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We consider multivariate centered Gaussian models for the random vari-
able Z = (Z1, . . . ,Zp), invariant under the action of a subgroup of the group
of permutations on {1, . . . , p}. Using the representation theory of the sym-
metric group on the field of reals, we derive the distribution of the maxi-
mum likelihood estimate of the covariance parameter � and also the analytic
expression of the normalizing constant of the Diaconis–Ylvisaker conjugate
prior for the precision parameter K = �−1. We can thus perform Bayesian
model selection in the class of complete Gaussian models invariant by the ac-
tion of a subgroup of the symmetric group, which we could also call complete
RCOP models. We illustrate our results with a toy example of dimension 4
and several examples for selection within cyclic groups, including a high-
dimensional example with p = 100.

1. Introduction.

1.1. Motivations and applications. Let V = {1, . . . , p} be a finite index set and let
Z = (Z1, . . . ,Zp) be a multivariate random variable following a centered Gaussian model
Np(0,�). Let Sp denote the symmetric group on V , that is, the group of all permutations on
{1, . . . , p} and let � be a subgroup of Sp . A centered Gaussian model is said to be invariant
under the action of � if for all g ∈ �, g ·� · g� =� (here we identify a permutation g with
its permutation matrix).

Given n data points Z(1), . . . ,Z(n) from a Gaussian distribution, our aim in this paper
is to do Bayesian model selection within the class of models invariant by symmetry, that
is, invariant under the action of some subgroup � of Sp on V . Given the data, our aim is
therefore to identify the subgroup � ⊂ Sp such that the model invariant under � has the
highest posterior probability. We achieve this goal by constructing a Markov chain on the
space of models and using the Metropolis–Hastings algorithm.

There are many alternative ways of doing model search in modern statistics on big data
sets, both frequentist and Bayesian. Bayesian model selection methods (cf. Ghosal and van
der Vaart (2017), Chapter 10) are widely used in practice, thanks to the possibility of us-
ing a prior knowledge on the model and to their rigorous mathematical bases. Moreover, in
Bayesian approach the Metropolis–Hastings algorithm is naturally applicable and generally
accepted.

Our work can be viewed as a special case of colored graphical Gaussian models (the un-
derlying graph is complete so we do not impose conditional independence structure), that is,

Received April 2020; revised January 2022.
MSC2020 subject classifications. Primary 62H99, 62F15; secondary 20C35.
Key words and phrases. Colored graph, conjugate prior, covariance selection, invariance, permutation symme-

try.

1747

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/22-AOS2174
http://www.imstat.org
mailto:piotr.graczyk@univ-angers.fr
mailto:hideyuki@sci.osaka-cu.ac.jp
mailto:b.kolodziejek@mini.pw.edu.pl
mailto:massamh@mathstat.yorku.ca
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


1748 GRACZYK, ISHI, KOŁODZIEJEK AND MASSAM

statistical graphical models with additional symmetries (equality constraints on the precision
or correlation matrix). Such models were introduced into modern exploratory analysis of data
in the seminal paper Højsgaard and Lauritzen (2008), as a powerful tool of dimension reduc-
tion in unsupervised learning; cf. Maathuis et al. ((2018), Chapter 9.8). A preponderant role
is given in Højsgaard and Lauritzen (2008) to the RCOP models studied in our paper, thanks
to their most tractable structure and interpretability through symmetries among the variables.
One of motivations of this paper is to address the task stated in Højsgaard and Lauritzen
((2008), page 1025): For the models to become widely applicable, it is mandatory to develop
algorithms for model identification which are robust, reliable and transparent.

For high-dimensional data, Gaussian models, which have symmetries and are graphical,
allow statisticians to reduce the dimension of a model. In genetics, such models can be used
to identify genes having the same function or groups of genes having similar interactions.
Below we mention some of the studies in which our model could find potential application.

In Højsgaard and Lauritzen (2008), gene expression signatures for p53 mutation status
in 58 breast cancer samples consisting of 150 genes were investigated and interpreted. We
apply our algorithm to this data in the Supplementary Material; see Section 6 in Graczyk
et al. (2022) We claim that our model selection procedure can be used as an exploratory tool.
Assuming that the variables are all on some common scale, the proposed algorithm can be
run to look for potential hidden symmetries between the variables.

It is worth to underline that one of the characteristics of our model is the lack of scale
invariance. We point out below that there are many examples where our model can still be
applied. For example, the data from gene expression are on the same scale in the sense that
they are results of experiments of the same type, measured in the same gauges. Similar sit-
uation appears generally for omic data sets in proteomics and metabolomics. For more de-
tails see, for example, the monograph Frommlet, Bogdan and Ramsey (2016). In Sobczyk
et al. ((2020), Section 6.2 TCGA Breast Cancer Data), genetic information in tumoral tissues
DNA that are involved in gene expression are measured from messenger sequencing by the
RNASeq method and they are all on the same scale, as they are the numbers of transcripts in
a sample. In clinical epidemiology and medicine, one often uses scales combined into scores
to classify outcome; see, for example, Toyoda et al. (2022), Missio et al. (2019). Range of
values of such scores are often similar, even though not formally tested statistically to be so.
In the paper, Descatha et al. (2007) the normalization or nonnormalization of data did not
influence their statistical interpretation.

Moreover, we argue that it is natural to expect certain symmetries in the data from gene ex-
pression. Namely, expression of a given gene is triggered by binding the transcription factors
to the gene transcription factor binding sites. The transcription factors are the proteins pro-
duced by other genes, say regulatory genes. In the gene network, there are often many genes
triggered by the same regulatory genes and it makes sense to assume that their relative ex-
pressions depend on the abundance of proteins of the regulatory genes (i.e., gene expressions)
in a similar way.

In Gao and Massam (2015), 12,625 neutrophil gene expressions were monitored with
imposed symmetry constraints to the graphical modeling. The paper (Li, Gao and Massam
(2020)) contains a study of the structure of colored graphs applied to a flow cytometry data set
on signaling networks of human immune system cells, which consists of 7466 measurements
on 11 phosphorylated proteins.

A very recent application of graphical models with symmetries to fMRI real data on brain
networks is proposed in Ranciati, Roverato and Luati (2021). An impressive number of re-
cent applications of graphical models to real data analysis is listed in the recent monograph
Maathuis et al. ((2018), Chapters 19, 20, 21) and includes genetics, genomics, molecular sys-
tems biology and forensic analysis; cf. also the books Roverato (2017) for medical and Li
(2009) for image data applications.
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Finally, let us mention that colored graphical models provide interesting examples of expo-
nential algebraic varieties and algebraic exponential families, for example, Toeplitz matrices
Michałek et al. (2016); see also Davies and Marigliano (2021). The recent algebro-geometric
approach to graphical models and Gaussian Bayesian networks is being developed intensely
Maathuis et al. ((2018), Chapter 3).

1.2. Contribution of the paper and relations to previous work. In this subsection, we
carefully describe and position this paper in the context of previous research.

Theory of invariant normal models (with the so-called lattice conditional independencies
(Andersson and Madsen (1998), Madsen (2000)), which are not considered in the present pa-
per) was developed by the Danish school. History regarding this subject is nicely presented
in Andersson and Madsen (1998), where the reader can also find references to earlier works
dealing with particular symmetry models such as, for example, the circular symmetry model
of Olkin and Press (1969) that we will consider further (Section 5). Among others, Anders-
son, Brøns, Jensen, Madsen and Perlman developed a fairly complete theory of MLE �̂ of
the covariance matrix in invariant normal models, however, the problems considered in our
paper are very different.

These works were concentrating on the derivation of statistical properties of the maximum
likelihood estimate of � and on testing the hypothesis that models were of a particular type.
In particular, to the best of our knowledge the Danish school never considered any model
search in the context of invariant normal models. When the model space is very big (and this
is the usual case of our framework), then it is impossible to perform simultaneous tests for
all possible models. Despite the computation problems, there is also even bigger issue due to
multiple comparisons problem.

Just like the classical papers mentioned above, the fundamental algebraic tool we use in
this work is the irreducible decomposition theorem for the matrix representation of the group
�, which in turn means that, through an adequate change of basis, any matrix X in Z� , the
space of symmetric matrices invariant under the subgroup � of Sp , can be written in a block
diagonal form. The following result is a reformulation of an observation made in Andersson
((1975), 4.6–4.8).

THEOREM 1. Fix a permutation subgroup � ⊂ Sp . Then there exist constants L ∈ N,
(ki, di, ri)

L
i=1 and orthogonal matrix U� such that if X ∈Z� , that is, X ∈ Sym(p;R) and

Xij =Xσ(i)σ (j)

(
σ ∈ �, i, j ∈ {1, . . . , p}),

then

(1) X =U� ·

⎛
⎜⎜⎜⎝

MK1(x1)⊗ Ik1/d1

MK2(x2)⊗ Ik2/d2
. . .

MKL
(xL)⊗ IkL/dL

⎞
⎟⎟⎟⎠ ·U�� ,

where MKi
(xi) is a real matrix representation of an ri × ri Hermitian matrix xi with entries

in Ki = R,C or H, i = 1, . . . ,L, and A⊗ B denotes the Kronecker product of matrices A

and B .

Elements of (ki, di, ri)
L
i=1 are integer constants called structure constants that we will de-

fine later. At this point, we note that ki/di are also integers and di = dimRKi ∈ {1,2,4}.
The mappings MKi

: Herm(ri;Ki)→ Sym(diri;R) are defined in Section 2.2. As was al-
ready observed in Jensen (1988), the space Z� equipped with a Jordan product and trace
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inner product forms a Euclidean Jordan algebra. Thus, (1) can be understood as a decom-
position of Z� into Euclidean simple Jordan algebras. Theorem 1 is the existence result and
actual computation of structure constants and the orthogonal matrix U� is in general a hard
technical task. A complete proof of Theorem 1 can be found in the Supplementary Material
(Graczyk et al. (2022)). We tried to ensure that our arguments are concrete and should be
easier to understand for the reader who is not familiar with representation theory.

The main novel results of the paper are:

(a) new Bayesian model selection procedure within Gaussian models invariant by a per-
mutation subgroup, Section 4.1,

(b) explicit formulas for Gamma integrals, normalizing constants of densities of Diaconis–
Ylvisaker conjugate prior for K and of the MLE of � on P� , Bayes factors, which are
necessary for performing a), Theorems 8 and 9 in Section 3,

(c) efficient algorithm for finding a decomposition (1) when the subgroup � is cyclic,
Theorems 5 and 6 in Section 2.4,

(d) simulations that visualize the performance of the method in low and high-dimensional
examples, Section 4.2, Section 5 and Section 4 of the Supplementary Material (Graczyk et al.
(2022)).

Ad (a). We are aware of three papers which concern model selection in the space of col-
ored graphical model, namely Gehrmann (2011), Massam, Li and Gao (2018), Li, Gao and
Massam (2020).

In Gehrmann (2011), the author used the lattice structure of the colored graphical model
classes and applied Edwards–Havránek model selection procedure to p = 4 and p = 5 ex-
amples, admitted that applying this method to high-dimensional problems requires additional
work.

Both papers (Massam, Li and Gao (2018) and Li, Gao and Massam (2020)) used Bayesian
methods and allow for model selection in the space of RCON models (which is a superclass
of RCOP models introduced in Højsgaard and Lauritzen (2008)) and for arbitrary graphs
describing conditional independencies in a vector. Such generality comes at a certain cost:
as the authors were not able to compute normalizing constants for such general models, they
had to approximate these constants or bypass the problem (which comes with a significant
increase in computational complexity): we quote a few lines from these articles that describe
the situation well.

• Massam, Li and Gao (2018): However, just as sampling schemes for the G-Wishart dis-
tribution are not recommended for computation of (normalizing constant) IG(δ,D) and
model selection in higher dimensions, our sampling scheme is not recommended for com-
puting (normalizing constant) IG(δ,D) in high dimensions.

• Li, Gao and Massam (2020): The model G∗ with an additional edge is then compared to
the current model G using the Bayes factor (. . . ), which itself is computed with the help of
the double reversible jump MCMC algorithm. (. . . ) We thus avoid computing these quan-
tities which are the usual computational stumbling blocks in graphical Gaussian model
selection.

Our approach to the Bayesian model selection is much simpler as we were able to compute
normalizing constants of Diaconis–Ylvisaker conjugate priors for K .

Ad (b). We note that a general form of a density of the MLE under our assumptions was
already written in Andersson (1975) and in more explicit form in Andersson and Madsen
(1998). However, an explicit expression for the normalizing constant of density of �̂ or
Diaconis–Ylvisaker conjugate prior was not the object of interest of the Danish school and it
is crucial for the Bayes paradigm and the Bayesian model selection.
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Still, there are certain results in their numerous works that can be compared with our
formulas. In particular, Andersson and Madsen ((1998), equation (A.4)) gives a formula for
E[Det(�̂)α], which is consistent with our results. Indeed, after substitution of (di, nki/di, ri)i
for (dμ,nμ,pμ)μ, the right-hand side of their formula coincides with 2αpn−αp�P� (α +
n/2)/�P� (n/2) in our notation (see Theorem 8). Further, in Andersson, Brøns and Jensen
((1983), Section 8) explicit formula for normalizing constants of the density of eigenvalues
of �̂ is given. However, as distribution of eigenvalues of a random matrix does not determine
the distribution of this matrix, our formulas do not follow from these results.

In some very special cases, normalizing constants for Diaconis–Ylvisaker conjugate prior
are given in Massam, Li and Gao (2018).

Ad (c). In order to compute normalizing constants in our model, one needs to know ex-
plicit decomposition (1), that is, the structure constants and the orthogonal matrix U� . The
same issue can be seen in Jensen ((1988), Theorem 1), which is the existence result (like our
Theorem 1) and does not give the answer how should one proceed to find such decomposi-
tion. In order for this theory to be applied, we proved that when � is a cyclic subgroup, then
we can efficiently find explicit decomposition (1) for arbitrary p. This practical aspect of our
work has not been addressed before. To our knowledge, our paper is the first one to identify
a nontrivial class of subgroups for which all objects can be calculated explicitly.

For a moment, let us consider the more general situation of Gaussian graphical models
with conditional independence structure encoded by a noncomplete graph G. Then one can
introduce symmetry restrictions (RCOP) by requiring that the precision matrix K is invariant
under some subgroup � of Sp . However, when G is not complete, not all subgroups are
suited to the problem. In such cases, one has to require that � belongs to the automorphism
group Aut(G) of G. If a graph G is sparse, then Aut(G) may be very small and it is natural to
expect that the vast majority of subgroups of Aut(G) are actually cyclic. Moreover, finding
the structure constants for a general group is much more expensive and in some situations
it may not be worth to consider the problem in its full generality. We consider our work
as a first step toward the rigorous analytical treatment of Bayesian model selection in the
space of graphical Gaussian models invariant under the action of � ⊂Sp when conditional
independencies are allowed.

Moreover, we offer here a new heuristic approach to colored graphical models using our
“full graph” approach. It was already observed in Højsgaard and Lauritzen (2008) that the
color pattern of the covariance matrix and the precision matrix are the same (i.e., they belong
to the space Z�). The same applies to the off-diagonal elements of the partial correlation
matrix. Our procedure allows one to find the color pattern of the covariance matrix. Since our
model does not suppose any preliminary conditional independence structure, the correspond-
ing graph is complete and there are no zeros in the partial correlation matrix. However, if the
true graph is not complete, it is natural to expect from the model that similar entries of the
partial correlation matrix (in particular those which are close to 0) are colored in the same
way. Thus, to recover the true graph we may threshold the values of the partial correlation
matrix. More precisely, we choose a threshold α > 0 and we construct a colored graph G by
maintaining the color pattern previously found and requiring that for i �= j ,

i ∼ j if and only if
|kij |√
kiikjj

> α,

where K = (kij )i,j is the precision matrix. Resulting graph G is in general not complete and
the corresponding space of admissible covariance matrices is still invariant under the action
of the subgroup found by our procedure; thus we obtain a RCOP model. We applied this
approach to a real data example in Section 4 of the Supplementary Material.

There are also several recent papers which use a version of Theorem 1. The subject of
Soloveychik, Trushin and Wiesel (2016) is estimation of complex covariance matrices in
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complex random vectors in non-Gaussian models invariant under the action of a fixed permu-
tation subgroup; see also De Maio et al. (2016). We remark that the argument of Soloveychik,
Trushin and Wiesel (2016) is based on representation theory over complex number fields, and
as was noticed by them, the fundamental structure theorem is much simpler than Theorem 1
because of the difference between the representation theory over C and R. In Shah and Chan-
drasekaran (2012), the authors consider the real case and sub-Gaussian model for which they
establish rates of convergence of an estimator of �, empirical covariance matrix regularized
by the action of a known permutation subgroup.

1.3. Outline of the paper. Let us consider the following example, which shows how The-
orem 1 works.

EXAMPLE 1. For p = 3 and � =S3, the space of symmetric matrices X invariant under
�, that is, such that Xij =Xσ(i)σ (j) for all σ ∈ �, is

Z� =
⎧⎨
⎩
⎛
⎝a b b

b a b

b b a

⎞
⎠ ;a, b ∈R

⎫⎬
⎭ .

The decomposition (1) yields U� := (v1, v2, v3) ∈O(3) with

v1 :=
⎛
⎜⎝1/

√
3

1/
√

3
1/
√

3

⎞
⎟⎠ , v2 :=

⎛
⎜⎜⎝
√

2/3

−1/
√

6
−1/

√
6

⎞
⎟⎟⎠ , v3 :=

⎛
⎜⎝

0
1/
√

2
−1
√

2

⎞
⎟⎠ ,

and ⎛
⎝a b b

b a b

a a b

⎞
⎠=U� ·

⎛
⎝a + 2b

a − b

a − b

⎞
⎠ ·U�� .

Here, L= 2, k1/d1 = 1, k2/d2 = 2, K1 =K2 =R, d1 = d2 = 1.

We see immediately in the example above that, following the decomposition (1), the trace
Tr[X] = a + 2b + 2(a − b) and the determinant Det(X)= (a + 2b)(a − b)2 can be readily
obtained. Similarly, using (1) allows us to easily obtain Det(X) and Tr[X] in general.

In Section 3, we will see that having the explicit formulas for Det(X) and Tr[X], in turn, al-
lows us to derive the analytic expression of the Gamma function on P� =Z� ∩Sym+(p;R),
defined as

�P� (λ) :=
∫
P�

Det(X)λe−Tr[X]ϕ�(X)dX,

where ϕ�(X)dX is the invariant measure on P� (see Definition 10 and Proposition 7) and
dX denotes the Euclidean measure on the space Z� with the trace inner product.

With our results, we can derive the analytic expression of the normalizing constant
I�(δ,D) of the Diaconis–Ylvisaker conjugate prior on K = �−1 with density, with respect
to the Euclidean measure on Z� , equal to

f (K; δ,D)= 1

I�(δ,D)
Det(K)(δ−2)/2e−

1
2 Tr[K·D]1P� (K)

for appropriate values of the scalar hyperparameter δ and the matrix hyperparameter D ∈P� .
By analogy with the G-Wishart distribution, defined in the context of the graphical Gaussian
models, Markov with respect to an undirected graph G on the cone PG of positive definite
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matrices with zero entry (i, j) whenever there is no edge between the vertices i and j in G,
(see Maathuis et al. (2018)), we can call the distribution with density f (K; δ,D), the RCOP-
Wishart (RCOP is the name coined in Højsgaard and Lauritzen (2008) for graphical Gaussian
models with restrictions generated by permutation symmetry). It is important to note here that
if � is in P� , so is K =�−1 so that K can also be decomposed according to (1). Equipped
with all these results, we compute the Bayes factors comparing models pairwise and perform
model selection. We will indicate in Section 4 how to travel through the space of subgroups
of the symmetric group.

In Section 3, we also derive the distribution of the maximum likelihood estimate (hence-
forth abbreviated MLE) of � and show that for n ≥ maxi=1,...,L{ridi/ki} it has a density
equal to

Det(X)n/2e− 1
2 Tr[X·�−1]

Det(2�)n/2�P� (n
2 )

ϕ�(X)1P� (X).

Clearly, the key to computing the Gamma integral on P� , the normalizing constant
I�(δ,D) or the density of the MLE of � is, for each � ⊂ Sp , to obtain the block diago-
nal matrix with diagonal block entries MKi

(xi)⊗ Iki/di
, i = 1, . . . ,L, in the decomposition

(1). In principle, we have to derive the invariant measure ϕ� and find the structure constants
(ki, di, ri)

L
i=1. This goal can be achieved by constructing an orthogonal matrix U� and using

(1). However, doing so for every � visited during the model selection process is computa-
tionally heavy.

We will show that for small to moderate dimensions, we can obtain the structure constants
as well as the expression of Det(X) and ϕ�(X) without having to compute U� . Indeed, as
indicated in Lemma 4, for any X ∈ P� , Det(X) admits a unique irreducible factorization of
the form

(2) Det(X)=
L∏

i=1

Det
(
MKi

(xi)
)ki/di =

L∏
j=1

fj (X)aj (X ∈Z�),

where each aj is a positive integer, each fj (X) is an irreducible polynomial of X ∈Z� , and
fi �= fj if i �= j . The constants ki , di , ri are obtained by identification of the two expressions
of Det(X) in (2). Factorization of a homogeneous polynomial Det(X) can be performed using
standard software such as either MATHEMATICA or PYTHON.

Due to computational complexity, for bigger dimensions, it is difficult to obtain the irre-
ducible factorization of Det(X). For special cases such as the case where the subgroup � is a
cyclic group, we give (Section 2.4) a simple construction of the matrix U� , and thus, for any
dimension p, we can do model selection in the space of models invariant under the action of
a cyclic group. We argue that restriction to cyclic groups is not as limiting as it may look. The
formula for the number of different colorings cp = #{Z�;� ⊂Sp} for given p is unknown.
Obviously, it is bounded from above by the number of all subgroups of Sp , because different
subgroups may produce the same coloring (e.g., in Example 1 we have ZS3 =Z〈(1,2,3)〉). On
the other hand, it is known (see Lemma 15) that cp is bounded from below by the number
of distinct cyclic subgroups, which grows rapidly with p (see OEIS1 sequence A051625). In
particular, for p = 18,2 we have cp ∈ (7.1 ·1014,7.6 ·1018); see also Table 1. The lower bound
for cp indicates that the colorings obtained from cyclic subgroups form a rich subfamily of
all possible colorings.

The procedure to do model selection will be described in Section 4 and we will illustrate
this procedure with Frets’ data (see Frets (1921)) and several examples for selection within

1The On-Line Encyclopedia of Integer Sequences, https://oeis.org/.
2The number of subgroups of Sp is unknown for p > 18; see Holt (2010) and OEIS sequence A005432.

https://oeis.org/
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cyclic groups, including a high-dimensional example with p = 100 (Section 5) and a real
data example (Miller et al. (2005)) with p = 150 in Section 4 of the Supplementary Material.

2. Preliminaries and structure constants. In this section, we present methods to calcu-
late the structure constants of a decomposition given in Theorem 1. Additions to this section
can be found in Section 3 of the Supplementary Material (Graczyk et al. (2022)).

2.1. Notation. Let Mat(n,m;R), Sym(n;R) denote the linear spaces of real n×m ma-
trices and symmetric real n× n matrices, respectively. Let Sym+(n;R) be the cone of sym-
metric positive definite real n× n matrices. A� denotes the transpose of a matrix A. Det and
Tr denote the usual determinant and trace in Mat(n,n;R).

For A ∈Mat(m,n;R) and B ∈Mat(m′, n′;R), we denote by A⊕ B the matrix
(

A O
O B

) ∈
Mat(m + m′, n + n′;R), and by A⊗ B the Kronecker product of A and B . For a positive
integer r , we write B⊕r for Ir ⊗B ∈Mat(rm′, rn′;R).

Let p denote the fixed number of vertices of a graph and let Sp denote the symmetric
group. We write permutations in cycle notation, meaning that (i1, i2, . . . , in) maps ij to ij+1
for j = 1, . . . , r − 1 and in to i1. By 〈σ1, . . . , σk〉, we denote the group generated by permu-
tations σ1, . . . , σk . The composition (product) of permutations σ,σ ′ ∈Sp will be denoted by
σ ◦ σ ′.

DEFINITION 2. For a subgroup � ⊂ Sp , we define the space of symmetric matrices
invariant under �, or the vector space of colored matrices,

Z� := {x ∈ Sym(p;R);xij = xσ(i)σ (j) for all σ ∈ �
}
,

and the cone of positive definite matrices valued in Z� ,

P� :=Z� ∩ Sym+(p;R).

We note that the same colored space and cone can be generated by two different subgroups:
in Example 1, the subgroup �′ = 〈(1,2,3)〉 generated by the permutation σ = (1,2,3) is such
that �′ �= � but Z�′ =Z� . Let us define

�∗ = {σ ∗ ∈Sp;xij = xσ ∗(i)σ ∗(j) for all x ∈Z�

}
.

Clearly, � is a subgroup of �∗ and �∗ is the unique largest subgroup of Sp such that
Z�∗ = Z� or, equivalently, such that the �∗- and �- orbits in {{v1, v2};vi ∈ V, i = 1,2} are
the same. The group �∗ is called the 2∗-closure of �. The group � is said to be 2∗-closed if
� = �∗. Subgroups which are 2∗-closed are in bijection with the set of colored spaces. These
concepts have been investigated in Wielandt (1969), Siemons (1982) along with a general-
ization to regular colorings in Siemons (1983). The combinatorics of 2∗-closed subgroups
is very complicated and little is known in general (Graham, Grötschel and Lovász (1995),
page 1502). In particular, the number of such subgroups is not known, but brute-force search
for small p indicates that this number is much less than the number of all subgroups of Sp

(see Table 1). Even though cyclic subgroups of Sp are in general not 2∗-closed, each cyclic
group corresponds to a different coloring (see Lemma 15).

For a permutation σ ∈Sp , denote its matrix by

(3) R(σ) :=
p∑

i=1

Eσ(i)i,

where Eab is the p×p matrix with 1 in the (a, b)-entry and 0 in other entries. The condition
xσ(i)σ (j) = xij is then equivalent to R(σ) · x ·R(σ)� = x. Consequently,

(4) Z� = {x ∈ Sym(p;R);R(σ) · x ·R(σ)� = x for all σ ∈ �
}
.
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DEFINITION 3. Let π� : Sym(p;R) → Z� be the orthogonal projection on Z� , that
is, the linear map such that for any x ∈ Sym(p;R) the element π�(x) ∈ Z� is uniquely
determined by

(5) Tr[x · y] = Tr
[
π�(x) · y] (y ∈Z�).

In view of (4), it is clear that

(6) π�(x)= 1

|�|
∑
σ∈�

R(σ) · x ·R(σ)�

satisfies the above definition. Here, |�| denotes the order of �.

2.2. Z� as a Jordan algebra. To derive analytic expression for Gamma-like functions
on P� it is convenient to see Z� as a Euclidean Jordan algebra and P� as the corresponding
symmetric cone. This fact was already observed in Jensen (1988). We recall here the fun-
damentals of Jordan algebras; cf. Faraut and Korányi (1994). A Euclidean Jordan algebra is
a Euclidean space A (endowed with the scalar product denoted by 〈·, ·〉) equipped with a
bilinear mapping (product)

A×A � (x, y) �→ x • y ∈A
such that for all x, y, z in A:

(i) x • y = y • x,
(ii) x • ((x • x) • y)= (x • x) • (x • y),

(iii) 〈x, y • z〉 = 〈x • y, z〉.
A Euclidean Jordan algebra is said to be simple if it is not a Cartesian product of two Eu-
clidean Jordan algebras of positive dimensions. We have the following result.

PROPOSITION 2. The Euclidean space Z� with inner product 〈x, y〉 = Tr[x · y] and the
Jordan product

(7) x • y = 1

2
(x · y + y · x),

is a Euclidean Jordan algebra. This algebra is generally nonsimple.

PROOF. Since Z� is a subset of the Euclidean Jordan algebra Sym(p;R), if it is endowed
with Jordan product (7), conditions (i)–(iii) are automatically satisfied. Moreover, character-
ization (4) of Z� implies that the Jordan product is closed in Z� , that is, R(σ) · (x • y) =
(x • y) ·R(σ) for all x, y ∈Z� and σ ∈ �. The result follows. �

Up to linear isomorphism, there are only five kinds of Euclidean simple Jordan alge-
bras. Let K denote the set of either the real numbers R, the complex ones C or the quater-
nions H. Let us write Herm(r;K) for the space of r × r Hermitian matrices valued in K.
Then Sym(r;R), r ≥ 1, Herm(r;C), r ≥ 2, Herm(r;H), r ≥ 2 are the first three kinds of
Euclidean simple Jordan algebras and they are the only ones that will concern us. The de-
terminant and trace in Jordan algebras Herm(r;K) will be denoted by det and tr (see Faraut
and Korányi (1994), page 29), respectively, so that they can be easily distinguished from the
determinant and trace in Mat(n,n;R) which we denote by Det and Tr.

To each Euclidean Jordan algebra A, one can attach the set 
 of Jordan squares, that is,

 = {x • x;x ∈ A}. The interior 
 of 
 is a symmetric cone, that is, it is self-dual and
homogeneous. We say that 
 is irreducible if it is not the Cartesian product of two convex
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cones. One can prove that an open convex cone is symmetric and irreducible if and only if it is
the symmetric cone 
 of some Euclidean simple Jordan algebra. Each simple Jordan algebra
corresponds to a symmetric cone. The first three kinds of irreducible symmetric cones are
thus, the symmetric positive definite real matrices Sym+(r;R) for r ≥ 1, complex Hermitian
positive definite matrices Herm+(r;C) and quaternionic Hermitian positive definite matrices
Herm+(r;H), r ≥ 2.

It follows from Definition 2 and Proposition 2 that P� is a symmetric cone. In Faraut and
Korányi ((1994), Proposition III.4.5), it is stated that any symmetric cone is a direct sum of
irreducible symmetric cones. As it will turn out, only three out of the five kinds of irreducible
symmetric cones may appear in this decomposition.

Moreover, we will want to represent the elements of the symmetric cones in their real
symmetric matrix representations. So, we recall that both Herm(r;C) and Herm(r;H) can
be realized as real symmetric matrices, but of bigger dimension. For z= a + bi ∈ C, define
MC(z) = ( a −b

b a

)
. The function MC is a matrix representation of C. Similarly, any r × r

complex matrix can be realized as a (2r)× (2r) real matrix by setting the correspondence

Mat(r, r;C) � (zi,j

)
1≤i,j≤r

� (MC(zi,j )
)
1≤i,j≤r

∈Mat(2r,2r;R),

that is, an (i, j)-entry of a complex matrix is replaced by its 2× 2 real matrix representation.
Note that MC maps the space Herm(r;C) of Hermitian matrices into the space Sym(2r;R)

of symmetric matrices. For example,

MC

(
a c− di

c+ di b

)
=

⎛
⎜⎜⎝

a 0 c d

0 a −d c

c −d b 0
d c 0 b

⎞
⎟⎟⎠ .

Moreover, by direct calculation one sees that

Det

⎛
⎜⎜⎝

a 0 c d

0 a −d c

c −d b 0
d c 0 b

⎞
⎟⎟⎠= det

(
a c− di

c+ di b

)2

.

It can be shown that, in general,

Det
(
MC(Z)

)= [det(Z)
]2 and Tr

[
MC(Z)

]= 2 tr[Z] (
Z ∈Herm(r;C)

)
.(8)

Similarly, quaternions can be realized as a 4× 4 matrix:

a + bi + cj + dk �
(
a + bi −c+ di

c+ di a − bi

)
�

⎛
⎜⎜⎝

a −b −c −d

b a d −c

c −d a b

d c −b a

⎞
⎟⎟⎠ .

Then quaternionic r × r matrices are realized as (4r)× (4r) real matrices. Thus, MH maps
Herm(r;H) into Sym(4r;R). Moreover, it is true that

Det
(
MH(Z)

)= [det(Z)
]4 and Tr

[
MH(Z)

]= 4 tr[Z] (
Z ∈Herm(r;H)

)
.(9)

2.3. Determining the structure constants and invariant measure on P� . As mentioned
in the Introduction, in order to derive the analytic expression of the Gamma-like functions
on P� , we need the structure constants (ki, di, ri)

L
i=1 as well as the invariant measure ϕ� .

However, due to Proposition 7 below, ϕ�(X) is expressed in terms of the polynomials det(xi),
where xi ∈Herm(ri;Ki), i = 1, . . . ,L, coming from decomposition (1). These can be derived
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from the decomposition of Z� . Let us note that the constants (di)i and (ki)i depend only on
the group �, while ri depend on a particular representation of �, which is R.

In view of decomposition (1), for X ∈ Z� , define φi(X) = xi ∈ Herm(ri;Ki) for i =
1, . . . ,L.

COROLLARY 3. For X ∈Z� , one has

(10) Det(X)=
L∏

i=1

det
(
φi(X)

)ki .

PROOF. By (1), we have

Det(X)=
L∏

i=1

Det
(
MKi

(xi)⊗ Iki/di

)= L∏
i=1

Det
(
MKi

(xi)
)ki/di

=
L∏

i=1

[
det(xi)

di
]ki/di =

L∏
i=1

det(xi)
ki ,

whence follows the formula. We have used (8) and (9) for the third equality above. �

LEMMA 4. Assume that � ⊂Sp and that (ki, di, ri)
L
i=1 are the structure constants cor-

responding to Z� . Assume that we have an irreducible factorization

(11) Det(X)=
L′∏

j=1

fj (X)aj (X ∈Z�),

where each aj is a positive integer, each fj (X) is an irreducible polynomial of X ∈Z� , and
fi �= fj if i �= j .

Then, L=L′, for each j there exists unique i such that fj (X)aj = det(φi(X))ki , and:

(a) ki = aj ,
(b) ri is the degree of fj (X)= det(φi(X)),
(c) If ri > 1, then di can be calculated from ri + diri(ri − 1)/2= rank(Pj ), where Pj is

the linear operator defined by Z� � x �→ Pj (x)= Ej • x ∈ Z� and Ej ∈ Z� is the gradient
of fj (X) at X = Ip .

REMARK 4. If ri = 1, the determination of di is not needed for writing the block decom-
position of Z� , since in this case R= Herm(1;R)= Herm(1;C)= Herm(1;H) and, if ki is
divisible by 2 or by 4, we have MKi

(xi)⊗ Iki/di
= xiIki

.

PROOF OF LEMMA 4. Since the determinant polynomial of a simple Jordan algebra is
always irreducible Upmeier ((1986), Lemma 2.3(1)), comparing (10) and (11), we obtain
L = L′, and that, for each j , there exists i such that fj (X)aj = det(φi(X))ki . From this
follows, also (a) and (b).

Observe that ri + diri(ri − 1)/2= dimR Herm(ri;Ki). Point (c) follows from the fact that
Pj coincides with the projection

⊕L
i=1 Herm(ri;Ki)→Herm(ri;Ki ). �

The practical significance of the method proposed in this lemma is that neither represen-
tation theory nor group theory is used. It is a strong advantage when we consider colorings
corresponding to a large number of different groups, for which finding structure constants is
very complicated.
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REMARK 5. The factorization of multivariate polynomials over an algebraic number
field can be done, for example, in PYTHON (see sympy.polys.polytools.factor) or in MATH-
EMATICA (see Factor). However, in order to make use of Lemma 4, one has to perform a
factorization over the real number field. It turns out that the previously listed tools can be
used for this purpose by selecting an appropriate Extension parameter. Indeed, in our setting,
the irreducible factorization over the real number field coincides with the one over the real
cyclotomic field

Q

[
ζ + 1

ζ

]
=
{ϕE(M)/2−1∑

k=0

qk

(
ζ + 1

ζ

)k

;qk ∈Q, k = 0,1, . . . , ϕE(M)/2− 1

}
,

where ζ is the primitive M th root e2πi/M of unity with M being the least common multiple
of the orders of elements σ ∈ �, and ϕE(M) is the number of positive integers up to M that
are relatively prime to M Serre ((1977), Section 12.3).

An example showing the utility of Lemma 4 can be found in the Supplementary Material
Graczyk et al. ((2022), Section 3.1).

2.4. Finding structure constants and construction of the orthogonal matrix U� when � is
cyclic. We now show that, when the group � is generated by one permutation σ ∈Sp , the
orthogonal matrix U� can be constructed explicitly, and we obtain the structure constants ri ,
ki and di easily.

Let us consider the �-orbits in {1,2, . . . , p}. Let {i1, . . . , iC} be a complete system of
representatives of the �-orbits, and for each c = 1, . . . ,C, let pc be the cardinality of the
�-orbit through ic. The order N of � equals the least common multiple of p1,p2, . . . , pC

and one has � = {id, σ, σ 2, . . . , σN−1}. In what follows, we treat 0 as a multiple of N .

THEOREM 5. Let � = 〈σ 〉 be a cyclic group of order N . For α = 0,1, . . . , �N
2 �, set

r∗α = #
{
c ∈ {1, . . . ,C};α pc is a multiple of N

}
,

d∗α =
{

1 (α = 0 or N/2),

2 (otherwise).

Then we have L= #{α; r∗α > 0}, r = (r∗α; r∗α > 0) and k = d = (d∗α; r∗α > 0).

Note that, r∗0 equals the number C of cycles in a decomposition of a permutation.

EXAMPLE 6. Let us consider σ = (1,2,3)(4,5)(6) ∈ S6. The three �-orbits are
{1,2,3}, {4,5} and {6}. Set i1 = 1, i2 = 4, i3 = 6. Then p1 = 3, p2 = 2, p3 = 1. We have
N = 6. We count r∗0 = 3, r∗1 = 0, r∗2 = 1, r∗3 = 1, so that r = (3,1,1). Since d = (1,2,1), we
have Z� � Sym(3;R)⊕Herm(1;C)⊕ Sym(1;R).

For c= 1, . . . ,C, define v
(c)
1 , . . . , v

(c)
pc ∈Rp by

v
(c)
1 :=

√
1

pc

pc−1∑
k=0

eσk(ic)
,

v
(c)
2β :=

√
2

pc

pc−1∑
k=0

cos
(

2πβk

pc

)
eσk(ic)

(1≤ β < pc/2),
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v
(c)
2β+1 :=

√
2

pc

pc−1∑
k=0

sin
(

2πβk

pc

)
eσk(ic)

(1≤ β < pc/2),

v(c)
pc
:=
√

1

pc

pc−1∑
k=0

cos(πk)eσk(ic)
(if pc is even).

THEOREM 6. The orthogonal matrix U� from Theorem 1 can be obtained by arranging
column vectors {v(c)

k }, 1 ≤ c ≤ C, 1 ≤ k ≤ pc in the following way: we put v
(c)
k earlier than

v
(c′)
k′ if:

(i) [k/2]
pc

<
[k′/2]
pc′

, or

(ii) [k/2]
pc
= [k′/2]

pc′
and c < c′, or

(iii) [k/2]
pc
= [k′/2]

pc′
and c= c′ and k is even and k′ is odd.

Proofs of the above results are presented in the Supplementary Material. We shall see there
that R(σ) acts on the 2-dimensional space spanned by v

(c)
2β and v

(c)
2β+1 as a rotation with the

angle 2πβ/pc, 1≤ β < pc/2. The condition (i) means that the angle for v
(c)
k is smaller than

the one for v
(c′)
k′ .

EXAMPLE 7. We continue Example 6. According to Theorem 6,

U� =
(
v

(1)
1 , v

(2)
1 , v

(3)
1 , v

(1)
2 , v

(1)
3 , v

(2)
2

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√

3 0 0
√

2/3 0 0

1/
√

3 0 0 −
√

1/6 1/
√

2 0

1/
√

3 0 0 −
√

1/6 −1/
√

2 0

0 1/
√

2 0 0 0 1/
√

2
0 1/

√
2 0 0 0 −1/

√
2

0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we have

U�� ·R
(
σk) ·U� =

⎛
⎜⎝I3⊗B0

(
σk)

B2
(
σk)

B3
(
σk)
⎞
⎟⎠ ,

where B0(σ
k) = 1, B2(σ

k) = Rot(2πk
3 ) ∈ GL(2;R) and B3(σ

k) = (−1)k . Here, Rot(θ) de-
notes the rotation matrix

( cos θ − sin θ
sin θ cos θ

)
for θ ∈R.

The block diagonal decomposition of Z� is

U�� ·Z� ·U� =
⎧⎨
⎩
⎛
⎝x1

x2I2
x3

⎞
⎠ ;x1 ∈ Sym(3;R), x2, x3 ∈R

⎫⎬
⎭ .

REMARK 8. In the cyclic case, we have k = d and so the formula (1) holds without the
Kronecker product terms. Since di ∈ {1,2}, the quaternionic case never occurs.
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3. Gamma integrals and normalizing constants.

3.1. Gamma integrals on irreducible symmetric cones. Let 
 be one of the first three
kinds of irreducible symmetric cones, that is, 
 = Herm+(r;K), where K ∈ {R,C,H}. As
before, determinant and trace on corresponding Euclidean Jordan algebras are denoted by det
and tr. Then we have the relation

dim
= r + r(r − 1)

2
d,

where d = 1 if K=R, d = 2 if K=C and d = 4 if K=H.
Recall that Euclidean measure is the volume measure induced by the Euclidean metric.

Let m(dx) denote the Euclidean measure associated with the Euclidean structure defined on
A=Herm(r;K) by 〈x, y〉 = tr[x • y] = tr[x · y]. The Gamma integral

�
(λ) :=
∫



det(x)λe− tr[x] det(x)−dim
/rm(dx)

is finite if and only if λ > 1
2(r − 1)d = dim
/r − 1 and in such case

(12) �
(λ)= (2π)(dim
−r)/2�(λ)�(λ− d/2) · · ·�(λ− (r − 1)d/2
)
.

Moreover, one has

(13)
∫



det(x)λe− tr[x·y] det(x)−dim
/rm(dx)= �
(λ)det(y)−λ

for any y ∈
.
The measure μ
(dx)= det(x)−dim
/rm(dx) is invariant in the following sense. Let G(
)

be the linear automorphism group of 
, that is, the set {g ∈ GL(A);g 
 = 
}, where A is
the associated Euclidean Jordan algebra. Then the measure μ
 is a G(
)-invariant measure
in the sense that for any Borel measurable set B one has

μ


(
g−1B

)= μ
(B)
(
g ∈G(
)

)
.

3.2. Gamma integrals on the cone P� . We endow the space Z� with the scalar product

〈x, y〉 = Tr[x · y] (x, y ∈Z�).

Let dX denote the Euclidean measure on the Euclidean space (Z�, 〈·, ·〉). Let us note that
this normalization is not important in the Bayesian model selection procedure as there we
always consider quotients of integrals.

EXAMPLE 9. Consider p = 3 and � =S3. The space Z� is 2-dimensional and it consists
of matrices of the form (see Example 1)

X =
⎛
⎝a b b

b a b

b b a

⎞
⎠

for a, b ∈ R. Since ‖X‖2 = Tr[X2] = 3a2 + 6b2 = v�v with v� = (
√

3a,
√

6b), we have
dX =√3

√
6 da db= 3

√
2 da db.

Generally, if mi denotes the Euclidean measure on Ai := Herm(ri;Ki) with the inner
product defined from the Jordan algebra trace (recall (8) and (9)), then (1) implies that for
X ∈Z� we have

‖X‖2 = 〈X,X〉 =
L∑

i=1

ki

di

Tr
[
MKi

(xi)
2]= L∑

i=1

ki tr
[
(xi)

2],
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which implies that

(14) dX =
L∏

i=1

(
√

ki)
dim
imi(dxi)= eB�

L∏
i=1

mi(dxi),

where

(15) B� := 1

2

L∑
i=1

(dim
i)(log ki).

DEFINITION 10. Let G(P�)= {g ∈ GL(p;R);gP� = P�} be the linear automorphism
group of P� . We define the G(P�)-invariant measure ϕ�(X)dX by

ϕ�(X)= eB�

(
L∏

i=1

1

�
i
(dim
i/ri)

)∫
P∗�

e−Tr[X·Z] dZ,

where P∗� = {y ∈Z�;Tr[y · x]> 0,∀x ∈ P� \ {0}} is the dual cone of P� .

PROPOSITION 7. We have

(16) ϕ�(X)=
L∏

i=1

det
(
φi(X)

)−dim
i/ri .

The proofs of the following results of this section can be found in the Supplementary
Material (Graczyk et al. (2022)).

DEFINITION 11. The Gamma function of P� is defined by the following integral:

(17) �P� (λ) :=
∫
P�

Det(X)λe−Tr[X]ϕ�(X)dX,

whenever it converges.

THEOREM 8. The integral (17) converges if and only if

(18) λ > max
i=1,...,L

{
(ri − 1)di

2ki

}

and, for these values of λ, we have

(19) �P� (λ)= e−A�λ+B�

L∏
i=1

�
i
(kiλ),

where �
i
is given in (12), B� in (15) and

(20) A� :=
L∑

i=1

ri ki logki.

Moreover, if Y ∈ P� and (18) holds true, then

(21)
∫
P�

Det(X)λe−Tr[Y ·X]ϕ�(X)dX = �P� (λ)Det(Y )−λ.

We also have the following result.
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THEOREM 9. If Y ∈ P� and

λ > max
i=1,...,L

{
− 1

ki

}
,

then

(22)
∫
P�

Det(X)λe−Tr[Y ·X] dX = e−A�λ−B�

L∏
i=1

�
i

(
ki λ+ dim
i

ri

)
ϕ�(Y )

Det(Y )λ
.

3.3. RCOP-Wishart laws on P� . Let � ∈ P� ⊂ Sym+(p;R) and consider i.i.d. random

vectors Z(1), . . . ,Z(n) following the Np(0,�) distribution. Define Ui = Z(i) · Z(i)�, i =
1, . . . , n and U =∑n

i=1 Ui . We note that such model is clearly not invariant under changing
the scale of variables: random vector diag(α) · Z(1) for α ∈ Rp is in general not invariant
under any permutation subgroup. Such issue is an immanent property of RCON models (a
generalization of RCOP models) and was noticed already in Højsgaard and Lauritzen (2008).
The authors recommend to keep all variables in the same units.

Our aim is to analyze the probability distribution of the random matrix

Wn = π�(U)= π�(U1 + · · · +Un)= π�(U1)+ · · · + π�(Un).

In the rest of this section, we find n0 such that for n ≥ n0 the random matrix Wn fol-
lows an absolutely continuous law, and we compute its density. Further, we extend the shape
parameter to a continuous range and define the RCOP-Wishart law on P� .

We start with the following easy result.

LEMMA 10. For any θ ∈ Sym+(p;R), we have

Ee−Tr[θ ·π�(U1)] =Det
(
Ip + 2� · π�(θ)

)−1/2
.

PROOF. Using (5) repeatedly, we have

Tr
[
θ · π�(U1)

]= Tr
[
π�(θ) · π�(U1)

]= Tr
[
π�(θ) ·U1

]
.

The assertion follows from the usual multivariate Gauss integral. �

PROPOSITION 11. The law of Wn is absolutely continuous on P� if and only if

(23) n≥ n0 := max
i=1,...,L

{
ridi

ki

}
.

If n≥ n0, then its density function with respect to dX is given by

(24)
Det(X)n/2e− 1

2 Tr[X·�−1]

Det(2�)n/2�P� (n
2 )

ϕ�(X)1P� (X).

PROOF. With λ= n/2, condition (18) becomes

n > max
i=1,...,L

{
(ri − 1)di

ki

}
.

Since the quotient ki/di is an integer, the last condition is equivalent to (23).
In view of Lemma 10, it is enough to show that Wn has density (24) if and only if for any

θ ∈P� ,

(25) Ee−Tr[θ ·Wn] =Det(Ip + 2� · θ)−n/2.

This follows directly from (21). �
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It is known that the MLE exists and is unique if and only if the sufficient statistic lies
in the interior of its convex support; see Barndorff-Nielsen (2014). It is clear that if (23)
is not satisfied, then the support of Wn is contained in the boundary of P� . Recall that the
orthogonal projection π� is given by (6).

COROLLARY 12. The MLE of � exists if and only if the number of samples n satisfies
(23). If it exists, it is given by

�̂ = 1

n
π�(U1 + · · · +Un).

The above result has been already proven in Andersson ((1975), Theorem 5.9) (see also
Andersson and Madsen (1998), Sections A.3, A.4).

REMARK 12. If U = (U1 + · · · + Un)/n is positive definite, then U can be regarded
as an empirical covariance matrix. The Kullback–Leibler divergence between Np(0,U) and
Np(0,�) is equal to 1

2{log det�+ trU�−1− log det(U)−p}, which is obviously minimized
by the MLE �̂. Therefore, Corollary 12 implies that π�(U) is the Kullback–Leibler projec-
tion of U onto P� (Goutis and Robert (1998)). We note that the KL projection in general is
not linear, whereas π� clearly is.

Let us recall that the MLE of � in the standard normal model exists if and only if n≥ p.
We recover this case for � = {id}, since then we have L= 1, r1 = p and k1 = d1 = 1.

When n < n0, the law of Wn is singular, and it can be described as a direct product of the
singular Wishart laws on the irreducible symmetric cones 
i ; see, for example, Hassairi and
Lajmi (2001).

DEFINITION 13. Let η > max{(ri − 1)di

ki
; i = 1, . . . ,L} and � ∈ P� . The RCOP–

Wishart law W�
η,� is defined by its density

(26) W�
η,�(dX)= Det(X)η/2e− 1

2 Tr[X·�−1]

Det(2�)η/2�P� (
η
2 )

ϕ�(X)1P� (X)dX.

With this new notation, we see that if (23) is satisfied, then Wn ∼W�
n,� .

LEMMA 13. The Jacobian of the transformation

P� �X �→X−1 ∈ P�

equals ϕ�(X−1)2.

Proof of the lemma can be found in the Supplementary Material. By this lemma, we obtain
another useful formula for the invariant measure, namely

ϕ�(X)=DetEnd(PX)−1/2 (X ∈Z�),

where DetEnd is the determinant in the space of endomorphisms of Z� and for any X ∈ Z�

by PX we denote the linear map on Z� to itself defined by PXY =X ·Y ·X. Lemma 13 gives
also the following result.

PROPOSITION 14. Let W ∼W�
η,� with η > max{(ri − 1)di/ki; i = 1, . . . ,L} and � ∈

P� . Then its inverse Y =W−1 has density

Det(Y )−η/2e− 1
2 Tr[Y−1·�−1]

Det(2�)η/2�P� (
η
2 )

ϕ�(Y )1P� (Y ).
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3.4. The Diaconis–Ylvisaker conjugate prior for K . The Diaconis–Ylvisaker conjugate
prior (Diaconis and Ylvisaker (1979)) for the canonical parameter K =�−1 is given by

f (K; δ,D)= 1

I�(δ,D)
Det(K)(δ−2)/2e−

1
2 Tr[K·D]1P� (K),

for hyperparameters δ > 2 max{1−1/ki; i = 1, . . . ,L} and D ∈ P� . By (22), the normalizing
constant is equal to

(27) I�(δ,D)= e−A�(δ−2)/2−B�

L∏
i=1

�
i

(
ki

δ − 2

2
+ dim
i

ri

)
ϕ�(1

2D)

Det(1
2D)(δ−2)/2

,

where A� , B� and ϕ� are given in (20), (15) and (16).
We note that despite the fact that the choice of hyperparameters is not scale invariant,

statisticians usually take δ = 3 and D = Ip; see, for example, Massam, Li and Gao (2018).

4. Model selection. Bayesian model selection on all colored spaces seems at the mo-
ment intractable. This is due in great part to a poor combinatorial description of the colored
spaces Z� . In particular, the number of such spaces, that is, #{Z�;� ∈ Sp} is generally
unknown for large p. It was shown in Gehrmann (2011) that these colorings constitute a lat-
tice with respect to the usual inclusion of subspaces. However, the structure of this lattice is
rather complicated and is unobtainable for big p. This, in turn, does not allow to define a
Markov chain with known transition probabilities on such colorings. Finally, the fundamen-
tal problem, which prevents us from doing Bayesian model selection on all colored spaces
for arbitrary p is the following. In order to compute Bayes factors, one has to be able to
find the structure constants (ki, di, ri)

L
i=1 for arbitrary subgroups of Sp . This is equivalent to

finding irreducible representations over reals for an arbitrary finite group, which is very hard
in general, although general algorithms have been developed for this issue (see Plesken and
Souvignier (1996)).

In this section, we are making a step forward in the problem of model selection for colored
models in two ways. In Section 4.1, we use the results of Section 2.4, to obtain the structure
constants when we restrict our search to the space of colored models generated by a cyclic
group, that is, when � = 〈σ 〉 for σ ∈ Sp and we propose a model selection procedure re-
stricted to the cyclic colorings. In Section 4.2, we use Lemma 4 and Remark 5 to obtain the
irreducible representations of Z� and the structure constants by factorization of the determi-
nant. We apply this technique to do model selection for the four-dimensional example given
by Frets’ data since, in that case, there are only 22 models and we can compute all the Bayes
factors.

4.1. Model selection within cyclic groups. The smaller space of cyclic colorings has a
much better combinatorial description. In particular, the following result can be proved.

LEMMA 15. If Z〈σ 〉 =Z〈σ ′〉 for some σ,σ ′ ∈Sp , then 〈σ 〉 = 〈σ ′〉.
This result allows us to calculate the number of different colorings corresponding to cyclic

groups, that is, the number of labeled cyclic subgroups of the symmetric group Sp , which
can be found in OEIS, sequence A051625 (see the last column of Table 1).

We will present two applications of the Metropolis–Hastings algorithm. In the first one, the
Markov chain will move on the space of cyclic groups. The drawback of this first approach is
that we need to compute the proposal distribution g, whose computational complexity grows
faster than quadratically as p increases (see (29)). In the second algorithm, we consider a
larger state space Sp , which allows us to consider an easy proposal distribution. However,
this comes at the cost of slower convergence of the posterior probabilities (see Theorem 16).
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TABLE 1
Number of all subgroups of a symmetric group, number of their conjugacy classes, number of different colorings

and a number of cyclic groups

p #subgroups of Sp #conjugacy classes of Sp #different Z� #cyclic groups

1 1 1 1 1
2 2 2 2 2
3 6 4 5 5
4 30 11 22 17
5 156 19 93 67
6 1455 56 739 362
7 11,300 96 4508 2039
8 151,221 296 ? 14,170
9 1,694,723 554 ? 109,694
10 29,594,446 1593 ? 976,412
18 ≈7.6 · 1018 7.3 · 106 ? ≈7.1 · 1014

4.1.1. First approach. Each cyclic subgroup � can be uniquely represented by a permu-
tation, which is minimal in the lexicographic order within permutations generating �. Let
ν(�) ∈Sp be such a permutation, that is,

ν(�)=min
{
σ ∈Sp; 〈σ 〉 = �

}
.

Define

(28) ct := 〈ν(ct−1) ◦ xt

〉
,

where c0 is a fixed cyclic subgroup and (xt )t∈N is a sequence of i.i.d. random transpositions
distributed uniformly, that is, P(xt = α)= 1/

(p
2

)
for any α ∈ T := {(i, j) ∈Sp}. Clearly, the

sequence (ct )t is a Markov chain. Its state space is the set of all cyclic subgroups of Sp .
Moreover, the trivial subgroup {id} can be reached from any subgroup ct (and vice versa)
in a finite number of steps with positive probability. Thus the chain (ct )t is irreducible. The
proposal distribution in the Metropolis–Hastings algorithm is the conditional distribution of
ct |ct−1. It is proportional to the number of possible transitions from c to c′, that is,

g
(
c′|c) := #{(i, j) ∈Sp; c′ = 〈ν(c) ◦ (i, j)〉}(p

2

) ,(29)

where c and c′ are cyclic subgroups.
We follow the principles of Bayesian model selection for graphical models, presented, for

example, in Maathuis et al. ((2018), Chapter 10, page 247). Let � be uniformly distributed
on the set C := {〈σ 〉;σ ∈Sp} of cyclic subgroups of Sp . We assume that K|{� = c}, c ∈ C,
follows the Diaconis–Ylvisaker conjugate prior distribution on Pc with hyperparameters δ

and D, that is,

fK|�=c(k)= 1

Ic(δ,D)
Det(k)(δ−2)/2e−

1
2 Tr[D·k]1Pc (k),

where the normalizing constant is given in (27). Suppose that Z1, . . . ,Zn given {K = k,� =
c} are i.i.d. Np(0, k−1) random vectors with k ∈ Pc. Then it is easily seen that we have

(30) P(� = c|Z1, . . . ,Zn)∝ Ic(δ + n,D+U)

Ic(δ,D)
(c ∈ C)

with U =∑n
i=1 Zi ·Z�i . These derivations allow us to run the Metropolis–Hastings algorithm

restricted to cyclic groups, as follows.
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ALGORITHM 14. Starting from a cyclic group C0 ∈ C, repeat the following two steps for
t = 1,2, . . . :

1. Sample xt uniformly from the set T of all transpositions and set c′ = 〈ν(Ct−1) ◦ xt 〉;
2. Accept the move Ct = c′ with probability

min
{

1,
Ic′(δ + n,D+U)ICt−1(δ,D)

Ic′(δ,D)ICt−1(δ+ n,D+U)

g(Ct−1|c′)
g(c′|Ct−1)

}
.

If the move is rejected, set Ct = Ct−1.

4.1.2. Second approach. It is known that 〈σ 〉 = 〈σ ′〉 if and only if σ ′ = σk for some
k ∈ β(|σ |), where

(31) β(n)= {k ∈ {1, . . . , n}; k and n are relatively prime
}

and |σ | denotes the order of σ . Let C = {〈σ 〉;σ ∈Sp} denote the set of cyclic subgroups of
Sp . For c ∈ C, we define �(c) := #β(|c|) and Cc := {σ ∈Sp; 〈σ 〉 = c}, the set of permuta-
tions, which generate the cyclic subgroup c. We have

�(c)= #Cc (c ∈ C).

For c ∈ C, we denote

πc = P(� = c|Z1, . . . ,Zn),

which we want to approximate. In our model, we have (see (30))

(32) πc ∝ Ic(δ + n,D+U)

Ic(δ,D)
(c ∈ C).

In order to find π = (πc; c ∈ C) let us consider π̃ = (π̃σ ;σ ∈Sp), a probability distribution
on Sp such that

(33) π̃σ ∝ I〈σ 〉(δ + n,D+U)

I〈σ 〉(δ,D)
(σ ∈Sp).

Since (32) and (33) imply that π̃σ ∝ π〈σ 〉, we have

(34) π̃σ = π〈σ 〉∑
c∈C �(c)πc

(σ ∈S).

As before, let (xt )t∈N be a sequence of i.i.d. random transpositions distributed uniformly on
T = {(i, j) ∈Sp}. We define a random walk on Sp by

st+1 = st ◦ xt+1 (t = 0,1, . . .).

Then (st )t is an irreducible Markov chain with symmetric transition probability

g
(
σ ′|σ )=

⎧⎪⎨
⎪⎩

1(p
2

) if σ−1 ◦ σ ′ ∈ T ,

0 if σ−1 ◦ σ ′ /∈ T .

We note that (〈st 〉)t is not a Markov chain on the space of cyclic subgroups. Indeed, it can
be shown that the necessary conditions for (f (st ))t to be a Markov chain (see Burke and
Rosenblatt (1958), equation (3)) are not satisfied for f (σ) := 〈σ 〉 if p > 4. A remedy for this
fact was introduced in (28). Indeed, the sequence (〈st 〉)t is very similar to the sequence (ct )t
defined previously. Both move along cyclic subgroups and their definitions are very similar.
However, (〈st 〉)t is not a Markov chain, whereas (ct )t is a Markov chain. We took care of this
problem by using the minimal generator ν(·) as in definition (28) of ct .

We use the Metropolis–Hastings algorithm with the above proposal distribution to approx-
imate π̃ .
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ALGORITHM 15. Starting from a permutation σ0 ∈Sp , repeat the following two steps
for t = 1,2, . . . :

1. Sample xt uniformly from the set T of all transpositions and set σ ′ = σt−1 ◦ xt ;
2. Accept the move σt = σ ′ with probability

min
{

1,
I〈σ ′〉(δ+ n,D+U)I〈σt−1〉(δ,D)

I〈σ ′〉(δ,D)I〈σt−1〉(δ + n,D+U)

}
.

If the move is rejected, set σt = σt−1.

By the ergodicity of the Markov chain (σt )t constructed above, as the number of steps
T →∞, we have

(35)

∑T
t=1 1σ=σt

T

a.s.−→ π̃σ (σ ∈Sp).

This fact allows us to develop a scheme for approximating the posterior probability π .

THEOREM 16. We have as T →∞,

(36)
1

�(c)

∑T
t=1 1c=〈σt 〉∑T

t=1
1

�(〈σt 〉)

a.s.−→ πc (c ∈ C).

PROOF. Let us denote n
(T )
σ = ∑T

t=1 1σ=σt , σ ∈ Sp . We have T = ∑σ∈Sp
n

(T )
σ and

n
(T )
σ /T

a.s.−→ π̃σ . Moreover,

1
�(c)

∑T
t=1 1c=〈σt 〉∑T

t=1
1

�(〈σt 〉)
=

1
�(c)

∑
σ∈Cc

n
(T )
σ∑T

t=1
∑

γ∈C 1
�(γ )

1γ=〈σt 〉

=
1

�(c)

∑
σ∈Cc

n
(T )
σ
T∑

γ∈C 1
�(γ )

∑
σ∈Cγ

n
(T )
γ

T

a.s.−→
1

�(c)

∑
σ∈Cc

π̃σ∑
γ∈C 1

�(γ )

∑
σ∈Cγ

π̃γ

.

Finally, by (34) we have

1

�(c)

∑
σ∈Cc

π̃σ = πc∑
γ∈C �(γ )πγ

∝ πc,

which completes the proof. �

In order to approximate the posterior probability π , we allowed the Markov chain to travel
on the larger space Sp . In particular, each state c ∈ C was multiplied �(c)≥ 1 times, where
�(c) is the number of permutations generating c. This procedure should result in slower
convergence to the stationary distribution in (36). By comparing with (35), we see that (36)
can be interpreted as follows: let us assign to each cyclic subgroup c a weight 1/�(c) ≤ 1.
Then the denominator NT :=∑T

t=1 1/�(〈σt 〉) can be thought of as an “effective” number of
steps and the numerator is the number of “effective” steps spent in state c. In general, for
large T we expect NT � T (see an example in Section 5.2).
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4.2. Model selection for p = 4. Our numbering of colored models on four vertices is
in accordance with Gehrmann ((2011), Figures 15 and 16, pages 674–675). However, we
identify models by the largest group with the same coloring �∗ rather than the smallest as
in Gehrmann (2011). There are 30 different subgroups of S4, which generate 22 different
colored spaces. Up to conjugacy (renumbering of vertices), there are 8 different conjugacy
classes. Within a conjugacy class, constants (ki, ri, di)

L
i=1 remain the same. Groups �∗k for

k = 1, . . . ,17 correspond to cyclic colorings.
We apply our results and methods in order to do Bayesian model selection for the cele-

brated example of Frets’ heads, Frets (1921), Whittaker (1990). The head dimensions (length
Li and breadth Bi , i = 1,2) of 25 pairs of first and second sons were measured. Thus
we have n = 25 and p = 4. The following sample covariance matrix is obtained (we have
Z = (L1,B1,L2,B2)

�),

U =
n∑

i=1

Z(i) ·Z(i)� =

⎛
⎜⎜⎝

2287.04 1268.84 1671.88 1106.68
1268.84 1304.64 1231.48 841.28
1671.88 1231.48 2419.36 1356.96
1106.68 841.28 1356.96 1080.56

⎞
⎟⎟⎠ .

We perform Bayesian model selection within all RCOP models, not just the ones correspond-
ing to cyclic subgroups. In Table 2, we list all RCOP models on full graph with four vertices,
along with corresponding structure constants. Structure constants remain the same within a
conjugacy class, however, the invariant measure ϕ� is always different. Since there are only

TABLE 2
Structure constants for all colorings with four vertices

Group (ki ) (ri ) (di)

�∗1 = {id} (1) (4) (1)

�∗2 = 〈(1,2)〉 (1,1) (3,1) (1,1)
�∗3 = 〈(1,3)〉
�∗4 = 〈(1,4)〉
�∗5 = 〈(2,3)〉
�∗6 = 〈(2,4)〉
�∗7 = 〈(3,4)〉
�∗8 = 〈(1,2,3), (1,2)〉 (1,2) (2,1) (1,1)
�∗9 = 〈(1,2,4), (1,2)〉
�∗10 = 〈(1,3,4), (1,3)〉
�∗11 = 〈(2,3,4), (2,3)〉
�∗12 = 〈(1,2)(3,4)〉 (1,1) (2,2) (1,1)
�∗13 = 〈(1,3)(2,4)〉
�∗14 = 〈(1,4)(2,3)〉
�∗15 = 〈(1,2,3,4), (1,3)〉 (1,1,2) (1,1,1) (1,1,1)
�∗16 = 〈(1,2,4,3), (1,4)〉
�∗17 = 〈(1,3,2,4), (1,2)〉
�∗18 = 〈(1,2), (3,4)〉 (1,1,1) (2,1,1) (1,1,1)
�∗19 = 〈(1,3), (2,4)〉
�∗20 = 〈(1,4), (2,3)〉
�∗21 = 〈(1,2)(3,4), (1,4)(2,3)〉 (1,1,1,1) (1,1,1,1) (1,1,1,1)

�∗22 =S4 (1,3) (1,1) (1,1)
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TABLE 3
Posterior probabilities in Frets’ heads for three best models, δ = 3 and given D

D Best model 2nd best 3rd best

I4 �∗22 (95.2%) �∗16 (2.5%) �∗17 (1.3%)
50I4 �∗19 (33.8%) �∗13 (29.6%) �∗8 (13.3%)
100I4 �∗13 (39.6%) �∗19 (29.8%) �∗8 (7.2%)
1000I4 �∗1 (38.9%) �∗13 (10.5%) �∗3 (10.3%)

22 such models, we calculate all exact posterior probabilities. Table 2 and the invariant mea-
sures ϕ� were obtained by using Lemma 4.

In Table 3, we summarize the results when δ = 3 (a parameter of the prior distribution,
Section 3.4), giving the three best coloring models with the highest posterior probability, for
each given D. Results are very similar for δ = 10 and the given values of D. For comparison,
the three best models according to BIC are �∗19, �∗13 and �∗8 with the BIC 834.5, 835.4 and
835.5, respectively.

For different values of D = dI4, the only models that have highest posterior probability
are the 4 models: �∗22 =S4, �∗19 = 〈(1,3), (2,4)〉, �∗13 = 〈(1,3)(2,4)〉, �∗1 = {id}. These four
subgroups form a path in the Hasse diagram of subgroups of S∗4, that is, �∗22 ⊃ �∗19 ⊃ �∗13 ⊃
�∗1 . Thus the four selected colorings, corresponding to the permutation groups are in some
way consistent. Moreover, each of them has a good statistical interpretation. Let us interpret
models �∗13 and �∗19. Recall the enumeration of vertices (1,2,3,4)= (L1,B1,L2,B2). The
invariance with respect to the transposition (1,3) means that L1 is exchangeable with L2 and,
similarly, the invariance with respect to the transposition (2,4) implies exchangeability of B1
and B2. Both together correspond to the fact that sons should be exchangeable in some way.

We observe that only the �∗22 model appeared in former attempts of model selection for
Frets’ heads data. It was considered in Massam, Li and Gao ((2018), Figure S7, page 28 of the
Supplementary Material) with eleven other models. Note that the only complete RCOP model
selected in Gehrmann (2011) (who used the Edwards–Havránek model selection procedure)
among the 9 minimally accepted models on page 676 of her article is �∗10, which is not
selected by our exact Bayesian procedure for any choice of D = d I4.

5. Simulations. Let the covariance matrix � = (cij )ij ∈ Sym+(p;R) be the symmetric
circulant matrix defined by

cij =
{

1− |i − j |/p, i �= j,

1+ 1/p, i = j.

It is easily seen that this matrix belongs to P〈σ ∗〉 with σ ∗ = (1,2, . . . , p− 1,p).

5.1. First approach. For p = 10 and n = 20, we sampled Z(1), . . . ,Z(n) from the

Np(0,�) distribution and obtained U =∑n
i=1 Z(i) ·Z(i)� depicted in Figure 1(b).

We run the Metropolis–Hastings algorithm starting from the group 〈σ0〉 = {id} with hyper-
parameters δ = 3 and D = I10. After 1,000,000 steps, the five most visited states are given in
the Table 4.

The Metropolis–Hastings (M-H) algorithm recovered the true pattern of the covariance
matrix. The acceptance rate was 2.5% and the Markov chain visited 746 different cyclic
groups. The acceptance rate can be increased by a suitable choice of the hyperparameters
(e.g., for D = 10I10 the acceptance rate is around 10%).
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FIG. 1. Heat map of matrix � (a) and matrix U/n (b).

TABLE 4
Five most visited cyclic subgroups

Generator of a cyclic group Number of visits

(1, 2, 3, 4, 5, 6, 7, 8, 9,10) 457,725
(1, 6, 2, 7)(3, 5, 9)(4, 8, 10) 110,677
(1, 6)(2, 7)(3, 5, 9)(4, 8, 10) 51,618
(1, 7)(2, 6)(3, 5, 9)(4, 8, 10) 40,895
(1, 2, 6, 7)(3, 5, 9)(4, 8, 10) 34,883

In order to grasp how randomness may influence results, we performed 100 simulations,
where each time we sample Z(1), . . . ,Z(n) from Np(0,�) and we run M-H for 100,000 steps
with the same parameters as before. In Table 5, we present how many times a given cyclic
subgroup was most visited during these 100 simulations (second column). There were 53
distinct cyclic subgroups, which were most visited at least in one of the 100 simulations;
below we present 10 such subgroups. The average acceptance rate is 1.4% (see the histogram
in Figure 2). When we regard colorings as partitions of the set V ∪ E according to group
orbit decomposition, the two colorings may be compared using the so-called adjusted Rand
index (ARI, see Hubert and Arabie (1985)), a similarity measure comparing partitions, which
takes values between −1 and 1, where 1 stands for perfect match and independent random
labelings have score close to 0. In the third column of Table 5, we give the adjusted Rand
index between the colorings generated by given cyclic subgroup and the true coloring.

We see that groups which were most visited by the Markov chain have positive ARI and
the true pattern was recovered in a quarter of cases. We stress that even though the colorings

FIG. 2. Histogram of acceptance rates in 100 simulations of Metropolis–Hastings algorithm.
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TABLE 5
Cyclic subgroups which were chosen by M-H algorithm most often

Generator of a cyclic group #most visited ARI

(1, 2, 3, 4, 5, 6, 7, 8, 9,10) 25 1.00
(1, 3, 5, 7, 9)(2, 4, 6, 8,10) 13 0.60
(1, 2, 4, 3, 5, 6, 7, 9, 8, 10) 3 0.43
(1, 2, 4, 3, 5, 6, 7, 8, 9, 10) 2 0.46
(1, 3, 2, 4, 5, 6, 8, 7, 9, 10) 2 0.43
(1, 3, 5, 9, 2, 6, 8, 10, 4, 7) 2 0.43
(1, 4, 3, 5, 2, 6, 9, 8, 10, 7) 2 0.35
(1, 4, 5, 7, 8)(2, 3, 6, 9, 10) 2 0.24
(1, 8, 10, 9)(2, 7)(3, 5, 4, 6) 2 0.19
(1, 2, 10, 3)(4, 9)(5, 8, 6, 7) 2 0.19

generated by 〈(1,2,3,4,5,6,7,8,9,10)〉 and 〈(1,3,5,7,9)(2,4,6,8,10)〉 are very similar,
the distance between these subgroups is 9, that is, the Markov chain (Ct )t needs at least 9
steps to get from one subgroup to the other. We performed similar simulations for n= p = 10
and the results were only slightly worse: the true pattern was recovered in 18 out of 100 runs
of the algorithm.

This indicates that the Markov chain may encounter many local maxima and one should
always tune the hyper parameters in order to have higher acceptance rate or to allow the
Markov chain (Ct )t to make bigger steps.

5.2. Second approach. We performed T = 100,000 steps of Algorithm 15 with σ0 = id,
p = 100, n= 200, δ = 3 and D = I100. Let us note that for p = 100, there are about 4 · 10155

cyclic subgroups and this is the number of models we consider in our model search.
We have used Theorem 16 to approximate the posterior probability distribution (πc; c ∈ C)

(see (30)). The highest estimated posterior probability was obtained for c∗ := 〈σ ∗〉, where

σ ∗ = (1,2,3,4)(6,8,15)(7,10,9)(11,16,12)(13,17,14)(18,19,20,22,21)(23,26)

(24,42,28,44)(25,31,30,32)(27,34)(29,37)(33,45)(35,39,36,40)

(38,47,41,48)(43,51,46,49)(50,52,53,54)(56,58,57)(59,66,67)

(60,65,63)(61,62,64)(68,71,72,70,69)(73,93)(74,77)(75,98,81,100)

(76,84,78,83)(79,85)(80,94,82,91)(86,92,87,90)(88,96,89,97)(95,99).

FIG. 3. Heat map of matrix � (a) and matrix U/n (b) and projection of U/n onto Zc∗ .
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FIG. 4. Number of “effective” steps (red) and number of “effective” accepted steps (blue).

The order of c∗ is |c∗| = 60 and �(c∗)= 16. The estimate of the posterior probability πc∗ is
equal to (recall (36))

1
�(c∗)

∑T
t=1 1c∗=〈σt 〉∑T

t=1
1

�(〈σt 〉)
≈ 2361.5

6381.5
≈ 37%.

The true covariance matrix �, the data matrix U/n and the projection �c∗(U/n) are illus-
trated in Figure 3.

We visualize the performance of the algorithm on Figure 4. In red color, a sequence
(
∑k

t=1
1

�(〈σt 〉) )k is depicted, which can be thought of as an “effective” number of steps of
the algorithm (for an explanation, see the paragraph at the end of Section 4.1.2). In blue,
we present a sequence (

∑k
t=1

1
�(〈σt 〉)1〈σt 〉�=〈σt−1〉)k , which represents the number of weighted

accepted steps, where the weight of the kth step equals 1
�(〈σk〉) . We restricted the plot to steps

k = 1, . . . ,10,000, because after 10,000 steps, the Markov chain (σt )10,000≤t≤100,000 changed
its state only 9 times. For k = 100,000, the value of the blue curve is 25.75, while the value
of red one is 6381.5.

The model suffers from poor acceptance rate, which could be improved by an appropriate
choice of the hyperparameter D or by allowing the Markov chain to do bigger steps.
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SUPPLEMENTARY MATERIAL

Supplement to “Model selection in the space of Gaussian models invariant by sym-
metry” (DOI: 10.1214/22-AOS2174SUPP; .pdf). Supplement contains proofs and examples.

https://doi.org/10.1214/22-AOS2174SUPP


MODELS INVARIANT BY SYMMETRY 1773

We provide proofs of Theorems 1, 5, 6 along with a background on representation theory that
is needed to understand proofs. Moreover, we present proofs of Proposition 7, Theorems 8
and 9, an example to Section 2.3, proof of Lemma 13 and the real data example considered
in Miller et al. (2005) and Højsgaard and Lauritzen (2008).
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