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We study solutions to the stochastic fixed-point equation X
d= AX + B

where the coefficients A and B are nonnegative random variables. We intro-
duce the “local dependence measure” (LDM) and its Legendre-type trans-
form to analyze the left tail behavior of the distribution of X. We discuss the
relationship of LDM with earlier results on the stochastic fixed-point equation
and we apply LDM to prove a theorem on a Fleming–Viot-type process.

1. Introduction. Our research on the stochastic fixed-point equation is motivated by a
problem arising in the theory of the so-called Fleming–Viot processes considered in [9, 15].
This article contains new ideas that lead to the complete solution of a specific problem; see
Section 7 for details. Needless to say, we hope that the new technique developed in this paper
will have applications beyond the theory of Fleming–Viot processes.

Given a pair of random variables (A,B), an independent random variable X is said to
satisfy the stochastic fixed-point equation if

(1.1) X
d= AX + B.

The behavior of the solution, especially the left and right tails, has been extensively stud-
ied. A classical result ([12, 17]) says that under some assumptions on (A,B), for some
α,C−,C+ > 0,

(1.2) P(X > x) ∼ C+x−α and P(X < −x) ∼ C−x−α,

as x → ∞ (see Theorem 7.12 for a fully rigorous version). An excellent review of the subject
can be found in [6].

It can be shown that if A and B are nonnegative random variables then a nonconstant
solution X to (1.1) must be also a nonnegative random variable (we do not present a proof
because this claim is not needed for the main application of (1.1) in Section 7). If X is
nonnegative then the first estimate in (1.2) is still meaningful and informative, but the second
one is not because for x > 0 we have P(X < −x) = 0. In this article, we will continue the
analysis of the behavior of P(X < x) as x → 0+ initiated in [9].

We will introduce a new concept of “local dependence measure” (LDM) and its Legendre-
type transform. We will relate LDM to concepts discussed in [9]: inverse exponential decay
of the tail of B , and positive quadrant dependence of A and B . We will illustrate the power
of LDM by a few examples, including the proof of a result on the Fleming–Viot model.
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1.1. Organization of the paper. Section 2 is devoted to the basic general properties of
solutions to the stochastic fixed-point equation (1.1). We recall the conditions that guarantee
the existence and uniqueness of the solution in Theorem 2.2 and Corollary 2.3.

In Section 3 we define the local dependence measure (LDM) for the random variables
(A,B) in (1.1), and its Legendre-type transform. We study basic properties of these functions
and present their first application to the stochastic fixed-point equation.

In Section 4 we show that if LDM for the random variables (A,B) exists then the solution
to (1.1) is a random variable with an “inverse exponential decay” left tail.

Section 5 is devoted to calculating explicit formulas for LDM (Proposition 5.3) and its
Legendre-type transform (Proposition 5.4) when A and B are positively quadrant dependent
random variables.

In Section 6 we prove that if Xn = AnXn−1 + Bn for n ≥ 1, X0 = 0 and (An,Bn)n≥1 is a
sequence of independent copies of (A,B), then

lim inf
n→∞

Xn

H−1(logn)
= (

λ∗)1/ρ
,

where H is a regularly varying function introduced in the definition of LDM, λ∗ is the fixed
point for the Legendre-type transform, and ρ is a parameter in the definition of LDM.

In Section 7 we apply an LDM to prove a version of the law of iterated logarithm for a
Fleming–Viot-type process.

2. General results on stochastic fixed-point equation. In this section we will intro-
duce notation and conventions used in the rest of the paper, and present some known general
results, with references but no proofs.

In this section, and this section only, we will allow the coefficients A and B of the stochas-
tic fixed-point equation

(2.1) X
d= AX + B,

to take arbitrary (positive and negative) values. Starting with Section 3, we will assume that
A,B ≥ 0, a.s.

We will say that the law of a random variable X with values in R is a solution to (2.1) if one
can construct X, A and B on the same probability space in such a way that X is independent
of (A,B) and (2.1) is satisfied.

We will always use (An,Bn) to denote a vector with the same distribution as (A,B) (the
distribution of (A,B) can change from one context to another).

Let (An,Bn)n≥1 be an i.i.d. sequence and define random affine maps from R to itself by

�n(t) = Ant + Bn, t ∈ R.

Clearly, (�n) is an i.i.d. sequence. Suppose that X0 is independent from (An,Bn)n≥1 and let

Xn = �n(Xn−1) = AnXn−1 + Bn,(2.2)

for n ≥ 1. Note that (Xn) is a Markov chain. It is easy to check that

Xn =
(

n∑
k=1

Bk

n∏
j=k+1

Aj

)
+ X0

n∏
i=1

Ai.

We define another sequence of affine mappings, starting with S0(t) = t for all t ∈ R, and
continuing inductively by

Sn(t) = Sn−1 ◦ �n(t) = Sn−1(Ant + Bn),
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for n ≥ 1. Then we have

Sn(t) =
(

n∑
k=1

Bk

k−1∏
j=1

Aj

)
+ t

n∏
i=1

Ai,

with the convention that
∏m

j=k Aj = 1 if m < k. Re-indexing of the sequence (An,Bn)n≥1
easily shows that

Xn
d= Sn(X0)(2.3)

for each n ≥ 1.
The following follows from the “principle” stated on page 264 of [18].

LEMMA 2.1. If for each t ∈ R the sequence (Sn(t)) converges almost surely to a limit,
say S, which does not depend on t , then the law of S is the unique solution to (2.1). Moreover,
(Xn) converges to S in distribution, for any X0.

The only natural candidate for the limit S is the series

S :=
∞∑

k=1

Bk

k−1∏
j=1

Aj .(2.4)

If P(A = 0) > 0, then N = inf{n ≥ 1 : An = 0} is a.s. finite and

Sn(t) =
N∑

k=1

Bk

k−1∏
j=1

Aj

for all n ≥ N . Thus, the condition P(A = 0) > 0 ensures the a.s. convergence of (Sn(t)) for
all t ∈ R.

For x > 0, let fA(x) = ∫ x
0 P(|A| < e−t ) dt . The following theorem characterizes almost

sure convergence of (Sn(X0)). It follows from a more general result in [13], Theorem 2.1.

THEOREM 2.2. Suppose that P(B = 0) < 1 and P(A = 0) = 0. Then,

(2.5)
∞∑

n=1

|Bn|
n−1∏
j=1

|Aj | < ∞ a.s.

is equivalent to

n∏
j=1

Aj → 0 (n → ∞a.s.) and
∫
(1,∞)

logb

fA(logb)
P|B|(db) < ∞.(2.6)

Each of the above equivalent conditions (2.5) and (2.6) implies that, a.s.,

Sn(X0) → S, n → ∞.(2.7)

Conversely, if

P(Ac + B = c) < 1 for all c ∈ R,(2.8)

and (2.6) does not hold, then ∣∣Sn(X0)
∣∣ P−→ ∞, n → ∞.
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According to [13], Corollary 4.1, or [6], Theorem 2.1.3, a sufficient condition for (2.6) is

E
[
log |A|]< 0 and E

[
log+ |B|]< ∞.(2.9)

If (2.8) does not hold, that is, there exists c ∈ R such that Ac + B = c, a.s., then the law of
X ≡ c is the unique solution to (2.1).

The following result follows from Lemma 2.1 and Theorem 2.1; or from [13], Theo-
rem 3.1.

COROLLARY 2.3. Assume that the nondegeneracy condition (2.8) is satisfied.
(i) If P(A = 0) > 0 or (2.6) holds, then for every X0,

Xn
d−→ X, n → ∞,

where the law of X is the unique solution to (2.1).
(ii) If P(A = 0) = 0 and (2.6) fails, then for every X0,

|Xn| P−→ ∞, n → ∞.

We say that a real random variable Y is stochastically majorized by Z, and we write Y ≤st

Z, if P(Y ≤ x) ≥ P(Z ≤ x) for all x ∈R.

LEMMA 2.4. Consider (Xn) defined in (2.2). If A ≥ 0, a.s., and X1 ≥st X0, then for all
n ≥ 1,

X ≥st Xn+1 ≥st Xn ≥st X0.

PROOF. It is enough to show that Xn+1 ≥st Xn for all n ≥ 1. We proceed by induction.
Suppose that Xn ≥st Xn−1. Since An+1 ≥ 0 a.s., we have

Xn+1 = An+1Xn + Bn+1 ≥st An+1Xn−1 + Bn+1
d= Xn. �

If both A and B are nonnegative and X0 = 0 then X1 = B1 ≥ 0 and, therefore, the assump-
tions of Lemma 2.4 are satisfied. In this case, for all x ≥ 0 and n ≥ 1,

P(X ≤ x) ≤ P(Xn ≤ x).(2.10)

3. Local dependence measure and Legendre-type transformation. From now on, we
will assume that the coefficients A and B of the stochastic fixed-point equation (2.1) are
nonnegative, that is, A,B ≥ 0, a.s.

The concept of a regularly varying function is well known. For the definition and a review
of properties of regularly varying function needed in this project, see [4] or [9], Section 2.

DEFINITION 3.1 ([9]). We say that a nonnegative random variable X has an inverse
exponential decay of the left tail with degree ρ > 0 if

(3.1) lim
x→0+

− logP(X < x)

H(x)
= λ,

for a regularly varying function H with index −ρ at zero and λ ∈ [0,∞]. We call such a
random variable IEDρ

H (λ)-random variable.

Sometimes we will write f (x) ∼ g(x), x → ∞, to indicate that limx→∞ f (x)/g(x) = 1
(the same notation will apply in the case when x goes to a different limit).
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REMARK 3.2. We will argue that if H is regularly varying with index −ρ < 0 at 0 then
there exists a continuous strictly decreasing regularly varying function H̃ with index −ρ < 0
at 0, such that

lim
x→0+ H(x)/H̃ (x) = 1.

To see this, first apply the smooth variation theorem ([4], Theorem 1.8.2), which states that
for any regularly varying function f there exists a smooth function f1 with f (x) ∼ f1(x).
So, we have H(x) ∼ H1(x) for some smooth H1.

Then, the monotone equivalent H̃ to H1 can be constructed using [4], Theorem 1.5.3. By
continuity of H1, the function H̃ will be also continuous. For more details, see [4], Theorem
1.5.4, or [5], Corollary 4.2. The function Ĥ (x) := H̃ (x)/ log(e + x) is continuous, strictly
decreasing, and regularly varying with index −ρ < 0 at 0. We also have Ĥ (x) ∼ H(x) when
x → 0.

Without loss of generality, we will assume from now on that every regularly varying func-
tion H is continuous and strictly monotone. Its inverse H−1 is regularly varying with index
−1/ρ at ∞.

The ultimate goal of this project is to develop an effective tool for the analysis of the lower
tail of the solution to (2.1). The random variables A and B in that formula are not necessar-
ily independent. We will quantify their dependence using the “local dependence measure”
(LDM) defined below.

DEFINITION 3.3. We will say that, for a pair of nonnegative random variables (A,B), a
function g : [0,∞) → [0,∞] is their (ρ,H)-local dependence measure ((ρ,H)-LDM) if for
a regularly varying function H with index −ρ < 0 at 0,

(3.2) g(y) = lim
ε→0+

− logP(εAy + B < ε)

H(ε)
.

REMARK 3.4. If g(0) > 0, then (3.2) implies

lim
ε→0+

logP(εAy + B < ε)

logP(B < ε)
= g(y)

g(0)
, y ≥ 0.

Similar conditions for the distribution of a pair (A,B) were considered in literature in related
context. In particular, in [7], Theorem 2.1, it is assumed that there exists a finite function f

such that

lim
x→∞

P(Ay + B > x)

P(B > x)
= f (y), y ∈ R.(3.3)

If A and B above are independent, A has a finite moment generating function and x �→
P(eB > x) is regularly varying with index −α ≤ 0 at ∞, then by the Breiman lemma (see
[11]) we have f (y) = E[eαAy]. However, if A and B are not independent, yet (3.3) holds,
then f may be of a different form (see [7], Remark 2.3). Another condition of similar nature
was stated in [19], (9).

In Section 5 we will show that if random variables A and B are positively quadrant depen-
dent, then g defined in (3.2) can be given explicitly. If A and B are not positively quadrant
dependent then the form of g may vary significantly (see Example 3.7 and Proposition 7.7).

LEMMA 3.5. If g is (ρ,H)-LDM, then g : [0,∞) → [0,∞] is a nondecreasing function.
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PROOF. If y1 ≤ y2 then P(εAy2 + B < ε) ≤ P(εAy1 + B < ε). This and (3.2) imply that
g(y1) ≤ g(y2). �

REMARK 3.6. If (3.2) holds for y = 0 then B is an IEDρ
H (g(0))-random variable.

EXAMPLE 3.7. Some of our results hold only if the LDM g is continuous at 0. In general,
g need not be continuous at 0. We demonstrate this by means of an example. Here we do not
make any claims concerning continuity of g on (0,∞).

Let A = V/U and B = U , where V and U are positive continuous random variables such
that P(V < v) = e−1/v for v > 0, and

P(U ∈ du,V ∈ dv) = (
c1e

−λ1/u1(v<1) + c2e
−λ2/u1(v≥1)

)
1(u≤1) duP(V ∈ dv),

where λ1 > λ2 > 0, and c1 and c2 are positive normalizing constants.
For ε > 0,

P(εAy + B < ε) = P
(
ε(V/U)y + U < ε

)= P

(
V <

U(ε − U)

εy

)

= P

(
V <

U(ε − U)

εy
,U ∈ (0, ε)

)
.

(3.4)

For fixed y > 0 and small enough ε > 0 we have u(ε − u)/(εy) < ε/y < 1 for u ∈ (0, ε).
Hence we obtain from (3.4), using the substitution u = εt ,

P(εAy + B < ε)

=
∫ ε

0

∫ u(ε−u)/εy

0
c1e

−λ1/uPV (dv) du =
∫ ε

0
c1e

−λ1/uP

(
V <

u(ε − u)

εy

)
du

= ε

∫ 1

0
c1e

−λ1/εtP

(
V <

εt(1 − t)

y

)
dt = ε

∫ 1

0
c1 exp

(
−λ1

εt

)
exp

(
− y

εt (1 − t)

)
dt

= εc1

∫ 1

0
exp

(
−λ1 + y

εt
− y

ε(1 − t)

)
dt.

This and Lemma 7.5 imply that

g(y) = − lim
ε→0+ ε logP(εAy + B < ε)

= − lim
ε→0+ ε log(εc1) − lim

ε→0+ ε log
(∫ 1

0
exp

(
−λ1 + y

εt
− y

ε(1 − t)

)
dt

)
= (
√

λ1 + y + √
y)2.

Hence g(0+) = λ1. Since λ2 < λ1, by Lemmas 7.5 and 7.6,

g(0) = − lim
ε→0+ ε logP(B < ε) = − lim

ε→0+ ε logP(U < ε)

= − lim
ε→0+ ε log

(∫ ε

0

(
c1P(V < 1)e−λ1/u + c2P(V ≥ 1)e−λ2/u

)
du

)
= λ2 < λ1 = g

(
0+).

DEFINITION 3.8. For a function g : [0,∞) → [0,∞], we let

(3.5) φρ(λ) = inf
y>0

{
g(y) + λ

yρ

}
, λ ≥ 0.

The Legendre-type transform φρ(λ) will play a key role in our analysis. We will illustrate
its significance with a couple of results, before deriving its basic properties.
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THEOREM 3.9. Suppose that g : [0,∞) → [0,∞] is the (ρ,H)-LDM for random vari-
ables (A,B), and let X be an independent IEDρ

H (λ)-random variable. If g(0+) = g(0) or
λ > 0 then AX + B is an IEDρ

H (φρ(λ))-random variable.

PROOF. First we will show that

(3.6) lim sup
ε→0+

− logP(AX + B < ε)

H(ε)
≤ inf

y>0

{
g(y) + λ

yρ

}
= φρ(λ).

For any y > 0,

P(AX + B < ε) ≥ P(AX + B < ε,X < εy) ≥ P(εAy + B < ε,X < εy)

= P(εAy + B < ε)P(X < εy).

This implies that

lim sup
ε→0+

− logP(AX + B < ε)

H(ε)

≤ lim
ε→0+

− logP(εAy + B < ε)

H(ε)
+ lim

ε→0+
− logP(X < εy)

H(εy)

H(εy)

H(ε)

≤ g(y) + λ

yρ
.

Since y is an arbitrary number in (0,∞), we obtain (3.6).
We will consider three cases: (i) λ = 0, (ii) λ > 0 and φρ(λ) < ∞, and (iii) λ > 0 and

φρ(λ) = ∞.
(i) Consider λ = 0. By Lemma 3.12(iv) (proved below) and the assumption that g(0+) =

g(0),

φρ(0) = g(0) = lim
ε→0+

− logP(B < ε)

H(ε)
≤ lim inf

ε→0+
− logP(AX + B < ε)

H(ε)
.

This and (3.6) prove the theorem in the case λ = 0.
(ii) Under the assumption that λ > 0 and φρ(λ) < ∞, there exists a > 0 such that λ/aρ ≥

φρ(λ). Hence

lim inf
ε→0+

− logP(AX + B < ε,X < εa)

H(ε)
≥ lim inf

ε→0+
− logP(X < εa)

H(ε)
= λ

aρ
≥ φρ(λ).

Since, by Lemma 3.5, g is nondecreasing, we have supy>0 g(y) ≥ φρ(λ). Therefore, for
δ > 0 there exists b > 0 such that g(b) ≥ φρ(λ) − δ. Thus,

lim inf
ε→0+

− logP(AX + B < ε,X ≥ εb)

H(ε)
≥ lim inf

ε→0+
− logP(εAb + B < ε)

H(ε)

= g(b) ≥ φρ(λ) − δ.

We conclude that for η > 0 and small ε > 0

P(AX + B < ε,X < εa) ≤ exp
(−H(ε)

(
φρ(λ) − η

))
,

P(AX + B < ε,X ≥ εb) ≤ exp
(−H(ε)

(
φρ(λ) − η

))
.

(3.7)

For y,h > 0 and small ε > 0,

P
(
AX + B < ε, εy ≤ X < ε(y + h)

)
≤ P(εAy + B < ε)P

(
X < ε(y + h)

)
≤ exp

(−H(ε)
(
g(y) − η

))
exp

(−H(ε)
(
λ/(y + h)ρ − η

))
≤ exp

(−H(ε)
(
g(y) + λ/yρ − λ/yρ + λ/(y + h)ρ − 2η

))
.
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For y > 0, by definition, φρ(λ) ≤ g(y) + λ/yρ . We have 1/yρ − 1/(y + h)ρ ≤ hρ/yρ+1.
Hence,

P
(
AX + B < ε, εy ≤ X < ε(y + h)

)≤ exp
(−H(ε)

(
φρ(λ) − λhρ/yρ+1 − 2η

))
.

From this we obtain

P(AX + B < ε, εa ≤ X < εb)

=
n∑

k=1

P
(
AX + B < ε, ε(a + hk−1) ≤ X < ε(a + hk)

)

≤
n∑

k=1

exp
(−H(ε)

(
φρ(λ) − λhρ/(a + hk−1)

ρ+1 − 2η
))

≤ n exp
(−H(ε)

(
φρ(λ) − λhρ/aρ+1 − 2η

))
,

(3.8)

where h0 = 0, and h := hk −hk−1 = (b −a)/n for k = 1, . . . , n. Using (3.7) and (3.8) we get

P(AX + B < ε) ≤ (n + 2) exp
(−H(ε)

(
φρ(λ) − λhρ/aρ+1 − 2η

))
.

Hence

lim inf
ε→0+

− logP(AX + B < ε)

H(ε)
≥ φρ(λ) − λhρ/aρ+1 − 2η.

By first letting η ↓ 0 and then n ↑ ∞ (so that h ↓ 0), we get

lim inf
ε→0+

− logP(AX + B < ε)

H(ε)
≥ φρ(λ).

This and (3.6) prove the theorem in this case.
(iii) If φρ(λ) = ∞, then g(y) = ∞ for all y > 0. We have

P(AX + B < ε) = P(AX + B < ε,X < εy) + P(AX + B < ε,X ≥ εy)

≤ P(X < εy) + P(εAy + B < ε) ≤ 2 max
{
P(X < εy),P(εAy + B < ε)

}
.

Thus,

− logP(AX + B < ε)

H(ε)
≥ − log 2

H(ε)
+ min

{− logP(X < εy)

H(ε)
,
− logP(εAy + B < ε)

H(ε)

}
.

The right-hand side converges to min{λ/yρ, g(y)} = λ/yρ when ε → 0+. We can make λ/yρ

arbitrarily large by choosing y small enough. This shows that AX + B is an IEDρ
H (∞)-

random variable. Since φρ(λ) = ∞, this completes the proof. �

REMARK 3.10. The condition g(0) = g(0+) is necessary for the statement of Theo-
rem 3.9 to hold for λ = 0. To see this, note that if X ≡ 0 then X is an IEDρ

H (0) random
variable, AX + B = B and AX + B = B is IEDρ

H (g(0)). However, if we pick A and B as in
Example 3.7 then φρ(0) = g(0+) > g(0), by Lemma 3.12(iv).

COROLLARY 3.11. Suppose that g : [0,∞) → [0,∞] is the (ρ,H)-LDM for random
variables (A,B). If λ ∈ (0,∞) and X is an IEDρ

H (λ)-random variable, whose distribution is
a solution to (2.1) then λ = φρ(λ).

PROOF. The claim follows from Theorem 3.9. �

We will now investigate basic properties of φρ .
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LEMMA 3.12. Assume that g is an LDM. The function φρ : [0,∞) → [0,∞] defined in
(3.5) is nondecreasing and concave. Moreover:

(i) If there exists y0 > 0 such that g(y0) < ∞, then φρ(λ) < ∞ for all λ ≥ 0.
(ii) If g is bounded by M then φρ is also bounded by M .

(iii) If there exists λ ≥ 0 such that φρ(λ) > λ then φρ has at most one positive fixed point,
that is, φρ(λ) = λ for at most one λ > 0.

(iv) We have φρ(0) = g(0+) ≥ g(0).
(v) If there exists λ0 ≥ 0 such that φρ(λ0) < ∞, then φρ(λ) < ∞ for all λ ≥ 0.

PROOF. It follows directly from the definition (3.5) that φρ is nondecreasing. Moreover,
as the infimum of a family of affine functions, φρ is concave.

(i) Note that φρ(λ) ≤ g(y0) + λy
−ρ
0 for λ ≥ 0.

(ii) Since supy>0 g(y) ≤ M , the definition (3.5) shows that φρ(λ) ≤ M + λy−ρ for every
y > 0. The claim follows by letting y → ∞ in (3.5).

(iii) Suppose that κ ≥ 0, φρ(κ) > κ and λ2 > λ1 > 0 are fixed points. We will argue that
λ1 > κ . Indeed, by concavity of φρ we have

φρ

(
ακ + (1 − α)0

)≥ αφρ(κ) + (1 − α)φρ(0) > ακ + (1 − α)0

for all α ∈ (0,1). It follows that there are no fixed points on (0, κ]. Thus λ1 is a convex
combination of κ and λ2, that is, there exists α ∈ (0,1) such that λ1 = αλ2 + (1 − α)κ .
Again, by concavity of φρ we get

φρ(λ1) ≥ αφρ(λ2) + (1 − α)φρ(κ) > αλ2 + (1 − α)κ = λ1.

Hence λ1 is not a fixed point. This contradiction proves the claim.
(iv) This follows from Lemma 3.5 and (3.5).
(v) If there exists λ0 ≥ 0 such that φρ(λ0) < ∞ then g(y0) < ∞ for some y0 > 0. Thus,

by (i) we obtain the assertion. �

LEMMA 3.13. Assume that g is an LDM. If φρ is finite then it is continuous.

PROOF. By Lemma 3.12, φρ is a concave function. A classical result in (convex) analysis
says that a real-valued concave function defined on an interval is continuous on the interior
of that interval. It will suffice to show that φρ(0) = φρ(0+). By Lemma 3.12(iv) we have
φρ(0) = g(0+). By the definition of φρ we have for all y > 0,

φρ

(
0+)= lim

λ→0+ φρ(λ) ≤ lim
λ→0+

(
g(y) + λ

yρ

)
= g(y).

By monotonicity of g and φρ , proved in Lemmas 3.5 and 3.12,

g
(
0+)= φρ(0) ≤ φρ

(
0+)≤ inf

y>0
g(y) = g

(
0+).

This implies that φρ(0) = φρ(0+). �

DEFINITION 3.14. Let

λ∗ = inf
y>1

{
yρ

yρ − 1
g(y)

}
.

LEMMA 3.15. Assume that g is an LDM.
(i) Suppose c ≥ 0. Then φρ(c) ≥ c if and only if c ≤ λ∗.
(ii) If λ∗ < ∞ then φρ(λ∗) = λ∗.
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PROOF. (i) We have φρ(c) = infy>0{g(y) + cy−ρ} ≥ c if and only if

g(y) + cy−ρ ≥ c

for all y > 0. The above inequality is always satisfied for y ≤ 1. Thus, φρ(c) ≥ c if and only
if

yρ

yρ − 1
g(y) ≥ c

for all y > 1, which is equivalent to c ≤ λ∗.
(ii) By (i), we have {

c ≥ 0 : φρ(c) ≥ c
}= [

0, λ∗].(3.9)

Thus, if λ∗ < ∞, for any sequence λn ↓ λ∗, we have φρ(λn) < λn. This and the continuity of
φρ imply that φρ(λ∗) ≤ λ∗. This inequality and part (i) applied to c = λ∗ yield (ii). �

PROPOSITION 3.16. Suppose that there exists λ ≥ 0 such that φρ(λ) > λ and λ∗ < ∞.
Consider any λ1 ∈ [0, λ∗] and let λn = φρ(λn−1) for n ≥ 2. Then (λn) is nondecreasing and
converges to λ∗.

PROOF. By Lemma 3.15(i), the assumption that λ1 ∈ [0, λ∗] implies that λ1 ≤ φρ(λ1) =
λ2. Since φρ is a nondecreasing function, by Lemma 3.15(ii) we obtain that λ2 ≤ λ∗. Arguing
inductively, we can show that (λn) is a nondecreasing sequence which is bounded by λ∗. Thus
(λn) converges to a limit μ ≤ λ∗. By the definition of λn and continuity of φρ we get

μ = lim
n→∞λn = lim

n→∞φρ(λn−1) = φρ

(
lim

n→∞λn−1

)
= φρ(μ).

This and Lemmas 3.12(iii) and 3.15(ii) imply that μ = λ∗. �

COROLLARY 3.17. Suppose that g is the (ρ,H)-LDM for (A,B). Recall Xn’s defined
in (2.2) and suppose that X0 = 0.

(i) If g(0) > 0 then for every n ≥ 0, Xn is an IEDρ
H (λn)-random variable, where λ0 = 0,

λ1 = g(0) and λn = φρ(λn−1) for n ≥ 2.
(ii) If g(0) > 0 and λ∗ < ∞ then the sequence (λn) in (i) is nondecreasing and converges

to λ∗.
(iii) If φρ(0) = 0, then (Xn) is a sequence of IEDρ

H (0)-random variables.

PROOF. (i) We have X0 = 0, X1 = B1, and X2 = A2B1 + B2, so, by Remark 3.6 and
Theorem 3.9 (since g(0) > 0),

lim
x→0+

− logP(X0 < x)

H(x)
= 0,

lim
x→0+

− logP(X1 < x)

H(x)
= g(0),

lim
x→0+

− logP(X2 < x)

H(x)
= φρ

(
g(0)

)
.

Part (i) follows from Theorem 3.9, by induction.
(ii) The assumption that g(0) > 0 implies that φρ(0) > 0 by Lemma 3.12(iv). Hence, the

assumption of Proposition 3.16 is satisfied and we can apply Proposition 3.16 with λ1 = 0
to conclude that φρ(0) ≤ λ∗. We combine this observation with Lemma 3.12(iv) to obtain
g(0) ≤ g(0+) = φρ(0) ≤ λ∗. Thus, in the notation of part (i), λ1 = g(0) ∈ [0, λ∗]. Part (ii)
now follows from Proposition 3.16.

(iii) If φ(0) = 0 then g(0+) = g(0) = 0 by Lemma 3.12(iv). The claim now follows from
Theorem 3.9. �
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4. Solutions to the fixed-point equation are IED. This section is devoted to the proof
of the following result.

THEOREM 4.1. Suppose that the (ρ,H)-LDM for (A,B) exists and assume that there
exists λ ≥ 0 such that φρ(λ) > λ. If the law of X is a solution to (2.1) then X is an IEDρ

H (λ∗)
random variable.

The proof of the theorem will consist of several lemmas. All lemmas in this section are
based on the same assumptions as those in Theorem 4.1. The following result was motivated
by [14], Lemma 3. A similar idea was applied in [7], Lemma 6.2.

LEMMA 4.2. Suppose that κ > 0 satisfies

φρ(κ) > κ.(4.1)

There exists a nonnegative random variable Zκ , independent of (A,B), such that

− logP(Zκ < ε) ∼ κH(ε), ε ↓ 0,(4.2)

and

AZκ + B ≥st Zκ .(4.3)

PROOF. By Remark 3.2 we may assume without loss of generality that H is continuous,
monotone and limt→∞ H(t) = 0. Let Z0 be a random variable independent from (A,B),
with the distribution defined by P(Z0 < ε) = e−κH(ε) for ε > 0. By Theorem 3.9,

lim
ε→0+

− logP(AZ0 + B < ε)

H(ε)
= φρ(κ),(4.4)

that is, P(AZ0 +B < ε) = exp(−H(ε)(φρ(κ)+ o(1))). This, (4.1) and (4.4) imply that there
exists ε0 > 0 such that

P(AZ0 + B < ε) ≤ P(Z0 < ε) ∀ε ∈ (0, ε0).

Let Zκ be a random variable independent from (A,B), with the distribution defined by
P(Zκ ∈ ·) = P(Z0 ∈ · | Z0 < ε0). Then we have for ε ∈ (0, ε0),

P(AZκ + B < ε) = P(AZ0 + B < ε | Z0 < ε0) ≤ P(AZ0 + B < ε)

P(Z0 < ε0)

≤ P(Z0 < ε)

P(Z0 < ε0)
= P(Zκ < ε).

For ε ≥ ε0 the above inequality holds trivially, since then P(Zκ < ε) = 1. Thus, (4.3) is sat-
isfied. Finally, note that logP(Zκ < ε) ∼ logP(Z0 < ε) = −κH(ε) as ε → 0+. This proves
(4.2). �

LEMMA 4.3. Assume that there exists λ ≥ 0 such that φρ(λ) > λ. We have

lim inf
ε→0+

− logP(X < ε)

H(ε)
≥ λ∗.

PROOF. By continuity of φρ , there exists κ > 0 such that φρ(κ) > κ . If we apply
Lemma 2.4 with X0 equal to Zκ from Lemma 4.2 then we obtain X ≥st X0 = Zκ , for any
κ > 0 such that κ < φρ(κ). Then, by (4.2),

lim inf
ε→0+

− logP(X < ε)

H(ε)
≥ lim inf

ε→0+
− logP(Zκ < ε)

H(ε)
= κ.(4.5)

By (3.9) and Lemma 3.12(iii), sup{κ : φρ(κ) > κ} = λ∗. This observation and (4.5) imply the
lemma. �
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LEMMA 4.4.

If s := lim sup
ε→0+

− logP(X < ε)

H(ε)
< ∞ then s ≤ λ∗.

PROOF. We have

P(X < ε) = P(AX + B < ε) ≥ P(X < εy)P(εAy + B < ε),(4.6)

and this gives us

s ≤ lim sup
ε→0+

− logP(X < εy)

H(εy)
· H(εy)

H(ε)
+ lim sup

ε→0+

− logP(εAy + B < ε)

H(ε)
≤ s

yρ
+ g(y).

Hence, for y > 1 we have s ≤ g(y)yρ/(yρ − 1) and thus s ≤ λ∗. �

LEMMA 4.5. Assume that λ∗ < ∞. Then

lim sup
ε→0+

− logP(X < ε)

H(ε)
< ∞.

PROOF. Since λ∗ < ∞, there exists y > 1 such that g(y) < ∞. Then, for any η > 0,
there exists ε0 such that for all ε ≤ ε0,

− logP(εAy + B < ε)

H(ε)
≤ g(y) + η.(4.7)

It follows from (4.6) that

− logP(X < ε) + logP(X < εy) ≤ − logP(εAy + B < ε).

Substituting εyk for ε in the last formula yields

− logP
(
X < εyk)+ logP

(
X < εyk+1)≤ − logP

(
εykAy + B < εyk).

If we further assume that εyk ≤ ε0, by (4.7), we arrive at

− logP
(
X < εyk)+ logP

(
X < εyk+1)≤ (g(y) + η

)
H
(
εyk).

The telescoping sum argument gives

− logP(X < ε) + logP
(
X < εyn+1)≤ (g(y) + η

) n∑
k=0

H
(
εyk),

provided εyn ≤ ε0. This condition is satisfied if we set n = nε = �log(ε0/ε)/ log(y)�. With
this choice of n we also have εynε+1 ≥ ε0. Thus, we obtain

lim sup
ε→0+

− logP(X < ε)

H(ε)
≤ (g(y) + η

)
lim sup
ε→0+

nε∑
k=0

H(εyk)

H(ε)
.(4.8)

By Potter bounds [4], Theorem 1.5.6, with C = 2 and δ = ρ/2 we have H(s)/H(t) ≤
C(s/t)−ρ+δ = C(s/t)−ρ/2 whenever t ≤ s ≤ ε0 (we may have to decrease ε0, if necessary).
Thus, H(εyk)/H(ε) ≤ 2y−kρ/2 for all k = 0, . . . , nε and all ε ≤ ε0. This ensures convergence
of the series on the right-hand side of (4.8). �

PROOF OF THEOREM 4.1. Theorem 4.1 follows from Lemmas 4.3, 4.4 and 4.5 in the
case when λ∗ < ∞. If λ∗ = ∞, then the assertion of Lemma 4.4 is satisfied. Therefore,
Theorem 4.1 holds in either case. �
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5. Positive quadrant dependent coefficients. We will now illustrate the concepts of
LDM g and its transform φρ by applying them to certain classes of vectors (A,B). In this
section we will find a formula for LDM g in the case when the A and B are positively quad-
rant dependent and B is an IEDρ

H (λ) random variable. The equation (2.1) with coefficients
satisfying these assumptions was studied in [9] using different methods. We will show how
the results in [9] relate to the LDM g and its transform φρ .

DEFINITION 5.1. We call random variables A and B positively quadrant dependent if

(5.1) P(A > a,B > b) ≥ P(A > a)P(B > b),

for all a, b ∈ R.

If two random variables are independent then they are also positively quadrant dependent.
For the proof of the following lemma, see [9], Lemma 7.3.

LEMMA 5.2. Random variables A and B are positively quadrant dependent if and only
if

(5.2) P(A ≤ a,B ≤ b) ≥ P(A ≤ a)P(B ≤ b)

for all a, b ∈R.

PROPOSITION 5.3. Suppose that B is an IEDρ
H (γ )-random variable, (A,B) are posi-

tively quadrant dependent, and let

a = ess inf(A) = sup
{
x ∈ R : P(A < x) = 0

}
.

Then

g(y) =
{
γ (1 − ay)−ρ y ∈ [0,1/a);
∞ y ≥ 1/a.

PROOF. Since A is nonnegative, a ≥ 0. The definition of a implies that

P(εAy + B < ε) ≤ P(εay + B < ε).

This, the assumption that B is an IEDρ
H (γ )-random variable, and Definition 3.1 show that,

for y ∈ [0,1/a),

g(y) = lim
ε→0+

− logP(εAy + B < ε)

H(ε)
≥ lim

ε→0+
− logP(εay + B < ε)

H(ε)

= lim
ε→0+

− logP(B < ε(1 − ay))

H(ε)
= lim

ε→0+
− logP(B < ε(1 − ay))

H(ε(1 − ay))

H(ε(1 − ay))

H(ε)

= γ (1 − ay)−ρ.

With the convention that log 0 = −∞, we get for y ≥ 1/a,

g(y) = lim
ε→0+

− logP(εAy + B < ε)

H(ε)
≥ lim

ε→0+
− logP(εay + B < ε)

H(ε)

≥ lim
ε→0+

− logP(B < 0)

H(ε)
= ∞.
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To obtain the upper bound, consider any y < 1/a and find δ0 > 0 such that for δ ∈ (0, δ0)

we have y < 1/(a + δ). Then for δ ∈ (0, δ0),

P(εAy + B ≤ ε) ≥ P
(
εAy + B ≤ ε,A ∈ [a, a + δ])

≥ P
(
ε(a + δ)y + B ≤ ε,A ∈ [a, a + δ])

≥ P
(
ε(a + δ)y + B ≤ ε

)
P
(
A ∈ [a, a + δ]),

where the last inequality follows from Lemma 5.2. By definition of a, we have P(A ∈ [a, a +
δ)) > 0, so

g(y) = lim
ε→0+

− logP(εAy + B < ε)

H(ε)

≤ lim
ε→0+

− log(P(ε(a + δ)y + B ≤ ε)P(A ∈ [a, a + δ]))
H(ε)

= lim
ε→0+

− logP(ε(a + δ)y + B ≤ ε)

H(ε)

= lim
ε→0+

− logP(B ≤ ε(1 − (a + δ)y))

H(ε(1 − (a + δ)y))

H(ε(1 − (a + δ)y))

H(ε)

= γ
(
1 − (a + δ)y

)
)−ρ.

Letting δ → 0+, we obtain g(y) ≤ γ (1 − ay)−ρ , for y ∈ [0,1/a). �

PROPOSITION 5.4. Under assumptions of Proposition 5.3,

φρ(λ) = (
γ

1
1+ρ + a

ρ
1+ρ λ

1
1+ρ
)1+ρ

,

and

(5.3) λ∗ =
{
γ
(
1 − a

ρ
1+ρ
)−(1+ρ) for a < 1;

∞ for a ≥ 1.

PROOF. We will prove the result for γ > 0. The case γ = 0 requires only minor mod-
ifications. Since g(y) takes finite values only on the interval [0,1/a), we need to find the
minimum of the function

y �→ g(y) + λ

yρ
= γ

(1 − ay)ρ
+ λ

yρ

on the interval (0,1/a). One can show that that minimum is attained at

y1 = λ
1

1+ρ

(γ a)
1

1+ρ + aλ
1

1+ρ

= 1

a
· aλ

1
1+ρ

(γ a)
1

1+ρ + aλ
1

1+ρ

∈ (0,1/a).

Straightforward calculations yield the formulas for φρ(λ) = γ
(1−ay1)

ρ + λ

y
ρ
1

and λ∗ = φρ(λ∗)
given in the proposition. �

We will illustrate the meaning of λ∗ by two results borrowed from [9]; they were stated
in that paper as Theorems 7.6 and 7.8. The versions given below include λ∗, the parameter
introduced only in this paper. The versions given in [9] and these in the present paper are
equivalent due to (5.3).

THEOREM 5.5. Assume that:

(i) A and B are nonnegative and positively quadrant dependent.
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(ii) E[logA] < 0 and E[log+ B] < ∞.
(iii) B is an IEDρ

H (γ )-random variable.

Then:

(a) The random variable S defined in (2.4) is IEDρ
H (λ∗).

(b) The equation (2.1) has a unique solution with the same distribution as that of S.

THEOREM 5.6. Suppose that:

(i) A and B are nonnegative and positively quadrant dependent random variables.
(ii) There exists β ∈ (0,1) such that A ≤ β , a.s.

(iii) E[(log+ B)s] < ∞ for all s > 0.
(iv) B is an IEDρ

H (γ )-random variable.

If the sequence (Xn) is defined as in (2.2) then

lim inf
n→∞

Xn

H−1(logn)
= (

λ∗)1/ρ a.s.

The last two theorems were proved in [9] using techniques tailored for the assumption
that A and B were positive quadrant dependent. Part (b) of Theorem 5.5. is a special case of
Theorem 4.1. In the next section, we will prove Theorem 6.1, which is a much more general
version of Theorem 5.6.

6. Local dependence measure and logarithmic lower envelope. Recall the sequence
(Xn) defined in (2.2) and set X0 = 0.

THEOREM 6.1. Assume that E[logA] < 0 and E[log+ B] < ∞. Suppose that g is the
(ρ,H)-LDM for (A,B), g(0) > 0 and λ∗ ∈ (0,∞). Then

lim inf
n→∞

Xn

H−1(logn)
= (

λ∗)1/ρ
.

The proof of the theorem will consist of several lemmas. All lemmas in this section im-
plicitly make the same assumptions as those in Theorem 6.1.

LEMMA 6.2. (i) For every ε > 0,{
Xn ≤ H−1

(
(1 + ε) logn

λ∗
)}

happens finitely often almost surely.
(ii) We have

lim inf
n→∞

Xn

H−1(logn)
≥ (λ∗)1/ρ a.s.

PROOF. (i) For any ε > 0 there exists δ ∈ (0,1) such that γ := (1− δ)(1+ ε) > 1. Recall
the notation from Corollary 3.17. The corollary shows that λn ↑ λ∗. Hence there exist n0 and
x0 > 0 such that P(Xn0 ≤ x) ≤ e−λ∗(1−δ)H(x) for all x ∈ (0, x0). By Lemma 2.4, for n ≥ n0
and x ∈ (0, x0),

P(Xn ≤ x) ≤ e−λ∗(1−δ)H(x).
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It follows that, for large n,

P

(
Xn ≤ H−1

(
(1 + ε) logn

λ∗
))

≤ e−(1−δ)(1+ε) logn = n−γ .

Hence,
∞∑

n=1

P

(
Xn ≤ H−1

(
(1 + ε) logn

λ∗
))

< ∞,

and the claim follows by the Borel–Cantelli lemma.
(ii) Part (i) implies that for every ε > 0, a.s.,

lim inf
n→∞

Xn

H−1((1 + ε)(logn)/λ∗)
≥ 1.

But H−1 is regularly varying with index −1/ρ at infinity and thus

H−1
(

(1 + ε) logn

λ∗
)

∼
(

λ∗

1 + ε

)1/ρ

H−1(logn).

Hence, a.s.,

lim inf
n→∞

Xn

H−1(logn)
≥
(

λ∗

1 + ε

)1/ρ

.

Part (ii) follows by letting ε → 0. �

LEMMA 6.3. For all n ≥ 1, y > 0 and ε > 0 we have, a.s.,

P(Xn < ε | X0) ≥ 1[0,εyn)(X0)

n−1∏
k=0

P
(
εykAy + B < εyk).(6.1)

PROOF. We have

P(Xn < ε | X0)

≥ P(AnXn−1 + Bn < ε,Xn−1 < εy | X0)

≥ P(εAny + Bn < ε,Xn−1 < εy | X0) = P(εAny + Bn < ε)P(Xn−1 < εy | X0)

= P(εAy + B < ε)P(Xn−1 < εy | X0).

The assertion follows by induction. �

We state, without formal proofs, three simple results, for reference. Recall that λ∗ =
infy>1{g(y)yρ

yρ−1 }.

LEMMA 6.4. Assume that λ∗ ∈ (0,∞). For any α > 0, there exists y∗ > 1 such that

λ∗ ≤ g(y∗)yρ∗
y

ρ∗ − 1
≤ λ∗(1 + α).

LEMMA 6.5. For any α > 0 and y > 0, there exists ε0 > 0 such that for all ε ∈ (0, ε0),

P(εAy + B < ε) ≥ e−(1+α)g(y)H(ε).

Recall that H(εy) ∼ y−ρH(ε) as ε → 0+. The following result is an application of Potter
bounds to function H (see [4], Theorem 1.5.6).
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LEMMA 6.6. For any α > 0 and η ∈ (0, ρ), there exists ε1 > 0 such that if 0 < ε ≤ εy ≤
ε1 then

H(εy)

H(ε)
≤ (1 + α)y−ρ+η.

LEMMA 6.7. For any δ > 0 and n ≥ 1, there exist y∗ > 1 and ε̃ > 0 such that

P(Xn < ε | X0) ≥ 1[0,εyn∗ )(X0) exp
(−(1 + δ)λ∗H(ε)

)
,

provided εyn−1∗ < ε̃.

PROOF. Fix α > 0 and let y∗ > 1 be as in Lemma 6.4. By Lemma 6.5 there exists ε0 > 0
such that

P(εAy∗ + B < ε) ≥ exp
(−(1 + α)g(y∗)H(ε)

)
for all ε ∈ (0, ε0). Thus, by Lemma 6.3, we obtain

P(Xn < ε | X0) ≥ 1[0,εyn∗ )(X0) exp

(
−(1 + α)g(y∗)

n−1∑
l=0

H
(
εyl∗
))

,

provided εyn−1∗ < ε0. By Lemma 6.6, for η ∈ (0, ρ),

H
(
εyk∗

)≤ (1 + α)y−k(ρ−η)∗ H(ε), k = 0,1, . . . , n − 1,

as long as εyn−1∗ < ε1. Hence, if εyn−1∗ < ε̃ := min{ε0, ε1}, then

P(Xn < ε | X0) ≥ 1[0,εyn∗ )(X0) exp

(
−(1 + α)2g(y∗)

n−1∑
k=0

y−k(ρ−η)∗ H(ε)

)
.(6.2)

By Lemma 6.4, for sufficiently small η > 0,

g(y∗)
n−1∑
k=0

y−k(ρ−η)∗ = g(y∗)
y

ρ−η∗
y

ρ−η∗ − 1

(
1 − y−n(ρ−η)∗

)≤ (1 + α)g(y∗)
y

ρ∗
y

ρ∗ − 1

≤ (1 + α)2λ∗.
This and (6.2) show that

P(Xn < ε | X0) ≥ 1[0,εyn∗ )(X0) exp
(−(1 + α)4λ∗H(ε)

)
.

The lemma follows if we take (1 + α)4 = 1 + δ. �

We will need the following version of the Borel–Cantelli lemma.

LEMMA 6.8.

(i) Suppose that (Fn) is a filtration such that F0 = {∅,
}, and An ∈ Fn for n ≥ 0. Then

{An i.o.} =
{ ∞∑

n=1

P(An | Fn−1) = ∞
}
.

(ii) Suppose that (Xn) is a Markov process with respect to a filtration (Fn) such that
F0 = {∅,
}, and An ∈ σ(Xn) for n ≥ 1. Then

{An i.o.} =
{ ∞∑

n=1

P(An | Xn−1) = ∞
}
.
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PROOF. For (i), see [10], Theorem 5.1.2. Part (ii) is an easy corollary of (i). �

We state the following well-known Kronecker’s lemma without proof.

LEMMA 6.9. If an ↑ ∞ and
∑∞

n=1 xn/an converges then limn→∞ 1
an

∑n
m=1 xm = 0.

We will need the following result on the ergodicity for subsequences of the iterated
stochastic sequence.

LEMMA 6.10. Suppose that X is a solution to (1.1). For any bounded uniformly contin-
uous functions f on R and any increasing integer sequence (nk), a.s.,

(6.3) L(f ) := lim sup
m→∞

1

m

m∑
k=1

f (Xnk
) ≥ E

[
f (X)

]≥ l(f ) := lim inf
m→∞

1

m

m∑
k=1

f (Xnk
).

Moreover, L(f ) and l(f ) are constants a.s.

PROOF. For r ≥ 1, we define

Xr
n :=

{
0 n ≤ r;
AnX

r
n−1 + Bn n > r.

We have assumed that E[logA] < 0 so limn→∞
∏n

j=r+1 Aj = 0, a.s. Therefore, when n →
∞, a.s.,

Xn − Xr
n =

(
n∏

j=r+1

Aj

)
Xr → 0.

Hence limn→∞ f (Xn) − f (Xr
n) = 0, a.s., and it follows that, a.s.,

lim
m→∞

1

m

m∑
k=1

f (Xnk
) − f

(
Xr

nk

)= 0.

This implies that, a.s.,

lim sup
m→∞

1

m

m∑
k=1

f (Xnk
) = lim sup

m→∞
1

m

m∑
k=1

f
(
Xr

nk

)
,(6.4)

lim inf
m→∞

1

m

m∑
k=1

f (Xnk
) = lim inf

m→∞
1

m

m∑
k=1

f
(
Xr

nk

)
.(6.5)

For every fixed r > 0, the random variables on the right hand sides of (6.4) and (6.5) are
measurable with respect to the σ -field Gr := σ((An,Bn) : n > r). Thus the same applies to
the random variables on the left hand sides of (6.4) and (6.5). Hence, these random variables
are measurable with respect to the σ -field G∞ := ⋂∞

r=1 Gr . By the Kolomogorov 0–1 law,
random variables on both sides of (6.4) and (6.5) are constant, a.s.

By Corollary 2.3(i), Xn → X in distribution. This implies that limn→∞E[f (Xn)] =
E[f (X)]. We combine this observation with Fatou’s lemma (f need not be nonnegative,
but it is bounded) to obtain,

lim inf
m→∞

1

m

m∑
k=1

f (Xnk
) = E

[
lim inf
m→∞

1

m

m∑
k=1

f (Xnk
)

]
≤ lim

m→∞E

[
1

m

m∑
k=1

f (Xnk
)

]

= E
[
f (X)

]
.

This proves the inequality on the right hand side of (6.3). The inequality on the left hand side
follows by applying the claim to −f in place of f . �
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LEMMA 6.11. (i) For every ε > 0,{
Xn ≤ H−1

(
logn

λ∗(1 + ε)

)}
happens infinitely often almost surely.

(ii) Almost surely,

lim inf
n→∞

Xn

H−1(logn)
≤ (λ∗)1/ρ

.

PROOF. Fix any ε > 0. Let (kn)n be a strictly increasing sequence of integers. Since

(Xkn+1−kn | X0)
d= (Xkn+1 | Xkn) for any δ > 0 and n ≥ 1, by Lemma 6.7 there exist y∗ > 1

and ε̃ > 0 such that, a.s., for t > 0,

P(Xkn+1 < t | Xkn) ≥ 1[0,ty
kn+1−kn∗ )

(Xkn)e
−(1+δ)λ∗H(t)(6.6)

provided

ty
kn+1−kn−1∗ < ε̃.

By Lemma A.1 we can choose the sequence (kn), so it satisfies for each n ≥ 1,

H−1
(

log kn+1

λ∗(1 + ε)

)
y

kn+1−kn−1∗ < ε̃,

H−1
(

log kn+1

λ∗(1 + ε)

)
y

kn+1−kn∗ ≥ c,

where c ∈ (0, ε̃y∗). Then, taking t = H−1(
logkn+1
λ∗(1+ε)

) in (6.6), we have, a.s.,

P

(
Xkn+1 < H−1

(
log kn+1

λ∗(1 + ε)

)
| Xkn

)
≥ 1[0,c)(Xkn)

1

k
γ
n+1

,(6.7)

where γ = 1+δ
1+ε

. Take δ < ε so that γ < 1. By Lemma A.1, there exists K > 0 such that
k
γ
n ≤ Kn for all n.

We have, a.s.,

lim sup
m→∞

1

k
γ
m+1

m∑
n=0

1[0,c)(Xkn)

≥ lim sup
m→∞

K−1

m + 1

m∑
n=0

1[0,c)(Xkn) ≥ lim sup
m→∞

K−1

m + 1

m∑
n=0

fc(Xkn)

≥ E
[
fc(X)

]
/K ≥ P(X < c/2)/K > 0,

(6.8)

where the first inequality on the second line of (6.8) follows from Lemma 6.10 applied to the
function

fc(x) =

⎧⎪⎪⎨⎪⎪⎩
1 x < c/2;
2(c − x)/c x ∈ [c/2, c];
0 x > c.

The last inequality in (6.8) follows from Theorem 4.1 because we assumed that λ∗ ∈ (0,∞)

in Theorem 6.1.
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Kronecker’s lemma (Lemma 6.9) and (6.8) imply that
∞∑

n=0

1[0,c)(Xkn)
1

k
γ
n+1

= ∞ a.s.

Hence, in view of (6.7), a.s.,
∞∑

n=1

P

(
Xkn+1 < H−1

(
log kn+1

λ∗(1 + ε)

)
| Xkn

)
= ∞.

This and Lemma 6.8(b) imply part (i) of the present lemma.
Recall that H−1 is a regularly varying function at ∞ with index −1/ρ to see that part (ii)

of the lemma follows from part (i). �

PROOF OF THEOREM 6.1. The theorem follows from Lemmas 6.2 and 6.11. �

7. Application to Fleming–Viot-type process. This section is devoted to the proof of
Theorem 7.1, a version of the law of iterated logarithm for a Fleming–Viot-type process.
This result was the primary motivation for introducing and analyzing the “local dependence
measure.”

Fleming–Viot-type processes were originally defined in [8]. The specific model discussed
below appeared in [3, 15]. Any Fleming–Viot process has a unique spine, that is, a trajectory
inside the branching tree that never hits the boundary of the domain where the process is
confined; this was proved under strong assumptions in [15], Theorem 4, and later in the full
generality in [1].

We will now define a Fleming–Viot process and other elements of the model. Informally,
the process consists of two independent Brownian particles starting at the same point in
(0,∞). At the time when one of them hits 0, it is killed and the other one branches into two
particles. The new particles start moving as independent Brownian motions and the scheme
is repeated.

On the formal side, let (W1(t) : t ≥ 0) and (W2(t) : t ≥ 0) be two independent Brownian
motions starting from W1(0) = W2(0) = 1. Let

T0 = 0,

Y0 = 1,

τj = inf
{
t ≥ 0 : Wj(t) = 0

}
, j = 1,2,

T1 = min(τ1, τ2),

Y1 = max
(
W1(T1),W2(T1)

)
,

and for k ≥ 2,

Tk = inf
{
t > Tk−1 : min

(
W1(t) − W1(Tk−1) + Yk−1,W2(t) − W2(Tk−1) + Yk−1

)= 0
}
,

Yk = max
(
W1(Tk) − W1(Tk−1) + Yk−1,W2(Tk) − W2(Tk−1) + Yk−1

)
.

It follows from [2], Theorem 5.4, or [15], Theorem 1, that Tk → ∞, a.s. Hence, for any t ≥ 0
we can find j such that t ∈ [Tj−1, Tj ). Then we set

Y(t) = (
Y1(t), Y2(t)

)
= (

W1(t) − W1(Tj−1) + Yj−1,W2(t) − W2(Tj−1) + Yj−1
)
.

(7.1)

This completes the definition of {Y(t), t ≥ 0}, an example of a Fleming–Viot process. If Z is
the spine of our process, we have Z(Tk) = Yk for all k.



STOCHASTIC FIXED-POINT EQUATION 2831

The specific Fleming–Viot process defined above was one of the models analyzed in [15].
The distribution of Y1 was given in [15], Prop. 10.

The following is the main result of this section.

THEOREM 7.1. Almost surely,

lim sup
n→∞

Yn√
2Tn log logTn

= 1.(7.2)

The main technical challenge in the proof of Theorem 7.1 comes from the fact that Yn’s
and Tn’s are not independent. In the last remark on page 360 of [15], the authors pointed out
that the sequence (Yn/Yn−1)n≥2 is i.i.d. and, therefore, (Yn)n≥1 is relatively easy to analyze.
A direct consequence is that the law of large numbers implies that logYn/n → E[logY1] > 0.
Hence, Yn → ∞, a.s.

However, as we will see in Lemma 7.10, Tn depends on both Tn−1 and Yn−1, since the
sequence in (7.16) is i.i.d. This is where the LDM theory for dependent random variables
developed in the first six sections is crucially used.

We note that the law of iterated logarithm stated in (7.2) indicates (but does not prove) that
the spine Z(t) satisfies the same law of iterated logarithm as the three-dimensional Bessel
process, which is known to have the same distribution as the one-dimensional Brownian
motion conditioned not to hit 0. Hence, it is possible that the spine Z(t) is distributed, at least
in an asymptotic or approximate sense, as the driving Brownian motion W1(t) conditioned
not to return to 0. We plan to investigate this question in a forthcoming paper.

The remaining part of this section will be devoted to the proof of Theorem 7.1, presented as
a sequence of lemmas. The formulas in the first of the lemmas are taken from [16], Chapter 2,
Remark 8.3 and Problem 8.6.

LEMMA 7.2. If W1(0) = 1 then for y, t > 0,

P(τ1 ∈ dt) = 1√
2πt3

e−1/2t dt,

P
(
W1(t) ∈ dy, τ1 > t

)= 1√
2πt

(
exp

(
−(1 − y)2

2t

)
− exp

(
−(1 + y)2

2t

))
dy.

LEMMA 7.3. If W1(0) = W2(0) = 1 then for y, t > 0,

P
(
W1(τ2) ∈ dy, τ2 ≤ t, τ1 > τ2

)
= 1

π

[
exp(−((1 − y)2 + 1)/(2t))

(1 − y)2 + 1
− exp(−((1 + y)2 + 1)/(2t))

(1 + y)2 + 1

]
dy.

PROOF. We use Lemma 7.2 as follows,

P
(
W1(τ2) ∈ dy, τ2 ≤ t, τ1 > τ2

)
=
∫ t

0
P
(
W1(s) ∈ dy, τ1 > s

)
P(τ2 ∈ ds)

=
∫ t

0

1√
2πs

(
exp

(
−(1 − y)2

2s

)
− exp

(
−(1 + y)2

2s

))
dy

1√
2πs3

e−1/2s ds

=
∫ t

0

1

2πs2

(
exp

(
−(1 − y)2 + 1

2s

)
− exp

(
−(1 + y)2 + 1

2s

))
dy ds.

Now easy integration yields the formula stated in the lemma. �
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LEMMA 7.4. If W1(0) = W2(0) = 1 then for y, t > 0,

P(Y1 ∈ dy,T1 ∈ dt)

= 1

πt2

(
exp

(
−(1 − y)2 + 1

2t

)
− exp

(
−(1 + y)2 + 1

2t

))
dt dy.

(7.3)

PROOF. It follows from the definition that, a.s.,

(Y1, T1) = (
W1(τ2), τ2

)
1(τ1 > τ2) + (W2(τ1), τ1

)
1(τ2 > τ1),

so for Borel sets C,

P(Y1 ∈ C,T1 ≤ t) = P
(
W1(τ2) ∈ C,τ2 ≤ t, τ1 > τ2

)+ P
(
W2(τ1) ∈ C,τ1 ≤ t, τ2 > τ1

)
= 2P

(
W1(τ2) ∈ C,τ2 ≤ t, τ1 > τ2

)
.

The claim now follows from Lemma 7.3. �

Let A = Y−2
1 and B = T1Y

−2
1 . Lemma 7.4 and a standard calculation, left to the reader,

show that for a, b > 0,

P(A ∈ da,B ∈ db)

= 1

2πb2
√

a

[
exp

(
−(a1/2 − 1

2)2 + 1
4

b

)
− exp

(
−(a1/2 + 1

2)2 + 1
4

b

)]
db da.

(7.4)

LEMMA 7.5. Suppose that μ is a finite positive measure on [a, b], it is absolutely contin-
uous with respect to Lebesgue measure, and μ(I) > 0 for every interval I ⊂ [a, b] of strictly
positive length. Assume that f is a continuous function on the interval [a, b]. Then

lim
ε→0+ ε log

∫ b

a
e−f (x)/εμ(dx) = −fmin,

where fmin = infx∈[a,b] f (x).

PROOF. For ε > 0,

(7.5)
∫ b

a
e−f (x)/εμ(dx) ≤ e−fmin/εμ

([a, b]).
Suppose that f attains the minimum at x0 ∈ [a, b]. For any δ > 0 there is an interval

Iδ ⊂ [a, b] with strictly positive length, containing x0, and such that for all x ∈ Iδ we have
f (x) ≤ fmin + δ. Then

(7.6) e−(fmin+δ)/εμ(Iδ) ≤
∫ b

a
e−f (x)/εμ(dx).

Since

lim sup
ε→0+

ε logμ
([a, b])= lim inf

ε→0+ ε logμ(Iδ) = 0,

estimates (7.5) and (7.6) yield

−(fmin + δ) ≤ lim inf
ε→0+ ε log

∫ b

a
e−f (x)/εμ(dx) ≤ lim sup

ε→0+
ε log

∫ b

a
e−f (x)/ε ≤ −fmin.

The claim follows by letting δ ↓ 0. �

The next lemma is elementary so we leave the proof to the reader.
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LEMMA 7.6. Assume that λ1 > λ2 ≥ 0, and f1 and f2 are nonnegative functions such
that

lim
ε→0+ ε logfj (ε) = −λj ,

for j = 1,2. Then

lim
ε→0+ ε log

(
f2(ε) ± f1(ε)

)= −λ2.

Let H1(x) = x−1.

PROPOSITION 7.7. The random vector (A,B) with density (7.4) has (1,H1)-LDM given
by

g(x) = 1

2
− 1

x + 2 + √
4 + x2

.

PROOF. It has been proved in [9], Prop. 8.1, that g(0) = 1/4.
We will compute g(x) for x > 0. In the following calculation we use formula (7.4), and

the substitution a = u2 on the last line.

P(εAx + B < ε)

=
∫ 1/x

0

∫ ε−εax

0

1

2πb2
√

a

[
exp

(
−(a1/2 − 1

2)2 + 1
4

b

)

− exp
(
−(a1/2 + 1

2)2 + 1
4

b

)]
db da

=
∫ 1/x

0

1

2π
√

a

[exp(− (a1/2−1/2)2+1/4
ε(1−ax)

)

(a1/2 − 1/2)2 + 1/4
− exp(− (a1/2+1/2)2+1/4

ε(1−ax)
)

(a1/2 + 1/2)2 + 1/4

]
da

=
∫ 1/

√
x

0

1

π

[exp(− (u−1/2)2+1/4
ε(1−u2x)

)

(u − 1/2)2 + 1/4
−

exp(− (u+1/2)2+1/4
ε(1−u2x)

)

(u + 1/2)2 + 1/4

]
du.

(7.7)

If we define measures μ1 and μ2 by

μ1
([x1, x2])= ∫ x2

x1

1

π

1

(u − 1/2)2 + 1/4
du,

μ2
([x1, x2])= ∫ x2

x1

1

π

1

(u + 1/2)2 + 1/4
du,

then (7.7) can be written as

P(εAx + B < ε)

=
∫ 1/

√
x

0
exp

(
−(u − 1/2)2 + 1/4

ε(1 − u2x)

)
μ1(du)

−
∫ 1/

√
x

0
exp

(
−(u + 1/2)2 + 1/4

ε(1 − u2x)

)
μ2(du).

(7.8)

The function u �→ (u−1/2)2+1/4
1−u2x

attains the minimum value of

1

2
− 1

x + 2 + √
4 + x2

,



2834 K. BURDZY, B. KOŁODZIEJEK AND T. TADIĆ

at 2√
4+x2+2+x

∈ (0,1/
√

x). Thus Lemma 7.5 implies that

lim
ε→0+ ε log

∫ 1/
√

x

0
exp

(
−(u − 1/2)2 + 1/4

ε(1 − u2x)

)
μ1(du) = −1

2
+ 1

x + 2 + √
4 + x2

.(7.9)

The function u �→ (u+1/2)2+1/4
1−u2x

is increasing on [0,1/x], so it achieves the minimum of
1/2 at 0. Lemma 7.5 yields

lim
ε→0+ ε log

∫ 1/
√

x

0
exp

(
−(u + 1/2)2 + 1/4

ε(1 − u2x)

)
μ2(du) = −1/2.

This, (7.8), (7.9) and Lemma 7.6 imply that

lim
ε→0+ ε logP(εAx + B < ε) = −1

2
+ 1

x + 2 + √
4 + x2

.

The proposition now follows from (3.2). �

Recall Definitions 3.8 and 3.14.

PROPOSITION 7.8. We have

φ1(λ) =
⎧⎨⎩

1

4

(
2
√

λ − λ2 + 1
)

if λ ∈ [0,1/2),

1/2 if λ ≥ 1/2.
(7.10)

The fixed point of φ1 is equal to λ∗ = 1/2.

PROOF. For a fixed λ ∈ [0,1/2) the function

x �→ 1

2
− 1

x + 2 + √
x2 + 4

+ λ

x

attains the minimum of 1
4(2

√
λ − λ2 + 1) at x = 4

√
λ(1−λ)

1−2λ
. For λ ≥ 1/2, it attains the mini-

mum of 1/2 at x = ∞. This proves (7.10). It is easy to check that φ1(1/2) = 1/2 and there
are no other fixed points. �

LEMMA 7.9. If X is an IED1
H1

(λ)-random variable with λ > 0, then

lim
t→∞

1

t2 logP
(
X−1/2 ≥ t

)= −λ.

PROOF. Recall that H1(x) = x−1 and use the definition of IED random variables. �

Let

(�n,�n) =
(

Yn+1

Yn

,
Tn+1 − Tn

Y 2
n

)
for n ≥ 0. Then

Tn

Y 2
n

= Tn−1 + Y 2
n−1�n−1

�2
n−1Y

2
n−1

= 1

�2
n−1

Tn−1

Y 2
n−1

+ �n−1

�2
n−1

.
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If we set

X0 = 0,(7.11)

Xn = Tn/Y 2
n ,(7.12)

An = �−2
n−1,(7.13)

Bn = �n−1/�2
n−1,(7.14)

for n ≥ 1 then

Xn = AnXn−1 + Bn.(7.15)

LEMMA 7.10. The sequence (�n,�n)n≥0 is i.i.d. with elements distributed as (Y1, T1).
The sequence (An,Bn) is i.i.d. and its elements are distributed as (A,B) in (7.4).

PROOF. Recall the definition (7.1). By the strong Markov property and the scaling prop-
erty of Brownian motion, for every k ≥ 1,(Y(Tk + tY 2

k )

Yk

, t ≥ 0
)

has the same distribution as (Y(t), t ≥ 0) and is independent of (Y(t), t ∈ [0, Tk]). Hence,

(7.16) (�n,�n)n≥0 :=
(

Yn+1

Yn

,
Tn+1 − Tn

Y 2
n

)
n≥0

is an i.i.d. sequence with elements distributed as (Y1, T1).

The sequence (An,Bn)n≥1 is i.i.d. because (�n,�n)n≥0 is i.i.d. Since (�n,�n)
d= (Y1, T1)

for all n, it follows that (An,Bn) are distributed as (A,B) in (7.4). �

LEMMA 7.11. We have

lim
t→∞

1

t2 logP
(
X

−1/2
1 ≥ t

)= −1/4.(7.17)

PROOF. By Remark 3.6 random variable B1 is IED1
H1

(λ1), where λ1 = g(0). It follows

from Proposition 7.7 that g(0) = 1/4 so X1 = B1 is IED1
H1

(1/4). Lemma 7.9 now yields
(7.17). �

We will need the following version of the results by Kesten [17] and Goldie [12], formu-
lated in [6], Theorem 2.4.4.

THEOREM 7.12. Assume that (A,B) satisfy the following conditions.

(i) A ≥ 0, a.s., and the law of logA conditioned on {A > 0} is nonarithmetic, that is, it
is not supported on aZ for any a > 0.

(ii) There exists α > 0 such that E[Aα] = 1, E[|B|α] < ∞ and E[Aα log+ A] < ∞.
(iii) P(Ax + B = x) < 1 for every x ∈R.

Then the equation X
d= AX + B has a solution. There exist constants c+, c− such that c+ +

c− > 0 and

P(X > x) ∼ c+x−α and P(X < −x) ∼ c−x−α when x → ∞.(7.18)
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The constants c+, c− are given by

c+ = 1

αmα

E
[
(AX + B)α+ − (AX)α+

]
, c− = 1

αmα

E
[
(AX + B)α− − (AX)α−

]
,

where mα = E[Aα logA].

COROLLARY 7.13. There exists c1 > 0 such that for all x ≥ 0,

(7.19) P

(
Yn√
Tn

≤ x

)
≤ c1x.

PROOF. Recall (7.11)–(7.15). Suppose that the law of X is the solution to (2.1). By
Lemma 2.4,

P(Xn ≥ x) ≤ P(X ≥ x).(7.20)

We will now verify the assumptions of Theorem 7.12. Assumptions (i) and (iii) clearly
hold in view of (7.4). We will show that assumption (ii) holds for α = 1/2.

It has been proved in [9], Prop. 8.1, that

P(A ∈ da) = 4

π(4a2 + 1)
da, a > 0,

P(B > x) ∼ 1

πx
as x → ∞.

(7.21)

These formulas imply that

E
[
A1/2]= ∫ ∞

0
a1/2 4

π(4a2 + 1)
da = 1,

E
[
A1/2 log+ A

]= ∫ ∞
0

a1/2(log+ a
) 4

π(4a2 + 1)
da < ∞,

E
[|B|1/2]< ∞.

The assumptions of Theorem 7.12 are verified so we obtain

P(X ≥ x) ∼ c+x−1/2,

as x → ∞. This and (7.20) give

P

(
Yn√
Tn

≤ x−1/2
)

= P
(
X−1/2

n ≤ x−1/2)≤ P
(
X−1/2 ≤ x−1/2)∼ c+x−1/2.

This implies the lemma. �

PROOF OF THEOREM 7.1.. We can apply Theorem 6.1 and Proposition 7.8 to see that,
a.s.,

lim inf
n→∞ (logn)

Tn

Y 2
n

= lim inf
n→∞ (logn)Xn = λ∗ = 1

2
.

Hence, a.s.,

(7.22) lim sup
n→∞

Yn√
2Tn logn

= 1.

We will show that log logTn

logn
→ 1 a.s. It follows from (7.16) that Yn =∏n−1

j=1 �j .
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It was pointed out in [15], page 360, that the logarithm logY1 is integrable and it was
determined numerically that E[logY1] ≈ 0.34. In the following calculation we use the fact
that Y1 = �0 = A

−1/2
1 , formula (7.21), and substitutions 2a = x and y = 1/x,

E[logY1] = −E[logA]/2 = −1

2

∫ ∞
0

4 loga

π(4a2 + 1)
da = −

∫ ∞
0

log(x/2)

π(x2 + 1)
dx

= −
∫ 1

0

logx

π(x2 + 1)
dx −

∫ ∞
1

logx

π(x2 + 1)
dx +

∫ ∞
0

log 2

π(x2 + 1)
dx

= −
∫ 1

0

logx

π(x2 + 1)
dx +

∫ 1

0

logy

π(y2 + 1)
dy + log 2

π
arctanx|∞0 = log 2

2
.

Thus, by the law of large numbers, a.s.,

lim
n→∞

logYn

n
= E[logY1] = log 2

2
.(7.23)

Consider any ε > 0. By Lemmas 2.4 and 7.11, for large n,

P

(
Tn

Y 2
n

≤ e−nε

)
= P

(
Xn ≤ e−nε)≤ P

(
X1 ≤ e−nε)< exp

(−(1/8)enε).(7.24)

By Corollary 7.13,

P

(
Y 2

n

Tn

≤ e−nε

)
≤ c1e

−nε/2.

This and (7.24) imply that

∞∑
n=1

P

(∣∣∣∣ logTn − 2 logYn

n

∣∣∣∣> ε

)
=

∞∑
n=1

[
P

(
Y 2

n

Tn

≤ e−nε

)
+ P

(
Tn

Y 2
n

≤ e−nε

)]
< ∞.

By the Borel–Cantelli lemma, only a finite number of events {| logTn−2 logYn

n
| > ε} occur, a.s.

Since this holds for every rational ε > 0, we have logTn−2 logYn

n
→ 0 a.s. We combine this

observation with (7.23) to obtain

lim
n→∞

logTn

n
= log 2 a.s.

This implies that

lim
n→∞

log logTn

logn
= 1 a.s.

It follows from this and (7.22) that, a.s.,

lim sup
n→∞

Yn√
2Tn log logTn

= 1,

so the proof is complete. �

APPENDIX

This section is a part of the proof of Theorem 6.1. Because of the specialized nature of this
material we relegated it to an appendix.



2838 K. BURDZY, B. KOŁODZIEJEK AND T. TADIĆ

LEMMA A.1. Assume that ε̃, λ∗, ε > 0 and y∗ > 1. Suppose that H is regularly varying
at 0 with index −ρ < 0 and H−1 is its inverse. There exists a strictly increasing sequence
(kn) of integers such that for each n ≥ 1,

H−1
(

logkn+1

λ∗(1 + ε)

)
y

kn+1−kn−1∗ < ε̃,(A.1)

H−1
(

logkn+1

λ∗(1 + ε)

)
y

kn+1−kn∗ ≥ c,(A.2)

where c ∈ (0, ε̃y∗).
Moreover, for any γ ∈ (0,1) there exists K > 0 such that for all n ≥ 1,

kγ
n ≤ Kn.(A.3)

Recall that H−1 is regularly varying at infinity with index −1/ρ. Let f (x) be defined for
x > 1 by

f (x) = log ε̃ − 1

logy∗
logH−1

(
logx

λ∗(1 + ε)

)
,

so that for any kn, kn+1 > 1,

H−1
(

logkn+1

λ∗(1 + ε)

)
y

kn+1−kn∗ = ε̃y
kn+1−kn−f (kn+1)∗ .(A.4)

LEMMA A.2. For any δ > 0, there exist C1,C2 ∈R such that

C1 + 1/ρ − δ

logy∗
log logx ≤ f (x) ≤ C2 + 1/ρ + δ

logy∗
log logx

for sufficiently large x.

PROOF. By regular variation of H−1, we have for any δ > 0,

lim
x→∞x1/ρ+δH−1(x) = ∞,

lim
x→∞x1/ρ−δH−1(x) = 0.

Thus, there exists x1 > 0 such that

x−1/ρ−δ ≤ H−1(x) ≤ x−1/ρ+δ

for x > x1. The assertion follows by using above inequalities in the definition of f . �

Suppose that a0 > 0 is such that f (a0) ≥ 1 and let

an+1 = an + f (an), n ≥ 0.

LEMMA A.3. The following claims hold for the sequence (an).

(i) an+1 ≥ an + 1 for n ≥ 0.
(ii) For any γ ∈ (0,1), there exists K > 0 such that

aγ
n ≤ Kn, n ≥ 1.

(iii) an+1/an → 1 as n → ∞.
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PROOF. (i) Since f is nondecreasing, we have

an+1 − an = f (an) ≥ f (a0) ≥ 1.

(ii) We use induction and Lemma A.2. Fix γ ∈ (0,1) and δ > 0. Let C2 be as in
Lemma A.2. Suppose that K is so large that,

C2 + 1/ρ + δ

γ logy∗
logK + 1/ρ + δ

logy∗
1

1 − γ
≤ K1/γ

γ
.(A.5)

Make K larger if necessary so that a
γ
1 ≤ K .

For the induction step, assume that a
γ
n ≤ Kn for some n. Note that logn ≤ 1

1/γ−1n1/γ−1.
We use this inequality and (A.5) to see that,

an+1 = an + f (an) ≤ (Kn)1/γ + f
(
(Kn)1/γ )

≤ (Kn)1/γ + C2 + 1/ρ + δ

logy∗
log log(Kn)1/γ

≤ (Kn)1/γ + C2 + 1/ρ + δ

logy∗
log(Kn)1/γ

= (Kn)1/γ +
[
C2 + 1/ρ + δ

γ logy∗
logK

]
+ 1/ρ + δ

γ logy∗
logn

≤ (Kn)1/γ +
[
C2 + 1/ρ + δ

γ logy∗
logK

]
n1/γ−1 + 1/ρ + δ

γ logy∗
1

1/γ − 1
n1/γ−1

≤ (Kn)1/γ + K1/γ

γ
n1/γ−1 ≤ (K(n + 1)

)1/γ
,

where the last inequality follows by convexity of x �→ x1/γ . Part (ii) follows by induction.
(iii) By the definition of (an) and Lemma A.2 we have

an+1

an

= 1 + f (an)

an

→ 1. �

PROOF OF LEMMA A.1. Let

kn = �an�.
Since an ≤ kn < an + 1 ≤ an+1 ≤ kn+1 < an+1 + 1, we have

y∗ = y
(an+1+1)−an−f (an)∗ > y

kn+1−kn−f (kn+1)∗ > y
an+1−(an+1)−f (kn+1)∗

= y
−1+f (an)−f (kn+1)∗ .

(A.6)

By Lemma A.3(ii) an+1/an → 1, by Lemma A.3(i) an → ∞, and by Lemma A.2 f (x) → ∞
as x → ∞, so kn+1/an → 1 as n → ∞. It follows that

f (an) − f (kn+1) = 1

logy∗ log
H−1(

logkn+1
λ∗(1+ε)

)

H−1(
logan

λ∗(1+ε)
)

→ 0, n → ∞.

Hence y
−1+f (an)−f (kn+1)∗ , that is, the right-hand side of (A.6), converges to 1/y∗ as n → ∞.

Thus, by (A.4) and (A.6), for large n,

ε̃y∗ > H−1
(

log kn+1

λ∗(1 + ε)

)
y

kn+1−kn∗ ≥ ε̃

2y∗
.

Since ε̃/(2y∗) < ε̃y∗, this implies (A.1)–(A.2).
The bound (A.3) follows from Lemma A.3(ii). �
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