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In the appendix we first prove Theorem 1, Lemma 4, and Theorem 5, the equality M = M̃ used in the proof
of Theorem 6 and then the two lemmas concerning properties of Kullback-Leibler projections. Finally we prove
the ordering of covariance matrices in CP and CR scenarios discussed in Remark 3.
Below we give a proof of Theorem 1.

Proof of Theorem 1. We prove that Xn and X∗
n are exchangeable given Zn = zn. The proof that

Xn,X
∗
n,1,X

∗
n,2, . . . ,X

∗
n,B are exchangeable is a straightforward extension as well as the proof of the fact that

(Xn,Yn,Zn), (X
∗
n,1,Yn,Zn), (X

∗
n,2,Yn,Zn), . . . , (X

∗
n,B ,Yn,Zn) are exchangeable. We recall that the random

variables T1, T2, . . . , Ts are exchangeable if their joint distribution is invariant under permutations of the com-
ponents.

We denote by π ∈ Π a permutation applied to Xn resulting in X∗
n. That transformation consists of

permutations on the layers Zn = z denoted by πz for z ∈ Z and we use a notation iz ∈ {i : Zi = z} to denote
the indices of subsequent observations on the layer Zn = z. Consider P (Xn = xn,X

∗
n = x∗

n|Zn = zn,Π = π).
Note that this probability equals P (Xn = xn|Zn = zn,Π = π) if x∗

n is an image of xn under transformation π
and 0 otherwise. Note that if x∗

n is an image of xn then for all z ∈ Z and for all iz ∈ {i : Zi = z}

x∗
iz = xπz(iz).

In case when π(xn) = x∗
n we have

P (Xn = xn,X
∗
n = x∗

n|Zn = zn,Π = π) = P (Xn = xn|Zn = zn,Π = π) (1)

and

P (Xn = xn|Zn = zn,Π = π) = P (Xn = xn|Zn = zn) =
∏
z

P (∀i:Zi=zXi = xi|Zi = z)

=
∏
z

∏
iz

P (Xiz = xiz |Ziz = z) =
∏
z

∏
iz

P (Xiz = xiz |Ziz = z,Π = π)

=
∏
z

∏
iz

P (Xπz(iz) = xiz |Ziz = z,Π = π) = P (Xn = x∗
n|Zn = zn,Π = π),

where the first and the fourth equations follow from conditional independence of Xn and Π given Zn, and the
second and the third use independence of (Xi, Zi)

n
i=1. We also have that

P (Xn = x∗
n,X

∗
n = xn|Zn = zn,Π = π) = P (Xn = x∗

n|Zn = zn,Π = π),

where the above equation follows from analogous reasoning as in (1) applied to π−1. When π(xn) ̸= x∗
n, then

P (Xn = xn,X
∗
n = x∗

n|Zn = zn,Π = π) = P (Xn = x∗
n,X

∗
n = xn|Zn = zn,Π = π) = 0.

Thus
P (Xn = xn,X

∗
n = x∗

n|Zn = zn,Π = π) = P (Xn = x∗
n,X

∗
n = xn|Zn = zn,Π = π).
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and as the above equation holds for all π ∈ Π, we obtain

P (Xn = xn,X
∗
n = x∗

n|Zn = zn) = P (Xn = x∗
n,X

∗
n = xn|Zn = zn).

As we have proven the exchangeability of the sample and resampled samples given Zn, the test statistics
based on them are also exchangeable given Zn. By averaging over Zn the property also holds unconditionally.

For exchangeable random variables T, T ∗
1 , T

∗
2 , . . . , T

∗
B and for i ∈ {1, . . . , B,B + 1}

P

(
1 +

B∑
b=1

I(T ≤ T ∗
b ) = i

)
=

1

1 +B

as the rank of T among T, T ∗
1 , T

∗
2 , . . . , T

∗
B is uniformly distributed on {1, . . . , B + 1}. Thus

P

(
1 +

B∑
b=1

I(T ≤ T ∗
b ) ≤ i

)
=

i

1 +B

and from that we obtain

P

(
1 +

∑B
b=1 I(T ≤ T ∗

b )

1 +B
≤ i

1 +B

)
=

i

1 +B
.

For any α ∈
[

i
B+1 ,

i+1
B+1

)
and α ≤ 1 we thus have

P

(
1 +

∑B
b=1 I(T ≤ T ∗

b )

1 +B
≤ α

)
≤ α. (2)

In the considered case of conditional independence the exchangeability of T, T ∗
1 , T

∗
2 , . . . , T

∗
B holds given

Zn=zn, thus the last inequality (2) holds given Zn = zn.It follows by averaging that (2) holds unconditionally.

In order to prove Lemma 4 we start with following simple lemma, which is crucial for our argument.

Lemma 1. Assume that as r → ∞, P (W
(r)
i ≤ t | W (r)

1 , . . . ,W
(r)
i−1)

a.s.−→ P (Qi ≤ t) =: Fi(t) for all continuity

points of Fi, i = 1, . . . , d. Then (W
(r)
1 , . . . ,W

(r)
d )

d−→ (Q1, . . . , Qd) and (Qi)
d
i=1 are independent.

Proof. Assume that ti is a continuity point of Fi. Then for i = 1, . . . , d,

P (W
(r)
1 ≤ t1, . . . ,W

(r)
i ≤ ti) = P (W

(r)
1 ≤ t1, . . . ,W

(r)
i−1 ≤ ti−1)Fi(ti)

+ E
[
I(W (r)

1 ≤ t1, . . . ,W
(r)
i−1 ≤ ti−1)

(
P (W

(r)
i ≤ ti | W (r)

1 , . . . ,W
(r)
i−1)− Fi(ti)

)]
.

By Lebesgue’s dominated convergence theorem, the latter term converges to 0 as r → ∞. Thus, by induction,
the cumulative distribution function of (W (r)

1 , . . . ,W
(r)
d ) converges to F1 · . . . ·Fd for all continuity points, which

completes the proof.

The above result generalizes to the case when all W (r)
i are multivariate.

Lemma 2. Let mr = (m
(r)
1 , . . . ,m

(r)
d )⊤ ∈ Nd. Suppose that Wr = (W

(r)
1 , . . . ,W

(r)
d ) has multivariate hypergeo-

metric distribution Hypd(nr,mr) defined by

P (Wr = (k1, . . . , kd)) =

∏d
i=1

(m(r)
i
ki

)(|mr|
nr

) , ki ∈ N, ki ≤ m
(r)
i ,

d∑
i=1

ki = nr.

Assume that as r → ∞,

|mr|→ ∞, nr/|mr|→ α ∈ (0, 1), mr/|mr|→ β = (β1, . . . , βd) ∈ Td.

Then
1√
|mr|

(
Wr −

nr

|mr|
m⊤

r

)
d−→ Nd(0,Σ),

where Σ is a (d− 1)-rank matrix with elements Σi,j = α(1− α)βi (δij − βj).
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The univariate case is proved in [1, Th. 2.1]. We could not find an appropriate reference for the general
case. However, we refrain from giving a formal proof of the multivariate case, as it follows from the univiariate
case in analogous way as Lemma 4 follows from Lemma 2 and we present a full argument below.

We now prove Lemma 4.

Proof. First, observe that (6) in Section 3 in the main text can be rewritten as

P (Wr = k) =

∏I
i=1

( a
(r)
i

ki1,...,kiJ

)( nr

b
(r)
1 ,...,b

(r)
J

) ,

where
(

a
b1,...,bn

)
:= a!∏n

i=1 bi!
whenever a = |b|. Denote by W

(r)
i the ith row of matrix Wr, i.e. a random vector

(W
(r)
ij )Jj=1, i = 1, . . . , I. Clearly, W (r)

1 ∼ HypJ(a
(r)
1 , br), where HypJ is defined in Lemma 2. Since |br|= nr, by

Lemma 2, we have

Z
(r)
1 :=

1
√
nr

(
W

(r)
1 − a

(r)
1

nr
br

)
d−→ Z1 ∼ Nd(0,Σ1),

where (Σ1)i,j = α1(1− α1)βi(δij − βj).
Now consider a conditional distribution of W (r)

i given (W
(r)
k )k<i, i > 1. We have

W
(r)
i | (W (r)

k )k<i ∼ HypJ

(
a
(r)
i , br −

i−1∑
k=1

(W
(r)
k )⊤

)
.

Since W
(r)
ij follows the hypergeometric distribution with parameters

(
nr, a

(r)
i , b

(r)
j

)
by the law of large numbers,

we have
W

(r)
ij

nr

a.s.−→ αiβj .

Observing that m
(i)
r := |br −

∑i−1
k=1 W

(r)
k |= nr −

∑i−1
k=1 a

(r)
k , we have as r → ∞,

a
(r)
i

m
(i)
r

→ αi

1−
∑i−1

k=1 αk

and
b⊤r −

∑i−1
k=1 W

(r)
k

m
(i)
r

a.s.−→ β.

We apply Lemma 2 conditionally on (W
(r)
k )k<i, to obtain for i = 2, . . . , I,

Z
(r)
i :=

1√
nr −

∑i−1
k=1 a

(r)
k

(
W

(r)
i − a

(r)
i

nr −
∑i−1

k=1 a
(r)
k

(
b⊤r −

i−1∑
k=1

W
(r)
k

))∣∣∣ (W (r)
k

)
k<i

d−→ Zi,

where Zi ∼ N(0,Σi) with

(Σi)j,l =
αi

1−
∑i−1

k=1 αk

(
1− αi

1−
∑i−1

k=1 αk

)
βj(δjl − βl).

By Lemma 1, we have
(Z

(r)
1 , . . . , Z

(r)
I )

d−→ (Z1, . . . , ZI),

where Z1, . . . , ZI are independent. By direct calculation, it is easy to see that

1
√
nr

(
W

(r)
i − 1

nr
a
(r)
i b⊤r

)
=

i∑
k=1

γ
(r)
k,iZ

(r)
k ,

where

γ
(r)
k,i = −

√
nr −

∑k−1
j=1 a

(r)
j

nr

a
(r)
i

nr −
∑k

j=1 a
(r)
j

for k < i and γ
(r)
i,i =

√
nr −

∑i−1
j=1 a

(r)
j

nr

We have limr→∞ γ
(r)
k,i = Γk,i, where

Γk,i = −

√√√√1−
k−1∑
j=1

αj
αi

1−
∑k

j=1 αj

for k < i and Γi,i =

√√√√1−
i−1∑
j=1

αj .
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Thus,

1
√
nr

(
W

(r)
i − 1

nr
a
(r)
i b⊤r

)I

i=1

d−→

(
i∑

k=1

Γk,iZk

)I

i=1

=: Q ∼ N(0,Σ),

where Σ = (Σk,l
i,j ). Σk,l

i,j denotes covariance of jth coordinate of ith consecutive subvector of the length J of Q
with kth coordinate of the lth subvector. Thus

Σk,l
i,j = Cov

(
i∑

ℓ=1

Γℓ,iZℓ,j ,

k∑
ℓ=1

Γℓ,kZℓ,l

)
.

Since no row is distinguished, in order to establish (7) in the main text it is enough to consider i = 1 and
k ∈ {1, 2}. We have

Σ1,l
1,j = Cov(Z1,j , Z1,l) = (Σ1)j,l = α1(1− α1)βj(δjl − βl)

and

Σ2,l
1,j = Cov

(
Z1,j ,

√
1− α1Z2,l −

α2

1− α1
Z1,l

)
= − α2

1− α1
(Σ1)j,l = −α1α2βj (δjl − βl) .

We prove now Theorem 5. The proof follows [2] and it is based on the multivariate Berry-Esseen theorem
([3]).

Proof of Theorem 5. Without loss of generality, we assume that X = {1, 2, . . . , I}, Y = {1, 2, . . . , J} and Z =
{1, 2, . . . ,K} and let M = I · J ·K. We define a function k(·), which assigns a triple (x, y, z) ∈ X × Y × Z to
each index i = 1, 2, . . . ,M , in the following way

k(i) = (x, y, z) and i = x+ I · (y − 1) + I · J · (z − 1).

Thus, in the notation using the function k, we write e.g. a vector of all probabilities (p(x, y, z))x,y,z as
(p(k(i)))Mi=1. We let

p̂∗(x, y, z) =
n∗(x, y, z)

n
=

1

n

n∑
i=1

I(X∗
i = x, Yi = y, Zi = z),

pci = p(x|z)p(y|z)p(z) and we define p̂tci (tci stands for true conditional independence) in the following way

p̂tci(x, y, z) = p(x|z)n(y, z)
n(z)

n(z)

n
=: p(x|z)p̂(y|z)p̂(z),

thus, since p̂∗ follows the multinomial distribution with an observation (x, y, z) having a probability equal to
p̂tci(x, y, z), conditionally on the original sample we have that

E∗p̂∗(x, y, z) = p(x|z)p̂(y|z)p̂(z)

and
(Cov∗ ((p̂∗(x, y, z))x,y,z))

x′,y′,z′

x,y,z =

{
1
n p̂tci(x, y, z)(1− p̂tci(x, y, z)) if (x, y, z) = (x′, y′, z′)
− 1

n p̂tci(x, y, z)p̂tci(x
′, y′, z′) if (x, y, z) ̸= (x′, y′, z′)

.

We define
Σ̂x′,y′,z′

x,y,z = n(Cov∗ ((p̂∗(x, y, z))x,y,z))
x′,y′,z′

x,y,z

and
Q∗

j :=
1√
n
Σ̂

−1/2
−M

(
I((X∗

j , Yj , Zj) = k(i))− p̂tci(k(i))
)M−1

i=1
,

W ∗ =

n∑
j=1

Q∗
j =

√
nΣ̂

−1/2
−M (p̂∗(k(i))− p̂tci(k(i)))

M−1
i=1 ,

where Σ̂−M = Cov∗
(
(p̂∗(k(i)))M−1

i=1

)
. As p(x, y, z) > 0 for all (x, y, z), the matrix Σ̂−M is invertible, cf. e.g.

[4]. One element of the vector p̂∗ is omitted to ensure that the covariance matrix is invertible. As we have
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∑
x,y,z p̂

∗(x, y, z) = 1, the full dimension matrix Σ̂ is singular. Then we apply multivariate Berry-Esseen theorem
([3])

|P ∗(W ∗ ∈ A)− P (Z ∈ A)|

≤ Kd

n∑
j=1

E∗
∥∥∥∥ 1√

n
Σ̂

−1/2
−M

(
I((X∗

j , Yj , Zj) = k(i))− p̂tci(k(i))
)M−1

i=1

∥∥∥∥3 (3)

and d = M − 1. We notice that as

p̂tci → pci and Σ̂−M → Σ−M a.s.,

where Σ−M denotes the matrix Σ without the last row and the last column, and for all j = 1, 2, . . . ,M − 1

−1 ≤ I(X∗
j = x, Yj = y, Zj = z)− p̂tci(x, y, z) ≤ 1,

we have that E∗
∥∥∥Σ̂−1/2

−M

(
I((X∗

j , Yj , Zj) = k(i))− p̂tci(k(i))
)M−1

i=1

∥∥∥3 is bounded for almost all sequences. Thus in

view of (3), conditionally, W ∗ → N(0, I) and as Σ̂−1/2
−M converges to Σ

−1/2
−M a.s., from Slutsky’s theorem we have

that √
n (p̂∗(k(i))− p̂tci(k(i)))

M
i=1

d−→ N(0,Σ−M ).

Now the conclusion follows by the continuous mapping theorem.

We prove now the lemma which is used in the proof of Theorem 6.

Lemma 3. Matrices M = HCMIΣ and M̃ = HCMIΣ̃ defined in the proof of Theorem 6 are equal, idempotent
and their trace tr(M) = tr(M̃) = (|X |−1)(|Y|−1)|Z|

Proof. We show the result for M̃ . The proof in the case of M is the same but more tedious (we skip the details).
Matrix M = HΣ = HCMI(pci)Σ, where Σ is an asymptotic covariance matrix for CR scenario, has the following
form

Mx′′,y′′,z′′

x,y,z = I(x = x′′, y = y′′, z = z′′)− I(x = x′′, z = z′′)p(y′′|z′′)
− I(y = y′′, z = z′′)p(x′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′). (4)

Multiplication of matrices H and Σ yields:

M̃x′′,y′′,z′′

x,y,z =
∑

x′,y′,z′

Hx′,y′,z′

x,y,z Σ̃x′′,y′′,z′′

x′,y′,z′ =
∑

x′,y′,z′

(
I(x = x′, y = y′, z = z′)

p(x, y, z)︸ ︷︷ ︸
a

− I(x = x′, z = z′)

p(x, z)︸ ︷︷ ︸
b

− I(y = y′, z = z′)

p(y, z)︸ ︷︷ ︸
c

+
I(z = z′)

p(z)︸ ︷︷ ︸
d

)(
− I(y′ = y′′, z′ = z′′)p(x′|z′)p(x′′|z′′)p(y′, z′)︸ ︷︷ ︸

e

+ I(x′ = x′′, y′ = y′′, z′ = z′′)p(x′|z′)p(y′, z′)︸ ︷︷ ︸
f

)
= − I(y = y′′, z = z′′)p(x′′|z′′)︸ ︷︷ ︸

a·e

+ I(z = z′′)p(x′′|z′′)p(y′′|z′′)︸ ︷︷ ︸
b·e

+ I(y = y′′, z = z′′)p(x′′|z′′)︸ ︷︷ ︸
c·e

− I(z = z′′)p(x′′|z′′)p(y′′|z′′)︸ ︷︷ ︸
d·e

+ I(x = x′′, y = y′′, z = z′′)︸ ︷︷ ︸
a·f

− I(x = x′′, z = z′′)p(y′′|z′′)︸ ︷︷ ︸
b·f

− I(x = x′′, z = z′′)p(x′′|z′′)︸ ︷︷ ︸
c·f

+ I(z = z′′)p(x′′|z′′)p(y′′|z′′)︸ ︷︷ ︸
d·f

= I(x = x′′, y = y′′, z = z′′)− I(x = x′′, z = z′′)p(y′′|z′′)

− I(y = y′′, z = z′′)p(x′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′).

Below we present detailed calculations for the terms c·e and d·f (the calculations for other terms are analogous):
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c · e =
∑

x′,y′,z′

I(y = y′, z = z′)I(y′ = y′′, z′ = z′′)
p(x′|z′)p(x′′|z′′)p(y′, z′)

p(y, z)

= I(y = y′′, z = z′′)
∑
x′

p(x′|z)p(x′′|z′′)p(y, z)
p(y, z)

= I(y = y′′, z = z′′)p(x′′|z′′)
∑
x′

p(x′|z)

= I(y = y′′, z = z′′)p(x′′|z′′),

d · f =
∑

x′,y′,z′

I(z = z′)I(x′ = x′′, y′ = y′′, z′ = z′′)
p(x′|z′)p(y′, z′)

p(z)

= I(z = z′′)
p(x′′|z′′)p(y′′, z′′)

p(z)
= I(z = z′′)p(x′′|z′′)p(y′′|z′′).

We now show that tr(M̃) = |X |−1)(|Y|−1)|Z| and M̃2 = M̃∑
x,y,z

M̃x,y,z
x,y,z =

∑
x,y,z

(1− p(y|z)− p(x|z) + p(x|z)p(y|z))

= |X |·|Y|·|Z|−|X |·|Z|−|Y|·|Z|+|Z|= (|X |−1)(|Y|−1)|Z|

We compute now (M̃2)x
′′,y′′,z′′

x,y,z . The first term in the first bracket is multiplied by the consecutive terms in
the second bracket, then the second term in the first bracket and so on:∑

x′,y′,z′

M̃x′,y′,z′

x,y,z M̃x′′,y′′,z′′

x′,y′,z′ =
(
I(x = x′, y = y′, z = z′)− I(x = x′, z = z′)p(y′|z′)

− I(y = y′, z = z′)p(x′|z′) + I(z = z′)p(x′|z′)p(y′|z′)
)
·
(
I(x′ = x′′, y′ = y′′, z′ = z′′)

− I(x′ = x′′, z′ = z′′)p(y′′|z′′)− I(y′ = y′′, z′ = z′′)p(x′′|z′′) + I(z′ = z′′)p(x′′|z′′)p(y′′|z′′)
)

= (I(x = x′′, y = y′′, z = z′′)− I(x = x′′, z = z′′)p(y′′|z′′)− I(y = y′′, z = z′′)p(x′′|z′′)
+ I(z = z′′)p(x′′|z′′)p(y′′|z′′))− (I(x = x′′, z = z′′)p(y′′|z′′)− I(x = x′′, z = z′′)p(y′′|z′′)
− I(z = z′′)p(x′′|z′′)p(y′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′))− (I(y = y′′, z = z′′)p(x′′|z′′)
− I(z = z′′)p(x′′|z′′)p(y′′|z′′)− I(y = y′′, z = z′′)p(x′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′))
+ (I(z = z′′)p(x′′|z′′)p(y′′|z′′)− I(z = z′′)p(x′′|z′′)p(y′′|z′′)− I(z = z′′)p(x′′|z′′)p(y′′|z′′)
+ I(z = z′′)p(x′′|z′′)p(y′′|z′′)) = I(x = x′′, y = y′′, z = z′′)− I(x = x′′, z = z′′)p(y′′|z′′)

− I(y = y′′, z = z′′)p(x′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′) = Mx′′,y′′,z′′

x,y,z .

We prove now two lemmas which justify choice of null distributions in the numerical experiments.

Lemma 4. Probability mass function pci(x, y, z) = p(x|z)p(y|z)p(z) minimises DKL(p||q) over q ∈ Pci defined
as

Pci = {q(x, y, z) : q(x, y, z) = q(x|z)q(y|z)q(z)}.

Proof. Indeed,

DKL(p||q)−DKL(p||pci) (5)

=
∑
x,y,z

p(x, y, z) log
p(x, y, z)

q(x, y, z)
−
∑
x,y,z

p(x, y, z) log
p(x, y, z)

p(x|z)p(y|z)p(z)

=
∑
x,y,z

p(x, y, z) log
p(x|z)p(y|z)p(z)
q(x|z)q(y|z)q(z)

.

Next, by breaking the above expression into three sums, we obtain∑
z

p(z)
∑
x

p(x|z) log p(x|z)
q(x|z)

+
∑
z

p(z)
∑
y

p(y|z) log p(y|z)
q(y|z)

+
∑
z

p(z) log
p(z)

q(z)
.

The expression
∑

x p(x|z) log
p(x|z)
q(x|z) is equal to Kullback-Leibler divergence of p(x|z) and q(x|z) for a fixed

value of Z (similarly
∑

y p(y|z) log
p(y|z)
q(y|z)= DKL(p(·|z)||q(·|z)) and

∑
z p(z) log

p(z)
q(z) = DKL(p||q)). Thus (5) is

non-negative and equal to 0 if and only if q(x|z) = p(x|z), q(y|z) = p(y|z) and q(z) = p(z).
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Lemma 5. Probability mass function pci minimises DKL(pλ||q) over q ∈ Pci such that

Pci = {q(x, y, z) : q(x, y, z) = q(x|z)q(y|z)q(z)},

where pλ = λpci + (1− λ)p and λ ∈ [0, 1]

Proof. In view of Lemma 4 it is enough to show that pλ,ci = pci what, due to the form of pci will follow from
pλ(x, z) = p(x, z) and pλ(y, z) = p(y, z).

We have that

pλ(x, z) =
∑
y

pλ(x, y, z) =
∑
y

(
pci(x, y, z) + (1− λ)p(x, y, z)

)
= λp(x|z)

∑
y

p(y|z)p(z) + (1− λ)p(x, z) = p(x, z).

Similarly, we have that pλ(y, z) = p(y, z). Thus pλ,ci = pci.

We prove now that the asymptotic covariance matrices in Conditional Permutation and Conditional Ran-
domisation scenario are ordered (see Remark 3 in the main text).

Lemma 6. The covariance matrix for CR scenario dominates the covariance matrix for CP scenario:

Σ̃ ≥ Σ

i.e. matrix Σ̃− Σ is positive semi-definite.

Proof. We prove Σ̃ ≥ Σ. Define

(R)x
′,y′,z′

x,y,z = (Σ̃− Σ)x
′,y′,z′

x,y,z = I(z = z′)
[
I(x = x′)p(x|z)p(y, z)p(y′, z)/p(z)

− p(x|z)p(x′|z)p(y, z)p(y′, z)/p(z)
]
.

We note that for any z the matrix R̃(z) defined as

(R̃(z))x
′

x = rx
′

x (z) = I(x = x′)p(x|z)− p(x|z)p(x′|z)

is positive semi-definite. Now we define elements of matrix R̄(z) = (rx
′,y′

x,y (z))x
′,y′

x,y as

rx
′,y′

x,y (z) = rx
′

x (z)p(y, z)p(y′, z)

and we show that R̄(z) ≥ 0. Namely, for any non-zero vector a = (a(x, y))x,y it holds

a′R̄(z)a =
∑
x,y

∑
x′,y′

ax,yr
x′,y′

x,y (z)ax′,y′ =
∑
x,y

∑
x′,y′

ax,yr
x′

x (z)p(y, z)p(y′, z)ax′,y′

=
∑
x,x′

(∑
y

ax,yp(y, z)

)
rx

′

x (z)

∑
y′

ax′,y′p(y′, z)

 ≥ 0,

where the last inequality follows as R̃(z) ≥ 0. However,

(R)x
′,y′,z′

x,y,z = rx
′,y′,z′

x,y,z = rx
′,y′

x,y I(z = z′)/p(z),

thus for any non-zero vector a = (a(x, y, z))x,y,z we have that

a′Ra =
∑
x,y,z

∑
x′,y′,z′

ax,y,zr
x′,y′,z′

x,y,z ax′,y′,z′ =
∑
x,y,z

∑
x′,y′,z′

ax,y,zr
x′,y′

x,y (z)I(z = z′)/p(z)ax′,y′,z′

=
∑
z

∑
x,y

∑
x′,y′

ax,y,zr
x′,y′

x,y (z)ax′,y′,z

 /p(z) ≥ 0.

7



References
[1] S. Lahiri and A. Chatterjee. A Berry-Esseen theorem for hypergeometric probabilities under minimal con-

ditions. Proc. Am. Math. Soc., 135(5):1535–1545, 2007.

[2] Kesar Singh. On the Asymptotic Accuracy of Efron’s Bootstrap. Ann. Stat., 9(6):1403–1433, nov 1981.

[3] V. Bentkus. A Lyapunov-type bound in Rd. Theory Probab. its Appl., 49:311–371, 2005.

[4] George A. F. Seber. A Matrix Handbook for Statisticians. Wiley Series in Probability and Mathematical
Statistics. John Wiley & Sons, Hoboken, New Jersey, 2008.

8


