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CHARACTERIZATION OF THE RIESZ EXPONENTIAL FAMILY ON
HOMOGENEOUS CONES

BY

HIDEYUKI ISHI (Nagoya) and BARTOSZ KOŁODZIEJEK (Warszawa)

Abstract. We give a characterization theorem for the Riesz measure and a Wishart
exponential family on homogeneous cones through the invariance property of a natural
exponential family under the action of the triangular group.

1. Introduction. Following Casalis [3], we consider natural exponential
families (NEFs) of probability distributions on a finite-dimensional linear
space E which are invariant under a subgroup G of the general linear group
of E. Under a weak assumption on G (see Theorem 2.1), the generating
measure of such a family is of the form

e−〈θ0,x〉µ0(dx)

for some θ0 in the dual space E∗, where µ0 is a G-invariant measure.
We apply Theorem 2.1 to the problem of characterizing the Riesz measure

on a homogeneous cone through the invariance property of NEF under the
action of the triangular group (Theorem 3.8). Since the NEF generated by the
Riesz measure consists of Wishart distributions, Theorem 3.8 provides also a
characterization of Wishart distributions on homogeneous cones [1, 11, 27].
We mention that this problem was stated by Letac [25, Section 4], who
pointed out that the natural framework for such characterizations is indeed
a homogeneous cone.

There are essentially two types of characterizations of NEFs. The first
one is connected with the central object of a NEF, that is, the variance
function. The aim is then to describe a generating measure of a NEF with
given variance function. Much has been done in this direction, but still much
more is unknown. A generating measure is known for E = R when the
variance function is a quadratic polynomial [29] or a cubic polynomial [15,
28] or has some more sophisticated form, like P∆ + Q

√
∆, where P , ∆
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and Q are quadratic polynomials [26]. For E = Rd we have to mention [4]
with its deep connection between homogeneous quadratic variance functions
and Euclidean Jordan algebras, and simple quadratic [5] and simple cubic
variance functions [16], to name but a few.

The second type of characterizations of NEFs is through invariance un-
der some group action. We mention some results on NEFs invariant under
a given subgroup G of the general affine group: a one-parameter group [7],
the group of rotations [33], the Möbius group [23], the identity component
Aut0(Sym+(N,R)) of the linear automorphism group of the cone Sym+(N,R)
⊂ Sym(N,R) [25], the triangular group of a simple Euclidean Jordan al-
gebra [13] and its modification [14]. Here Sym(N,R) stands for the symmet-
ric N ×N matrices with real entries and Sym+(N,R) is the cone of positive
definite real N×N matrices. In the last three papers cited, the characteriza-
tions were carried out by showing that the variance function (which uniquely
determines a NEF) coincides with the variance function of some Riesz mea-
sure (or its image by the involution x 7→ −x) on Sym+(N,R) [25] and on
symmetric cones [13, 14].

In the present paper we solve the problem raised by Letac [25] on ho-
mogeneous cones. We use a matrix realization of homogeneous cones, which
proves here very useful and is more accessible to the reader who is not fa-
miliar with homogeneous cones, clans and T -algebras. We emphasize that
homogeneous cones are of great importance in statistics despite their theo-
retical character. In particular, homogeneous cones appear very naturally in
the context of graphical Gaussian models [27]. The aforementioned matrix
realization of homogeneous cones allows one to describe many of the col-
ored graphical Gaussian models [17]. The formula for the variance function
of F (Rs) on homogeneous cones is the topic of our joint paper with Piotr
Graczyk [12]. Finally, we point out that the present work is closely related
to [30, 31], where NEFs and information theory are treated on homogeneous
Hessian structures.

The paper is organized as follows. The concept of natural exponential
families is introduced in the next section. In Section 3.2 we give an ap-
plication of Theorem 2.1 to a characterization of the Riesz measure on a
homogeneous cone (Theorem 3.8). A crucial role in the proof of the charac-
terization is played by a matrix realization of any homogeneous cone [19],
which is explained in Section 3.1. Section 3 ends with some comments.

2. Natural exponential families. In this section we will introduce all
the facts about NEFs that will be needed later on. The standard reference
on exponential families is [2].

Let E be a finite-dimensional real linear space and E∗ its dual space. The
coupling of θ ∈ E∗ and x ∈ E is denoted by 〈θ, x〉. Let µ be a positive Radon
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measure on E. We define its Laplace transform Lµ : E∗ → (0,∞] by

Lµ(θ) =
�

E

e〈θ,x〉 µ(dx).

We denote by Θ(µ) the interior of {θ ∈ E∗ : Lµ(θ) <∞}. Hölder’s inequality
implies that Θ(µ) is convex, and the cumulant function

kµ(θ) = logLµ(θ)

is convex on Θ(µ); moreover, kµ is strictly convex if and only if µ is not
concentrated on any affine hyperplane of E. LetM(E) be the set of positive
Radon measures on E such that Θ(µ) is not empty and µ is not concentrated
on any affine hyperplane of E.

For µ ∈M(E) we define the natural exponential family (NEF) generated
by µ (denoted by F (µ)) as the set of probability measures of the form

P (θ, µ)(dx) = e〈θ,x〉−kµ(θ)µ(dx), θ ∈ Θ(µ).

Note that F (µ) = F (µ′) if and only if µ′(dx) = e〈a,x〉+bµ(dx) for some
a ∈ E∗ and b ∈ R.

We will now describe the action of elements of the general linear group
GL(E) on a NEF. The identity element of GL(E) will be denoted by Id. Let
F = F (µ) be a NEF on E. Let g∗µ denote the image measure of µ by g
and let g.F (µ) stand for the family of image measures g∗P (θ, µ) (θ ∈ Θ(µ)).
Then, for any g ∈ GL(E), we have g.F (µ) = F (g∗µ).

We say that a measure µ0 is invariant under a subgroup G of GL(E) if
for all g ∈ G there exists a constant cg > 0 such that µ0(gA) = cgµ0(A) for
any measurable set A ⊂ E. This condition is equivalent to

Lµ0(g∗θ) = c−1g Lµ0(θ), θ ∈ Θ(µ0).(2.1)

Note that the correspondence G 3 g 7→ cg ∈ R is a character of the group G.
Let µ ∈ M(E). Observe that the condition g.F (µ) = F (µ) implies that

for any g ∈ G there exist a(g) ∈ Θ(µ) ⊂ E∗ and b(g) ∈ R such that

g∗µ(dx) = e〈a(g),x〉+b(g)µ(dx).(2.2)

Casalis [3, Theorem 2.2] showed that the functions a and b satisfy the fol-
lowing system of equations: for any (g, g′) ∈ G2,

a(gg′) = (g∗)−1a(g′) + a(g), b(gg′) = b(g) + b(g′).

Assume that G contains c Id for some c 6= 1. Then, for any g ∈ G,

a(c Id g) =
1

c
a(g) + a(c Id), a(g c Id) = (g∗)−1a(c Id) + a(g).

Equating the right hand sides of the above formulas, we arrive at

a(g) = θ0 − (g∗)−1θ0, g ∈ G, with θ0 =
c

1− c
a(c Id).
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Define µ0(dx) = e〈θ0,x〉µ(dx). Then (2.2) implies that µ0 is G-invariant.
Thus, we obtain the following

Theorem 2.1. Let G be a subgroup of GL(E) and let F = F (µ) be a
G-invariant NEF on E, that is, g.F = F for any g ∈ G. If G contains c Id
for some c 6= 1, then there exist θ0 ∈ E∗ and a G-invariant measure µ0 such
that

µ(dx) = e−〈θ0,x〉µ0(dx).

In that case also F = F (µ0).

3. Characterization of the Riesz measure on homogeneous cones

3.1. Matrix realization of homogeneous cones. Let V be a real
linear space and Ω a regular open convex set in V containing no line. The
cone Ω is said to be homogeneous if the linear automorphism group G(Ω) =
{g ∈ GL(V ) : gΩ = Ω} acts transitively on Ω, that is, for any x and y in Ω
there exists g ∈ G(Ω) such that y = gx.

We will now give a useful representation of homogeneous cones following
[21, Section 3]. For a symmetric matrix x ∈ Sym(N,R), we denote by

ˇ
x the

lower triangular matrix of size N defined by

(
ˇ
x)ij =


xij if i > j,

xii/2 if i = j,

0 if i < j.

Then x =
ˇ
x+ x̂, where x̂ =

ˇ
x> is the transpose of

ˇ
x. For x, y ∈ Sym(N,R),

we define
x4 y :=

ˇ
xy + yx̂ ∈ Sym(N,R).

Then (Sym(N,R),4) is a non-associative algebra with unit element IN . Let
Z be a subalgebra of (Sym(N,R),4) and HZ be the set of lower triangular
matrices obtained from elements of Z with positive diagonal entries, that is,
HZ := {

ˇ
x : x ∈ Z and xii > 0}.

DefineΩZ = {x ∈ Z : x is positive definite} and consider for any T ∈ HZ
the linear operators ρ(T ) : Z → Z, x 7→ ρ(T )x = TxT>. It can be shown
that ρ(HZ) acts on ΩZ transitively, which means that ΩZ is a homogeneous
cone [22, Theorem 3]. Furthermore, we have the following

Theorem 3.1 ([20]). For a homogeneous cone Ω ⊂ V , there exists a
subalgebra Z ⊂ Sym(N,R) and a linear isomorphism φ : V → Z such that
φ(Ω) = ΩZ .

We say that Z ⊂ Sym(N,R) admits a normal block decomposition if there
exists a partition N = n1 + · · · + nr and subspaces Vlk ⊂ Mat(nl, nk,R),
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1 ≤ k < l ≤ r, such that Z is the set of symmetric matrices of the form
X11 X>21 · · · X>r1
X21 X22 X>r2
...

. . .

Xr1 Xr2 Xrr


(
Xll = xllInl , xll ∈ R, 1 ≤ l ≤ r

Xlk ∈ Vlk, 1 ≤ k < l ≤ r

)
.

We will write ZV for this space.

Theorem 3.2.

(i) ([22, Theorem 2]) Let Z be a subalgebra of (Sym(N,R),4) with IN ∈ Z.
Then there exists a permutation matrix w such that wZw> admits a
normal block decomposition.

(ii) ([22, Proposition 2]) ZV is a subalgebra of (Sym(N,R),4) if and only
if the subspaces {Vlk}1≤k<l≤r satisfy the following conditions:

(V1) A ∈ Vlk, B ∈ Vki ⇒ AB ∈ Vli for any 1 ≤ i < k < l ≤ r,
(V2) A ∈ Vli, B ∈ Vki ⇒ AB> ∈ Vlk for any 1 ≤ i < k < l ≤ r,
(V3) A ∈ Vlk ⇒ AA> ∈ RInl for any 1 ≤ k < l ≤ r.
If Z = ZV we shall write ΩV , HV for ΩZ and HZ , respectively.
Condition (V3) allows us to define an inner product on Vlk, 1 ≤ k < l ≤ r,

by
AA> = (A|A)Inl , A ∈ Vlk.

We then define the standard inner product on ZV by

〈x, y〉 :=

r∑
k=1

xkkykk + 2
∑

1≤k<l≤r
(Xlk|Ylk), x, y ∈ ZV .

We identify Z∗V with ZV using this inner product. Note that 〈·, ·〉 coincides
with the trace inner product only if n1 = · · · = nr = 1.

Define a one-dimensional representation of HV by

χs(T ) :=

r∏
k=1

t2skkk ,

where s = (s1, . . . , sr) ∈ Cr. We have (see e.g. [8, Lemma 2.4])

Lemma 3.3. Let χ be a one-dimensional representation of HV . Then there
exists s ∈ Cr such that χ = χs.

This fact will be important later on.
For any open convex cone Ω we define the dual cone of Ω by

Ω∗ =
{
ξ ∈ V ∗ : 〈ξ, x〉 > 0 ∀x ∈ Ω̄ \ {0}

}
,

where V ∗ is the dual space of V . If Ω is homogeneous, then so is Ω∗. Let
Ω∗V denote the dual cone of ΩV .
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For T ∈ HV , we denote by ρ∗(T ) the adjoint operator of ρ(T ) ∈ GL(ZV)
defined by 〈ρ∗(T )ξ, x〉 = 〈ξ, ρ(T )x〉 for x, ξ ∈ ZV . Then we see from [32,
Chapter 1, Proposition 9] that for any ξ ∈ Ω∗V , there exists a unique T ∈ HV
such that ξ = ρ∗(T )IN .

Definition 3.4. Let ∆∗s : Ω∗V → C be the function given by

∆∗s(ξ) = ∆∗s(ρ
∗(T )IN ) := χs∗(T ), where s∗ = (sr, . . . , s1) ∈ Cn.

Example 3.5. Let

ZV :=


x11 0 x31

0 x22 x32

x31 x32 x33

 : x11, x22, x33, x31, x32 ∈ R

 .

Conditions (V1)–(V3) are satisfied and we have n1 = n2 = n3 = 1, N = r = 3.
Then

ΩV = ZV ∩ Sym+(3,R) = {x ∈ ZV : x11 > 0, x22 > 0, detx ∈ R>0}
and the dual cone is

Ω∗V = {ξ ∈ ZV : ξ33 > 0, ξ11ξ33 > ξ231, ξ22ξ33 > ξ232}.
The cone Ω∗V is called the Vinberg cone, while ΩV is the dual Vinberg cone.
The cones Ω∗V and ΩV are the lowest-dimensional non-symmetric homoge-
neous cones. Moreover, for ξ ∈ Ω∗V , we have

∆∗s(ξ) =

(
ξ11ξ33 − ξ231

ξ33

)s3(ξ22ξ33 − ξ232
ξ33

)s2
ξs133.

We see that for any S ∈ HV and ξ = ρ∗(T )IN ∈ Ω∗V we have

∆∗s(ρ
∗(S)ξ) = χs∗(TS) = χs∗(T )χs∗(S) = ∆∗s(ξ)∆

∗
s(ρ
∗(S)IN ),(3.1)

and since any character of HV is of the form χs∗ , property (3.1) characterizes
∆∗ (see [24]). The function ∆∗ is sometimes termed a generalized power
function. Its importance is emphasized by the following result [10, 18].

Theorem 3.6. There exists a positive measure Rs on ZV with Laplace
transform LRs(−θ)=∆∗−s∗(θ) for θ∈Ω∗V if and only if s∈Ξ :=

⊔
ε∈{0,1}r Ξ(ε),

where

Ξ(ε) :=

{
s ∈ Rr :

sk > pk(ε)/2 if εk = 1

sk = pk(ε)/2 if εk = 0

}
, pk(ε) =

∑
i<k

εi dimVki.

The measure Rs with s ∈ Ξ has support in ΩV and is called the Riesz
measure, while the set Ξ is called the Gindikin–Wallach set.

In order to define the NEF generated by Rs we have to know whether
Rs ∈M(ZV), that is, whetherRs is not concentrated on an affine hyperplane
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of ZV . The following result is a generalization of [13, Theorem 3.1]. For
ε ∈ {−1, 0, 1}r, define

Eε :=


ε1In1

. . .

εrInr

 ∈ ZV .
Theorem 3.7. The support of Rs is not concentrated on any affine hy-

perplane in ZV if and only if sk > 0 for all k = 1, . . . , r.

Proof. We write Oε for the ρ(HV)-orbit in ZV through Eε. Note that
O(1,...,1) = ΩV . It is shown in [18, Theorem 6.2] that if s ∈ Ξ(ε), then Rs
is a positive measure on Oε, so that the support of Rs coincides with the
closure Oε. In particular, if for any k = 1, . . . , r,

(3.2) sk > pk(1, . . . , 1)/2 =
1

2

∑
i<k

dimVki,

then s ∈ Ξ(1, . . . , 1) andRs is a regular measure on the cone ΩV = ρ(HV)IN .
Now we show the ‘if’ part of the statement. Assume that s ∈ Ξ ∩ Rr>0.

In view of (3.2), we see that there exists a positive integer m such that
ms ∈ Ξ(1, . . . , 1). Then Rms is a regular measure, because it equals the
convolution measure Rs ∗ · · · ∗ Rs (m times). It follows that the support
of Rs is not concentrated on any affine hyperplane in ZV .

Next we show the ‘only if’ part. It suffices to show that if s ∈ Ξ(ε) with
sk = 0 for some k, then suppRs = Oε ⊂ (REk)⊥ := {x ∈ ZV : xkk = 0}.
Recalling the definition of Ξ(ε), we see that

εk = 0 and pk(ε) =
∑
i<k

εi dimVki = 0,

and the latter equality implies

Vki = {0} if εi = 1.

Therefore, for any x = ρ(T )Eε = TEεT
> ∈ Oε with T ∈ HV , we have

xkk = εk(tkk)
2 +

∑
i<k

εi‖Tki‖2 = 0,

which means that Oε ⊂ (REk)⊥. Hence suppRs ⊂ (REk)⊥ and the proof is
complete.

For ε ∈ {−1, 1}r, consider O∗ε := ρ∗(HV)Eε. The set⊔
ε∈{−1,1}r

O∗ε(3.3)

is dense in ZV , and the O∗ε are the only open orbits of ρ∗(HV) (see [9, p. 77]).
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3.2. Characterization of the Riesz measure on a homogeneous
cone. In the following section we will give an application of Theorem 2.1 to a
characterization of the Riesz measure on a homogeneous cone. We generalize
the results of [13], where the characterization of the Riesz measure through
invariance of NEFs on simple Euclidean algebras was considered.

We say that a subalgebra of (Sym(N,R),4) is irreducible if it is not
equal to a direct sum of two non-trivial ideals.

Theorem 3.8. Let E=ZV be an irreducible subalgebra of (Sym(N,R),4)
that admits a normal block decomposition and let µ ∈ M(E). Assume that
F (µ) is a NEF invariant under G = ρ(HV). Then there exist θ0 ∈ ZV ,
a0 ∈ R and s ∈ Ξ ∩ Rr>0 such that

µ(dx) = ea0−〈θ0,x〉Rs(dx) or µ(dx) = ea0−〈θ0,x〉Rs(−dx).

Thanks to Theorem 3.1, Theorem 3.8 provides a characterization of Riesz
measures on homogeneous cones (note that the support of the measure being
characterized is a homogeneous cone).

Proof of Theorem 3.8. We have R>0IN ⊂ HV and so c Id ∈ ρ(HV) for all
c > 0. Theorem 2.1 implies that there exists θ0 such that

µ(dx) = e−〈θ0,x〉µ0(dx),

where (by (2.1))

Lµ0(ρ∗(T )θ) = χ(T )Lµ0(θ), (θ, T ) ∈ Θ(µ0)×HV ,(3.4)

with a certain character χ of HV . We will determine Lµ0 and Θ(µ0). The
proof is split into four steps:

(i) There exists ε ∈ {−1, 1}r such that Eε ∈ Θ(µ0). Moreover, if Eε, Eε′ ∈
Θ(µ0), then ε = ε′.

(ii) Θ(µ0) = O∗ε for some ε ∈ {−1, 1}r.
(iii) If Θ(µ0) = O∗ε then ε = (−1, . . . ,−1) or ε = (1, . . . , 1).
(iv) µ is of the postulated form.

First step. By definition, the set Θ(µ0) is open and non-empty. Since
ρ∗(T )Θ(µ0) = Θ(µ0) for any T ∈ HV and the set (3.3) is dense in ZV , we
have Eε ∈ O∗ε ⊂ Θ(µ0) for some ε ∈ {−1, 1}r.

Assume now Eε, Eε′ ∈ Θ(µ0) and ε 6= ε′. Since Θ(µ0) is convex, we know
that σ := 1

2(Eε + Eε′) ∈ Θ(µ0). Set I0 := {i ∈ {1, . . . , r} : (εi + ε′i)/2 = 0}.
Then I0 is not empty. Define

H0 := {T ∈ HV : tii = 1 for any i /∈ I0}.

If T ∈ H0 is diagonal, then
ρ∗(T )σ = σ.
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On the other hand, by (3.4) we obtain

Lµ0(ρ∗(T )σ) = χ(T )Lµ0(σ),

which implies that χ(T ) = 1 for any T ∈ H0 (note that χ(T ) depends on T
only through diagonal elements; see Lemma 3.3). Further, this implies that
for any diagonal T = diag(t11, . . . , trr) ∈ H0,

Lµ0(ρ∗(T )Eε) = Lµ0(Eε),

where ρ∗(T )Eε = diag(t11ε1, . . . , trrεr). This contradicts the assumption
that µ0 is not supported on any affine hyperplane of ZV . Indeed, the function
(0,∞) 3 tii 7→

	
exp(tiiεixii)µ0(dx) is constant if and only if the support of

µ0 is contained in the subspace of ZV whose (i, i)-components are zero for
any i ∈ I0.

Second step. Since Θ(µ0) contains only one open orbit, we have

int(Θ(µ0) \ O∗ε) = ∅.

This implies that

Θ(µ0) \ O∗ε = ∅, thus O∗ε ⊂ Θ(µ0) ⊂ O∗ε ,

which proves the claim, since Θ(µ0) is open.
Third step. We will show that O∗ε is not convex unless εk, 1 ≤ k ≤ r, are

all 1 or all −1. Define

I+(ε) :=
{
i ∈ {1, . . . , r} : εi = 1

}
and I−(ε) := {1, . . . , r} \ I+(ε).

Suppose that I+(ε) and I−(ε) are non-empty. Then there exist k ∈ I+(ε)
and l ∈ I−(ε) such that Vlk is not {0} (without loss of generality we may
assume that l > k). If not, ZV has the block form

w

(
Z+ 0

0 Z−

)
w>

for some permutation matrix w. This contradicts the assumption that ZV is
irreducible.

Thus there exists Vlk 6= {0}. We have εk = 1 and εl = −1. For v ∈ Vlk let
T (v) ∈ HV be such that Tlk(v) = v, tii(v) = 1 for i = 1, . . . , r and Tji(v) = 0
for all (i, j) 6= (k, l), 1 ≤ i < j ≤ r. Take any v ∈ Vlk with (v|v) = 2. Then

1
2

(
ρ∗(T (v))Eε + ρ∗(T (−v))Eε

)
= Eε′ ,(3.5)

where ε′i = εi for i 6= k and ε′k = −1. We will use the definition of ρ∗(T ),
but there is another natural approach; see Remark 3.9 after the proof. For
any x ∈ ZV consider the matrix

xv := 1
2

(
ρ(T (v))x+ ρ(T (−v))x

)
= 1

2

(
T (v)xT (v)> + T (−v)xT (−v)>

)
.
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It may be verified by direct calculation that the matrices x and xv differ
only in their (l, l)-components, which in the latter case equals

(vv>xkk + xll)Inl = (2xkk + xll)Inl .

Thus,〈
1
2

(
ρ∗(T (v))Eε + ρ∗(T (−v))Eε

)
, x
〉

=
〈
Eε,

1
2

(
ρ(T (v))x+ ρ(T (−v))x

)〉
=
∑
i/∈{k,l}

xiiεi + xkk + (2xkk + xll)(−1) =
〈
Eε′ , x

〉
.

But Θ(µ0) is convex, so (3.5) implies Eε′ ∈ Θ(µ0). This contradicts (i).
Thus I+(ε) = {1, . . . , r} or I−(ε) = {1, . . . , r}, and so −IN or IN belongs to
Θ(µ0). Finally, by (ii) and the fact that ρ∗(HV)IN = Ω∗V ,

Θ(µ0) = −Ω∗V or Θ(µ0) = Ω∗V .

Fourth step. Let us first consider the case Θ(µ0) = −Ω∗V . Putting θ =
ρ∗(S)(−IN ) for S ∈ HV , we obtain

Lµ0(−ρ∗(ST )IN ) = χ(T )Lµ0(−ρ∗(S)IN ), (S, T ) ∈ H2
V ,

which implies that for a0 = logLµ0(−IN ),

Lµ0(−ρ∗(T )IN ) = ea0χ(T )

and χ(T ) is a one-dimensional representation of HV . Thus, by Lemma 3.3,
there exists s ∈ Ξ such that χ = χ−s and then, by the definition of ∆∗s∗ ,

Lµ0(−θ) = ea0∆∗−s∗(θ), θ ∈ Ω∗V= −Θ(µ0).

By Theorems 3.6 and 3.7 we see that s ∈ Ξ ∩ Rr>0, and that µ0(dx) =
ea0Rs(dx) and Θ(µ0) = −Ω∗V .

When Θ(µ0) = Ω∗V , one shows similarly that µ0(dx) = ea0Rs(−dx).

Remark 3.9. To show (3.5) we could switch to a matrix realization of
the dual cone Ω∗V , where (under a suitable linear isomorphism) ρ∗(T ) is just
left multiplication by some upper triangular matrix and its transpose is right
multiplication.

3.3. Comments. (1) In [14], the authors considered a characterization
of the Riesz measure Rs through the invariance property of a NEF on a
simple Euclidean algebra E under some subgroup G of GL(E). This sub-
group was carefully chosen in order to ensure that some components of the
vector s ∈ Ξ are equal. Taking the ordinary triangular group ρ(HV) imposes
no additional conditions on these components. On the other hand, if one
considers the invariance of NEF under the identity component of G(Ω) (this
is in principle what Letac did for symmetric matrices in [25], but it is true
on homogeneous cones also; see comment (4) below), then all si have to be
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equal, si = p for 1 ≤ i ≤ r. Then ∆∗s∗ = detp and p belongs to a set Λ called
the Jørgensen set (see [6]).

(2) Elements of F (Rs) are actually the Wishart distributions on homo-
geneous cones introduced in [1] (the subcase of si = p for 1 ≤ i ≤ r) and
in [11].

(3) It should be stressed that our approach is very different from [13, 25],
where the characterization of NEFs was proved by showing that the variance
function of a ρ(HV)-invariant NEF coincides with the one of F (Rs) for some
s ∈ Ξ. In the present paper we need not even know what is the variance
function of the Riesz measure on a homogeneous cone. We perceive our
approach as less technical and more natural.

(4) We can rephrase our result in terms of homogeneous cones as follows.
Let Ω ⊂ E be an irreducible homogeneous cone, and G ⊂ GL(E) a linear
algebraic group acting on Ω transitively. Then any G-invariant NEF is gen-
erated by a Riesz distribution on Ω or −Ω because G contains a triangular
subgroup isomorphic to the group ρ(HV) discussed in the present paper (cf.
[32, Chapter 1, Section 9]).
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