheme: determine the distributions of X and Y if they are 
independent and the components of (U, V ) = ψ(X, Y ) are independent, where ψ is some given function 
defined on the support of (X, Y ). If ψ is a diffeomorphism, under the assumption of existence of densities 
of X and Y , such problem is equivalent to solving the following associated functional equation

fX(x)fY (y) = J(x, y)fU (ψ1(x, y))fV (ψ2(x, y)), a.e. (x, y) ∈ R
2, (1)

where J =
∣∣∣dψ1

dx
dψ2
dy − dψ1

dy
dψ2
dx

∣∣∣ is the Jacobian of ψ. Obviously, not every diffeomorphism yields a probabilis-
tic solution (in which we are here particularly interested) and it is still not clear how to choose appropriate ψ.

There is a very interesting family of ψ’s which was introduced in [14]. From the probabilistic point of view, 
this family is somehow related to the so-called Matsumoto–Yor property. Koudou and Vallois in [14] (see 
also [13]) considered ψ(f)(x, y) = (f(x + y), f(x) − f(x + y)) where f is some regular function and asked 
the following question: for which f there exist independent X and Y such that U and V are independent. 
The classical Matsumoto–Yor property (see [24,25]) is obtained for f (1)(x) = x−1. If f (2)(x) = log(x)
we obtain the so-called Lukacs property (see [17,1,15,18,4]). Another important case identified in [14] was 
f (3)(x) = log(1 + x−1), which is the subject of present study.

All above-mentioned cases have their matrix-variate analogues, where X and Y are considered to be 
random matrices (or equivalently, X and Y to be random variables valued in the set of matrices). Such 
properties are usually much harder to prove due to additional noncommutativity of matrix multiplication, 
which is not witnessed if X and Y are 1-dimensional. A generalization of the classical Matsumoto–Yor 
property was considered in [25,16,11] along with a characterization of probability laws having this property. 
This characterization was proven via solving the associated functional equation

A(x) + B(y) = C(x + y) + D
(
x−1 − (x + y)−1) , (x,y) ∈ S2

+, (2)

where S+ is the cone of positive definite real matrices of full rank and A, B, C, D : S+ → R are unknown 
functions. This functional equation is a matrix-variate version of (1) after taking the logarithm of both 
sides, which is allowed if one assumes that fX and fY are positive on S+. Eq. (2) was solved in [11] under 
the assumption that A and B are continuous, which is the best result available at the moment. Actually, 
(2) was considered there in a more general setting, that is, on symmetric cones of which S+ is the prime 
example.

A generalization of other properties identified in [14] to matrices is not automatic and this is due to the 
fact there is no natural notion of division of matrices. For example, Lukacs property on S+ is stated with 
ψ(2)(x, y) =

(
x + y, g(x + y) · x · g(x + y)�

)
, where g : S+ �→ Mr is such that g(x) · x · g(x)� = I for any 

x ∈ S+. Here “·” denotes the ordinary matrix multiplication, I is the identity matrix in S+ and x� denotes 
the transpose of x. One can take for example g(x) = (x1/2)−1, where x1/2 is the unique positive definite 
square root of x = x1/2 · x1/2. A characterization of laws having Lukacs property was considered in [3,6,8], 
and in the latter paper the general solution of the following associated functional equation was found

A(x) + B(y) = C(x + y) + D
(
g(x + y) · x · g(x + y)�

)
, (x,y) ∈ S2

+

under the assumption that A and B are continuous.
In the present paper we will consider a generalization of f (3) to S+, which was introduced in [12]:

ψ(3)(x,y) =
(
x + y, (I + (x + y)−1)1/2 · (I + x−1)−1 · (I + (x + y)−1)1/2

)
.
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In [12] it was shown that if X and Y are independent, X has matrix Kummer law and Y has Wishart 
law with suitable parameters, then the components of (U, V ) = ψ(3)(U, V ) are also independent. In the 
very same paper, a conjecture is posed that this independence property characterizes matrix-Kummer and 
Wishart laws.

There are two main result of the present paper. One is to find the general solution of the functional 
equation associated with the characterization conjectured in [12] and the second is to prove this conjecture. 
In order to solve the functional equation, we will use techniques developed in [8] and further used in [9–11,19]. 
There are other independence characterizations involving Kummer distribution, which use different methods 
[26,21]; see also a characterization of vector-variate Kummer law in [20]. Finally, it is important to note that 
in some sense one can pass with the rank r of S+ to infinity and obtain properties and characterizations of 
laws of free random variables; see [22] for Lukacs and [23] for Matsumoto–Yor property in free probability.

The paper is organized as follows. In the next Section we set the notation and recall some basic properties 
of the determinant. Section 3 is devoted to study the most important technical step, that is, solving the 
functional equation (Theorem 3.4) related to the characterization of probability laws. In Section 4 we 
introduce the probability laws on S+ and prove the second main result (Theorem 5.3).

2. Notation and preliminaries

Let Sym(r, R) denote the set of real symmetric matrices of size r×r. We endow the space Sym(r, R) with 
the scalar product 〈x,y〉 = tr (x · y). In Sym(r, R) we consider the cone S+ of positive definite symmetric 
matrices of rank r. Elements of Sym(r, R), if non-random, will be denoted by bold letters. It should be 
noted that results of the present paper remain true for all symmetric cones, but we stick to S+ so that our 
arguments are easier accessible to a wider audience.

For x, y ∈ S+ we define a multiplication

x ◦ y = x1/2 · y · x1/2,

where x1/2 is the unique positive definite square root of x = x1/2 · x1/2. The product ◦ is inner (that is, 
x ◦ y ∈ S+ if x, y ∈ S+), but neither commutative nor associative. The identity matrix I is the neutral 
element for ◦. If x and y commute, then x ◦ y = x · y.

Let det denote the usual determinant in S+. We have

det(x ◦ y) = det(x) det(y), (x,y) ∈ S2
+ (3)

and it will be crucial for us that this property actually characterizes determinant (see [7, Theorem 3.4]). 
We will use this fact several times throughout the paper.

Proposition 2.1. For x, y ∈ S+ set u =
(
I + (x + y)−1) ◦ (I + x−1)−1. Then u ∈ S+, I − u ∈ S+ and

det(u) = det(I + x + y)
det(x + y)

det(x)
det(I + x) ,

det(I − u) = det(y)
det(I + x) det(x + y)

Proof. Use (3) and

det(a−1 − b−1) = det
(
a−1 · (b − a) · b−1) = det(b − a)

det(a) det(b)

for nonsingular a and b. �
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3. Functional equations

By (I + S+) we denote the set {I + x : x ∈ S+}. We will need the following result later on.

Lemma 3.1. Let A, B, C : I + S+ → R be continuous. Assume that

A(x) + B(y) = C(x ◦ y), (x,y) ∈ (I + S+)2.

Then there exist real constants p, α, β such that for x ∈ I + S+,

A(x) = p log det(x) + α,

B(x) = p log det(x) + β,

C(x) = p log det(x) + α + β.

(4)

Proof. We will first simplify the problem to solving a functional equation with one unknown function: 
setting y = 2I and x = 2I successively, we get

A(x) = C(2x) −B(2I), B(x) = C(2x) −A(2I)

for x ∈ (I + S+). Thus, using A(2I) + B(2I) = C(4I), we get

C(2x) + C(2y) − C(4I) = C(x ◦ y).

With (s, t) ∈ (I + S+) × (I + S+) setting x = 2s and y = 2t above, we get

C(4s) + C(4t) − C(4I) = C(4 s ◦ t).

Hence, function f : (I + S+) → R defined by f(x) := C(4x) − C(4I) satisfies

f(x) + f(y) = f(x ◦ y), (x,y) ∈ (I + S+)2. (5)

Define an extension f̄ : S+ → R of f by

f̃(x) =
{
f(x), if x ∈ (I + S+),
f(αxx) − f(αxI), if x ∈ S+ \ (I + S+),

where

αx = 2
min1≤k≤r{λk(x)}

and λk(x) is kth eigenvalue of x. If x ∈ S+ \ (I + S+), then there exists k such that λk(x) ∈ (0, 1]. Thus, in 
such case, αx ≥ 2 and αxx ∈ (I + S+). It is easy to see that such extension satisfies

f̃(x) + f̃(y) = f̃(x ◦ y), (x,y) ∈ S2
+. (6)

For example, assume that x ∈ (I + S+), while y and x ◦ y ∈ S+ \ (I + S+). Then, (6) is equivalent to (after 
rearrangements)

f(x) + f(αyy) + f(αx◦yI) = f(αx◦yx ◦ y) + f(αyI)
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and both sides equal f(αyαx◦yx ◦ y) by (5). The other cases are treated accordingly (see [6, Lemma 3.2]
for similar argument applied to additive equation). By [7, Theorem 3.4], we obtain f̃(x) = p log det(x) for 
some p ∈ R, which ends the proof. �
Lemma 3.2. Let H : (0, 1) → R and G : (0, ∞) → R be continuous functions satisfying

H

(
x

1 + x

)
+ G(y) = H

(
1 + x + y

x + y

x

1 + x

)
+ G(x + y), (x, y) ∈ (0,∞)2. (7)

Then, there exist q, C1, C2 ∈ R such that

H(x) = q log(1 − x) + C2, x ∈ (0, 1),

G(x) = q log(x) + C1, x ∈ (0,∞).

Remark 3.3. Above result can be deduced from the proof of the main result in [13]. However, we decided to 
present another proof which does not rely on arguments from [13].

Proof. For arbitrary s, t ∈ (0, ∞) and α > 0, set

xα = 1
2

(√
4t + (1 − αst)2 − 1 − αst

)
, yα = αst.

For α sufficiently small, xα > 0. Moreover,

1 + xα + yα
xα + yα

xα

1 + xα
= 1 − αs

and

x0(t) := lim
α→0

xα = 1
2
(√

4t + 1 − 1
)
∈ (0,∞).

Thus, passing to the limit in (7) for x = xα and y = yα one eventually obtains for all s, t > 0,

f(t) := H

(
x0(t)

1 + x0(t)

)
−G(x0(t)) = lim

α→0
{H (1 − αs) −G(αst)} .

Inserting (1, st) instead of (s, t) above, we obtain

f(st) = lim
α→0

{H (1 − α) −G(αst)}

and after subtracting

f(t) − f(st) = lim
α→0

{H (1 − αs) −H (1 − α)} ,

which is a pexiderized version of the Cauchy logarithmic functional equation. Since f is continuous, this 
implies that there exist real constants β, C such that

f(t) = H

(
x0(t)

1 + x0(t)

)
−G(x0(t)) = β log t + C,

which is equivalent to
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H(u) = G

(
u

1 − u

)
+ β log u

(1 − u)2 + C

for u ∈ (0, 1). Using above in (7) and substituting G(x) = −β log x + G̃(x) we arrive at

G̃(x) + G̃(y) = G̃

(
x

y
(1 + x + y)

)
+ G̃(x + y), (x, y) ∈ (0,∞)2.

Interchanging the roles of x and y and subtracting such obtained equation we get

G̃
(y
x

(1 + x + y)
)

= G̃

(
x

y
(1 + x + y)

)
.

Setting x = t(st − 1)/(s + t) and y = s(st − 1)/(s + t) above simplifies to

G̃
(
s2) = G̃

(
t2
)

provided s, t, st − 1 > 0. This implies that G̃ ≡ C2 is a constant function and finally

H(u) = −β log
(

u

1 − u

)
+ β log u

(1 − u)2 + C + C2. �
The following Theorem is the main technical result of the present paper. To prove it, we will use techniques 

developed in [8] and further used in [9–11,19]. Let

D = {x ∈ S+ : I − x ∈ S+}.

Theorem 3.4. Let f, g, k : S+ → R and h : D → R be continuous functions such that

f(x) + g(y) = k(x + y) + h
(
(I + (x + y)−1) ◦ (I + x−1)−1) , (x,y) ∈ S2

+. (8)

Then there exist p, q ∈ R, c ∈ Sym(R, r), Ci ∈ R, i = 1, . . . , 4, such that for x ∈ S+ and u ∈ D

f(x) = −〈c,x〉 + p log det(x) − q log det(I + x) + C1,

g(x) = −〈c,x〉 + (q − p) log det(x) + C2,

k(x) = −〈c,x〉 − p log det(I + x) + q log det(x) + C3,

h(u) = p log det(u) + (q − p) log det(I − u) + C4,

(9)

with C1 + C2 = C3 + C4.

Proof. First nontrivial observation to be made is that (9) solves (8). This was proved in [12] and follows 
directly by Proposition 2.1.

The proof is divided into five Steps. In Steps 1 and 2 we simplify the problem so that we have two 
unknown functions instead of four as in original problem. Steps 3 and 4 are preparatory for the Step 5, in 
which we find the general form of function h.

Step 1: For arbitrary s, v ∈ S+ and α > 0 such that I − αs ∈ S+, set in (8)

x = (I − αs)−1 · αs, y = v − x.
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For α sufficiently small (the upper bound for α depends on s), x and y belong to S+. Moreover, 
(I + x−1)−1 = αs. Since x → 0 as α → 0, we have y → v ∈ S+. By assumption, g is continuous 
on S+, thus, passing in (8) to the limit as α → 0 we obtain

g(v) − k(v) = lim
α→0

{
h(α(I + v−1) ◦ s) − f((I − αs)−1 · αs)

}
. (10)

Putting s = I we see that the limit

C(x) := lim
α→0

{
h(αx) − f

(
α

1 − α
I
)}

exists if x ∈ I + S+. For s ∈ I + S+ and v ∈ S+, we have (I + v−1) ◦ s ∈ I + S+ and thus the right 
hand side of (10) equals

C((I + v−1) ◦ s) − lim
α→0

{
f
(
(1 − αs)−1 · αs

)
− f

(
α

1 − α
I
)}

. (11)

Hence, (10) with g(x) − k(x) =: A(I + x−1) gives us

A(I + v−1) + B(s) = C((I + v−1) ◦ s), (v, s) ∈ S+ × (I + S+),

where B(s) denotes the second term in (11). Lemma 3.1 then implies that there exist p, γ1 ∈ R such 
that

k(v) = g(v) − p log det
(
I + v−1) + γ1, v ∈ S+.

Using above in (8) and substituting

f(x) = p log det(x) + f1(x) + γ1,

g(x) = −p log det(x) + g1(x),

h(u) = p log det(u) − p log det(I − u) + h1(u),

we arrive at a functional equation with three unknown functions

f1(x) + g1(y) = h1((I + (x + y)−1) ◦ (I + x−1)−1) + g1(x + y), (x,y) ∈ S2
+. (12)

Step 2: Set y = αt ∈ S+ in (12) and pass to the limit as α → ∞. Then, by continuity of h (and so of h1) 
we have

f1(x) − h1((I + x−1)−1) = lim
α→∞

{g1(x + αt) − g1(αt)} (13)

for any x, t ∈ S+. Writing

g1(x + y + αx) − g1(αx) = g1(y + (α + 1)x) − g1((α + 1)x) + g1(x + αx) − g1(αx)

and passing to the limit as α → ∞, by (13), we obtain

L(x + y) = L(y) + L(x), (x,y) ∈ S+ × S+,

where L(x) = f1(x) − h1((I + x−1)−1). Thus, (e.g. by [6, Lemma 3.2]) we get
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f1(x) = h1((I + x−1)−1) − 〈c,x〉 , x ∈ S+

for some c ∈ Sym(r, R). Inserting it into (12) along with substitution

g1(x) = −〈c,x〉 + g2(x), x ∈ S+,

we arrive at

h1((I + x−1)−1) + g2(y) = h1((I + (x + y)−1) ◦ (I + x−1)−1) + g2(x + y), (x,y) ∈ S2
+.(14)

Step 3: Setting x = xI and y = yI, (14) boils down to a functional equation with scalar arguments

h1

(
x

1 + x
I
)

+ g2(yI) = h1

(
1 + x + y

x + y

x

1 + x
I
)

+ g2((x + y)I), (x, y) ∈ (0,∞)2.

Since functions x �→ h1(xI) and x �→ g2(xI) are continuous, by Lemma 3.2 we conclude that there 
exists a real constant C4 such that h1(xI) → C4 as x → 0. Now, observe that setting x = αs and 
y = (I + αs) · s · (βI − s)−1 we have (x and y commute)

(I + (x + y)−1) ◦ (I + x−1)−1 = αβ

αβ + 1I.

It is clear that for any s ∈ S+, y ∈ S+ for β sufficiently large (the lower bound for β depends on s). 
Since x → 0 and y → s · (βI − s)−1 if α → 0, by (14) we obtain for any s ∈ S+,

lim
α→0

h1

((
I + (αs)−1)−1

)
+ g2

(
s · (βI − s)−1) = C4 + g2

(
s · (βI − s)−1) ,

that is,

lim
α→0

h1

((
I + (αs)−1)−1

)
= C4.

Step 4: Set x = αs and y = αt in (14). Then, as α → 0,

(I + (x + y)−1) ◦ (I + x−1)−1 → (s + t)−1 ◦ s.

By Step 3, passing to the limit as α → 0 in (14), we obtain

h1((s + t)−1 ◦ s) = C4 + lim
α→0

{g2(αt) − g2(α(s + t))} . (15)

Setting t = I, we see that the limit

D(x) := lim
α→0

{g2(αx) − g2(αI)} (16)

exists for x ∈ I + S+ and equals h1(I−x−1) − C4. This, in turn, implies that the limit (16) exists 
for any x ∈ S+. Indeed, take s ∈ I + S+ in (15) to conclude that

lim
α→0

{g2(αt) − g2(α(s + t))} + lim
α→0

{g2(α(s + t)) − g2(αI)} = lim
α→0

{g2(αt) − g2(αI)}

exists for any t ∈ S+, since the limits on the left hand side exist. Thus, we finally obtain for 
s, t ∈ S+,
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h1((s + t)−1 ◦ s) − C4 = lim
α→0

{g2(αt) − g2(αI)} − lim
α→0

{g2(α(s + t)) − g2(αI)}

= D(t) −D(s + t),

which on the one hand is the multiplicative functional equation on restricted domain and, on the 
other, this is simplified Olkin–Baker equation on S+ considered in [8]. Thus, by [8, Theorem 3.6]
with a ≡ 0, b = D, c = D, d = h1 −C4 and g(x)y = x−1 ◦ y, we obtain in particular that for some 
q ∈ R,

h1(u) = q log det(I − u) + C4, u ∈ D. (17)

Step 5: Use (17) in (14) and substitute

g2(x) = q log det(x) + g3(x), x ∈ S+.

Then, (14) simplifies to

g3(y) = g3(x + y), (x,y) ∈ S2
+,

which means that g3 ≡ const =: C2.
It is easy to see that (9) holds with γ1 = C1 − C4 = C3 − C2, which ends the proof. �

4. Probability laws on S+

We will consider absolutely continuous laws on S+, which will be characterized in the next Section. Let 
dx denote the Lebesgue measure on (Sym(r,R), 〈·, ·〉). For p > (r− 1)/2 and σ ∈ S+, we define the Wishart 
distribution γ(p, σ) by its density

γ(p, σ)(dx) = cp,σ det(x)p−(r+1)/2 exp(−〈σ,x〉)1S+(x)dx,

where cp,σ is a norming constant. Beta distribution Beta(p, q) is defined for p > (r− 1)/2 and q > (r− 1)/2
by density

Beta(p, q)(dx) = cp,q det(x)p−(r+1)/2 det(I − x)q−(r+1)/21D(x)dx,

where D = {x ∈ S+ : I − x ∈ S+} and cp,q is a norming constant.
The matrix Kummer distribution was first introduced in [5]; for a > (r − 1)/2, b ∈ R and σ ∈ S+,

K(a, b, σ)(dx) = ca,b,σ det(x)a−(r+1)/2 det(I + x)−b exp(−〈σ,x〉)1S+(x)dx.

(Note the misprint in the power of det(I + x) in [12, (2.3)].)
By μ ⊗ ν we will denote the product measure of μ and ν.

5. The Matsumoto–Yor property of Kummer and Wishart random matrices

The following Proposition was proved in [12]. It is used in the proof of the next Theorem, which is the 
main result of [12]:
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Proposition 5.1. A mapping ψ : S+ × S+ → D × S+ defined by

ψ(x,y) =
((

I + (x + y)−1) ◦ (I + x−1)−1
,x + y

)
(18)

is a diffeomorphism and its Jacobian equals

J(x,y) = det(I + (x + y)−1)(r+1)/2

det(I + x)r+1 . (19)

Theorem 5.2. Let

(X,Y ) ∼ K(a, b, σ) ⊗ γ(b− a, σ)

and define

(U, V ) = ψ(X,Y ), (20)

where ψ is given by (18). Then

(U, V ) ∼ Beta(a, b− a) ⊗K(b, a, σ).

The independence property established in [12] has been proved for the case r = 1 in [13], where the 
converse has been proved too, thus providing a characterization of Kummer and gamma laws under the 
assumption of existence of smooth densities of X and Y . At the end of [12], the author writes that “It is 
highly likely, although not easy to prove, that this characterization holds also in the case of matrices.” We 
confirm his belief in the following Theorem, which shows that matrix Kummer and Wishart laws are the 
only laws having property given in Theorem 5.2.

Theorem 5.3. Let X and Y be two independent random matrices valued in S+ with continuous densities, 
which are strictly positive on S+. The random matrices U and V defined in (20) are independent if and 
only if X follows the matrix Kummer distribution K(a, b, σ) and Y the Wishart distribution γ(b − a, σ) for 
some a, b, σ with a > r−1

2 , b − a > r−1
2 and σ ∈ S+

r .

Proof. The following identity holds almost everywhere with respect to Lebesgue measure

f(X,Y )(x,y) = f(U,V )(ψ(x,y))J(x,y), (21)

where ψ : S+ × S+ → D × S+ is the bijection given by (18) and J is the Jacobian of ψ. By independence, 
we have f(X,Y ) = fXfY and similarly f(U,V ) = fUfV . Since the densities of X and Y are assumed to be 
continuous, the above equation holds for every x, y ∈ S+.

After taking logarithms (it is permitted, since fX and fY are assumed to be strictly positive on S+) and 
using (19), we arrive at (8) with

f(x) = log fX(x) + (r + 1) log det(I + x),

g(x) = log fY (x),

k(x) = log fV (x) + r + 1
2 log det(I + x−1),

h(u) = log fU (u),
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for x ∈ S+ and u ∈ D. Thus, by Theorem 3.4 we conclude that

fX(x) = exp{f(x)} det(I + x)−(r+1) = eC1 det(x)p det(I + x)−(r+1+q)e−〈c,x〉,

fY (x) = exp{g(x)} = eC2 det(x)q−pe−〈c,x〉,

which are integrable on S+ if and only if c ∈ S+, p > −1 and q − p > −1 that is,

(X,Y ) ∼ K(a, b, σ) ⊗ γ(b− a, σ)

with a = p + (r + 1)/2 and b = q + r + 1. �
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