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1. Introduction

Consider the space M+ of probability measures on [0, +∞). For μ, ν ∈ M+ we have 
natural operations of convolutions: additive denoted by μ ∗ ν and multiplicative μ � ν, 
which correspond to distributions of the sum and the product of independent random 
variables. One of the important characteristics of a probability measure μ ∈ M+ is its tail 
behavior at +∞, more precisely one can ask at what rate the function μ̄(t) := μ

(
(t, +∞)

)
goes to zero when t → +∞. Tail behavior determines many properties of a measure like 
existence of moments or its domain of attraction. One can also ask how tails of μ ∗ ν

and μ � ν behave, given that the tail asymptotics of μ and ν are known. Clearly, since 
the multiplicative convolution corresponds to the distribution of X · Y for independent 
X, Y one can reduce it to the case of additive convolution upon taking the logarithm 
(where one considers the operation ∗ on the set M of all probability measures on R). 
Tail asymptotics of additive convolutions is a classical and well studied problem.

In parallel to the classical theory one can consider a non-commutative probability 
space, where classical random variables are replaced by non-commutative operators. In 
non-commutative probability there are several possible notions of independence, among 
which the most prominent is freeness defined by Voiculescu [21]. Freeness allows to 
define counterparts of operations ∗ and �, the free additive convolution � and the free 
multiplicative convolution �. In this paper we focus on free multiplicative convolutions. 
Similarly as �, the operation � is a binary operation defined on M+ × M+, taking 
values in M+. Given μ, ν ∈ M+ one can consider two freely independent operators 
X, Y with respective distributions μ and ν. Then X1/2Y X1/2 has the distribution μ �
ν. One should note that, despite the fact that X and Y above do not commute, the 
operation � is actually commutative i.e. we always have μ �ν = ν�μ. In [22] Voiculescu 
showed existence of a transform (so-called S-transform) which is multiplicative under 
the operation � in M+, that is one has:

Sμ�ν(t) = Sμ(t)Sν(t) for t ∈ (−ε, 0) (1.1)

for some ε > 0. In [22], S-transform is considered in a more general framework, where it 
takes complex argument. For our purposes it is enough to consider the S-transform as a 
function of real argument. Initially free multiplicative convolution was defined for com-
pactly supported measures, in [6] the authors extended the definition of free convolutions 
to all probability measures. Since equation (1.1) is the only fact from free probability 
theory which is relevant for our paper, we decided to not introduce the notion of free 
independence, instead we refer to one of the monographs [18,19].

The free multiplicative convolution appears naturally in the theory of random matri-
ces. Assume that compactly supported probability measures μ and ν are the a.s. weak 
limits of eigenvalue distributions of sequences of N × N matrices as N → +∞. Let 
us denote these sequences by (XN )N and (YN )N and assume that distribution of one 
of these sequences is invariant by conjugation with independent Haar unitary matrices. 
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Then, μ � ν is a.s. the weak limit of the eigenvalue distribution of product X1/2
N YNX

1/2
N

provided XN and YN are independent in the classical sense and XN is positive definite 
for each N ∈ N [23].

In contrast to the commutative case, in the framework of non-commutative probability 
one cannot simply reduce the operation � to the additive case. In fact the free multi-
plicative convolution has some surprising properties. Such differences are manifested for 
example in the context of infinitely divisible distributions. Denote by ID(∗) and ID(�)
the set of infinitely divisible measures under ∗ and � respectively. It was observed in [4]
that there is a bijection B : ID(∗) → ID(�), such that for each μ ∈ ID(∗) its domain of 
attraction is the same as the domain of attraction of B(μ) ∈ ID(�). One can consider 
similar mapping between the sets ID(�) and ID(�). In [5] the authors showed that 
such mapping can be defined, but fails to work as well as in the additive case. Another 
difference can be observed in the context of laws of large numbers. For c > 0 we denote 
by Dc(μ) the pushforward of μ by the mapping x �→ cx, that is Dc(μ)(A) = μ(A/c)
for any Borel set A. Classical law of large numbers says that D1/n(μ∗n) → δα weakly, 
where α is the mean value of μ. Similar results hold for the free additive convolution, 
that is we have D1/n(μ�n) → δα. The law of large numbers for classical multiplicative 
convolution follows again from the additive case, more precisely let ψc(μ) be the push-
forward of μ corresponding to the mapping x �→ xc for x, c > 0, then one immediately 
has ψ1/n(μ�n) → δβ with β = exp (

∫
log(t)μ(dt)). For the free multiplicative case it 

was shown in [13] that ψ1/n(μ�n) → ν weakly, where in general ν is not a Dirac delta 
measure.

The surprising behavior of the free multiplicative convolution motivates further study 
of this operation, in particular the study of the related tail behavior. Tail behavior 
of the free additive convolutions was studied in [15] in the context of so-called free 
subexponentiality. In particular the authors showed that if μ is such that its tail μ̄
is regularly varying then μ̄�n(t) ∼ nμ̄(t), where f(t) ∼ g(t) means that the quotient 
f(t)/g(t) goes to 1 as t tends to +∞. Let us stress that such behavior coincides with the 
classical case of ∗. Related studies were performed for Boolean additive and multiplicative 
convolutions in [10].

We also work in the framework of measures with regularly varying tails. Let us briefly 
recall some basic facts about regularly varying functions. A function f is called regularly 
varying with index α if for every λ > 0 one has f(λx)/f(x) → λα as x → +∞, when 
α = 0 then f is called slowly varying. For ρ ∈ R we write Rρ for the class of regularly 
varying functions with index ρ, which consists of functions f of the form f(x) = xρL(x)
for some L ∈ R0.

Definition 1.1. We say that μ has regularly varying tail at infinity with index −α ≤ 0 if

μ̄(x) = μ
(
(x,+∞)

)
∼ L(x)

xα
(1.2)

for a slowly varying function L.
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Our main result is a free probability analogue of the following classical result. Point 
(i) below follows from additive subexponentiality of the pushforward measure of μ under 
the log, while (ii) can be found e.g. in [16].

Theorem 1.2.
(i) Assume that μ ∈ M+, L ∈ R0 and β > 0. If μ̄(x) ∼ L(log(x))/ log(x)β, then

μ�n
(
(x,+∞)

)
∼ n μ̄(x).

(ii) If μ̄(x) ∼ c x−α with c, α > 0, then

μ�n
(
(x,+∞)

)
∼ αn−1cn−1

(n− 1)! logn−1(x)μ̄(x).

The behavior of the tails of the free multiplicative convolution is much more com-
plicated. The result below is another evidence that the free multiplicative convolution 
behaves in a distinctive way. We observe a phase transition for (1.2) between the cases 
0 < α < 1 and α > 1. We observe that the case α = 1 with first moment finite is the 
same as α > 1. Moreover we describe the case α = 1 when the slowly varying function 
is constant, surprisingly this case is very similar to the classical case. Also in the case 
when the tail is slowly varying, corresponding to α = 0, we work with the special case 
μ̄(x) ∼ L(log(x))/ log(x)β similarly as in the theorem above. Recall that for the free 
multiplicative convolution one can consider fractional convolution powers μ�t for any 
t ≥ 1, see [2].

Theorem 1.3.
(i) If μ ∈ M+ and μ̄(x) ∼ L(log(x))/ log(x)β for L ∈ R0 and β > 0, then for t ≥ 1,

μ�t
(
(x,+∞)

)
∼ tβ μ

(
(x,+∞)

)
.

(ii) Assume μ ∈ M+ satisfies (1.2) for α ∈ (0, 1). Then for t ≥ 1 we have 
μ�t

(
(·, +∞)

)
∈ R−αt

, where

αt = α

α + t(1 − α) .

In particular, if μ̄(x) ∼ c/xα for some α ∈ (0, 1) and c > 0, then for t ≥ 1 one has,

μ�t
(
(x,+∞)

)
∼ ct,α

xαt
,

where

ct,α =
(
c

πα
)t/(α+t(1−α)) sin(παt)

.
sin(πα) παt
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(iii) If μ ∈ M+ is such that μ̄(x) ∼ c/x with c > 0, then for t ≥ 1,

μ�t
(
(x,+∞)

)
∼ ct−1t log(x)t−1μ

(
(x,+∞)

)
.

(iv) Let α ≥ 1 and assume μ ∈ M+ satisfies (1.2) and has first moment (denoted 
m1(μ)) finite. Then for t ≥ 1 we have

μ�t
(
(x,+∞)

)
∼ tm1(μ)α(t−1)μ

(
(x,+∞)

)
.

In order to illustrate the phase transition phenomenon let us examine the tail behavior 
of the free convolution powers for the family of Pareto distributions.

Example 1.4 (Phase transition for Pareto distributions). Consider the family (μα)α>0 of 
Pareto distribution given by the density μα(dx) = α/xα+11[1,+∞)(x)dx. Then for x > 1
we have μα

(
(x, +∞)

)
= 1/xα, also for α > 1 we get m1(μα) = α/(α− 1). Then for the 

tail of μ�t
α , with notations as in the theorem above, we get

μ�t
α

(
(x,+∞)

)
∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ct,α x

− α
α+t(1−α) for α ∈ (0, 1),

t log(x)t−1x−1 for α = 1,

t
(

α
α−1

)α(t−1)
x−α for α > 1.

Our main tool which allows us to prove the theorem above is a detailed description 
of the asymptotic properties of S-transforms, which allows us to completely characterize 
the behavior of the S-transform of measures with regularly varying tails. Depending on 
the index, we observe several different regimes. We present the results about the relation 
between the S-transform and the tail at +∞ in Section 4.

The tools developed in Section 4 allow us also to study � infinitely divisible probability 
measures. They are parameterized in terms of a real number γ and a finite measure σ
on [0, +∞], thus we will write μγ,σ

� , for a � infinitely divisible measure parameterized 
by γ and σ. We find a precise relation between the left (resp. right) tail of σ and right 
(resp. left) tail of μγ,σ

� . The precise statement is more complicated than for the case of 
convolution powers, we refer to Section 6. Let us just mention that again we obtain a 
behavior which resembles Example 1.4. We observe a phase transition for the tail of μγ,σ

�
with critical case when σ has regularly varying left tail with parameter α = 1. We refer 
to Example 6.9 for an explicit example of a family of measures σ for which we get a 
discontinuous change of tail asymptotics of corresponding measures μγ,σ

� .
This paper has 6 more sections. In Section 2 we introduce all necessary facts from 

the theory of regularly varying functions and some Tauberian theorems. In Section 3 we 
introduce some facts from so-called free harmonic analysis, we define all transforms that 
we need, present some of their basic properties and we make some useful new observations 
about the S-transform. In Section 4 we present our main technical results, that is, for 
μ ∈ M+ with regularly varying tail we characterize the behavior of the S-transform of 
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μ at 0−. In Section 5 we prove Theorem 1.3. Section 6 is devoted to the study of tails 
�-infinitely divisible measures. In Section 7 we gather some more consequences of the 
results of Section 4 which are not directly related with the phase transition phenomenon. 
In particular we discuss free counterpart of Breiman’s lemma, we determine the left tail of 
μ in terms of its S-transform and discuss how our results extend to symmetric probability 
measures.

2. Preliminaries

In this section we discuss in detail the theory of regular variation, Tauberian theo-
rems that we need and also some aspects of free harmonic analysis which we use in the 
subsequent sections. We intend to introduce the reader with all background needed to 
understand our results.

2.1. Regular variation

We say that two functions f, g defined on a neighborhood of infinity are asymptotically 
equivalent if f(x) ∼ g(x). Recall that Rρ denotes the class of regularly varying functions 
with index ρ ∈ R. Function L ∈ R0 is called slowly varying and we have L(x) = o(xε)
as x → +∞ for any ε > 0.

Theorem 2.1 ([7, Section 1.7.7]). If f ∈ Rα with α 
= 0, then there exists g ∈ R1/α such 
that

f(g(x)) ∼ g(f(x)) ∼ x.

Function g is determined uniquely up to asymptotic equivalence. Moreover if f(x) ∼
xabLa(xb) for L ∈ R0 and a, b > 0, then

g(x) ∼ x1/(ab)L#1/b(x1/a),

where L# is a slowly varying function, unique up to asymptotic equivalence, with

lim
x→+∞

L(x)L#(xL(x)) = 1 and lim
x→+∞

L#(x)L(xL#(x)) = 1.

In particular, if L(x) =
∏n

k=1(log(◦k)(x))αk , where log(◦k) is the k fold composition of 
log, then

L#(x) ∼ 1/L(x).

For a fixed function L, the function L# goes under the name de Bruijn conjugate of 
L.
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We will also use the “second-order theory” of regular variation due to de Haan. First 
we need to introduce a proper subclass of R0.

Definition 2.2. If L ∈ R0, we write f ∈ ΠL(c) with c ∈ R if

lim
x→+∞

f(λx) − f(x)
L(x) = c log(λ)

for all λ > 0.

Remark 2.3. If f ∈ ΠL(c) with c > 0, then f(x)/L(x) → +∞ as x → +∞, [7, Proposition 
1.5.9a]. Moreover, 1/f ∈ ΠL/f2(−c), [11, Proposition 1].

Observe that f(λx)/f(x) = 1 +[(f(λx) − f(x))/L(x)]·[L(x)/f(x)], hence by the above 
remark and the definition of ΠL(c), for any c > 0 and L ∈ R0, we have that ΠL(c) ⊂ R0.

Theorem 2.4 ([7, Theorem 3.6.6, Theorem 3.7.1]). The following are equivalent:

(i) f ∈ ΠL(c),
(ii) There exist constants x0 ≥ 0 and C, d ∈ R such that for x ≥ x0,

f(x) = C + c

x∫
x0

(1 + o(1))L(t)
t

dt + d(1 + o(1))L(x),

where both functions o(1) are measurable,
(iii) For any σ > 0,

σxσ

∞∫
x

u−σ−1f(u)du− f(x) ∼ c

σ
L(x).

Assume that L ∈ R0 and f1 ∈ ΠL(c) for some c 
= 0. We say that f1 and f2 are 
ΠL-equivalent (denoted f1(x) ∼ΠL

f2(x)) if the limit

lim
x→+∞

f1(x) − f2(x)
L(x)

exists and is finite. Clearly, ∼ΠL
is an equivalence relation on ∪cΠL(c).

As follows from Theorem 2.1, de Bruijn conjugate pairs (L, L#) appear naturally 
when we look for asymptotic inverses of regularly varying functions. However, when 
dealing with slowly varying functions in the subclass ΠL, a stronger notion of conjugacy 
is required.

Henceforth we will use notation f 〈−1〉 for the compositional inverse of f .
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Definition 2.5. Assume that function f ∈ ΠL(c) is continuous and such that x �→ xf(x) is 
increasing. Without loss of generality we may assume that c ∈ {−1, 1}. Define a function 
v on (0, +∞) by

v(x) = xf(x),

which clearly is invertible. Writing its inverse as,

v〈−1〉(x) = xf∗(x),

the function f∗ : (0, +∞) → (0, +∞) is called the Π-conjugate function for f ∈ ΠL(±1). 
Equivalently, f∗ can be defined through the condition, [11, Page 1032],

lim
x→+∞

f(x)
L(x)

(
f(x)f∗(xf(x)) − 1

)
= 0.

Observe that since f(x)/L(x) → +∞ as x → +∞, function f∗ is also de Bruijn 
conjugate for f .

Theorem 2.6 ([11, Theorem 1]).

(i) f ∈ ΠL(±1) if and only if

f∗ ∈ ΠM (∓1),

where M(x) := L(xf∗(x))f∗(x)2 ∈ R0.
(ii) f∗ is unique up to the equivalence class ∼ΠM

on ΠM .
(iii) f∗∗(x) ∼ΠL

f(x).

We say that a measurable function f is rapidly varying (denoted f ∈ R∞) if

lim
x→+∞

f(λx)
f(x) = +∞

for all λ > 1. We are interested in a proper subclass KR∞ of R∞, which is classically 
defined as a family of measurable functions for which Karamata indices are +∞ [7, 
Section 2.4]. Equivalently, one can define it as follows (see [7, Proposition 2.4.3]).

Definition 2.7. We write f ∈ KR∞ if and only if f is measurable and for every d ∈ R,

lim inf
x→+∞

inf
λ≥1

f(λx)
λdf(x) ≥ 1.

Below we list important properties of KR∞.
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Theorem 2.8.
(i) [7, Theorem 2.4.7] Assume that f is continuous and increasing to +∞. Then,

f ∈ R0 if and only if f 〈−1〉 ∈ KR∞.

(ii) [7, Proposition 2.4.4] If f ∈ R∞ is nondecreasing, then f ∈ KR∞.
(iii) [7, Theorem 2.4.5] f ∈ KR∞ if and only if

f(x) = exp

⎛⎝z(x) + η(x) +
x∫

1

ξ(t)dt
t

⎞⎠ , x ≥ 1,

where functions z, η and ξ are measurable and such that z is nondecreasing, η(x) →
0 and ξ(x) → +∞ as x → +∞.

We will need also the following easy result.

Remark 2.9. Let f be measurable and increasing. Then,

f(x) ∈ KR∞ if and only if (x− 1)f(x) ∈ KR∞.

Indeed, it follows from Definition 2.7 and the fact that for x ≥ 2 and λ ≥ 1 we have

f(λx)
λdf(x) ≤ f(λx)(λx− 1)

λdf(x)(x− 1) ≤ f(λx)
λd−2f(x) .

2.2. Transforms

Let M+ denote the set of Borel probability measures on R+ = [0, +∞). For μ ∈ M+
and p ∈ R denote

mp(μ) :=
∫

[0,+∞)

tpμ(dt).

Definition 2.10. For p ∈ N ∪ {0} denote by Mp the set on measures which have finite 
moments only up to pth one, i.e.

Mp = {μ ∈ M+ : mp(μ) < +∞ and mp+1(μ) = +∞}.

In what follows for μ ∈ M+ we will denote its tail by

μ̄(t) := μ
(
(t,+∞)

)
, t ≥ 0.

Let us make some simple observation about regularly varying tails following from the 
fact that mp(μ) = p 

∫ +∞
tp−1μ̄(t) dt, p ∈ N.
0
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Remark 2.11. Assume that μ ∈ M+ is such that t �→ μ̄(t) is regularly varying with index 
−α ≤ 0 and slowly varying function L.

Then, μ belongs to Mp, p ∈ N, if and only if one of the following conditions is satisfied

(a) α ∈ (p, p + 1),
(b) α = p and 

∫ +∞
1 L(t)/t dt < +∞,

(c) α = p + 1 and 
∫ +∞
1 L(t)/t dt = +∞.

Probability measure μ belongs to M0 if and only if one of the following conditions is 
satisfied

(a′) α ∈ [0, 1),
(b′) α = 1 and 

∫ +∞
1 L(t)/t dt = +∞.

We conclude this section with a result similar to [3, Lemma 1]. We will refer to the 
type of expansion appearing in (2.2) as “one sided Taylor expansion”.

Lemma 2.12. Consider a function f : (−δ, 0) → R and assume that f is C∞(−δ, 0) for 
some δ > 0. Fix an integer p and suppose that there exists ε ∈ [0, 1) such that

f (p) (z) = o(z−ε), z → 0−. (2.1)

Then, there exists a real sequence (fk)p−1
k=0 such that, for each n ∈ {0, . . . , p − 1} we have

f (n)(z) =
p−1−n∑
k=0

fk+n

k! zk + o(zp−n−ε), z → 0−. (2.2)

The above result is proved by the successive integration of (2.1) over interval (z, 0), 
z < 0. Then, we clearly have fn = f (n)(0−).

2.3. Tauberian theorems

This section is devoted to Tauberian theorems. We state some known result that we 
need in the subsequent sections, we present also proofs of results which are not available 
in research literature, thus some results of this subsection are new.

Theorem 2.13 ([7, Theorem 1.6.4]). Assume that μ ∈ M+. For any number α and n
such that 0 < α < n, the following assertions are equivalent:

μ̄(x) ∼ x−αL(x),∫
tnμ(dt) ∼ α

n− α
xn−αL(x).
[0,x]
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Theorem 2.14 ([7, Theorem 1.7.4]). Assume that U is nondecreasing, U(0−) = 0 and 
ρ > 0. Then, if c is a positive constant, 0 ≤ σ < ρ and L ∈ R0, the following assertions 
are equivalent:

U(x) ∼ c xσL(x),∫
[0,+∞)

dU(t)
(t + x)ρ ∼ c

Γ(ρ− σ)Γ(σ + 1)
Γ(ρ) xσ−ρL(x).

Corollary 2.15. Let L ∈ R0 and let α ∈ [p, p + 1) for some p ∈ N ∪ {0}. The following 
assertions are equivalent:

(i) μ̄(x) ∼ x−αL(x),
(ii)

∫
[0,x] t

p+1μ(dt) ∼ α
p+1−αx

p+1−αL(x),
(iii)

∫
[0,+∞)

tp+1

(t+x)p+2μ(dt) ∼ αΓ(α+1)Γ(p+1−α)
(p+1)! x−α−1L(x).

Proof. Equivalence between (i) and (ii) follows from Theorem 2.13.
To prove equivalence between (ii) and (iii) define U(x) :=

∫
[0,x] t

p+1μ(dt). In such 
case, ∫

[0,+∞)

tp+1

(t + x)p+2μ(dt) =
∫

[0,+∞)

dU(t)
(t + x)p+2 .

Moreover, U is nondecreasing and U(0−) = 0. Thus, the result follows from Theorem 2.14
with ρ = p + 2, c = α/(p + 1 − α) and σ = p + 1 − α. �
Definition 2.16. For a kernel k : (0, +∞) → R its Mellin transform is defined as

ǩ(z) :=
∞∫
0

1
tz
k(t)dt

t

for z ∈ C such that the integral converges.
For functions k, f : (0, +∞) → R we define their Mellin convolution by

k
M∗ f(x) :=

∞∫
0

k
(x
t

)
f(t)dt

t

for those x > 0 for which the integral converges.

Definition 2.17. For p ∈ N ∪ {0} we define kernel kp : R → [0, 1] by

kp(x) = xp+1I[0,1](x). (2.3)
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It can be easily checked that ǩp is absolutely convergent for �z < p + 1 and for such 
z we have

ǩp(z) = 1
1 + p− z

. (2.4)

Theorem 2.18. Let γ < 1 + p and let L ∈ R0. Assume that

f(x) ∼ xγL(x). (2.5)

Then,

kp
M∗ f(x) ∼ ǩp(γ)xγL(x). (2.6)

If f is monotonic, then (2.6) implies (2.5).

Proof. Going from (2.5) to (2.6) is standard and follows from [7, Theorem 4.1.6].
Assume (2.6). Without loss of generality, we assume that f is nondecreasing (if not, 

consider −f). Let

F (x) := x−p−1
(
kp

M∗ f(x)
)

=
∞∫
x

f(t)
tp+2 dt.

Recall that ǩp(γ) = 1
1+p−γ . We have

F (x) ∼ 1
1 + p− γ

xγ−p−1L(x).

By monotonicity of f , for any β > 1 and x > 0, we have

F (x) − F (βx) =
βx∫
x

f(t)
tp+2 dt ≥ 1

p + 1
f(x)
xp+1

(
1 − 1

βp+1

)
.

Thus,

f(x)
xγL(x) ≤ (p + 1)F (x) − F (βx)

xγ−p−1L(x)
βp+1

βp+1 − 1 .

Whence,

lim sup
x→+∞

f(x)
xγL(x) ≤ (p + 1)1 − βγ−p−1

1 + p− γ

βp+1

βp+1 − 1

and the r.h.s. above converges to 1 as β → 1+.
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Let now β < 1. Again by monotonicity we have

F (βx) − F (x) ≤
x∫

βx

f(t)
tp+2 dt ≤ f(x)

xp+1
1

p + 1

(
1

βp+1 − 1
)
.

We proceed similarly as before and show that

lim inf
x→+∞

f(x)
xγL(x) ≥ 1. �

Theorem 2.19. Assume that k is a nonnegative kernel such that ǩ(z) is absolutely con-
vergent in a strip |�z| ≤ η for some η > 0 and ǩ(z) 
= 0 for �z = 0. Let f : (0, +∞) → R

be measurable, L ∈ R0 and c 
= 0.

(i) Assume additionally that xηf(x) is bounded on every interval (0, a]. Then

f(x) ∼ cL(x) (2.7)

implies

k
M∗ f(x) ∼ ǩ(0)cL(x). (2.8)

Conversely, if f is monotonic, then (2.8) implies (2.7).
(ii) Assume additionally that f is locally bounded on [0, +∞). Then

f ∈ ΠL(c) (2.9)

implies

k
M∗ f ∈ ΠL(ǩ(0)c). (2.10)

Conversely, if f is monotonic, then (2.10) implies (2.9).

Remark 2.20. The above theorem follows from Section 4 in [7], however is not stated as 
a single theorem. Let us explain briefly which results from [7] we use here.

The implication from (2.7) to (2.8) follows directly from [7, Theorem 4.1.6] with 
ρ = 0 and (2.9) implies (2.10) by [7, Section 4.11.1]. The converse implications hold by
[7, Theorem 4.8.3] and [7, Theorem 4.11.2], respectively, under a Tauberian condition

lim
λ→1+

lim sup
x→+∞

sup
μ∈[1,λ]

f(x) − f(μx)
L(x) = 0, (2.11)

which is clearly satisfied if f is nondecreasing. If f is nonincreasing, then we consider 
−f .
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In the next theorem we state some useful conditions for a measure to have a regularly 
varying tails.

Theorem 2.21. Let L ∈ R0 and p ≥ 0. The following assertions are equivalent:

(i) μ̄(x) ∼ x−p−1L(x),
(ii) x �→

∫
[0,x] t

p+1μ(dt) ∈ ΠL(p + 1),
(iii) x �→ xp+2 ∫

[0,+∞)
tp+1

(t+x)p+2μ(dt) ∈ ΠL(p + 1).

Proof. First we show the equivalence between (i) and (ii). Let us denote σ = p + 1. 
Observe that by Tonelli’s theorem we have

∫
[0,x]

tσμ(dt) =
∫

[0,x]

t∫
0

σsσ−1ds μ(dt) = σ

x∫
0

sσ−1μ
(
(s, x]

)
ds

= σ

x∫
0

sσ−1μ̄(s)ds− xσμ̄(x).

Thus, if (i) is assumed, then

∫
[0,x]

tσμ(dt) = σ

x∫
0

(1 + o(1))L(s)
s

ds− L(x)(1 + o(1)).

By Theorem 2.4 we obtain the result.
Conversely, assume (ii) and observe that with f(x) :=

∫
[0,x] t

σμ(dt), by (iii) of The-
orem 2.4 we obtain that

σxσ

∞∫
x

u−σ−1f(u)du− f(x) ∼ L(x).

But the left hand side is equal to

σxσ

∞∫
x

u−σ−1 (f(u) − f(x)) du = σxσ

∞∫
x

u−σ−1
∫

(x,u]

tσμ(dt) du

= σxσ

∫
(x,+∞)

tσ
∞∫
t

u−σ−1duμ(dt)

= xσμ̄(x),
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which gives (i).
To show equivalence between (ii) and (iii) we use Theorem 2.19. First take k(x) =

(p + 2)xp+2/(1 + x)p+3. Then, it is clear that ǩ(z) is absolutely convergent for |�z| < 1
and ǩ(z) 
= 0 for �z = 0. Moreover, ǩ(0) = 1. As before, define f(x) =

∫
[0,x] t

p+1μ(dt). 
Since f is nondecreasing, by Theorem 2.19 (ii), we see that

f ∈ ΠL(p + 1) if and only if k
M∗ f ∈ ΠL(p + 1).

Finally,

k
M∗ f(x) =

∞∫
0

k
(x
t

)
f(t)dt

t
= xp+2

∫
[0,+∞)

df(t)
(t + x)p+2 = xp+2

∫
[0,+∞)

tp+1

(t + x)p+2μ(dt),

where the second equality follows from integration by parts. �
Below we put into evidence that for p = 0 in the theorem above we can replace (iii)

by another condition, which will turn out to be useful.

Theorem 2.22. Let L be a slowly varying function. The following assertions are equiva-
lent:

(i) μ̄(x) ∼ x−1L(x),
(ii) x �→

∫
[0,x] t μ(dt) ∈ ΠL(1),

(iii) x �→ x 
∫
[0,+∞)

t
t+xμ(dt) ∈ ΠL(1).

Proof. Equivalence between (i) and (ii) follows from Theorem 2.21 with p = 0.
Define f(x) =

∫
[0,x] t μ(dt) and k(x) = x/(1 + x)2. We have

x

∫
[0,+∞)

t

t + x
μ(dt) =

∫
[0,+∞)

x

x + t
df(t) =

∞∫
0

x

(x + t)2 f(t)dt = k
M∗ f(x).

The Mellin transform ǩ of k is absolutely convergent for |�z| < 1 and ǩ(z) 
= 0 for �z = 0. 
Moreover, ǩ(0) =

∫∞
0 (1 + t)−2dt = 1. Since f is nondecreasing, by Theorem 2.19 (ii), 

we see that

f ∈ ΠL(1) if and only if k
M∗ f ∈ ΠL(1),

which proves equivalence between (ii) and (iii). �
Lemma 2.23.

(i) If f is positive and f(x) ∼ g(x) then, kp
M∗ f(x) ∼ kp

M∗ g(x).



16 B. Kołodziejek, K. Szpojankowski / Advances in Mathematics 403 (2022) 108398
(ii) Let L be a slowly varying function and assume that f(x) = g(x) + c0 + o(x−ε) for 
some ε > 0 and c0 ∈ R. Then, g ∈ ΠL(c) if and only if f ∈ ΠL(c).

(iii) Let L be a slowly varying function and assume that f(x) = g(x)(c0 + o(x−ε)) for 
some ε > 0 and c0 ∈ R. Then, g ∈ ΠL(c) if and only if f ∈ ΠL(c0c).

Proof. For (i) fix ε > 0 and take x0 > 0 such that 1 − ε ≤ f(x)/g(x) ≤ 1 + ε for x > x0. 
Then, for x > x0 we have

(1 − ε)kp
M∗ g(x) = xp+1

∞∫
x

(1 − ε)g(t)
tp+2 dt

≤ xp+1
∞∫
x

f(t)
tp+2 dt = kp

M∗ f(x) ≤ (1 + ε)kp
M∗ g(x).

For (ii) and (iii) we use the fact that for � ∈ R0 we have �(x) = o(xε) for all ε > 0
and the result follows from point (ii) of Theorem 2.4. �
3. S-transform

In this section we study in detail analytic properties of Voiculescu’s S-transform, seen 
as a function of a real argument. We put into evidence some facts about the expansion of 
the S-transform as the real argument z → 0−. While this section is mostly preliminary, 
it also contains a fair amount of new observations about the S-transform, which might 
be of independent interest. Throughout this section we assume that μ ∈ M+ and μ 
= δ0. 
We shall also denote δ = μ({0}) < 1.

Definition 3.1. Suppose μ ∈ M+ and assume that δ = μ({0}) < 1. The so-called moment 
transform of μ is defined as

ψμ(z) =
∫

[0,+∞)

zt

1 − zt
μ(dt).

The function ψμ : (−∞, 0) → (δ− 1, 0) is invertible (see [6]) and we denote its inverse by 
χμ.

The S-transform of μ is defined by

Sμ(z) = z + 1
z

χμ(z), z ∈ (δ − 1, 0).

Remark 3.2. Usually Sμ is defined for complex argument. Function ψμ is well defined for 
z ∈ C \ R+ and it is univalent in the left-plane iC+. Then, χμ : ψμ(iC+) → C+ is the 
inverse of ψμ and Sμ(z) = (1 + z−1)χμ(z) for z ∈ ψμ(iC+). However, it is enough for us 
to work only with real functions.
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It is also worth noticing that the S-transform determines uniquely the probability 
measure, as it determines the moment transform ψ.

In the proposition below we review some properties of the S-transform, which are 
relevant for us.

Proposition 3.3.
(i) [6, Proposition 6.1, 6.3] ψμ and χμ are analytic in (−∞, 0), respectively, (δ−1, 0), 

hence Sμ is analytic in (δ − 1, 0).
(ii) [6, Proposition 6.8] Sμ is decreasing on (δ − 1, 0) and positive.
(iii) [13, Lemma 4] Sμ

(
(δ − 1, 0)

)
=

(
m−1

1 (μ),m−1(μ)
)
.

(iv) [6, Proposition 6.6] Let μ, ν ∈ M+, none of them being δ0. Then we have Sμ�ν =
SμSν .

(v) [14, Proposition 3.13] If μ({0}) = 0, then Sμ̂(z) = 1/Sμ(−1 −z), z ∈ (−1, 0), where 
μ̂ is the pushforward measure of μ by the mapping x �→ x−1.

We record for further reference a simple fact about the derivatives of the moment 
transform. Let as note that all derivatives of ψμ are monotonic.

Lemma 3.4. Let p ∈ N ∪ {0}. For z < 0 we have

ψ(p+1)
μ (z) = (p + 1)!

∫
[0,+∞)

tp+1

(1 − zt)p+2μ(dt).

In the lemma below we find a useful formula for the pth derivative of the S-transform.

Lemma 3.5. Let p ∈ N ∪ {0}. For z ∈ (δ − 1, 0) we have

S(p)
μ (z) = χ(p)

μ (z) +
0∫

z

(−t)p

(−z)p+1χ
(p+1)
μ (t)dt.

Proof. Recall that Sμ(z) = χμ(z) + z−1χμ(z), so it is enough to show that

dp

dzp
χμ(z)
z

=
0∫

z

(−t)p

(−z)p+1χ
(p+1)
μ (t)dt.

We proceed by induction. For p = 0, the right hand side above equals

1
−z

0∫
χ′
μ(t)dt = −1

z

(
χμ(0−) − χμ(z)

)
= χμ(z)

z
,

z
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since χμ(0−) = 0. By the induction hypothesis we have

dp+1

dzp+1
χμ(z)
z

= d
dz

dp

dzp
χμ(z)
z

= d
dz

∫ 0
z
(−t)pχ(p+1)

μ (t)dt
(−z)p+1

= −(−z)pχ(p+1)
μ (z)

(−z)p+1 + (p + 1)
∫ 0
z
(−t)pχ(p+1)

μ (t)dt
(−z)p+2

=
0∫

z

(−t)p+1

(−z)p+2χ
(p+2)
μ (t)dt,

where the last equality follows from integration by parts. �
Remark 3.6. If δ = 0 and m−1(μ) < +∞, then one can show that for z ∈ (−1, 0),

χ(p)
μ (z) = S(p)

μ (z) + (−1)p+1p!m−1(μ)
(1 + z)p+1 −

z∫
−1

(1 + t)p

(1 + z)p+1S
(p+1)
μ (t)dt.

Indeed, for arbitrary μ ∈ M+ we have

χ(p)
μ (z) = S(p)

μ (z) − dp

dzp

(
Sμ(z) 1

1 + z

)
= S(p)

μ (z) −
p∑

n=0

(
p

n

)
S(n)
μ (z) dp−n

dzp−n

1
1 + z

= S(p)
μ (z) −

p∑
n=0

(
p

n

)
S(n)
μ (z)(−1)p−n (p− n)!

(1 + z)p−n+1

= S(p)
μ (z) + p!(−1 − z)−p−1

p∑
n=0

S
(n)
μ (z)
n! (−1 − z)n. (3.1)

But if μ({0}) = 0 and Sμ(−1+) = m−1(μ) < +∞, then we have a one-sided Taylor 
expansion with integral form of the remainder.

Sμ(−1+) =
p∑

n=0

S
(n)
μ (z)
n! (−1 − z)n + 1

p!

−1∫
z

(−1 − t)pS(p+1)
μ (t)dt.

From the Lemma 3.5 we find another representation of the pth derivative of the S-
transform. This representation allows us to apply standard Tauberian theorems. The 
kernel kp was defined in (2.3).

Corollary 3.7. For x > (1 − δ)−1 we have

S(p)
μ

(
− 1

)
= χ(p)

μ

(
− 1

)
+ kp

M∗ χ̃p+1(x),

x x
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where χ̃p+1(x) := χ
(p+1)
μ (−1/x).

In the next lemma we observe what an expansion of any of the three functions 
(ψμ, χμ, Sμ) says about expansion of the other two functions.

Lemma 3.8. Assume that p ∈ N and μ ∈ M+. Fix ε ∈ [0, 1). The following three 
conditions are equivalent

ψμ(z) =
p∑

n=1
mn(μ)zn + o(zp+ε), as z → 0−, (3.2)

χμ(z) =
p∑

n=1
cnz

n + o(zp+ε), as z → 0− (3.3)

for some real coefficients (cn)n,

Sμ(z) =
p−1∑
n=0

snz
n + o(zp−1+ε), as z → 0− (3.4)

for some real coefficients (sn)n.
Moreover if mp(μ) < +∞ then all three equation (3.2), (3.3) and (3.4) hold with ε = 0.

Proof. Equivalence between (3.3) and (3.4) follows from the definition of Sμ. We shall 
show by induction that (3.2) implies (3.3). The proof of the converse implication is 
similar.

First we note that if m1(μ) < +∞, then χμ(z) ∼ z/m1(μ) as z → 0−, which follows 
immediately from

m1(μ) = lim
z→0−

ψμ(z)
z

= lim
t→0−

t

χμ(t) ,

where we have made the substitution z = χμ(t). This in particular implies that if m1(μ) <
+∞, then o(χμ(z)α) coincides with o(zα) for all α ∈ R.

Substituting z �→ χμ(z) in (3.2) with p = 1 we get

z = m1(μ)χμ(z) + o(χμ(z)1+ε) = m1(μ)χμ(z) + o(z1+ε),

which is (3.3). Suppose that (3.2) implies (3.3) for expansions of order p. Take the 
expansion (3.2) of order p + 1. Plugging z �→ χμ(z) into this expansion gives us

z = m1(μ)χμ(z) +
p+1∑
n=2

mn(μ)χμ(z)n + o(zp+1+ε). (3.5)
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By the induction hypothesis, we have that expansion (3.3) of order p holds. This implies 
that for n ≥ 2 we have

χμ(z)n =
(

p∑
k=1

ckz
k + o(zp+ε)

)n

=
(

p∑
k=1

ckz
k

)n

+ o(zp+1+ε).

With such substitution, (3.5) gives (3.3). �
We conclude this section with a lemma which gives a direct connection between deriva-

tives of ψμ and χμ.

Lemma 3.9. Let μ ∈ M+ and p ∈ N.

(i) For z ∈ (δ − 1, 0) we have

ψ(p+1)
μ (χμ(z))χ′

μ(z)p+1 + ψ′
μ(χμ(z))χ(p+1)

μ (z) = Q(z) (3.6)

where Q on the right hand side is a polynomial in ψ(l)
μ (χμ(z)) and χ(l)

μ (z) for 
l = 1, . . . , p.

(ii) If mp(μ) < +∞, then the limit

lim
z→0−

(
ψ(p+1)
μ (χμ(z))χ′

μ(z)p+2 + χ(p+1)
μ (z)

)
(3.7)

exists and is finite.

Proof. (i) The first equality follows from the Faá di Bruno formula, which gives for 
p ∈ N,

0 = dp+1

dzp+1ψμ (χμ(z)) =
∑
π∈Π

ψ(|π|)
μ (χμ(z))

∏
B∈π

χ(|B|)
μ (z),

where π runs through the set Π of all partitions of the set {1, . . . , p +1} and B ∈ π

runs through the list of all of the blocks of the partition π. The two terms on the left 
hand side of (3.6) correspond to partitions {{1}, . . . , {p +1}} and {{1, . . . , p +1}}. 
The right hand side of (3.6) contains all remaining terms.

(ii) Since ψ′
μ(χμ(z)) = 1/χ′

μ(z), (3.7) follows from (i) and the fact that all ψ(l)
μ (χμ(z))

and χ(l)
μ (z), l = 1, . . . , p, have finite limits as z → 0−. �

4. S-transform and the tail at +∞

Our main tool concerns the relation the right tail of a measure and its S-transform. 
The results of this section are the workhorse of this paper and all results that we prove 
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in the subsequent sections rely on them. Our work allows to answer the open question 
posed in [10, §2.4 (1) and (2)].

We have that (see Lemma 3.8), if μ ∈ Mp, p ∈ N ∪ {0}, then

Sμ(z) =
p−1∑
n=0

snz
n + r(z), z ∈ (μ{0} − 1, 0),

where (sn)n are real numbers and each sk is a rational function of moments of μ up to 
k + 1. Moreover, r(z) = o(zp−1) as z → 0−. It turns out that the regular variation of 
μ̄ is equivalent to regular variation (or its relatives) of function r. However, instead of 
working with r, we decided to describe this correspondence in terms of its pth derivative, 
S

(p)
μ = r(p). As all involved functions are analytic, there are no regularity issues. Such 

approach allows to eliminate the “Taylor polynomial” 
∑p−1

n=0 snz
n and avoid dealing with 

complicated combinatorics of coefficients in the series expansion of the S-transform.
Recall that we say that a measure μ has regularly varying tail with index α when

μ̄(x) = μ
(
(x,+∞)

)
∼ L(x)

xα
. (4.1)

The first result concerns probability measures in M0, that is, measures whose first 
moment is infinite.

Theorem 4.1. Let α = 0 and assume that L ∈ R0. If (4.1) holds, then

x �→ 1
Sμ(−1/x) ∈ KR∞. (4.2)

Conversely, if (4.2) is satisfied, then (4.1) holds with

L(x) = 1/f 〈−1〉
μ (x),

where

fμ(x) := − 1
χμ(−1/x) = x− 1

Sμ(−1/x) .

Remark 4.2. Suppose that L1, L2 ∈ R0 are decreasing to 0. Then, condition L1(x) ∼
L2(x) does not imply in general that L〈−1〉

1 (t) ∼ L
〈−1〉
2 (t) as t → 0+. E.g. consider 

L1(x) = 1/ log(x) and L2(x) = 1/ log(1 + x). Thus, in Theorem 4.1 we have L(x) ∼
1/f 〈−1〉

μ (x) while in general it is not true that L〈−1〉(t) ∼ fμ(1/t) as t → 0+.

Remark 4.3. If in Theorem 4.1 we consider μ̄ ∈ ΠL(1) instead of μ̄ ∈ R0, then one can 
show the function fμ belongs to a subclass Γ of KR∞, [7, Section 3.10].
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Proof of Theorem 4.1. For any x > 0 we have

−ψμ (−1/x) =
∫

[0,+∞)

t

t + x
μ(dt) = 1 −

∫
[0,+∞)

x

t + x
μ(dt)

=
∞∫
0

x

(t + x)2 μ̄(t)dt = k
M∗ μ̄(x),

where k(x) = x/(1 + x)2. The Mellin transform of k is absolutely convergent for |Rz| <
1 and ǩ(0) = 1. Since μ̄ is monotonic and xμ̄(x) is bounded on intervals (0, a], by 
Theorem 2.19 (i), we see that (4.1) is equivalent to

−ψμ (−1/x) =
∫

[0,+∞)

t

t + x
μ(dt) ∼ L(x).

Thus, if we assume (4.1), we have

− 1
ψμ (−1/x) ∼ 1

L(x) ∈ R0.

Further, by Theorem 2.8, the inverse of x �→ −1/ψμ(−1/x), which is x �→ −1/χμ(−1/x)
belongs to KR∞. We have

− 1
χμ(−1/x) = x− 1

Sμ (−1/x)

and so, by Remark 2.9, x �→ 1/Sμ (−1/x) belongs to KR∞ as well.
Since all steps above can be reversed, the proof is complete. �

Corollary 4.4. Assume that μ ∈ M+ is such that Sμ(−1/x) = exp(−s(x)), where s ∈ Rρ

with ρ > 0. Then,

μ̄(x) ∼ 1/s〈−1〉(log(x)).

In particular, if L ∈ R0 and s(x) = xρLρ(x), then

μ̄(x) ∼ 1/
(
log(x)1/ρL#(log(x)1/ρ)

)
.

Proof. We will start by showing that our assumptions fall in the framework of Theo-
rem 4.1, i.e. (4.2) holds. Clearly, we have x �→ 1/Sμ(−1/x) = exp(s(x)) belongs to R∞. 
Moreover, it is known that fμ(x) = 1/χμ(−1/x) = (x − 1)/Sμ(−1/x) is nondecreasing 
and clearly also belongs to R∞. Thus, by Theorem 2.8 (ii) we see that fμ belongs to 
KR∞. Remark 2.9 implies (4.2).
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We have

fμ(x) = es(x)(1+o(1)),

which implies that

f 〈−1〉
μ (t) ∼ s〈−1〉(log(t)).

Thus, by Theorem 4.1, we obtain the first part of the assertion. The second part follows 
from Theorem 2.1. �
Theorem 4.5. Let α ∈ (0, 1) and L ∈ R0. Then, (4.1) is equivalent to

Sμ

(
− 1
x

)
∼

(
sin(πα)

πα

)1/α
x1−1/α

M#(x1/α)
, (4.3)

where M# is a de Bruijn conjugate of a slowly varying function M := L−1/α.

Remark 4.6. If (4.1) holds with L(x) = c 
∏n

k=1(log(◦k)(x))αk (recall Theorem 2.1), then 
(4.3) may be replaced by

Sμ

(
− 1
x

)
∼

(
sin(πα)

πα

)1/α
x1−1/α

L1/α(x1/α)
.

In particular, if L(x) ∼ c > 0, then (4.3) is equivalent to

Sμ

(
− 1
x

)
∼ c−1/α

(
sin(πα)

πα

)1/α

x1−1/α. (4.4)

Proof of Theorem 4.5. With U(x) :=
∫
[0,x] t μ(dt), x ≥ 0, by Corollary 2.15, we have 

that (4.1) is equivalent to

U(x) ∼ α

1 − α
x1−αL(x).

By Theorem 2.14 with σ = 1 −α, ρ = 1 and c = α/(1 −α), the above asymptotic behavior 
is equivalent to ∫

[0,+∞)

dU(t)
t + x

∼ αΓ(α)Γ(1 − α)x−αL(x).

Note that we used there the basic identity Γ(2 − α) = (1 − α)Γ(1 − α). By Euler’s 
reflection formula we have
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αΓ(α)Γ(1 − α) = πα

sin(πα)

and thus

−ψμ

(
− 1
x

)
=

∫
[0,+∞)

t

t + x
μ(dt) =

∫
[0,+∞)

dU(t)
t + x

∼ πα

sin(πα)x
−αL(x).

Then, with d := sin(πα)/(πα) and M := L−1/α ∈ R0, the right hand side above 
equals 1/(d xαMα(x)). Observe that −1/ψμ(−1/x) asymptotically behaves like x �→
d xαMα(x). Theorem 2.1 allows us to determine the asymptotic inverse and we get that 
the

x �→ d−1/αx1/αM#(x1/α).

Taking into account that the compositional inverse of −1/ψμ(−1/x) is −1/χμ(−1/x), 
we get

χμ

(
− 1
x

)
∼ −d1/α x−1/α

M#(x1/α)
.

Since −χμ(−1/x) = Sμ(−1/x)/(x − 1), we have equivalently

Sμ

(
− 1
x

)
∼ d1/α x1−1/α

M#(x1/α)
. �

Cases α < 1 and α > 1 (see Theorem 4.9 below) are very different. This is due to 
the fact that under (4.1) for α < 1 we have m1(μ) = +∞ and for α > 1 the first 
moment is finite. These two regimes correspond to different characters of corresponding 
S-transforms. A bit surprising, the case α = 1, despite the fact whether m1(μ) is finite 
or infinite, is treated jointly in a theorem below. However, in the case m1(μ) < +∞, its 
formulation can be considerably simplified, see Remark 4.8.

Theorem 4.7. Let α = 1 and L ∈ R0. Then (4.1) i.e. μ̄(x) ∼ x−1L(x), is equivalent to

x �→ 1
Sμ (−1/x) ∈ ΠM (1), (4.5)

where M(x) := L
(
(x − 1)/Sμ(−1/x)

)
∈ R0.

Remark 4.8. Consider the case m1(μ) < +∞. Then 1/Sμ(−1/x) → m1(μ) as x → +∞
and by the slow variation of L we have M(x) ∼ L(x). Whence ΠM (1) = ΠL(1). Further, 
in view of Remark 2.3, x �→ 1/Sμ(−1/x) ∈ ΠL(1) is equivalent to
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x �→ Sμ

(
− 1
x

)
∈ ΠL(·)Sμ(−1/·)2(−1) = ΠL

(
− 1
m1(μ)2

)
. (4.6)

If S′
μ is monotonic, we can use the Monotone Density Theorem (see [7, Theorem 3.6.8]) 

and “differentiate” (4.6). In this way we prove the following reformulation of the condition 
in Theorem 4.7: (4.5) is equivalent to

S′
μ

(
− 1
x

)
1
x2 ∼ − 1

m1(μ)2
L(x)
x

.

This equivalence will be proved as a special case of Theorem 4.9.

Proof of Theorem 4.7. By Theorem 2.22, the condition (4.1) is equivalent to

−xψμ

(
− 1
x

)
= x

∫
[0,+∞)

t

t + x
μ(dt) ∈ ΠL(1). (4.7)

We shall show only that (4.7) implies (4.5). The proof of the converse implication is 
similar.

Consider the function f(x) = −1/ (xψμ(−1/x)). Since 1/f ∈ ΠL(1), Remark 2.3
implies that f ∈ ΠM1(−1) with

M1(x) = L(x)
x2ψμ(−1/x)2 .

By definition of f we have

− 1
ψμ(−1/x) = xf(x).

Taking inverses of both sides of the above equation, gives

− 1
χμ(−1/x) = xf∗(x),

where f∗ is Π-conjugate function for f in the sense of Definition 2.5. By Theorem 2.6
(i), we have f∗ ∈ ΠM2(1), where for M2 after some transformations we obtain

M2(x) = M1(xf∗(x))f∗(x)2 = L

(
− 1
χμ(−1/x)

)
.

By the definition of the S-transform we have

1
Sμ (−1/x) = (x− 1)−1 −1

χμ (−1/x) = xf∗(x)
x− 1 ∼ΠM2

f∗(x) ∈ ΠM2(1),

since x/(x − 1) = 1 + o(x−ε), ε ∈ (0, 1). �
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If the measure μ has the first moment (i.e. m1(μ) < +∞) and μ̄ is regularly varying, 
then the behavior of the S-transform of μ is more delicate and different from the case 
m1(μ) = +∞. Remarkably, independently of the value of α in (4.1), the asymptotic 
behavior of the pth derivative of the S-transform depends on the first moment m1(μ)
and no other moments are involved. This observation will have some deeper consequences 
in Section 5, Theorem 5.5, where we investigate the behavior of the tail of the free 
multiplicative convolution.

Theorem 4.9. Let p ∈ N, α ∈ [p, p + 1] and L ∈ R0.
(i) If one of the following conditions holds

(a) α ∈ (p, p + 1), or
(b) α = p and 

∫ +∞
1 L(t)/t dt < +∞,

then (4.1), i.e. μ̄(x) ∼ x−αL(x), is equivalent to

S(p)
μ

(
− 1
x

)
∼ −Γ(α + 1)Γ(p + 1 − α)

m1(μ)α+1 xp+1−αL(x). (4.8)

(ii) If α = p + 1 and 
∫ +∞
1 L(t)/t dt = +∞, then (4.1) is equivalent to

x �→ S(p)
μ

(
− 1
x

)
∈ ΠL

(
− (p + 1)!
m1(μ)p+2

)
. (4.9)

Remark 4.10. Recall the notion of one-sided Taylor expansion from Lemma 2.12. Assume 
that (4.8) holds with α ∈ (p, p + 1). Then, the remainder term r(z) in series expansion 
of Sμ(z) =

∑p−1
n=0 snz

n + r(z) is asymptotically equivalent to (use e.g. [7, Proposition 
1.5.10])

(−1)p+1 Γ(1 + α)Γ(p + 1 − α)
m1(μ)α+1 ∏p

k=1(α− k)
(−z)α−1L

(
−1
z

)
= πα

m1(μ)α+1 sin (πα) (−z)α−1L

(
−1
z

)
,

where we have used Euler’s reflection formula

Γ(p + 1 − α) = π

sin (π(p + 1 − α))
1

Γ(α− p) = (−1)p+1 π

sin (πα)
1

Γ(α− p)

and standard properties of the gamma function.

Proof of Theorem 4.9. We start with (i) and present only the proof from (4.8) to (4.1). 
The proof of the converse implication goes along the same steps.
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First, let us note that thanks to Remark 2.11 condition (4.1) under our assumptions 
implies that mp(μ) < +∞. Moreover, under considered assumptions, condition (4.8)
alone also implies mp(μ) < +∞. Indeed, if α ∈ (p, p + 1), then under (4.8) we have 
S

(p)
μ (z) = o(z−ε) for ε ∈ (1 +p −α, 1). Then, Lemma 2.12 with f = Sμ and n = 0 implies 

(3.4), that is,

Sμ(z) =
p−1∑
n=0

snz
n + o(zp−1+ε), as z → 0−

for some real coefficients (sn)n. If α = p, thanks to the assumption 
∫ +∞
1 L(t)/t dt < +∞, 

we can still integrate (4.8) to obtain (3.4). Thus, by Lemma 3.8 we obtain mp(μ) < +∞
for α ∈ [p, p + 1).

Recall that kernel kp is defined in (2.3) and we denote χ̃p+1(x) := χ
(p+1)
μ (−1/x).

Claim 1. kp
M∗ χ̃p+1(x) ∼ −Γ(α + 1)Γ(p + 1 − α)m1(μ)−1−αxp+1−αL(x).

The r.h.s. of (4.8) diverges to infinity. Moreover, mp(μ) < +∞ implies that χ(p)
μ (−1/x)

has a finite limit as x → +∞. Thus, the claim follows from Corollary 3.7.
Claim 2. kp

M∗ χ̃p+1(x) ∼ −kp
M∗ ψ̃p+1(x) for ψ̃p+1(x) := ψ

(p+1)
μ (χμ(−1/x))×

χ′
μ(−1/x)p+2.

For any c ∈ R we have kp
M∗ (c + o(1)) = c + o(1). Thus, Lemma 3.9 (ii) implies that

kp
M∗ ψ̃p+1(x) = −kp

M∗ χ̃p+1(x) + c + o(1)

for some c ∈ R.
Claim 3. kp

M∗ ψ̃p+1(x) ∼ m1(μ)−p−2kp
M∗ ψ

(p+1)
μ (χμ (−1/·)) (x).

The claim follows from Lemma 2.23 (i) and the fact that

ψ̃p+1(x) ∼ 1
m1(μ)p+2ψ

(p+1)
μ

(
χμ

(
− 1
x

))
.

Claim 4. ψ(p+1)
μ (χμ (−1/x)) ∼ αΓ(α + 1)Γ(p + 1 − α) (m1(μ)x)p+1−α

L(x).
Denote f(x) = ψ

(p+1)
μ (χμ (−1/x)). The three claims above give that

kp
M∗ f(x) ∼ −m1(μ)p+2kp

M∗ χ̃p+1(x)

and that the r.h.s. above is regularly varying with index p +1 −α. Since ψ(p+1)
μ and χμ are 

both monotonic, function f is also monotonic (by Lemma 3.4). Thus, by Theorem 2.18
with γ = p + 1 − α, we have

ψ(p+1)
μ

(
χμ

(
− 1
x

))
= f(x) ∼ −m1(μ)p+2 kp

M∗ χ̃p+1(x)
ǩp(p + 1 − α)

.
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We obtain the assertion after plugging (2.4) and using Claim 1.
Claim 5. ψ(p+1)

μ (−1/y) ∼ αΓ(α + 1)Γ(p + 1 − α)yp+1−αL(y).
Let us substitute −1/x = ψμ(−1/y) into Claim 4. Observe that we have x → +∞ if and 
only if y → +∞. Moreover since ψμ(−1/y) ∼ −m1(μ)/y we get that

m1(μ)x = − m1(μ)
ψμ(−1/y) ∼ y

and by the Uniform Convergence Theorem [7, Theorem 1.2.1] we obtain

L(x) = L

(
− 1
ψμ(−1/y)

)
∼ L(y).

Claim 6. Condition (4.1) holds.
By Lemma 3.4, we have for y > 0,

ψ(p+1)
μ

(
−1
y

)
= (p + 1)! yp+2

∫
[0,+∞)

tp+1

(t + y)p+2μ(dt). (4.10)

Thus using Claim 5 and Corollary 2.15 we finally get (4.1).
The proof of (ii) works similarly, but the technical details are a bit more complicated. 

First observe that similarly as in (i), both (4.1) and (4.9) under (ii) imply mp(μ) < +∞. 
The implication from (4.9) follows from the fact that for c > 0 we have ΠL(c) ⊂ R0 and 
thus S(p)

μ (−1/x) ∼ −� (x) = o(xε) for � ∈ R0 and all ε > 0. Hence, the argument used 
in (i) works here as well.

Again, we present only the harder part of the proof, which goes from (4.9) to (4.1).
Claim 1. kp

M∗ χ̃p+1 ∈ ΠL

(
−(p + 1)!m1(μ)−p−2).

From Corollary 3.7 we have

S(p)
μ

(
− 1
x

)
= χ(p)

μ

(
− 1
x

)
+ kp

M∗ χ̃p+1(x).

In view of Lemma 2.23 (ii) it is enough to show that (4.9) implies

χ(p)
μ (−1/x) = χ(p)

μ (0−) + o(x−ε) (4.11)

for some ε > 0. Condition (4.9) implies that for �(x) := −S
(p)
μ (−1/x) we have � ∈ R0. By 

Lemma 2.12 we have for n ∈ {0, . . . , p −1}, S(n)
μ (z) = S

(n)
μ (0−) +o(zε). After rearranging 

(3.1) we get

χ(p)
μ (z) = z

1 + z
S(p)
μ (z) + p!

p−1∑
n=0

S
(n)
μ (z)
n! (−1 − z)n−p−1
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Clearly, all terms above are of the form c + o(zε) for some c ∈ R and any ε ∈ (0, 1). 
Hence, we have (4.11) and Claim 1 follows.

Claim 2. kp
M∗ ψ̃p+1 ∈ ΠL

(
(p + 1)!m1(μ)−p−2),

where again ψ̃p+1(x) := ψ
(p+1)
μ (χμ(−1/x))χ′

μ(−1/x)p+2.
By Lemma 3.9 (i) we have

χ̃p+1(x) + ψ̃p+1(x) = Q(−1/x),

where Q is a polynomial in ψ(l)
μ (χμ(−1/x)) and χ(l)

μ (−1/x) for l = 1, . . . , p. Arguing as 
in Claim 1, we infer that ψ(l)

μ (z) and χ(l)
μ (z) are all of the form c + o(zε) for ε ∈ (0, 1). 

Under these circumstances, (3.7) can be strengthened to

χ̃p+1(x) + ψ̃p+1(x) = c + o(x−ε),

where c ∈ R. Claim 1 and Lemma 2.23 (ii) conclude the proof of this claim.
Claim 3. kp

M∗ ψ
(p+1)
μ (χμ (−1/·)) ∈ ΠL ((p + 1)!).

Eq. (4.11) which we already established, upon repeated integration, implies that

χ′
μ

(
− 1
x

)
= χ′

μ(0−) + o(x−ε) = 1
m1(μ) + o(x−ε).

Thus, here we get

ψ̃p+1(x) = ψ(p+1)
μ

(
χμ

(
− 1
x

))(
1

m1(μ)p+2 + o(x−ε)
)
.

Now we use Lemma 2.23 (iii).
Claim 4. ψ(p+1)

μ (χμ (−1/·)) ∈ ΠL ((p + 1)!(p + 1)).
Since ψ(p+1)

μ (χμ(−1/·)) is monotonic, by Theorem 2.19 (ii) applied to Claim 3 we infer 
that

ψ(p+1)
μ

(
χμ

(
−1

·

))
∈ ΠL

(
(p + 1)!
ǩ(0)

)
.

By (2.4) we have ǩ(0) = 1/(1 + p).
Claim 5. ψ(p+1)

μ (−1/·) ∈ ΠL ((p + 1)!(p + 1)).
By Claim 4 and Theorem 2.4 we have

ψ(p+1)
μ

(
χμ

(
− 1
x

))
= C + cp

x∫
x0

(1 + o(1))L(t)
t

dt + d(1 + o(1))L(x)

where cp = (p +1)!(p +1), x0 ≥ 0 and C, d are real constants. Setting x = −1/ψμ(−1/y)
we have
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ψ(p+1)
μ

(
−1
y

)
= C + cp

−1
ψμ(−1/y)∫
x0

(1 + o(1))L(t)
t

dt + d(1 + o(1))L
(

−1
ψμ(−1/y)

)

observe that since ψμ(−1/s) ∼ −m1(μ)/s, by the Uniform Convergence Theorem, we 
have L (−1/ψμ(−1/y)) = L(y)(1 + o(1)). Further, substituting t = −1/ψμ(−1/s) in the 
integral above we obtain

y∫
−1

χμ(−1/x0)

(1 + o(1))L(−1/ψμ(−1/s))
−1/ψμ(−1/s)

ψ′
μ(−1/s)

ψμ(−1/s)2
1
s2 ds.

Since ψμ(−1/s) ∼ −m1(μ)/s and ψ′
μ(−1/s) ∼ m1(μ), the integrand equals

(1 + o(1))L(s)
s

.

Claim follows from another use of Theorem 2.4.
Claim 6. Condition (4.1) holds.

By (4.10) and Theorem 2.21 we obtain (4.1). �
5. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3 announced in the Introduction. 
For reader’s convenience we repeat the statement, see Theorem 5.5 below.

First we determine roughly speaking how the tail of a measure changes when the 
S-transform is asymptotically multiplied by a constant c > 0.

Corollary 5.1. Assume that μ ∈ M+ is such that

μ̄(x) ∼ x−αL(x), (5.1)

where α ∈ (0, 1). Let c > 0, ν ∈ M+ and assume that

Sν

(
− 1
x

)
∼ c Sμ

(
− 1
x

)
.

Then

ν̄(x) ∼ c−αμ̄(x).

Proof. For M = L−1/α ∈ R0 define Nc := c−1M#. Observe that de Bruijn conjugate 
N#

c to a slowly varying function Nc is asymptotically equivalent to c M = c L−1/α, which 
is easily seen from the definition. In view of (5.1), by Theorem 4.5 we have
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Sν

(
− 1
x

)
∼

(
sin(πα)

πα

)1/α
x1−1/α

Nc(x1/α)
.

Using the converse implication from Theorem 4.5 we obtain that

ν̄(x) ∼ x−αN#
c (x)−α ∼ c−αx−αL(x). �

Corollary 5.2. Assume that μ ∈ M+ is such that μ̄ ∈ R0. Let c > 0, ν ∈ M+ and assume 
that

Sν

(
− 1
x

)
∼ c Sμ

(
− 1
x

)
. (5.2)

Then

ν̄(x) ∼ μ̄(x).

Proof. Let us define fσ(x) = (x − 1)/Sσ(−1/x) for σ = μ, ν. By Theorem 4.1 and 
Remark 2.9 we have that fμ ∈ KR∞. It is easy to verify that assumptions of Theorem 2.8
(i) are satisfied by f 〈−1〉

μ (note that in Theorem 2.8 as f we take the function f 〈−1〉
μ ) thus 

f
〈−1〉
μ is slowly varying. Thus, by (5.2) we have

f 〈−1〉
ν (x) ∼ f 〈−1〉

μ (cx) ∼ f 〈−1〉
μ (x).

Applying once again Theorem 2.8 for f 〈−1〉
ν we obtain that fν ∈ KR∞. Another appli-

cation of Remark 2.9 together with the converse implication of Theorem 4.1 yields the 
result. �
Corollary 5.3. Assume that μ ∈ M+ is such that

μ̄(x) ∼ L(x)/x,

where 
∫ +∞
1 L(t)/t dt = +∞. Let c > 0, ν ∈ M+ and assume that

Sν

(
− 1
x

)
= c Sμ

(
− 1
x

)
+ o(x−ε)

for some ε > 0. Then

ν̄(x) ∼ c−1μ̄(x).

Proof. By Theorem 4.7 we have

1 = 1 + o(x−ε) ∈ ΠM (c−1),

Sν (−1/x) c Sμ (−1/x)
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where M(x) = L
(
(x − 1)/Sμ(−1/x)

)
. Since L ∈ R0, we have M(x) ∼ L

(
(x −

1)/Sν(−1/x)
)
, which implies that

ΠM (c−1) = Π
M̃c

(1),

where M̃c(x) = c−1L
(
(x − 1)/Sν(−1/x)

)
. By the converse implication of Theorem 4.7

we obtain the result. �
Corollary 5.4. Assume that p ∈ N, μ ∈ Mp with

μ̄(x) ∼ x−αL(x).

Let c > 0 and ν ∈ M+. Moreover

(1) for α ∈ [p, p + 1), assume that

S(p)
ν

(
− 1
x

)
∼ c S(p)

μ

(
− 1
x

)
,

(2) for α = p + 1 suppose

x �→ S(p)
ν

(
− 1
x

)
− c S(p)

μ

(
− 1
x

)
∈ ΠL(0).

In both cases we have

ν̄(x) ∼ c

(
m1(ν)
m1(μ)

)α+1

μ̄(x).

Proof. We consider two cases:

α ∈ [p, p + 1): By Remark 2.11 we have 
∫ +∞
1 L(t)/t dt < +∞ if α = p. Thus, by Theo-

rem 4.9 (i) we obtain

S(p)
ν

(
− 1
x

)
∼ −c

Γ(α + 1)Γ(p + 1 − α)
m1(μ)α+1 xp+1−αL(x)

= −Γ(α + 1)Γ(p + 1 − α)
m1(ν)α+1 xp+1−αLc(x),

where we denoted Lc(x) = c (m1(ν)/m1(μ))α+1L(x) ∈ R0. Again using Theorem 4.9
(i) we obtain the assertion.

α = p + 1: In this case, Remark 2.11 ensures that 
∫ +∞
1 L(t)/t dt = +∞. Under the 

assumptions, Theorem 4.9 (ii) implies
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S(p)
ν

(
− 1
x

)
∈ ΠL

(
−c

(p + 1)!
m1(μ)p+2

)
= ΠLc

(
− (p + 1)!
m1(ν)p+2

)
,

where Lc is defined as above. Using Theorem 4.9 (ii) again yields the result. �
Theorem 5.5.

(i) If μ ∈ M+ and μ̄(x) ∼ L(log(x))/ log(x)β for L ∈ R0 and β > 0, then for t ≥ 1,

μ�t
(
(x,+∞)

)
∼ tβ μ((x,+∞).

(ii) Assume μ ∈ M+ satisfies (1.2) for α ∈ (0, 1). Then for t ≥ 1 we have 
μ�t

(
(·, +∞)

)
∈ R−αt

, where

αt = α

α + t(1 − α) .

In particular, if μ̄(x) ∼ c/xα for some α ∈ (0, 1) and c > 0, then for t ≥ 1 one has,

μ�t
(
(x,+∞)

)
∼ ct,α

xαt
,

where

ct,α =
(
c

πα

sin(πα)

)t/(α+t(1−α)) sin(παt)
παt

.

(iii) If μ ∈ M+ is such that μ̄(x) ∼ c/x with c > 0, then for t ≥ 1,

μ�t
(
(x,+∞)

)
∼ ct−1t log(x)t−1μ

(
(x,+∞)

)
.

(iv) Let α ≥ 1 and assume μ ∈ M+ satisfies (1.2) and m1(μ) < +∞. Then for t ≥ 1
we have

μ�t
(
(x,+∞)

)
∼ tm1(μ)α(t−1)μ

(
(x,+∞)

)
.

Proof. (i) Recall that for μ ∈ M+ we defined fμ(x) = (x − 1)/Sμ(−1/x). Denote 
ft = fμ�t . Since Sμ�t = St

μ, we have

f1(x) = (x− 1)1−1/tft(x)1/t, (5.3)

which is equivalent to

f
〈−1〉
t (x) = f

〈−1〉
1

(
x1/t

(
f
〈−1〉
t (x) − 1

)1−1/t
)
.
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Note that since μ̄ ∈ R0, by Theorem 4.1 we have f1 ∈ KR∞. This and (5.3) in 
turn imply that ft ∈ KR∞ for any t ≥ 1. Whence, by Theorem 2.8 (i) we obtain 
that f 〈−1〉

t ∈ R0 and so

log
(
f
〈−1〉
t (x)

)
= o(log(x)). (5.4)

By Theorem 4.1 we have 1/f 〈−1〉
1 (x) ∼ g (log(x)), where g(x) := x−βL(x). In view 

of (5.4), we have

1
f
〈−1〉
t (x)

∼ g

(
log

(
x1/t

(
f
〈−1〉
t (x) − 1

)1−1/t
))

∼ g
(
log(x1/t)

)
= g

(
t−1 log(x)

)
∼ tβg(log(x)),

where we have used the fact that g ∈ R−β .
The converse implication of Theorem 4.1 yields the result.

(ii) This is a straightforward application of Theorem 4.5 with L ≡ c > 0, for the case 
L = c we use (4.4).

(iii) In view of Theorem 4.7, it is enough to show that

x �→ 1/Sμ�t(−1/x) ∈ Π
M̃

(1),

where M̃(x) = M
(
(x − 1)/Sμ�t(−1/x)

)
and M(x) = ct t log(x)t−1.

By direct implication of Theorem 4.7 we have x �→ 1/Sμ(−1/x) ∈ ΠL1(1), where 
L1(x) = c. In particular, this implies that 1/Sμ(−1/x) ∼ c log(x).

For t ≥ 1, by L’ Hospital’s rule we have

lim
z→1

zt − 1
t(z − 1) = 1.

Setting z = Sμ(−1/(λx))/Sμ(−1/x), after simple rearrangements, we obtain

1
Sμ(−1/(λx))t −

1
Sμ(−1/x)t ∼ t

(
1

Sμ(−1/(λx)) − 1
Sμ(−1/x)

)
1

Sμ(−1/x)t−1

∼ t
(
c log(λ)

) (
c log(x)

)t−1 = log(λ)M(x),

where the latter asymptotic equivalence follows from previous observations. Thus, 
we see that x �→ 1/Sμ�t(−1/x) ∈ ΠM (1).

It is left to show that M(x) ∼ M̃(x). We have

M̃(x) = M

(
x− 1

St
μ(−1/x)

)
∼ M

(
x log(x)t

)
= ctt log

(
x log(x)t

)t−1 ∼ ctt log (x)t−1 = M(x).
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(iv) Let p ∈ N be such that μ ∈ Mp. We consider two cases (see Remark 2.11):

α ∈ [p, p + 1): By Theorem 4.9 (i) we see that S(k)
μ (0−) is finite for all k < p, 

Sμ(0−) = 1/m1(μ), while S(p)
μ (−1/x) → +∞ as x → +∞. Thus, we obtain

S
(p)
μ�t

(
− 1
x

)
=

dpSt
μ

dzp

(
− 1
x

)
∼ t St−1

μ

(
− 1
x

)
S(p)
μ

(
− 1
x

)
∼ t

1
m1(μ)t−1S

(p)
μ

(
− 1
x

)
.

Since m1(μ�t) = m1(μ)t, we have

t

m1(μ)t−1

(
m1(μ�t)
m1(μ)

)α+1

= tm1(μ)(t−1)α

and the result follows from Corollary 5.4.
α = p + 1: By Theorem 4.9 (ii) we get

x �→ S(p)
μ

(
− 1
x

)
∈ ΠL

(
− (p + 1)!
m1(μ)p+2

)
.

Similarly as before, the only term that contributes to asymptotics of S(p)
μ�t(z) is 

tSt−1
μ (z)S(p)

μ (z). Indeed, we have S(n)
μ (z) = S

(n)
μ (0−) +o(zε) (see the argument 

after (4.11)) for any ε ∈ (0, 1). Thus,

S
(p)
μ�t

(
− 1
x

)
= tSt−1

μ

(
− 1
x

)
S(p)
μ

(
− 1
x

)
+ c + o(x−ε)

= t
1

m1(μ)n−1S
(p)
μ

(
− 1
x

)
+ c + o(x−ε)

for c ∈ R. Thus, the result follows from Corollary 5.4. �
6. �-infinitely divisible laws

In this section we apply the machinery developed in Section 4 to study the relation 
between tails of Lévy measure and tails of � infinitely divisible measure. The free additive 
case was studied in [9].

A measure μ ∈ M+ is said to be �-infinitely divisible (�-ID) if, for every n ∈ N, 
there exists a measure νn ∈ M+ such that μ = ν�n

n . The set of �-ID distributions was 
characterized in terms of S-transforms in [6, Theorem 6.13].

Theorem 6.1. A measure μ ∈ M+ is �-ID if and only if there exists a finite positive 
Borel measure σ on the compact space [0, +∞] and a real number γ such that Sμ(z) =
exp(v(z)), where v is defined by
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v

(
z

1 − z

)
= γ +

∫
[0,+∞]

1 + tz

z − t
σ(dt)

= γ + σ({0})1
z
− σ({+∞})z +

∫
(0,+∞)

1 + tz

z − t
σ(dt).

(6.1)

Let μγ,σ
� be the �-ID measure determined by (6.1). Measure σ is called the Lévy 

measure for μγ,σ
� . We will describe asymptotics of right tail of μγ,σ

� when its Lévy measure 
has regularly varying left tail. A corollary to results that will be presented later is the 
following.

Corollary 6.2. Assume that σ has regularly varying left (resp. right) tail with index −α ≤
0. If α = 1, assume additionally that limit of xσ

(
[0, x−1)

)
(resp. xσ

(
(x, ∞)

)
) exists as 

x → +∞. Then μγ,σ
� has regularly varying right (resp. left) tail.

We conjecture that an additional condition for α = 1 is not necessary and that the 
converse is also true: regular variation of tails of μγ,σ

� implies the regular variation of 
tails of σ.

We will now proceed to the description of the right tail μγ,σ
� in terms of the asymptotics 

of σ
(
[0, x)

)
∼ xαL(1/x) as x → 0+, L ∈ R0. The case α ∈ [0, 1) is treated in Theorem 6.3, 

the case α = 1 (which is most complex) is dealt with in Theorem 6.4, while α ∈ [p, p +1]
for p ∈ N can be found in Theorem 6.7. Recall that by σ̂ we denote the pushforward of 
σ under the mapping x �→ 1/x.

Theorem 6.3. Let α ∈ [0, 1) and let L ∈ R0. Assume that σ and v are related by (6.1). 
The following two conditions are equivalent:

σ
(
[0, x)

)
∼ xαL(1/x) as x → 0+, (6.2)

v(−1/x) ∼ − πα

sin(πα)x
1−αL(x) as x → +∞. (6.3)

Each of these equivalent conditions imply that for all γ ∈ R,

μγ,σ
�

(
(x,+∞)

)
∼

(
πα

sin(πα)

)1/(1−α) 1
log(x)1/(1−α)L#

α (log(x)1/(1−α))
as x → +∞,

(6.4)

where Lα := L1/(1−α) ∈ R0.

Proof. From (6.2) we obtain σ̂
(
(x, +∞]

)
∼ x−αL(x). Define

u(x) := x

∫ 1
1 + xt

σ(dt) = x

⎛⎜⎝σ({0}) +
∫

t

t + x
σ̂(dt)

⎞⎟⎠ .
[0,+∞) (0,+∞)
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By Lebesgue’s Dominated Convergence Theorem we have u(x)/x → σ({0}) as x → +∞. 
If σ({0}) = 0 and (6.2) holds, then a more precise behavior of u is available. Indeed, 
arguments similar to those used in the proof of Theorem 4.5 imply that in such case 
(6.2) is equivalent to

u(x) ∼ πα

sin(πα)x
1−αL(x).

Clearly, the above condition is true also in the case of σ({0}) = limx→0+ x0L(1/x) > 0.
Direct calculations show that

v

(
− 1
x + 1

)
= −u(x) + γ + σ({+∞}) 1

x
+

∫
(0,+∞)

1
t + x

σ̂(dt) = −u(x) + γ + o(1).

Clearly, we have v(−1/(1 +x)) ∼ −u(x) and the regular variation implies that v(−1/(1 +
x)) ∼ v(−1/x). Thus, we have proved equivalence between (6.2) and (6.3).

Since Sμγ,σ
�

(−1/x) = exp(v(−1/x)), under (6.3), Corollary 4.4 implies that

μγ,σ
�

(
(x,+∞)

)
∼ 1/s〈−1〉(log(x)),

where s(t) := −v(−1/t) = πα
sin(πα) t

1−αL(t). Let a = 1 − α and recall that an asymptotic 

inverse of t �→ t1−αL(t) = taLa
α(t) is x �→ x1/aL#

α (x1/a). Thus,

s〈−1〉(x) ∼
(

sin(πα)
πα

)1/(1−α)

x1/(1−α)L#
α (x1/(1−α))

and the result follows. �
In the result below we show that in the case α = 1, the right tail of μγ,σ

� is regularly 
varying with index depending on a limit at +∞ of L(x) ∼ x σ

(
[0, x−1)

)
. We refrained 

from exhibiting the slowly varying function related with right tail of μγ,σ
� as it depends 

on σ in a quite complicated way. Nevertheless, it is hidden in the proof of Theorem 6.4. 
We do not know whether a similar result holds when L does not have a limit at infinity.

Theorem 6.4. Let L ∈ R0.

(i) The following two conditions are equivalent:

σ
(
[0,x)

)
∼ xL(1/x) as x → 0+, (6.5)

x �→v(−1/x) ∈ ΠL(−1). (6.6)
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(ii) If d := limx→+∞ L(x) exists, then each of these equivalent conditions implies that

x �→ 1
Sμγ,σ

�
(−1/x) ∈

⎧⎪⎪⎨⎪⎪⎩
KR∞, if d = +∞,

Rd, if d ∈ (0,+∞),
ΠM (1), if d = 0,

(6.7)

where M(x) := L(x)/Sμγ,σ
�

(−1/x).
(iii) If d = 0 assume additionally that 

∫
(0,+∞) t

−1σ(dt) = +∞. Then, (6.7) implies that

x �→ μγ,σ
�

(
(x,+∞)

)
∈ R−1/(1+d).

The proof of Theorem 6.4 is based on the following result.

Lemma 6.5. Assume that L ∈ R0 and f ∈ ΠL(c), c > 0. Let g(x) = exp(f(x)). Assume 
that L(x) has a limit as x → +∞ and define d = limx→+∞ L(x). If d = +∞ assume 
additionally that g is nondecreasing. We have

g ∈

⎧⎪⎪⎨⎪⎪⎩
KR∞, if d = +∞,

Rcd, if d ∈ (0,+∞),
Πg·L(c), if d = 0.

Proof. We start with d = +∞. In view of Theorem 2.8 (ii) it is enough to show that 
g ∈ R∞, that is, g(λx)/g(x) → +∞ as x → +∞ for all λ > 0. We have as x → +∞,

log
(
g(λx)
g(x)

)
= f(λx) − f(x)

L(x) L(x) ∼ c log(λ)L(x) → +∞.

Assume that d ∈ (0, +∞). We have L(x) = d + o(1). By Theorem 2.4 we have for 
C, D ∈ R and x0 ≥ 0,

g(x) = ef(x) = exp

⎛⎝C + c

x∫
x0

(1 + o(1))L(t)
t

dt + D(1 + o(1))L(x)

⎞⎠
= exp

⎛⎝c d log(x) + C̃ + o(1) + c1

x∫
x0

o(1)
t

dt

⎞⎠ = xcde
C̃+o(1)+c1

∫ x
x0

o(1)
t dt

,

where we have substituted L(x) = d + o(1) in the third equality above. By [7, Theorem 
1.3.1] function �(x) := exp(C + o(1) +

∫ x

1
o(1)
t dt) is slowly varying.

If d = 0, then

g(λx) − g(x) = ef(λx) − ef(x)

f(x) = e
f(λx)−f(λ)

L(x) L(x) − 1 → c log(λ),

g(x)L(x) e L(x) L(x)
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which ends the proof. �
Proof of Theorem 6.4. We first show the equivalence between (6.5) and (6.6). We pro-
ceed as in the proof of Theorem 6.3. With u(x) = x 

∫
[0,+∞)

t
t+x σ̂(dt) we have

v

(
− 1
x

)
= −u(x−1)+γ+σ({+∞}) 1

x− 1+
∫

(0,+∞)

1
t + x− 1 σ̂(dt) = −u(x−1)+γ+o(x−ε)

for all ε ∈ (0, 1). By Theorem 2.22 we have the equivalence of (6.5) and u ∈ ΠL(1). Since 
u(x) − u(x − 1) = o(x−ε), by Lemma 2.23, we have x �→ u(x − 1) ∈ ΠL(1). Thus, again 
using Lemma 2.23 we obtain (6.6) and prove the first part of the assertion.

For (ii), recall that

1
Sμγ,σ

�
(−1/x) = e−v(−1/x).

Under (6.6) we have x �→ −v(−1/x) ∈ ΠL(1) and so (6.7) follows from Lemma 6.5.
Point (iii) for d = +∞ follows from Theorem 4.1 and for d ∈ (0, +∞) from Theo-

rem 4.5. The case of d = 0 requires more work.
Since 

∫
(0,+∞) t

−1σ(dt) = +∞, we have v(0−) = −∞. Define a function L̃ ∈ R0 by 
(recall that (x − 1)/Sμ(−1/x) = −1/χμ(−1/x) is monotonic and continuous)

L̃

(
x− 1

Sμ(−1/x)

)
= L(x)

Sμ(−1/x) . (6.8)

Thus, (6.7) for d = 0 implies that

x �→ 1
Sμγ,σ

�
(−1/x) ∈ Π

M̃
(1),

where M̃(x) := L̃ ((x− 1)/Sμ(−1/x)).
In view of Theorem 4.7, if we show that

+∞∫
1

L̃(t)/t dt = +∞, (6.9)

then we will have

μγ,σ
�

(
(x,+∞)

)
∼ L̃(x)/x.

Denote fμ(x) = (x − 1)/Sμ(−1/x) and observe that (6.8) gives

L̃(fμ(x))
f ′
μ(x) = L(x)

f ′
μ(x).
fμ(x) x− 1
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Thus, we see that (6.9) holds true if

x∫
1

L(t)
t− 1f

′
μ(t)dt → +∞ as x → +∞.

But L(t)
t−1 f

′
μ(t) ∼

(
1/Sμγ,σ

�
(−1/t)

)′
and 1/Sμγ,σ

�
(−1/x) → +∞ by the fact that v(0−) =

−∞. �
We extend a definition of M+ to finite measures on [0, +∞]. Let P+ denote the set 

of finite Borel measures on R+ and define for p ∈ N ∪ {0},

M̃p := {σ ∈ P+ : mp(σ) < +∞ and mp+1(σ) = +∞}.

It is easy to see that we have v(0−) = +∞ if and only if 
∫
[0,+∞] t

−1σ(dt) = m1(σ̂) = +∞. 
Thus, by Proposition 3.3 (iii) we have

μγ,σ
� ∈ M0 if and only if σ̂ ∈ M̃0.

Lemma 6.6. Let p ∈ N. We have

μγ,σ
� ∈ Mp if and only if σ̂ ∈ M̃p.

Proof. We will show that condition σ̂ ∈ M̃p implies μγ,σ
� ∈ Mp. The reverse implication 

works along the same lines.
In view of Lemma 3.8, we know that condition mp(μγ,σ

� ) < +∞ is equivalent to series 
expansion in 0− of order p − 1 of Sμγ,σ

�
(z) = exp(v(z)). This will be established upon 

showing series expansion in 0− of order p − 1 of v(z/(1 − z)). For s = t−1 ∈ (0, +∞) we 
have for any n ∈ N ∪ {0}

−1 + tz

z − t
= s +

n∑
k=1

(sk+1 + sk−1)zk + (1 + s2)snzn+1

1 − sz
,

which implies that for n = p − 1 (see (6.1))

v

(
z

1 − z

)
= γ −m1(σ̂) −

p−1∑
k=0

(mk+1(σ̂) + mk−1(σ̂))zk + zp−1h(z)

where h(z) = − 
∫
[0,+∞]

(1+s2)sp−1z
1−sz σ̂(ds). If mp(σ̂) < +∞, then for z ∈ (−1, 0) we get

∣∣∣∣ (1 + s2)sp−1z
∣∣∣∣ ≤ sp−1 + sp
1 − sz
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and by Lebesgue’s Dominated Convergence Theorem we obtain h(z) = o(1) as z → 0−. 
If mp+1(σ̂) = +∞, then clearly v(z/(1 − z)) does not have series expansion of order p
and the same applies to exp(v(z)). The result follows. �

If m−1(σ) < ∞ (and so σ({0}) = 0), then by Proposition 3.3 (iii) we have

m1(μγ,σ
� ) = 1/S(p)

μ (0−) = exp(−v(0−)) = exp (−γ + m−1(σ)) .

Theorem 6.7. Let p ∈ N, α ∈ [p, p + 1] and L ∈ R0 be such that

(a)
∫∞
1 L(t)/t dt < ∞ if α = p,

(b)
∫∞
1 L(t)/t dt = ∞ if α = p + 1.

The following two conditions are equivalent:

σ
(
(0, x]

)
∼ xαL(1/x) as x → 0+, (6.10){

v(p)(−1/x) ∼ −Γ(α + 1)Γ(p + 1 − α)xp+1−αL(x), if α ∈ [p, p + 1),
v(p)(−1/x) ∈ ΠL(−(p + 1)!), if α = p + 1

(6.11)

Each of these equivalent conditions imply that

μγ,σ
�

(
(x,∞)

)
∼ m1(μγ,σ

� )α+1L(x)
xα

. (6.12)

Proof. First we show that (6.10) implies (6.11) for α ∈ [p, p + 1). The other direction 
and the case α = p + 1 is proven similarly.

Since 1+tz
z−t = −(z+z−1) sz

1−sz −z for s = t−1 ∈ [0, ∞), by the definition of v we obtain

v

(
z

1 − z

)
= γ + σ({0})1

z
− z σ

(
(0,∞]

)
− (z + z−1)ψσ̂(z), (6.13)

where ψσ̂(z) =
∫
[0,+∞] zt/(1 −zt)σ̂(dt) is the moment transform of σ̂ ∈ P+. Under (6.10)

we have σ({0}) = 0. We will need the following easy facts, which we state without proofs.

(a) By Theorem 2.13 we have∫
[0,x]

tp+1σ̂(dt) ∼ α

p + 1 − α
xp+1−αL(x). (6.14)

(b) Define U(x) by the l.h.s. of (6.14). By Theorem 2.14 we have∫ dU(s)
(s + x)p+1 ∼ Γ(α + 1)Γ(p + 1 − α)

p! x−αL(x).

[0,+∞)
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(c) By direct calculation we obtain

dp

dzp
ψσ̂(z)
z

= p!
∫

[0,+∞)

sp+1

(1 − sz)p+1 σ̂(ds) = p!
∫

[0,+∞)

dU(s)
(1 − sz)p+1 .

(d) Combining (b) and (c) above, we get

dp

dzp
ψσ̂(z)
z

∣∣∣∣
z=−1/(x+1)

= (x + 1)p+1p!
∫

[0,+∞)

dU(s)
(s + (x + 1))p+1

∼ Γ(α + 1)Γ(p + 1 − α)xp+1−αL(x),

where we have used the fact that for slowly varying functions we have L(x) ∼
L(x + 1).

(e) By previous point we see that dp

dzp (ψσ̂(z)/z) → +∞, while dk

dzk (ψσ̂(z)/z) has a finite 
limit as z → 0− for all k < p. Hence, by (6.13), we obtain

dp

dzp
ψσ̂(z)
z

∼ dp

dzp
(
(z + z−1)ψσ̂(z)

)
∼ − dp

dzp v
(

z

1 − z

)

(f) As a consequence of (d) and (e) we see that v
(

z
1−z

)
has a finite limit as z → 0−. 

Thus,

dp

dzp v
(

z

1 − z

)
∼ v(p)

(
z

1 − z

)
.

(g) By (f) and (e) we have

v(p)
(
− 1
x

)
(f)∼ dp

dzp v
(

z

1 − z

)∣∣∣∣
z=−1/(x+1)

(e)∼ − dp

dzp
ψσ̂(z)
z

∣∣∣∣
z=−1/(x+1)

and so (6.11) follows from (d).

Now we will prove the implication from (6.11) to (6.12). Again, we present only the 
case α ∈ [p, p + 1).

(A) Under (6.11) we have

S
(p)
μγ,σ
�

(z) ∼ ev(z)v(p)(z) ∼ Sμγ,σ
�

(0−)v(p)(z).

(B) By (A) and (6.11) we get

S
(p)
μγ,σ
�

(
− 1

)
∼ −Γ(α + 1)Γ(p + 1 − α)xp+1−α

γ,σ 1+α
L̃(x),
x m1(μ� )
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where L̃(x) = m1(μγ,σ
� )1+αL(x).

(C) By the converse implication of Theorem 4.9 we obtain (6.12). �
The above results imply that the left tail of μγ,σ

� can be found under regular variation 
of the right tail of σ. The argument is based on the following easy result.

Lemma 6.8.

μ̂γ,σ
� = μ−γ,σ̂

� .

Proof. By Proposition 3.3 (v), we have

Sμ̂γ,σ
�

(z) = exp(−v(−1 − z)) =: exp(v̂(z)),

where

v̂

(
z

1 − z

)
= −v

(
−1 − z

1 − z

)
= −v

(
z−1

1 − z−1

)
= −γ −

∫
[0,+∞]

1 + z−1t

z−1 − t
σ(dt)

= −γ +
∫

[0,+∞]

1 + zt

z − t
σ̂(dt). �

Example 6.9. Let us consider a measure σα ∈ P+ defined by its cumulative distribution 
function σα([0, x)) = c min{xα, dα}, x ≥ 0 for α ≥ 0, d, c > 0. Then,

μγ,σα

�
(
(x,∞)

)
∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
πα

sin(πα)

)1/(1−α)
c1/(1−α) log(x)−1/(1−α) for α ∈ [0, 1),

π/(1+c)
sin(π/(1+c))d

c/(1+c)e−γ/(1+c)x−1/(1+c) for α = 1,

e−(1+α)γ+αdα+1
c x−α for α > 1.

The case α ∈ [0, 1) is a straightforward corollary from Theorem 6.3 with L = c and 
Lα = c1/(1−α) = 1/L#

α .
The case α = 1 follows from tedious calculations leading to

Sμγ,σα
�

(−1/x) = (1 + d(x + 1))−c(1+(x+1)−2)ecd/(x+1)+γ

∼ d−ceγx−c = C−1/Λ
(

sin(πΛ)
πΛ

)1/Λ

x1−1/Λ,

where Λ = 1/(1 + c) and C = π/(1+c)
sin(π/(1+c))d

c/(1+c)e−γ/(1+c). Thus, the result follows from 
the Remark after Theorem 4.5.

In case α > 1, we have m1(μγ,σα

� ) = exp(−γ + m−1(σ)) = exp(−γ + αdα+1/(α + 1))
and the result follows from Theorem 6.7.



44 B. Kołodziejek, K. Szpojankowski / Advances in Mathematics 403 (2022) 108398
7. Miscellaneous remarks

In this section we provide some consequences of results from Section 4, which are 
not related to the phase transitions from previous sections, but still are of independent 
interest.

7.1. Free Breiman’s lemma

A special case of classical Breiman’s Lemma was proved in [8]. Its refinements can be 
found in [12]. We present the most popular statement below.

Proposition 7.1 (Breiman’s Lemma). Let L ∈ R0. If μ, ν ∈ M+ are such that

μ
(
(x,+∞)) ∼ x−αL(x) and mα+ε(ν) < +∞,

for α ≥ 0 and ε > 0, then

(μ� ν)
(
(x,+∞)

)
∼ mα(ν)μ̄(x).

As a conclusion from our main results we obtain an analogue of the Breiman Lemma 
for free multiplicative convolution. This theorem answers an open question posed in [10, 
Section 2.4 (1)] about the behavior of the tail of μ � ν.

Lemma 7.2. Let L ∈ R0. If μ, ν ∈ M+ are such that

μ
(
(x,+∞)) ∼ x−αL(x) and m�α+1�(ν) < +∞,

for α ≥ 0, then

(μ� ν)
(
(x,+∞)

)
∼ mα

1 (ν)μ̄(x).

Proof. We have μ ∈ Mp for some p ∈ N0. We consider four cases:

(1) p = 0, α ∈ [0, 1).
We have

Sμ�ν

(
− 1
x

)
= Sμ

(
− 1
x

)
Sν

(
− 1
x

)
∼ 1

m1(ν)Sμ

(
− 1
x

)
and the result follows from Corollary 5.1 for α ∈ (0, 1) and by Corollary 5.2 for 
α = 0.

(2) p = 0, α = 1.
If α = 1, then we require that m2(ν) < +∞. Thus, Sν(z) = 1/m1(μ) + o(z). This 

implies that
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Sμ�ν

(
− 1
x

)
= m1(ν)−1Sμ

(
− 1
x

)
+ o(x−1)

and Corollary 5.3 gives the assertion.
(3) p ∈ N, α ∈ [p, p + 1).

S
(p)
μ�ν

(
− 1
x

)
∼ S(p)

μ

(
− 1
x

)
Sν

(
− 1
x

)
∼ 1

m1(ν)S
(p)
μ

(
− 1
x

)
and the result follows from Corollary 5.4.

(4) p ∈ N, α = p + 1.
In view of Lemma 2.12, we have

S
(p)
μ�ν

(
− 1
x

)
= S(p)

μ

(
− 1
x

)
Sν

(
− 1
x

)
+ c+ o(x−ε) = 1

m1(ν)S
(p)
μ

(
− 1
x

)
+ c+ o(x−ε)

and the result follows from Corollary 5.4. �
Lemma 7.2 was already observed in [9, Corollary 4.1] in the special case when ν is the 

Marchenko-Pastur law with rate 1 and scale parameter 1 for which we have m1(ν) = 1.
A somehow similar results were obtained in [10] for Boolean multiplicative and addi-

tive convolutions.

7.2. Tails at 0+

In this subsection we observe that the results about right tail can be immediately 
applied to determine the behavior of the tail at 0+. This follows from the fact that 
S-transform behaves in a tractable way when one considers the pushforward measure 
under the mapping x �→ 1/x.

Remark 7.3. Let μ̂ denote the pushforward measure of μ by the mapping x �→ x−1. If μ
has a regularly varying tails of 0+ with index −α, then μ̂ has a regularly varying tails 
at ∞ with the same index. Indeed, we have

μ̂
(
(x,+∞)

)
= μ

(
[0, x−1)

)
∼ x−αL(x)

and

m1(μ̂) = m−1(μ).

Moreover, by Proposition 3.3 (v) we have

Sμ̂(z) = 1/Sμ(−1 − z), z ∈ (−1, 0).
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Definition 7.4. We say that μ has regularly varying tail at 0+ with index −α ≤ 0 if

μ
(
[0, x−1)

)
∼ L(x)

xα
, (7.1)

for some slowly varying function L.

Let us list here some immediate consequences of the result from Section 4.

Corollary 7.5. Assume L ∈ R0.

(i) Let α = 0. If (7.1) holds, then

x �→ Sμ(−1 + 1/x) ∈ KR∞. (7.2)

Conversely, if (7.2) holds, then (7.1) holds with

L(x) = 1/g〈−1〉
μ (x),

where gμ(x) := −χμ(−1 + 1/x) = (x − 1)Sμ(−1 + 1/x).
(ii) Let α ∈ (0, 1). Then, (7.1) is equivalent to

Sμ

(
−1 + 1

x

)
∼

(
πα

sin(πα)

)1/α

x1/α−1M#(x1/α),

where M# is the de Bruijn conjugate of a slowly varying function M(x) =
L−1/α(x).

(iii) Let α = 1. Then, (7.1) is equivalent to

x �→ Sμ (−1 + 1/x) ∈ ΠM (1),

where M(x) := L
(
(x − 1)Sμ(−1 + 1/x)

)
.

(iv) Let α ∈ [p, p + 1] for p ∈ N.

a) If one of the following conditions holds
• α ∈ (p, p + 1), or
• α = p and 

∫ +∞
1 L(t)/t dt < +∞,

then (7.1) is equivalent to

S(p)
μ

(
−1 + 1

x

)
∼ (−1)pΓ(α + 1)Γ(p + 1 − α)

m−1(μ)α−1 xp+1−αL(x).

b) If α = p + 1 and 
∫ +∞
1 L(t)/t dt = +∞, then (7.1) is equivalent to

x �→ S(p)
μ

(
−1 + 1

)
∈ ΠL

(
(−1)p (p + 1)!

p

)
.

x m−1(μ)
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We also note that recently in [17, Remark 3.2] determined the tail at 0+ of μ �ν when 
both measures have regularly varying tail at 0+ with indexes in (0, 1). This falls under 
the case (ii) of the above result.

Let us determine here left and right tails of a family of probability measures considered 
in [13].

Example 7.6. In [13] the authors considered family of probability measures (μα,β : α, β ≥
0) defined by their S-transforms

Sμα,β
(z) = (−z)β

(1 + z)α .

In particular, μ0,1 is the image of the free Poisson distribution with shape parameter 
under the map x �→ x−1 and has a density

μ0,1(dx) = 1
2π

√
4x− 1
x2 1(1/4,+∞)(x)dx.

This is also the free stable distribution with parameters α = 1/2 and ρ = 1 ([4, Appendix 
A1]). In general case, the asymptotic behavior of tails μ̄α,β, if non trivial, can be obtained 
from the implicit description of densities of μα,β from [13, Theorems 4,5,6] or by the use 
of standard Tauberian theorems applied to results of [13, Theorem 3]. Thanks to the 
results of Section 4 and this section we are able to deduce the precise asymptotics of 
x �→ μ̄α,β(x) and x �→ μ

(
[0, 1/x)

)
just by examining the asymptotics of corresponding 

S-transform. We have

Sμα,β

(
− 1
x

)
= xα−β

(x− 1)α ∼ x−β

and

Sμα,β

(
−1 + 1

x

)
= xα

(
1 − 1

x

)β

∼ xα.

If β > 0, then we obtain

lim
x→+∞

x1/(β+1)μ̄α,β(x) =
sin(π 1

β+1 )
π 1

β+1

If α > 0, then

lim
x→+∞

x1/(α+1)μα,β

(
[0, x−1)

)
=

sin(π 1
α+1 )

π 1

α+1
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7.3. Symmetric measures

The definition of the S-transform of μ when m1(μ) = 0 is problematic, however in 
order to define μ � ν it is enough that one of the measures is supported on [0, +∞). In 
this subsection we apply our results in the case when μ is symmetric it is possible do to 
some observations from [1]. The notion of S-transform was first extended measures with 
m1(μ) = 0 and with all moments finite in [20]. In the case of symmetric measures it was 
then further generalized to arbitrary symmetric probability measures in [1]. We say that 
a Borel measure μ is symmetric if μ(B) = μ(−B) for all Borel sets B. Let MS denote 
the class of symmetric Borel probability measures on R.

Define the moment transform ψμ of μ ∈ MS by

ψμ(z) =
∫
R

zt

1 − zt
μ(dt), z ∈ iR.

Then, the function ψμ : iR− → (μ({0}) − 1, 0) is invertible and we denote its inverse by 
χμ : (μ({0}) − 1, 0) → iR−. The S-transform of μ ∈ MS is then defined by

Sμ(z) = 1 + z

z
χμ(z), z ∈ (μ({0}) − 1, 0).

Unlike the S-transform of measure in M+ (which was a real function), the S-transform 
of symmetric measures is imaginary. Eq. (1.1) is still holds if one of the measures belongs 
to M+, [1, Theorem 7]. More precisely, if μ ∈ MS , ν ∈ M+ and both measures are not 
δ0, then μ � ν ∈ MS and

Sμ�ν(z) = Sμ(z)Sν(z), z ∈ (−ε, 0)

for some ε > 0.

Remark 7.7. In [1] two S-transforms of a symmetric measure. The second one corresponds 
to the fact that function ψμ : iR+ → (μ({0}) − 1, 0) is also invertible and we may take 
use it instead of χμ to define the S-transform.

Both S-transforms in [1] were defined for complex argument, but for our purposes it 
is enough to consider real ones.

Let μ2 ∈ M+ denote the pushforward measure of μ ∈ MS by the mapping x �→ x2. 
Clearly,

μ
(
(x,+∞)

)
= 1

2μ
2((x2,+∞)

)
. (7.3)

Moreover, the S-transforms of μ ∈ MS and of μ2 ∈ M+ are related by the following 
equation (see [1, Theorem 6 b)]) for μ 
= δ0 there exists ε > 0 such that
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Sμ(z)2 = 1 + z

z
Sμ2(z), z ∈ (−ε, 0). (7.4)

Finally, it is easy to see that x �→ μ
(
(x, +∞)

)
is regularly varying with index −α ≤ 0

if and only if x �→ μ2((x, +∞)
)

is regularly varying with index −α/2. Thus, we may 
apply results of Section 4 to completely characterize the behavior of the S-transform 
of symmetric probability measures with regularly varying tail. We present an example 
below.

Example 7.8. Let us consider μ ∈ MS for which

lim
z→0−

Sμ(z) = c i (7.5)

for some c > 0. Then (7.4) implies that

Sμ2

(
− 1
x

)
∼ c2

1
x
.

By the converse implication of Theorem 4.5 with α = 1/2 we obtain

μ2((x,+∞)
)
∼ 2

πc
x−1/2.

Thus, by (7.3) we finally arrive at

μ
(
(x,+∞)

)
∼ 1

πc

1
x
. (7.6)

Clearly, all above steps can be reverted and we therefore see that (7.5) and (7.6) are 
equivalent.
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