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Abstract: We consider multivariate-centered Gaussian models for the random vector (Z1, . . . , Zp),
whose conditional structure is described by a homogeneous graph and which is invariant under the
action of a permutation subgroup. The following paper is concerned with model selection within
colored graphical Gaussian models, when the underlying conditional dependency graph is known.
We derive an analytic expression of the normalizing constant of the Diaconis–Ylvisaker conjugate
prior for the precision parameter and perform Bayesian model selection in the class of graphical
Gaussian models invariant by the action of a permutation subgroup. We illustrate our results with a
toy example of dimension 5.

Keywords: graphical models; colored graphical models; invariance; permutation symmetry; Diaconis–
Ylvisaker conjugate prior

1. Introduction

In the Graphical Gaussian model, conditional independencies among components
of a random vector Z = (Z1, Z2, . . . , Zp) obeying the multivariate centered Gaussian
law N(0, Σ) with an unknown covariance matrix Σ ∈ Sym+(p,R) are assigned by a
simple undirected graph G = (V , E), where the set V of vertices is enumerated as
V = {1, 2, . . . , p}. Namely, if the vertices i and j are disconnected in the graph G, then Zi

and Zj are conditionally independent given other components Zk, k 6= i, j. This property is
equivalent to the (i, j)-component of the precision matrix K := Σ−1 equals 0. Following
Højsgaard and Lauritzen [1], we impose the invariance on such a statistical model under the
natural action of a permutation subgroup Γ ⊂ Sp preserving the conditional independence
structure of the model, which means that Γ is a subgroup of the automorphism group
Aut(G) :=

{
σ ∈ Sp ; σ(i) ∼ σ(j) if and only if i ∼ j

}
of the graph G, where i ∼ j means

that there exists an edge between the vertices i and j. Such models are called RCOP
graphical models. It is proved that, when the graph G is homogeneous (i.e., decomposable
and A4-free, see [2]), the parameter set PΓ

G of precision matrices K of our invariant model
forms a homogeneous cone. Therefore, we can apply our previous results [3] about the
Wishart laws on homogeneous cones to this situation. In particular, we obtain an exact
analytic formula for the normalizing constant of the Diaconis–Ylvisaker conjugate prior to
the precision matrix. In order to demonstrate our results, we work on the data set of the
examination marks of 88 students in 5 different mathematical subjects reported in Mardia
et al. [4], following Højsgaard and Lauritzen [1]. As is discussed in Whittaker [5] and
Edwards [6], the data fit into the graphical Gaussian model from Figure 1.
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Figure 1. Conditional independence structure of examination marks.

We carry out Bayesian model selection in the spirit of Graczyk et al. [7] of the group
Γ having the highest posterior probability among the ten possible groups preserving the
graph above. We note that in [7], only complete graph G was allowed. Thanks to new
formulas for the normalizing constant of Diaconis–Ylvisaker conjugate prior, we are able to
generalize results of [7] to homogeneous graphs.

The authors are grateful to anonymous referees for their careful reading and valuable
comments.

2. Main Results

Let us describe our results in more detail. Let ZΓ
G be the linear space consisting of

symmetric matrices K ∈ Sym(p,R) such that Kσ(i)σ(j) = Kij for all σ ∈ Γ and i, j ∈ V , and
Kij = 0 if i 6= j and i 6∼ j. Then the cone PΓ

G equals ZΓ
G ∩ Sym+(p,R), so that our statistical

model is the family of N(0, Σ) with Σ−1 ∈ PΓ
G . The Diaconis–Ylvisaker conjugate prior for

K = Σ−1 ∈ PΓ
G is given by

f (K; δ, D) :=
1

IΓ
G(δ, D)

e−tr KD/2(det K)(δ−2)/21PΓ
G
(K) (1)

for hyperparameters δ > 2 and D ∈ Sym+(p,R), where

IΓ
G(δ, D) :=

∫
PΓ
G

e−tr KD/2(det K)(δ−2)/2 dK

is the normalizing constant. As is already stated, the cone PΓ
G is homogeneous, which

means that there exists a linear group H ⊂ GL(ZΓ
G) acting on PΓ

G transitively. Then, making
use of our integral formula over PΓ

G , see (2), we can compute the normalizing constant
IΓ
G(δ, D).

In order to state the integral formula, we introduce some functions. Let Z be a linear sub-
space of Sym(p,R) such thatPZ := Z ∩ Sym+(p,R) is non-empty. Let πZ : Sym(p,R)→ Z
denote the orthogonal projection with respect to the trace inner product 〈x, y〉 := tr xy,
x, y ∈ Sym(p,R), that is,

〈x, y〉 = 〈x, πZ (y)〉, x ∈ Z , y ∈ Sym(p,R).

Let P∗Z be the dual cone of PZ , that is, P∗Z : =
{

y ∈ Z ; 〈x, y〉 > 0 for all x ∈ PZ \ {0}
}

.
It is easy to see that, if D ∈ Sym+(p,R), then πZ (D) ∈ P∗Z . One can show that (see the
proof of Proposition V.8 in [8]), for each y ∈ P∗Z , there exists a unique ψZ (y) ∈ PZ such
that the function PZ 3 x 7→ e−〈x,y〉 det x attains its maximum value at x = ψZ (y), and that
the map ψZ : P∗Z → PZ equals the inverse map of PZ 3 x 7→ πZ (x−1) ∈ P∗Z . For y ∈ P∗Z ,
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define δZ (y) := (det ψZ (y))−1 and let SZ (y) : Z → Z be a linear operator defined in such
a way that

〈SZ (y)u, v〉 = −
( ∂2

∂s∂t

)
log δZ (y + su + tv)

∣∣∣
s=t=0

u, v ∈ Z .

Namely, SZ (y) is the Hessian operator of a strictly convex function − log δZ (y). Put
ϕZ (y) := (det SZ (y))1/2 for y ∈ P∗Z . Finally, define γZ (α) :=

∫
PZ e−tr x(det x)α dx for

α ≥ 0, where dx denotes the Lebesgue measure on Z normalized by the trace inner
product. Namely, dx = ∏dimZ

i=1 dxi, where (x1, . . . , xdimZ ) is the standard coordinate
system associated to an orthonormal basis of Z with respect to the trace inner product.

Theorem 1. If Z = ZΓ
G , then one has∫

PZ
e−〈x,y〉(det x)α dx = γZ (α) ϕZ (y) δZ (y)−α y ∈ P∗Z , α ≥ 0. (2)

We shall show Theorem 1 by using the homogeneity of PΓ
G = PZΓ

G
in our case, whereas

we notice that the Formula (2) is also valid for some non-homogeneous cases, e.g., the cone
PZ arising from uncolored decomposable graphical models [9].

Let γΓ
G , δΓ

G and ϕΓ
G denote the functions γZ , δZ and ϕZ , respectively, with Z = ZΓ

G .
Then, we have

IΓ
G(δ, D) = γΓ

G((δ− 2)/2) ϕΓ
G(πZ (D)/2) δΓ

G(πZ (D)/2)−(δ−2)/2.

In our Bayesian model selection setting [7], for a fixed graph G, we suppose that a group
Γ is distributed uniformly over all the possible subgroups of the automorphism group
of the graph G. Given samples Z1, Z2, . . . , Zn, that is, the independent and identically
distributed random vectors obeying N(0, Σ) with Σ−1 ∈ PΓ

G , we see that the posterior
probability P(Γ|Z1, . . . , Zn) is proportional to IΓ

G(δ + n, D + ∑n
i=1 ZiZ>i )/IΓ

G(δ, D), see [7]
(Equation (30)).

3. Matrix Realization of Homogeneous Cones

It is known that any homogeneous cone is linearly isomorphic to some PZ , where
Z ⊂ Sym(p,R) is a linear subspace consisting of real symmetric matrices admitting
certain specific block decompositions described below [10,11]. Let n1, n2, . . . , nr be positive
integers such that p = n1 + n2 + . . . + nr. Let V = {Vlk}1≤k<l≤r be a family of linear spaces
Vlk ⊂ Mat(nl , nk;R) satisfying the following axioms:

(V1) A ∈ Vlk ⇒ AA> ∈ RInl (1 ≤ k < l ≤ r),
(V2) A ∈ Vl j, B ∈ Vkj ⇒ AB> ∈ Vlk (1 ≤ j < k < l ≤ r),
(V3) A ∈ Vlk, B ∈ Vkj ⇒ AB ∈ Vl j (1 ≤ j < k < l ≤ r).

Let ZV be the linear space consisting of x ∈ Sym(p,R) of the following form:

x =


X11 X>21 · · · X>r1
X21 X22 X>r2

...
. . .

...
Xr1 Xr2 · · · Xrr

 Xkk = xkk Ink , xkk ∈ R, k = 1, . . . , r,

Xlk ∈ Vlk, 1 ≤ k < l ≤ r.
(3)

Let HV be the set of p× p lower triangular matrices T of the following form:

T =


T11
T21 T22

...
. . .

Tr1 Tr2 · · · Trr

 Tkk = tkk Ink , tkk > 0, k = 1, . . . , r,

Tlk ∈ Vlk, 1 ≤ k < l ≤ r.
(4)
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Then, HV forms a Lie group by (V3), and acts on ZV linearly by ρ(T)x := TxT>, T ∈ HV ,
x ∈ ZV . Moreover, the group HV acts on the cone PV := PZV simply transitively by ρ.
We write ρ∗(T), T ∈ HV , for the adjoint of the linear operator ρ(T) on ZV with respect
to the trace inner product, which means that 〈ρ(T)x, y〉 = 〈x, ρ∗(T)y〉 for x, y ∈ ZV .
Then, we see that ρ∗(T)y = πZ (T>yT) for y ∈ ZV . Moreover, if y ∈ P∗V := P∗ZV

,
we have ψZV (ρ

∗(T)y) = ρ(T−1)ψZV (y). Since ψZ (y) ∈ PV for y ∈ P∗V , we can take a
unique Ty ∈ HV for which ψZ (y) = ρ(T−1

y )Ip. Then, we have y = ρ∗(Ty)Ip because
ρ(T−1

y )Ip = ρ(T−1
y )ψZ (Ip) = ψZ (ρ

∗(Ty)Ip).

Lemma 1. For y ∈ P∗ZV
, one has δZV (y) = (det Ty)2 and ϕZV (y) = (det ρ(Ty))−1.

Using Lemma 1 and a general theory about relatively invariant functions on a homo-
geneous cone (see, e.g., [10] (Section IV)), we can compute explicitly δZV and ϕZV .

Put qk := ∑l>k dim Vlk for k = 1, . . . , r and N := dimZV .

Theorem 2. (i) One has

γZV (α) = (2π)(N−r)/2
r

∏
k=1

(
n−nkα−(qk+1)/2

k Γ(nkα + (qk/2) + 1)
)

.

(ii) The equality (2) holds for Z = ZV .

We give a sketch of the proof of Theorem 2. We denote by (A|B) the trace inner
product tr AB> of A, B ∈ Vlk. Then, for an element x ∈ ZV in (3), we have

〈x, x〉 =
r

∑
k=1

(nkx2
kk) + 2 ∑

1≤k<l≤r
(Xlk|Xlk),

so that dx = ∏r
k=1(n

1/2
k dxkk)∏1≤k<l≤r(2dim Vlk/2dXlk), where dXlk stands for the Lebesgue

measure on Vlk normalized by (·|·). By the change of variable x = ρ(T)Ip with T ∈ HV in
(4), we get

dx =
r

∏
k=1

(n1/2
k 2t1+qk

kk dtkk) ∏
1≤k<l≤r

2dim Vlk/2dTlk,

so that γZV (α) equals

r

∏
k=1

(∫ ∞

0
e−nkt2

kk n1/2
k 2t2nkα+1+qk

kk dtkk

)
∏

1≤k<l≤r

(
2dim Vlk/2

∫
Vlk

e−(Tlk |Tlk) dTlk

)
.

As for (ii), we observe that 〈x, y〉 = 〈x, ρ∗(Ty)Ip〉 = 〈ρ(Ty)x, Ip〉 = tr ρ(Ty)x. By the change
of variable x′ = ρ(Ty)x, we have∫

PV

e−〈x,y〉(det x)α dx =
∫
PV

e−tr x′{(det x′)(det Ty)
−2}α (det ρ(Ty))

−1dx′

= (det Ty)
−2α(det ρ(Ty))

−1γZV (α),

so that (2) follows from Lemma 1.

Theorem 3. For a homogeneous graph G = (V , E) and a subgroup Γ of the automorphism
group of G, there exists an orthogonal matrix U ∈ O(p) such that U>ZΓ

GU = ZV with some
V = {Vlk}1≤k<l≤r.

The proof is omitted; it is based on a representation theory similarly as in [7] and
uses a proper ordering of vertices. Theorem 3 together with Theorem 2 yields Theorem 1.
Theorem 3 is very important from the practical point of view. The knowledge of the
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orthogonal matrix U allows us to identify all parameters of the space ZV (see (3)). However,
the problem of finding a suitable U matrix is in general very complicated. In the next
section, we will consider the butterfly model from Figure 1 and present the exact forms of
the U matrices for all subgroups of Aut(G).

4. Toy Example

In what follows, let G be the five-vertex graph from Figure 1. We use the cyclic
representation of permutations on V = {1, . . . , 5}. Then, the group Aut(G) is generated
by σ1 :=

(
1 2

)
, σ2 :=

(
4 5

)
, and σ3 :=

(
1 4

)(
2 5

)
. Put τ := σ2 ◦ σ3 =

(
1 5 2 4

)
.

Then, σ2 = σ1 ◦ τ2 and σ3 = σ1 ◦ τ3, so that Aut(G) is generated by σ1 and τ. Moreover,
since the orders of σ1 and τ are 2 and 4, respectively, with σ1 ◦ τ ◦ σ−1

1 = τ3, the group
Aut(G) equals the dihedral group 〈σ1〉n 〈τ〉 of order 8. Then, all the subgroups of Aut(G)
are listed as:

Γ1 := {e}, Γ2 := 〈σ1〉, Γ3 := 〈σ1 ◦ τ〉, Γ4 := 〈σ1 ◦ τ2〉, Γ5 := 〈σ1 ◦ τ3〉,
Γ6 := 〈τ2〉, Γ7 := 〈τ〉, Γ8 := 〈σ1, τ2〉, Γ9 := 〈σ1 ◦ τ, τ2〉, Γ10 := Aut(G).

(i) When Γ = Γ1, then x ∈ ZΓ
G is of the form

x =


x11 x21 x31 0 0
x21 x22 x32 0 0
x31 x32 x33 x43 x53
0 0 x43 x44 x54
0 0 x53 x54 x55

.

We give an orthogonal matrix U so that U>xU becomes of the form of matrix realization in
the previous section (see Theorem 3) by

U :=


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

, U>xU =


x11 x21 0 0 x31
x21 x22 0 0 x32
0 0 x44 x54 x43
0 0 x54 x55 x53

x31 x32 x43 x53 x33

.

In this case, N = 11, r = 5, n1 = . . . = n5 = 1, and Vlk (1 ≤ k < l ≤ 5) is R or {0}. Since
γU>ZU(α) = γZ (α) in general, we see from Theorem 2 (i) that

γΓ
G(α) = (2π)3Γ(α + 1)Γ(α +

3
2
)2Γ(α + 2)2.

Moreover, the functions δΓ
G(x) and ϕΓ

G(x) are expressed, respectively, as

x−1
33

∣∣∣∣∣∣
x11 x21 x31
x21 x22 x32
x31 x32 x33

∣∣∣∣∣∣
∣∣∣∣∣∣
x33 x43 x53
x43 x44 x54
x53 x54 x55

∣∣∣∣∣∣, x33

∣∣∣∣∣∣
x11 x21 x31
x21 x22 x32
x31 x32 x33

∣∣∣∣∣∣
−2∣∣∣∣∣∣

x33 x43 x53
x43 x44 x54
x53 x54 x55

∣∣∣∣∣∣
−2

.

For i = 2, . . . , 10, clearly PΓi
G is a subset of PΓ

G = PΓ1
G and one can show that δ

Γi
G is equal to

the restriction of δΓ
G above to PΓi

G .
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(ii) When Γ = Γ2, we describe, respectively, x ∈ ZΓ
G , an orthogonal matrix U and U>xU as

a b c 0 0
b a c 0 0
c c d e f
0 0 e g h
0 0 f h i

,


1/
√

2 1/
√

2 0 0 0
−1/
√

2 1/
√

2 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

,


a− b 0 0 0 0

0 a + b 0 0
√

2c
0 0 g h e
0 0 h i f
0

√
2c e f d

.

We have γΓ
G(α) = (2π)2Γ(α + 1)2Γ(α + 3

2 )
2Γ(α + 2), and

ϕΓ
G(x) = d(a− b)−1

∣∣∣∣a + b
√

2c√
2c d

∣∣∣∣−3/2
∣∣∣∣∣∣
d e f
e g h
f h i

∣∣∣∣∣∣
−2

.

(iii) When Γ = Γ3, we describe, respectively, x ∈ ZΓ
G , an orthogonal matrix U and U>xU as

a d e 0 0
d b f 0 0
e f c f e
0 0 f b d
0 0 e d a

,


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

,


a 0 d 0 e
0 a 0 d e
d 0 b 0 f
0 d 0 b f
e e f f c

.

Then γΓ
G(α) = (2π)3/22−4α−5/2Γ(2α + 2)Γ(2α + 3

2 )Γ(α + 1) and ϕΓ
G(x) =

∣∣∣∣∣∣
a d e
d b f
e f c

∣∣∣∣∣∣
−2

.

(iv) When Γ = Γ4, we describe, respectively, x ∈ ZΓ
G , an orthogonal matrix U and U>xU as

a d e 0 0
d b f 0 0
e f c g g
0 0 g h i
0 0 g i h

,


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1/

√
2 1/

√
2 0

0 0 −1/
√

2 1/
√

2 0

,


a d 0 0 e
d b 0 0 f
0 0 h− i 0 0
0 0 0 h + i

√
2g

e f 0
√

2g c

.

Then, γΓ
G(α) = γΓ2

G (α) = (2π)2Γ(α + 1)2Γ(α + 3
2 )

2Γ(α + 2), while ϕΓ
G(x) is equal to

c(h− i)−1
∣∣∣∣h + i

√
2g√

2g c

∣∣∣∣−3/2
∣∣∣∣∣∣
a d e
d b f
e f c

∣∣∣∣∣∣
−2

.

(v) When Γ = Γ5, we describe, respectively, x ∈ ZΓ
G , an orthogonal matrix U and U>xU as

a d e 0 0
d b f 0 0
e f c e f
0 0 e a d
0 0 f d b

,


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

,


a 0 d 0 e
0 a 0 d e
d 0 b 0 f
0 d 0 b f
e e f f c

.

Then, γΓ
G(α) = γΓ3

G (α) = (2π)3/22−4α−5/2Γ(2α + 2)Γ(2α + 3
2 )Γ(α + 1) and

ϕΓ
G(x) =

∣∣∣∣∣∣
a d e
d b f
e f c

∣∣∣∣∣∣
−2

.
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(vi) We have ZΓ6
G = ZΓ8

G . When Γ = Γ6 or Γ8, we describe, respectively, x ∈ ZΓ
G , an

orthogonal matrix U and U>xU as
a b c 0 0
b a c 0 0
c c d e e
0 0 e f g
0 0 e g f

,


1/
√

2 1/
√

2 0 0 0
−1/
√

2 1/
√

2 0 0 0
0 0 0 0 1
0 0 1/

√
2 1/

√
2 0

0 0 −1/
√

2 1/
√

2 0

,


a− b 0 0 0 0

0 a + b 0 0
√

2c
0 0 f − g 0 0
0 0 0 f + g

√
2e

0
√

2c 0
√

2e d

.

Then, γΓ
G(α) = 2πΓ(α + 1)3Γ(α + 3

2 )
2, and

ϕΓ
G(x) = d(a− b)−1( f − g)−1

∣∣∣∣a + b
√

2c√
2c d

∣∣∣∣−3/2∣∣∣∣ f + g
√

2e√
2e d

∣∣∣∣−3/2

.

(vii) For Γ = Γ7, Γ9 or Γ10 the linear space ZΓ
G is the same. We describe, respectively, x ∈ ZΓ

G ,
an orthogonal matrix U and U>xU as

a c d 0 0
c a d 0 0
d d b d d
0 0 d a c
0 0 d c a

,


1/
√

2 0 1/
√

2 0 0
−1/
√

2 0 1/
√

2 0 0
0 0 0 0 1
0 −1/

√
2 0 1/

√
2 0

0 1/
√

2 0 1/
√

2 0

,


a− c 0 0 0 0

0 a− c 0 0 0
0 0 a + c 0

√
2d

0 0 0 a + c
√

2d
0 0

√
2d

√
2d b

.

Then, γΓ
G(α) = (2π)1/22−4α−3/2Γ(2α + 1)Γ(2α + 3

2 )Γ(α + 1) and ϕΓ
G(x) = (a − c)−1∣∣∣∣a + c

√
2d√

2d b

∣∣∣∣−3/2

.

5. Numerical Example

We carry out Bayesian model selection in the spirit of Graczyk et al. [7]. For a fixed
graph G, we suppose that a group Γ is distributed uniformly over all possible subgroups
of Aut(G). Given sample Z1, . . . , Zn from N(0, Σ) with Σ−1 ∈ PΓ

G , where K = Σ−1 follows
the Diaconis–Ylvisaker conjugate prior (1) with hyperparameters (δ, D), then the posterior
probability P(Γ|Z1, . . . , Zn) is proportional to IΓ

G(δ + n, D + ∑n
i=1 ZiZ>i )/IΓ

G(δ, D). In order
to demonstrate our results, we work on the data set of the examination marks of n = 88
students in p = 5 different mathematical subjects. As was reported in [5,6], the data
demonstrate an excellent fit to the graphical Gaussian model displayed in Figure 1. Since
the groups Γ = Γ6, Γ8 (similarly Γ7, Γ9 and Γ10) impose the same symmetries on ZΓ

G , we
consider Bayesian model selection within 7 different models: Γi for i = 1, 2, . . . , 7. The
five mathematical subjects are enumerated as in the graph presented in Figure 1. As our
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method applies only to centered normal sample, as usual, we center the marks and consider
a correction of the degrees of freedom n∗ = 88− 1 = 87. Then,

n

∑
i=1

ZiZ>i =


26 601.82 11 068.36 8 837.41 9 245.73 10 214.23
11 068.36 15 037.27 7 408.68 8 236.55 |8 614.05
8 837.41 7 408.68 9 821.08 9 753.86 10 602.74
9 245.73 8 236.55 9 753.86 19 173.09 13 531.59

10 214.23 8 614.05 10 602.74 13 531.59 25 904.72

.

We take usual hyperparameter δ = 3 and D = d · I5 for d ∈ {1, 102, 104}. Below, we present
a subgroup with the highest posterior probability p.

d = 1 d = 100 d = 10 000
Γ7 (p = 1) Γ3 (p = 0.8) Γ1 (p = 0.75)

Depending on the value of hyperparameter D, the model with the highest posterior proba-
bility is

• Γ7, which corresponds to full symmetry as ZΓ7
G = ZAut(G)

G ,

• Γ3 =
〈(

1 5
)(

2 4
)〉

, which corresponds to invariance of the model to interchange
(Mechanics, Vectors)↔ (Statistics, Analysis),

• Γ1 = {e}, which corresponds to no additional symmetry.

The hyperparameter δ has much less impact on model selection.
We note that the same example was considered in [1], where the colored graphical

models were introduced for the first time. The authors of [1], using a BIC criterion, point
out that model Γ3 (see [1] (Figure 8)) represents an excellent fit.

Fitted concentrations ×103 for the examination marks assuming the model Γ3 are
presented in Table 1. (In [1] (Table 6) erroneous entries are presented in the same table).

Table 1. Fitted concentration matrix ×103.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.85 −2.23 −3.72 0 0
Vectors −2.23 10.15 −5.88 0 0

Algebra −3.72 −5.88 26.95 −5.88 −3.72
Analysis 0 0 −5.88 10.15 −2.23
Statistics 0 0 −3.72 −2.23 5.85
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