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Supplement contains proofs and examples. We provide proofs of Theo-
rems 1, 5, 6 along with a background on representation theory that is needed
to understand proofs. Moreover, we present proofs of Proposition 7 and The-
orems 8 and 9, an example to Section 2.3, proof of Lemma 13 and the real
data example considerediiller et al. (2005 andHgjsgaard and Lauritzen
(2008.

In this document, references to equations are sometimes to the main file and sometimes to
this supplementary file. For the reader's convenience we put a subjngdexto equation,
section and theorem numbers referring to the main file.

1. Basics of representation theory over reals. Representation theory has long been
known to be very useful in statistics, &iaconis(1988. However, the representation theory
overR that we need in our work, is less known to the statisticians than the standard one over
C (see Subsectiod.3for a contrast between the theories oi®eandC). In this section we
recall some basic notions and results of the representation theory of groups over the reals. We
intend to introduce the reader with all background needed to understand proofs of Theorem
1,5 as well as Theorems, and §,. For further details, the reader is referredSerre
(2977.

For a real vector spadé, we denote byGL(V') the group of linear automorphisms dh
Let G be a finite group.

DEFINITION 1. Afunctionp: G — GL(V) is called a representation 6f overR if it is
a homomorphism, that is

plgd)=p(g)plg") (9.9 €G).
The vector spac¥® is called the representation spacepof

If dimV = n, taking a basigvy,...,v,} of V, we can identifyGL(V) with the group

GL(n;R) of all n x n non-singular real matrices. Then a representatioids — GL(V')
corresponds to a group homomorphigm G — GL(n;R) for which

(1) p(9)v; = Bij(g)vi.
=1

We call B the matrix expression gf with respect to the basig, ..., v, }.

MSC2020 subject classificatiarBrimary 62H99, 62F15 ; secondary 20C35.
Keywords and phrasesplored graph, conjugate prior, covariance selection, invariance, permutation symme-
try.
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DEFINITION 2. Alinear subspac® C V is said to be&--invariant if
plg)weW (weW, geqd).

A representatiom is said to be irreducible if the onlg-invariant subspaces are non-proper,
that is, wholel” and{0}. A restriction of p to a G-invariant subspac#’ is a subrepresen-
tation. Two representationp,; G — GL(V) andp’: G — GL(V’) are equivalent if there
exists an isomorphism of vector spaded’ — V' with

Up(g)v) =p'(9)l(v)  (veV,geq).

We note that a group homomorphisB: G — GL(n;R) defines a representation 6f
on R™ naturally. We see thaB is a matrix expression of a representatignV’) if and
only if B andp are equivalent via the map: R" > (z;)", — > " zv; € V, that is,
U(B(g)z) = p(g)l(z) for x € R". Here{vy,...,v,} denotes a fixed basis &f. Therefore,
two representation&, V') and(p’, V') are equivalent if and only if they have the same ma-
trix expressions with respect to appropriately chosen bases. We shalpwvite if p has a
matrix expressiorB with respect to some basis.

Let (p,V) be a representation d@f, and B: G — GL(n;R) be a matrix expression of
p with respect to a basi$vy,...,v,} of V. Then it is known that the functioy,: G >
g— TrB(g) =>_.", Bii(g) € Ris independent of the choice of the bagis, ... ,v,}. The
function x,, is called a character of the representatiomhe functiony, characterizes the
representatiop in the following sense.

LEMMA 1. Two representationép, V') and (p’, V') of a groupG are equivalent if and
only if x, = x,.

We apply this lemma in practice to know whether two given representations are equivalent
or not.

It is known that, for a finite groug-, the setA(G) of equivalence classes of irreducible
representations df is a finite set. We fix the group homomorphisfis: G — GL(k;R),
a € A, indexed by a finite sefl so thatA(G) = { [B.]; « € A}, where[B,] denotes the
equivalence class ds,,.

Let (p, V') be a representation @f. Then there exists &-invariant inner product oy .
In fact, from any inner product, -)o on V, one can define such an invariant inner product
() by (v,0") =3 e (p(9)v, p(g)v')o for v,0" € V. In what follows, we fix aG-invariant
inner product orl/.

If W is a G-invariant subspace, the orthogonal complemiént is also aG-invariant
subspace. Thus, any representatiazan be decomposed into a finite number of irreducible
subrepresentations

2) p=p1D...0pK

along the orthogonal decompositibh=V; & - - - & V¢, wherep; is the restriction op to the
G-invariant subspac¥;, i =1,..., K. Let r, be the number of subrepresentatignsuch
that p; ~ B,. Although the irreducible decompositioB)(of V' is not unique in generat,,
is uniquely determined. We have

(3) p~ P B,

wherezra>0 ro = K. To see this, leV (B,,) be the direct sum of subspadédor which p; ~
B, . The spacé/(B,,) is called theB,-component of/. If r,, > 0, gathering an appropriate
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basis of each/;, the matrix expression of the subrepresentatiop oh V' (B,) becomes
(recall thatB,(g) € GL(kqo;R))

Ba(9)

Bao(g)®" = Falo) . = I, ® Ba(9) € GL(rako;R) (g€ G).

Ba(9)

Moreover,V is decomposed &g = P, .,V (Ba). Therefore, taking a basis &f by gath-
ering the bases df (B,,), we obtain 8).

2. The proof of Theorem 1,,¢. In this section we apply general results on representa-
tion theory from previous section to the mapping- R(o) defined in(3),,¢.

LetI" be a subgroup of the symmetric gro&p. By definition, we have?: I' — GL(p; R)
andR(coo’)= R(o) - R(¢’) forall 0,0’ € T'. Thus,R is a representation daf overR.

We will show, in this section, that faR, as for all representations of a finite group, through
an appropriate change of basis, matri@¢s), o € I', can be simultaneously written as block
diagonal matrices with the number and dimensions of these block matrices being the same
for all o € I'. This, in turn, will imply that any matrix inZr can be written under the form
described by Theorem,J,. For readerA&Zs convenience we repeat its statement below.

THEOREM 1. Fix a permutation subgroup' C &,,. Then, there exist constanisc N,
(ki, dun)le and orthogonal matriUr such that ifX € Zr, i.e. X € Sym(p;R) and

XijZXg(i)U(j) (OEF, i,jE{l,...,p}),
then

M, (1) ® Iy, 4,

MKQ(.%'Q)®12 ;
4) X=Ur olte Uy,

My, (zr) ® Iy, ja,

where My, (x;) is a real matrix representation of an x r; Hermitian matrixz; with entries
inK;,=R,CorH,i=1,...,L, and A ® B denotes the Kronecker product of matricés
and B.

2.1. Irreducible decomposition of representatidh Regardingp(c) = R(0) € GL(RP)
as an operator ol = R? via the standard basig =¢; € RP, i =1,...,p, we see thatl)
holds trivially with B = R.

We will apply @) to G =T C &, and(p,V) = (R,RP). Ifwe let {a € A;r, >0} =:
{a1,a0,...,ar} and if we denote by/r an orthogonal matrix whose column vectors form
orthonormal bases df (B,,, ), ...,V (B,, ) successively, then far € I', we have

ITl ® Bal (U)

(5) Ul - R(o)-Ur = 2 @ Bou(0) .

ITL ® BaL (0)

Note that, since the left hand side 8} {s an orthogonal matrix, matricd3, (c), « € A, are
orthogonal. In the general casB,(g) are orthogonal if we work with &-invariant inner
product. Note that the usual inner production= R? is clearlyT'-invariant.

Example below gives an illustration of the representafivand also an illustration of all
the notions and results we already stated.
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ExAMPLE 3. Letp =4 and letl’ = {id, (1,2)(3,4)} be the subgroup o&4 generated
by o = (1,2)(3,4). The matrix representation efin the standard basig;); of R* is

0100
1000
R@)= 001 |

0010

which has the two eigenvaluésnd—1 with multiplicity 2 for each. We choose the following
orthonormal eigenvectors @t(o):

1 1 1 1
uy = E(el +e2),u2 = E(eg +e4),u3 = E(el —€2),uy = E(es —ey4)

and letUr = (u1,uz,us,uq). The corresponding eigenspadés= Ru; are invariant under
R(o) andR(id) = 14. AsV;,i=1,...,4, are 1-dimensional, the subrepresentations defined

by
pi(v) =Rl  (veD)
are irreducible. We have the decompositiéhdf R:

R = p1 ® p2® p3 D py.

The matrix expressions @ff andp. are equal ta3; () = (1) for all y € ', sincep;(y)v = v
forveV;,i=1,2. We haver; = 2.

The matrix expressions @f andp, are both equal t®s () = sign(~) for all v € T, since
pi(id)v =v andp;(c)v = —v for v € V; for i = 3,4. We havery = 2.

The representations; and p3 are not equivalent, which can be seen by looking at the
charactersy,, =1, x,,(v) = sign(~y), which are not equal.

In the basisuy, ua, us, ug, the matrix of R(~y) is (compare with§))

10 0 0
01 0 0
00sign(y) O
00 0 sign(y)

=B1(7)" @ Bao(7)** =U{ - R(v) - Ur.

This is the decompositior8) of R in the basigu;, ug, us, uy).

2.2. Block diagonal decomposition éfr.  So far, we have shown that through an appro-
priate change of basis, the representatiBnR?) of I can be expressed as the direct s@jn (
of irreducible subrepresentations. We now want to turn our attention to the elemegjts of

A linear operatofl’: V — V is said to be an intertwining operator of the representation
(p,V)if Top(g) = p(g)oT holds for allg € G. In our context, sincé4),,, s can be rewritten
as

(6) Zr={xzeSym(p;R); z-R(oc)=R(o)-zforallo T},

Zr is the set of symmetric intertwining operators of the representafioir?).

Let Endr(R?) denote the set of all intertwining operators of the representaffidiR?)
of I'. Recall that the sefl enumerates the elements &fT"), the finite set of all equiva-
lence classes of irreducible representation' .ofFrom @) and §6), it is clear that to study
Endr (RP), it is sufficient to study the sets,

Endr(V,) ={T € Mat(kq,ka;R); T - Bo(0) = By(o) - T forallo T},
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a € A, of all intertwining operators of the irreducible representatiyy whereV,, := RF«
is the representation spaceBf equipped with &-invariant inner product. Indeed, we have
V(By) =1, ®V,.

The actual formula fo3, (o) obviously depends on the choice @f and hence, on the
choice of orthonormal basis @&”. To ensure simplicity of formulation of our next result
(Lemma?2), we will work with special orthonormal bases ¥f(B,,), ...,V (B,,), Which
together constitute a basis BP. Such bases always exist and will be defined in the next
section. Usage of these bases is not indispensable for the proof of Thi&obetsimplifies
it greatly.

The result from $erre 1977, Page 108) implies that, since the representafignis ir-
reducible, the spacEndr(V,,) is isomorphic either t&R, C, or the quaternion algebir.
Let

fa: Ko — Endp(V,),
denote this isomorphism, whekg, is R, C, or H. Let
dy, = dimg Endr(V,) = dimg K, € {1,2,4}.
The representation spatg becomes a vector space oWy of dimensionk,, /d, via
¢-v=falgy  (g€Ka,vEVL).

Clearly the spac®]I},_ of scalar matrices is containedindr(V,,). If d, = 1 = dimg RI}_,
we havekindr (V) = RI}, . Further, ifd, = 2, take aC-basis{v1, ..., vy, o} of Vi, insuch a
way that{vy,...,vg_ 2,0 v1,...,7- vy, 2} iS an orthonormakR-basis ofV,,. We identify Rk
andV,, via thisR-basis. Then, the action g@f= a + bi € C onw € R* ~ V,, is expressed as

o alka/g _bIk(v/2 o .
q-w= (bjka/Q aIka/2 w = {Mc(a—i—bz) ®Ika/2}w'

Thus, ifd, = 2, then
Endr(Va) = { Mc(q) ® Iy, )25 ¢ € C } = Mc(C) @ I, jo.
Similarly, whenK,, = H, take ant-basis{v, ..., vy, 4} of V, so that
P I R S PO A ey R PORUY L 7y L IS R Ny

is an orthonormaR-basis ofl/,. The action of € H onV,, is expressed a&ly (Q) ® I, /4
with respect to this basis.
In this way we have proved the following result.

LEMMA 2. Foreacha € A, one has

(7) Endr (Vo) = Mk, (Ko) ® It /a4, -
For the proof of Theorerf, we will need the following result.

LEMMA 3. Leti,j=1,2,...,L, and assume that" € Mat(r;k;, rjk;; R) satisfies the
condition
®) I, ®Bi(0)]- Y =Y -[I, ® B;(0)] (s €T).

If i = j, then there exist§’ € Mat(r;, r;;K;) such thaty” = Mk, (C) ® I};, 74, On the other
hand, ifi # j, thenY = 0.
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PrROOF Let us consider a block decompositionlofas

Yin Yio ... Yy
Yor Yoo ... Yo,

1/7',;,1 YI"HZ e }/T,;,Tj
where eaclY,; is ak; x k; matrix. Then 8) implies that
(9) BZ(O‘) Y =Y -Bj(O') (GEF)
for all a,b. If i = j, thenY,, € Endr(R*), so that there exist€,;, € K; for which

Yap = Mg, (Cap) @ I, /4, thanks to Lemm&. Let us consider the case# j. Eq. @) tells

us thatKerY,, C R* is aI'-invariant subspace, which then equdls or R* because
of the irreducibility of B;. Similarly, sincelmage Y, C R* is a-invariant subspace by
(9), ImageY,, equals{0} or R*¥:. Now suppose that,;, # 0. Then KerY,, = {0} and
Image Yy, = R* by the argument above, and it means thaf induces an isomorphism
from (B;,R*) onto (B;,R*). But this contradicts the fact that the representatiBpsnd
B; are not equivalent foi # j. Hence we gel,;, = 0. O

PROOF OFTHEOREM 1. Takey € U{ - Zr - Ur and consider the block decomposition of
y as

Yii Yig ... Y
Yor Yoo ... Yor
y=1 . . -
Y1 Y- Yoo

with Y;; € Mat(r;k;, r;k;; R). Thenz :=Ur -y - U]l belongs toZr, so that 6) implies
R(o)-Ur-y-U! -R(o)" =Ur-y-U!
for o € I', and this equality is rewritten as
[UY - R(o)-Ur]-y=y-[U{ - R(o) Ur].
By (5), we have
[Ir, @ Bi(0)] - Yij = Yij - I, © Bj(0)].
Lemmaa3 tells us thatY;; = 0 if i # j, and thatY}; = Mg, (z;) ® I, /q, With somex; €
Mat(r;, r;;K;). Sincey is a symmetric matrix, the block}; is also symmetric, which im-

plies thatz; € Herm(r;; K;). Actually, the map: @ | Herm(r;; K;) 3 (z:), — X € Zp
given by @) gives a Jordan algebrsomorphism. Ol

2.3. A comparison to the representation theory over the complex number fiBheétorem
1 has a much simpler counterpart in the representation theory(@venich we state in a
spirit of Shah and Chandrasekar@912 and Shah and Chandrasekarg2013. Let I" be
a subgroup of5,,. We regard the natural representatiBnof I" as a complex representa-
tion R: T — GL(p; C). Assume thaf? is decomposed aB ~ @, ¥°*, wheredy: T —
GL(my;C), k=1,..., K, are mutually inequivalent irreducible complex representations.
Let W be the vector space consisting 4fc Mat(p, p; C) such thatd - R(c) = R(o) - A
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for all o € I'. Then there exists a unitapyx p matrix Tt for which all the matricest € Wt
are simultaneously diagonalized as

a1 ® Im1

* ag @ Im, ay € Mat(sg,C),
(10) Tr-A-Tr= T k=1,...,K.

aK & ImK

Precisely, the diagonal blocks in the right-hand side are of the form® a;, in Shah and
Chandrasekara(2013, but the difference can be made up by an appropriate permutation
of the columns offT. Clearly the constanteny, s ), correspond to our structure constants
(ki,r;)i, While we can consider that a complex counterpartforakes always the value
SinceTr is a unitary matrix, we see that £ is Hermitian, then the corresponding matrices
ag, k=1,..., K, are also Hermitian. This fact together with(J is efficiently utilized in

a study of complex covariance matrices with group symmetrgatoveychik, Trushin and
Wiesel(2016. On the other hand, even thoughe W is a real matrix, the matrices; are

not necessarily real, &hah and Chandrasekarg®012 seem to misunderstand implicitly.
For instance, let us consider the case whete3 andI” C &3 is a cyclic group generated by

abc 111
(123). ThenA € W is of the form | ca b | with a,b,c € C. Taking Ty := \/LE lww
bca 1w
with w := ¢2™/3, we have
abe al
It | cab | Tr = as ,
bca as

wherea; :=a+b-+c, as:=a+ bw + cw, andas := a + bw + cw. In this casen;, = s, =1

for £ =1,2,3 (confer Shah and Chandrasekayd@®12 Remark 3.1)). Even if, b, c are
real, the right-hand side above is not necessarily real but of the doxgia, a2,az) with

a1 € R andas € C. Furthermore, if the matriXl is symmetric, that is, real and Hermitian,
then right-hand side becomésag(ay,as,as) with a1,a2 € R as is seen from Theoreth
with (k1, k2) = (1,2), (r1,7m2) = (1,1) and(dy,d2) = (1, 2). This observation tells us that the
constantgmy, s ), from complex representation theory are not sufficient for the description
of the simultaneous diagonalization of real symmetric matrices with group symmetry.

3. Additions to Section 2,,¢.
3.1. Example to Section 2,3 .

EXAMPLE 4. In this example we present a colored spage_ Sym(16;R), which has
a componenHerm(2; H). Let I" = (01, 02) be the subgroup o6, generated by the two
permutations

o1 =(1,2,5,6)(3,4,7,8)(9,10,13,14)(11,12,15,16),
oo =(1,3,5,7)(2,8,6,4)(9,11,13,15)(10,16,14,12).
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The spaceZr consists of matrices of the form

Q1 Qg Qg (xg Q5 Qg (3 Qig Y1 Y2 Y3 Y4 V5 Y6 V7 V8
Qg (v Qg (x3 Qi Q5 (eq (X3 Y6 Y1 Y8 Y3 Y2 V5 V4 V7
Q3 (g Qi (g (i3 Qg e Q2 Y7 Y4 Y1 Y6 VY3 V8 V5 V2
Qg 3 Qi (] Qg Qg e Q5 Y8 Y7 Y2 Y1 Y4 Y3 V6 V5
Q5 Qg (i3 Qg Qv Qi (3 Qg Y5 Y6 Y7 Y8 Y1 Y2 VY3 V4
Qg (e Qg (3 Qi (X1 Qeq QX3 7Y2 Y5 Y4 Y7 Y6 Y1 V8 V3
Q3 Gy Q5 Qi (g (g ey 2 Y3 Y8 75 Y2 Y7 Y4 Y1 V6
X — Qg Qi3 Qi Q5 Qg (X3 Q2 (1 74 Y3 Y6 Y5 Y8 V7 V2 N1
Y1 Y6 V7 V8 V5 Y2 Y3 V4 B1 B2 83 B4 Bs B2 B3 Ba
Y2 Y1 Y4 Y7 V6 V5 8 V3 B2 B1 Ba B3 B2 Bs B4 B3
Y38 Y1 Y2 Y7 V4 V5 Ve B3 Ba B1 B2 B3 B4 Bs B2
Y4 Y3 Y6 Y1 VY8 Y7 V2 V5 Ba B3 B2 B1 Ba B3 B2 B
Y5 Y2 Y3 Y4 Y1 Y6 V7 V8 B B2 B3 Ba B1 B2 B3 B4
Y6 V5 Y8 Y3 Y2 Y1 Y4 V7 B2 B5 Ba B3 B2 b1 B B3
Y7 ¥4 Y5 Y6 V3 V8 Y1 V2 B3 Ba B5 B2 B3 B4 b1 B2
Y8 YT V2 V5 V4 Y3 Y6 V1 Ba B3 B2 Bs B B3 B2 B

The irreducible factorization of the determinant is given by

Det (X) = ((71 —75)2 + (2 = 96)% + (v3 = ¥7)? + (v — 18)% — (@1 — a5)(By — 55))4

(a1 =2(ag+ag —ayg) +a5)(B1 —2(B2+ B3 —B4) +B85) —(v1 —v2—73+7a+7 — 76 — v7 +78)?

»

)

(

(a1 —2(ag — ag +ag) +a5)(B1 — 282 — B3+ B4) +85) — (1 — 72 + 73 — 74 + 75 — %6 + 77 — 78)

: ((al +2(ag —ag —ay) +ag)(Br +2(B2 —B3 —B4) +B5) —(v1+72 —¥3 — V4 +75 + 76 — V7 — 78)2)

(a1 +2(ag +ag +ag) + a5)(B1 +2(82 + B3 + Ba) + B5) — (71 + 2 +v3 + 74 + 75 + %6 + 77 +78)°) -
Thus, Lemma 4, gives us that, = 5 and

r=(2,2,2,2,2), k=(4,1,1,1,1), d=(4,1,1,1,1).
This in turn implies
Zp ~Herm(2; H) ® Sym(2; R)®4,

As a matter of fact, the group’ has four 1-dimensional representations and ofe
dimensional real irreducible representation, and each representation appears Rifce in

3.2. Proofs of Theorem,5; and Theorem §.
PROOF OFTHEOREM5,,,; AND THEOREMG6,,s. Let M := || and denote the irre-
ducible representations dfby
By: I's 0" —1eGL(1;R),
2rak

Ba:FaakHRot< )EGL(Q;R) (1<a< N/2),

Byj: T'20" — (-1)" € GL(I;R)  (if N is even,

whereRot(#) denotes the rotation matr(i‘i)sg _Czlsne'g for 6 € R. Then all the equivalence
classes of the irreducible representation$' @fre [ By, [B1], ..., [Ba| whetherN = 2M or

1 (a=00rN/2),

N =2M + 1. We havek, =d, = .
2 (otherwise)
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Recall that{iy,...,ic} is a complete system of representatives of fherbits, and, for
eachc=1,...,C, p. is the cardinality of thé-orbit throughi.. Let (. := exp(27v/—1/p.).
Whenl < 3 < p./2, we have

pc_l
”25 +v- 25+1 = \/ ok (i.)
Thus

R(o )( Vag |+ V=1 2ﬁ+1 \/>z (e Eokt1(; \/;Z (e €q* (i)
=¢ 7 (Uzg \/_”25+1)
= {cos(ijﬂ)vw +sin<2;cﬂ) 2ﬂ+1} + \/_{—8111(2;6)025 + 08(2;:?) 25+1}

where we have usegf:(i.) = i. and¢?* = 1 at the second equality. It follows that

@) R (o o) = (o o) Rot (222) = (o o8, ) Balo)

with 5/p. = a/N. Similarly, we have
R(0)0}? = v} = By(o)v”,

R(o)v(?) = =0\ = By a(0)vl?)  (if p. and N are evei.

Therefore, forv =0, ..., | N/2], the multiplicityr,, of the representatioB,, of I in (R, R?)
is equal to the number efsuch that3/p. = a/N with someg € N. In other words,

(12) ra =#{c; ap.isamultiple of N} (0 <a<|[N/2]).
Then we have
Zp ~ @ Herm(rq; Kq).

re>0

O]

3.3. Finding structure constants whehis not cyclic. In Section 2.3,, we gave a gen-
eral algorithm for determining the structure constants as well as the invariant measuime
principle, the factorization of a determinant can be done e.gyirHBN, however there are
some limitations regarding the dimension of a matrix. If the p matrix is not sparse, then
the number of terms in the usual Laplace expansion of a determinant produces a polynomial
with p! terms. The RAM memory requirements for calculating such a polynomial would be
in excess op!, which cannot be handled on a standard PC even for moder&epending
on the subgroup and the method of calculating the determinant, we were able to obtain the
determinant for models of dimensions upli®-20. In order to factorize the determinant for
moderate to high dimensions, we want to find an orthogonal métgxch that/ T - X - U is
sparse enough for a computer to calculate its determiDam(UT - X - U) = Det (X). The
matrix Ur from (4) is in general very hard to obtain, but we propose an easy surrogate.
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ProPOSITION2. Assume thal be a subgroup o8,,. Takes, € &,, for which the cyclic
groupTy := (0p) generated by has the same orbits il asT". Then, for anyX € Zr one
has

210
(13) UL - X - Up, = <01 y)

with z; € Sym(C;R) andy € Sym(p — C;R), whereC' is the number of cycles of). Matrix
Ur, is the orthogonal matrix constructed in Theorem &or the cyclic subgroup’,.

PROOF We observe that a vecterc R? is I'-invariant (i.e.R(c)v = v for all o € T) if
and only if R(op)v = v if and only if v is constant ori’-orbits (i.e.v; = v; if i andj belong

to the same orbit of). The firstC' column vectors oUr, arevgl),wf), e ,vg(f), which are

I-invariant. The spac&; := span UP ;e=1,...,C ¢ C RP is the trivial-representation-
component of as explained afte3]. Therefore, ifo; is the trivial representation af, then
rm=Candd; =k, =1.

The orthogonal complemel’h'tlL of V1 is spanned by the rest OEC), 1<e<C,1<p8<

2|pe/2]. ForX € Zr, we see thak -v € V; for v € V4 and thatX - w € Vi* for w € Vit In
this way we obtainX3). Ol

We note that in general, there are no inclusion relations between groapgI’y. More-
over, the correspondenegg : Zr > X — z; € Sym(C;R) is exactly the Jordan algebra ho-
momorphism defined before Corollary, 3. By Propositior2 we obtain

(14) Det (X) =Det (x1) Det (y),

while the factorDet (x;) = det(¢1(X)) is an irreducible polynomial of degreg = C. In

this way, for any subgroup, we are able to factor out the polynomial of degree equal to the
number ofl"-orbits inV easily. On the other hand, the factorizatiorDeft (y) requires study

of the subrepresentatiah of I on V-, where the grouf', is useless in general.

ExampPLE 5. LetI’=((1,2,3), (4,5,6)) C &g, which is not a cyclic group. The space
Zr consists of symmetric matrices of the form

abbeee
babece
bbacee
eeecdd
eeedcd
eeeddc

and moreoverZr does not coincide witlZ ,, for any o € &¢. Noting that the grou@’ has
two orbits:{1, 2,3} and{4, 5,6}, we definesy := (1,2,3)(4,5,6). Takingi; = 1 andis = 4,
we have

1/v/3 0 2/3 0 0
1/vV3 0 —1/V6 1/vV2 0
1/vV/3 0 —1/V/6-1/vV2 0
0 1/v/3 0 0 2/3
0 1/vV/3 0 0 —1/v6 1/V2
0 1/vV/3 0 0 —1/V6-1/v2

Ur, =

o O O O
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Note that the first two column vecto(s$/v/3, 1/v/3, 1/v/3,0, 0, O)T and

(0,0,0,1/v/3,1//3, 1/\/§)T of Ur, areT-invariant. By direct calculation we verify that
U, - X - Up, is of the form

cocoocollmn
cooco QW
cocoolggo o
cogooco
omoocooo
mMoocoocoo

whereA, B, --- , E are linear functions of, b, - - - ,e. The matrices; andy are <g g) and

DO0O0O
0DO0O
00FO
000F
T" in this case.

respectively. The matriy is of such simple form, becau$g is a subgroup of

We cannot expect that the matrixin (13) is always of a nice form, as in the example
above. However, we note that in many examples we considered, the matis sparse,
which also makes the problem of calculatipgt (X ) much more feasible on a standard PC.

In generall’y defined above is not a subgrouplof As we argue below, valuable insight
about the factorization of can be obtained by studying cyclic subgroupg§ ofrhe argu-
ment is based on the following easy result.

LEMMA 4. LetI'; be a subgroup of. ThenZr C Zr,.

LetI'; be a cyclic subgroup df. Then using Theorem,5, we can easily calculate struc-
ture constant correspondingg. Let U, be the orthogonal matrix constructed in Theorem
6,,7. By Lemma4 and @), for any X € Zr the matrixUFT1 - X - Up, is of the form

Mg, (z7) ® f%
MK2 (x/Q) ® Ikz

d2

M]KL (le) X Ik_L
dr
wherez € Herm(r;;K;), ¢ = 1,..., L. In particular, we have:; = d; =1 andr; is the
number ofl';-orbits in{1,...,p}. Thus, we havéVlk, (z) ® Iy, /q, = 1 € Sym(r1;R). In
contrast to {3), z in general can be further factorized and we know ibeit (1) from (14)
is an irreducible factor abet (z}). In conclusion, each cyclic subgroup of the general group
I" brings various information about the factorization.
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EXAMPLE 6. We continue ExamplB. LetI'; = ((1,2,3)), which is a subgroup of.
There are foul';-orbits inV/, that is,{1, 2,3}, {4}, {5}, and{6}. We have

1/v/3000 /2/3 0
1/v/3000—-1/v6 1/1/2
Up — 1/v/3000—1/v6—1/v2

o 0 100 O 0
0 010 O 0
0 001 O 0

For X € Zr, we see thaUFT1 - X - Ur, is of the form

A1 A1 A31 A1 0 0
Aoy Agg A3z A2 0 0
Aszy Azg A3z Ag3 0 0
Ay Agp A3 Ags 0 0 )7
0O 0 0 0 DO
0O 0 0 0 0D

where A;; are linear functions of,, b, ..., e, but they are not linearly independent. Indeed,
we have

Aqy Aoy Azt An

Agy Agp Azp Asa | o AB
Det Aszi Agp Azz Agz | E7 det BC

Ay Agp Ayz Agy

which exemplifies the fact thalet (1) is an irreducible factor obet (z}).

3.4. Gamma integrals. In this section we prove Propositior,#, Theorem §, and The-
orem 9, . Proofs of these results are based on Lerbrbalow.

The key ingredient to compute the Gamma integralPpnis the block decomposition of
Zr. We assume thar is in the form of @). Let2; denote the symmetric cone of the simple
Jordan algebrad; = Herm(r;; K;) andd; = dimg K;, i = 1,..., L. We havedim Q; = r; +
ri(r; — 1)d;/2. Recall that, forX € Zr represented as i), we write ¢;(X) = x; € A; for
i=1,...,L.

LEMMA 5. ForanyY € Prand)\; > —1,i=1,...,L, we have

(15)
L

L :
) FQ.()\i"‘dll’HQi/’l"i)
det(¢i (X)) Me X dX = 7P | Tk : .
/73 H € ¢ e (H ? Hdet((bi(y))Ai“l‘dlin/Ti’

=1 i=1

whereBr is defined in(15),,

ProOF OFLEMMA 5. Denote the left hand side ol%) by 7. Let us change variables
x;=¢i(X)fori=1,...,L. By (10),,s and(14),,s we obtain

B H / det () e RO )2y ().
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Each integral can be calculated usifid),, s for A; > —1 and¢;(Y) € ;, i =1,..., L.
Hence,

L
I=ePr T To, (A + dim€; /ry) det (k; s (Y)) N~/

=1

L L .
—r: )\ —di ) T ()\1+d1m§21/m)
B ri\;—dim Q Q;
— T Je i i i
e (Zl;ll i ) H det(gbi(Y))Ai*dlin/’"i

=1

L L
- —ridi Lo, (A + dim Q;/r;)
— Br il Q i iy
=e (Zl_[l ks ) H det(@(Y))Ai-y-diin/n

=1

and so we obtainl). O

PROOF OFPROPOSITION7,,;. Recall thatPr is a symmetric cone, so that it coincides
with its dual cone}.. Thus,

L
_ B I / —TYYX]
erY)=e <H Lo, (dimQ;/r;) | Jp, ‘ x (¥ €Pr).

=1
Setting\; = ... = Ar = 0in (15) we obtain the expression fgr-(Y"). Ol
PROOF OFTHEOREM8,,,s AND THEOREM9,,;. Recall thatforX € Pr we haveDet (X) =
Hle det(¢;(X))*, where the map; : Zr — Herm(r;;KK;) is a Jordan algebra homomor-

phism,i=1,... L.
If \j =k \— dlle/’l“z with \ > max;=1,...L {(T‘Z — 1)dl/(2]{3@)}, then (].5) ImplleS

L L L -
Hki—rm — o~ ArA2Br  gnq Hdet(@(y))—ki—dimﬂi/m _ <H det(QSi(Y))k")

=1 =1 =1
If \; = k; A with A > max;—; 1 {—1/k;}, then by (5) we obtain

L L L -
[k =e** and Hdet(@(y))Aidimﬂi”i:(]‘[det(@(Y))’“) er(Y).
=1 =1 =1

O

3.5. Jacobian.

PROOF OFLEMMA 13,,,;. First observe that
(X+h) - X1=X+hn1 [ X-(X+h]- X 1=—X"1. h- X"t +0(h),

so that, the Jacobian 6% > X — X! € Pr equalsDetg,q(Px-1), whereDetg,q is the
determinant in the space of endomorphismgpfand for anyX € Zr by Px we denote the
linear map onZr to itself defined byPx Y = X - Y - X. Itis easy to see that for any € Pr
we havePy € G(Pr). Indeed, sinc®xY is positive definite forY” € Pr, it is enough to
verify that

R(o) - [PxY]|=[PxY]- R(o) (cel).
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This follows quickly by the fact thak, Y € Pr. Further, by the(Pr) invariance ofpr, we
have

#r(9X) = Detgna(g) " ¢r(X) (g€ G(Pr)).
Takingg = Px-:, we eventually obtain

Detiaa(Px ) = 0 = or (X,

where the latter inequality can be easily verified(b§),,, ;. Ol
4. Additions to Section G, .

4.1. Real data example.We applied our procedure to the breast cancer data set consid-
ered in Section 7 dfigjsgaard and Lauritzg2008, see alsdviller et al. (2009. Following
approach of Hgjsgaard and Lauritzen, we consider set-6fl50 genes (designations of
these genes can be read frorp{sgaard and Lauritze@008 Fig. 11)) and: = 58 samples
with mutation in the p53 sequence. We numbered the variables alphabeticallypSince
only parsimonious models can be fitted at all.

In Hgjsgaard and Lauritzg2008), the variables were standardized to have zero mean and
unit variance. As the authors write, due to “an issue of scaling of the variables”, model selec-
tion within RCOR models (a superclass of RCOP models) was performed. However, when
the search is done among RCOP models, the scaling ensuring unit variances favors transi-
tive subgroups. Recall that a cyclic subgroup is transitive if it is generated by a permutation

consisting of one big cycle. Therefore we only centered the data.
We run the Metropolis-Hastings algorithm (Algorithm,13 with hyper-parameter® =
I, and$ = 3 for 150000 iterations. Cardinality of the search space is not easy to compute,

but already forp = 130, the number of cyclic subgroups is of magnitud®'?, see OEIS
sequence A051625. The cyclic subgroup with highest estimated posterior probability (

. . kel *

is given byl" = (¢*), where

o* =(1,2,139,149,61,52,8,145)(3, 11,9, 89,6, 102, 120, 4)(5, 47,90)(7, 13, 138,91, 117, 142, 143, 72, 146, 50, 136, 22, 57, 87, 124,
114, 84,30)(10, 99, 39, 21, 101, 26,37, 73)(12, 77, 100, 133, 122) (14, 19, 76, 147) (15, 71, 127, 110) (16, 92, 83, 34, 140, 27, 49, 137)
(17,98, 69)(18, 65,134, 88,107, 75, 108, 106, 82, 109, 123, 68) (20, 51, 135, 105, 38, 96, 25, 45) (23,111, 24, 42, 67, 43,131, 112)
(31, 58, 66,94, 81)(32, 33)(35, 93, 64, 86, 128,148,132, 103, 60, 150, 144, 129, 118, 70,97, 121)(36, 85, 141) (44, 56, 119, 126, 104,

78,79,48)(46, 130, 115, 74, 116, 59, 113, 125, 95).

The order of” is 720. The structure constants gk areL =21,
r=(29,1,1,1,2,8,2,1,2,2,11,1,1,6,8,1,2,1,1,2,13),
d=k=1(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2.1),

which imply thatdim Z = 844. Although the number of parameters (colors)%fis rather
high, the MLE ofX exists in this model. Indeed, in view of Corollary,12, we have

r; Cli
= =29
no ~max { k‘i }

i=1,...,

and so(23),,,s is satisfied.

The color pattern of the space pi p matrices fromz;. is depicted in Figl (a). Entries
which correspond to the same color in a figure are the same. To make the picture more
readable, we renumbered the variables so that the block structure is visible. For comparison,
in Fig. 1 we present the heat map of data matri{rows and columns are permuted in the
same way as in Fidl(a)). We can interpret this result as an indication of hidden symmetry
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(b)

FIG 1. (a) The color pattern of (permuted) spafri%. (b) The heat map of (permuted) mattix

in genes and evidence that our procedure can be used as an exploratory tool for finding such
symmetries.

Finally, we carry out the heuristic procedure introduced in Sectiop, Af2r finding an
RCOP model when the true graph is not complete. We threshold the entries of the partial
correlation matrix at the level = 0.15 and obtain a connected graph wiiR5 edges, see
Figure2. The largest clique consists d? vertices.
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FIG 2. Graph corresponding to thresholded & 0.15) partial correlation matrix.
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