Appendix to 'Analysis of Conditional Randomisation and Permutation schemes with application to conditional independence testing'

Małgorzata Łazȩcka* ${ }^{* 1,2}$, Bartosz Kołodziejek ${ }^{\dagger 2}$, and Jan Mielniczuk ${ }^{\ddagger 1,2}$
${ }^{1}$ Institute of Computer Science, Polish Academy of Sciences
${ }^{2}$ Faculty of Mathematics and Information Science, Warsaw University of Technology

In the appendix we first prove Theorem 1, Lemma 4, and Theorem 5, the equality $M=\tilde{M}$ used in the proof of Theorem 6 and then the two lemmas concerning properties of Kullback-Leibler projections. Finally we prove the ordering of covariance matrices in CP and CR scenarios discussed in Remark 3.
Below we give a proof of Theorem 1.
Proof of Theorem 1. We prove that \mathbf{X}_{n} and \mathbf{X}_{n}^{*} are exchangeable given $\mathbf{Z}_{n}=\mathbf{z}_{n}$. The proof that $\mathbf{X}_{n}, \mathbf{X}_{n, 1}^{*}, \mathbf{X}_{n, 2}^{*}, \ldots, \mathbf{X}_{n, B}^{*}$ are exchangeable is a straightforward extension as well as the proof of the fact that $\left(\mathbf{X}_{n}, \mathbf{Y}_{n}, \mathbf{Z}_{n}\right),\left(\mathbf{X}_{n, 1}^{*}, \mathbf{Y}_{n}, \mathbf{Z}_{n}\right),\left(\mathbf{X}_{n, 2}^{*}, \mathbf{Y}_{n}, \mathbf{Z}_{n}\right), \ldots,\left(\mathbf{X}_{n, B}^{*}, \mathbf{Y}_{n}, \mathbf{Z}_{n}\right)$ are exchangeable. We recall that the random variables $T_{1}, T_{2}, \ldots, T_{s}$ are exchangeable if their joint distribution is invariant under permutations of the components.

We denote by $\pi \in \Pi$ a permutation applied to \mathbf{X}_{n} resulting in \mathbf{X}_{n}^{*}. That transformation consists of permutations on the layers $\mathbf{Z}_{n}=z$ denoted by π_{z} for $z \in \mathcal{Z}$ and we use a notation $i_{z} \in\left\{i: Z_{i}=z\right\}$ to denote the indices of subsequent observations on the layer $\mathbf{Z}_{n}=z$. Consider $P\left(\mathbf{X}_{n}=\mathbf{x}_{n}, \mathbf{X}_{n}^{*}=\mathbf{x}_{n}^{*} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right)$. Note that this probability equals $P\left(\mathbf{X}_{n}=\mathbf{x}_{n} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right)$ if \mathbf{x}_{n}^{*} is an image of \mathbf{x}_{n} under transformation π and 0 otherwise. Note that if \mathbf{x}_{n}^{*} is an image of \mathbf{x}_{n} then for all $z \in \mathcal{Z}$ and for all $i_{z} \in\left\{i: Z_{i}=z\right\}$

$$
x_{i_{z}}^{*}=x_{\pi_{z}\left(i_{z}\right)} .
$$

In case when $\pi\left(\mathbf{x}_{n}\right)=\mathbf{x}_{n}^{*}$ we have

$$
\begin{equation*}
P\left(\mathbf{X}_{n}=\mathbf{x}_{n}, \mathbf{X}_{n}^{*}=\mathbf{x}_{n}^{*} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right)=P\left(\mathbf{X}_{n}=\mathbf{x}_{n} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{aligned}
& P\left(\mathbf{X}_{n}=\mathbf{x}_{n} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right)=P\left(\mathbf{X}_{n}=\mathbf{x}_{n} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}\right)=\prod_{z} P\left(\forall_{i: Z_{i}=z} X_{i}=x_{i} \mid Z_{i}=z\right) \\
& \quad=\prod_{z} \prod_{i_{z}} P\left(X_{i_{z}}=x_{i_{z}} \mid Z_{i_{z}}=z\right)=\prod_{z} \prod_{i_{z}} P\left(X_{i_{z}}=x_{i_{z}} \mid Z_{i_{z}}=z, \Pi=\pi\right) \\
& \quad=\prod_{z} \prod_{i_{z}} P\left(X_{\pi_{z}\left(i_{z}\right)}=x_{i_{z}} \mid Z_{i_{z}}=z, \Pi=\pi\right)=P\left(\mathbf{X}_{n}=\mathbf{x}_{n}^{*} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right),
\end{aligned}
$$

where the first and the fourth equations follow from conditional independence of \mathbf{X}_{n} and Π given \mathbf{Z}_{n}, and the second and the third use independence of $\left(X_{i}, Z_{i}\right)_{i=1}^{n}$. We also have that

$$
P\left(\mathbf{X}_{n}=\mathbf{x}_{n}^{*}, \mathbf{X}_{n}^{*}=\mathbf{x}_{n} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right)=P\left(\mathbf{X}_{n}=\mathbf{x}_{n}^{*} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right),
$$

where the above equation follows from analogous reasoning as in (1) applied to π^{-1}. When $\pi\left(\mathbf{x}_{n}\right) \neq \mathbf{x}_{n}^{*}$, then

$$
P\left(\mathbf{X}_{n}=\mathbf{x}_{n}, \mathbf{X}_{n}^{*}=\mathbf{x}_{n}^{*} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right)=P\left(\mathbf{X}_{n}=\mathbf{x}_{n}^{*}, \mathbf{X}_{n}^{*}=\mathbf{x}_{n} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right)=0
$$

Thus

$$
P\left(\mathbf{X}_{n}=\mathbf{x}_{n}, \mathbf{X}_{n}^{*}=\mathbf{x}_{n}^{*} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right)=P\left(\mathbf{X}_{n}=\mathbf{x}_{n}^{*}, \mathbf{X}_{n}^{*}=\mathbf{x}_{n} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}, \Pi=\pi\right) .
$$

[^0]and as the above equation holds for all $\pi \in \Pi$, we obtain
$$
P\left(\mathbf{X}_{n}=\mathbf{x}_{n}, \mathbf{X}_{n}^{*}=\mathbf{x}_{n}^{*} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}\right)=P\left(\mathbf{X}_{n}=\mathbf{x}_{n}^{*}, \mathbf{X}_{n}^{*}=\mathbf{x}_{n} \mid \mathbf{Z}_{n}=\mathbf{z}_{n}\right)
$$

As we have proven the exchangeability of the sample and resampled samples given \mathbf{Z}_{n}, the test statistics based on them are also exchangeable given \mathbf{Z}_{n}. By averaging over \mathbf{Z}_{n} the property also holds unconditionally.

For exchangeable random variables $T, T_{1}^{*}, T_{2}^{*}, \ldots, T_{B}^{*}$ and for $i \in\{1, \ldots, B, B+1\}$

$$
P\left(1+\sum_{b=1}^{B} \mathbb{I}\left(T \leq T_{b}^{*}\right)=i\right)=\frac{1}{1+B}
$$

as the rank of T among $T, T_{1}^{*}, T_{2}^{*}, \ldots, T_{B}^{*}$ is uniformly distributed on $\{1, \ldots, B+1\}$. Thus

$$
P\left(1+\sum_{b=1}^{B} \mathbb{I}\left(T \leq T_{b}^{*}\right) \leq i\right)=\frac{i}{1+B}
$$

and from that we obtain

$$
P\left(\frac{1+\sum_{b=1}^{B} \mathbb{I}\left(T \leq T_{b}^{*}\right)}{1+B} \leq \frac{i}{1+B}\right)=\frac{i}{1+B}
$$

For any $\alpha \in\left[\frac{i}{B+1}, \frac{i+1}{B+1}\right)$ and $\alpha \leq 1$ we thus have

$$
\begin{equation*}
P\left(\frac{1+\sum_{b=1}^{B} \mathbb{I}\left(T \leq T_{b}^{*}\right)}{1+B} \leq \alpha\right) \leq \alpha \tag{2}
\end{equation*}
$$

In the considered case of conditional independence the exchangeability of $T, T_{1}^{*}, T_{2}^{*}, \ldots, T_{B}^{*}$ holds given $\mathbf{Z}_{n}=\mathbf{z}_{n}$, thus the last inequality (2) holds given $\mathbf{Z}_{n}=\mathbf{z}_{n}$.It follows by averaging that (2) holds unconditionally.

In order to prove Lemma 4 we start with following simple lemma, which is crucial for our argument.
Lemma 1. Assume that as $r \rightarrow \infty, P\left(W_{i}^{(r)} \leq t \mid W_{1}^{(r)}, \ldots, W_{i-1}^{(r)}\right) \xrightarrow{\text { a.s. }} P\left(Q_{i} \leq t\right)=: F_{i}(t)$ for all continuity points of $F_{i}, i=1, \ldots, d$. Then $\left(W_{1}^{(r)}, \ldots, W_{d}^{(r)}\right) \xrightarrow{d}\left(Q_{1}, \ldots, Q_{d}\right)$ and $\left(Q_{i}\right)_{i=1}^{d}$ are independent.

Proof. Assume that t_{i} is a continuity point of F_{i}. Then for $i=1, \ldots, d$,

$$
\begin{aligned}
P\left(W_{1}^{(r)} \leq t_{1}, \ldots, W_{i}^{(r)} \leq t_{i}\right) & =P\left(W_{1}^{(r)} \leq t_{1}, \ldots, W_{i-1}^{(r)} \leq t_{i-1}\right) F_{i}\left(t_{i}\right) \\
+ & E\left[\mathbb{I}\left(W_{1}^{(r)} \leq t_{1}, \ldots, W_{i-1}^{(r)} \leq t_{i-1}\right)\left(P\left(W_{i}^{(r)} \leq t_{i} \mid W_{1}^{(r)}, \ldots, W_{i-1}^{(r)}\right)-F_{i}\left(t_{i}\right)\right)\right] .
\end{aligned}
$$

By Lebesgue's dominated convergence theorem, the latter term converges to 0 as $r \rightarrow \infty$. Thus, by induction, the cumulative distribution function of $\left(W_{1}^{(r)}, \ldots, W_{d}^{(r)}\right)$ converges to $F_{1} \cdot \ldots \cdot F_{d}$ for all continuity points, which completes the proof.

The above result generalizes to the case when all $W_{i}^{(r)}$ are multivariate.
Lemma 2. Let $m_{r}=\left(m_{1}^{(r)}, \ldots, m_{d}^{(r)}\right)^{\top} \in \mathbb{N}^{d}$. Suppose that $W_{r}=\left(W_{1}^{(r)}, \ldots, W_{d}^{(r)}\right)$ has multivariate hypergeometric distribution $\operatorname{Hyp}_{d}\left(n_{r}, m_{r}\right)$ defined by

$$
P\left(W_{r}=\left(k_{1}, \ldots, k_{d}\right)\right)=\frac{\prod_{i=1}^{d}\binom{m_{i}^{(r)}}{k_{i}}}{\binom{\left|m_{r}\right|}{n_{r}}}, \quad k_{i} \in \mathbb{N}, \quad k_{i} \leq m_{i}^{(r)}, \quad \sum_{i=1}^{d} k_{i}=n_{r} .
$$

Assume that as $r \rightarrow \infty$,

$$
\left|m_{r}\right| \rightarrow \infty, \quad n_{r} /\left|m_{r}\right| \rightarrow \alpha \in(0,1), \quad m_{r} /\left|m_{r}\right| \rightarrow \beta=\left(\beta_{1}, \ldots, \beta_{d}\right) \in T_{d}
$$

Then

$$
\frac{1}{\sqrt{\left|m_{r}\right|}}\left(W_{r}-\frac{n_{r}}{\left|m_{r}\right|} m_{r}^{\top}\right) \xrightarrow{d} N_{d}(0, \Sigma)
$$

where Σ is a $(d-1)$-rank matrix with elements $\Sigma_{i, j}=\alpha(1-\alpha) \beta_{i}\left(\delta_{i j}-\beta_{j}\right)$.

The univariate case is proved in [1, Th. 2.1]. We could not find an appropriate reference for the general case. However, we refrain from giving a formal proof of the multivariate case, as it follows from the univiariate case in analogous way as Lemma 4 follows from Lemma 2 and we present a full argument below.

We now prove Lemma 4.
Proof. First, observe that (6) in Section 3 in the main text can be rewritten as

$$
P\left(W_{r}=k\right)=\frac{\prod_{i=1}^{I}\binom{a_{i}^{(r)}}{k_{i 1}, \ldots, k_{i J}}}{\binom{n_{1},}{b_{1}^{(r)}, \ldots, b_{J}^{(r)}}},
$$

where $\binom{a}{b_{1}, \ldots, b_{n}}:=\frac{a!}{\prod_{i=1}^{n} b_{i}!}$ whenever $a=|b|$. Denote by $W_{i}^{(r)}$ the i th row of matrix W_{r}, i.e. a random vector $\left(W_{i j}^{(r)}\right)_{j=1}^{J}, i=1, \ldots, I$. Clearly, $W_{1}^{(r)} \sim \operatorname{Hyp}_{J}\left(a_{1}^{(r)}, b_{r}\right)$, where Hyp_{J} is defined in Lemma 2. Since $\left|b_{r}\right|=n_{r}$, by Lemma 2, we have

$$
Z_{1}^{(r)}:=\frac{1}{\sqrt{n_{r}}}\left(W_{1}^{(r)}-\frac{a_{1}^{(r)}}{n_{r}} b_{r}\right) \xrightarrow{d} Z_{1} \sim N_{d}\left(0, \Sigma_{1}\right),
$$

where $\left(\Sigma_{1}\right)_{i, j}=\alpha_{1}\left(1-\alpha_{1}\right) \beta_{i}\left(\delta_{i j}-\beta_{j}\right)$.
Now consider a conditional distribution of $W_{i}^{(r)}$ given $\left(W_{k}^{(r)}\right)_{k<i}, i>1$. We have

$$
W_{i}^{(r)} \mid\left(W_{k}^{(r)}\right)_{k<i} \sim \operatorname{Hyp}_{J}\left(a_{i}^{(r)}, b_{r}-\sum_{k=1}^{i-1}\left(W_{k}^{(r)}\right)^{\top}\right)
$$

Since $W_{i j}^{(r)}$ follows the hypergeometric distribution with parameters $\left(n_{r}, a_{i}^{(r)}, b_{j}^{(r)}\right)$ by the law of large numbers, we have

$$
\frac{W_{i j}^{(r)}}{n_{r}} \xrightarrow{\text { a.s. }} \alpha_{i} \beta_{j} .
$$

Observing that $m_{r}^{(i)}:=\left|b_{r}-\sum_{k=1}^{i-1} W_{k}^{(r)}\right|=n_{r}-\sum_{k=1}^{i-1} a_{k}^{(r)}$, we have as $r \rightarrow \infty$,

$$
\frac{a_{i}^{(r)}}{m_{r}^{(i)}} \rightarrow \frac{\alpha_{i}}{1-\sum_{k=1}^{i-1} \alpha_{k}} \quad \text { and } \quad \frac{b_{r}^{\top}-\sum_{k=1}^{i-1} W_{k}^{(r)}}{m_{r}^{(i)}} \xrightarrow{\text { a.s. }} \beta .
$$

We apply Lemma 2 conditionally on $\left(W_{k}^{(r)}\right)_{k<i}$, to obtain for $i=2, \ldots, I$,

$$
Z_{i}^{(r)}: \left.=\frac{1}{\sqrt{n_{r}-\sum_{k=1}^{i-1} a_{k}^{(r)}}}\left(W_{i}^{(r)}-\frac{a_{i}^{(r)}}{n_{r}-\sum_{k=1}^{i-1} a_{k}^{(r)}}\left(b_{r}^{\top}-\sum_{k=1}^{i-1} W_{k}^{(r)}\right)\right) \right\rvert\,\left(W_{k}^{(r)}\right)_{k<i} \xrightarrow{d} Z_{i},
$$

where $Z_{i} \sim N\left(0, \Sigma_{i}\right)$ with

$$
\left(\Sigma_{i}\right)_{j, l}=\frac{\alpha_{i}}{1-\sum_{k=1}^{i-1} \alpha_{k}}\left(1-\frac{\alpha_{i}}{1-\sum_{k=1}^{i-1} \alpha_{k}}\right) \beta_{j}\left(\delta_{j l}-\beta_{l}\right) .
$$

By Lemma 1, we have

$$
\left(Z_{1}^{(r)}, \ldots, Z_{I}^{(r)}\right) \xrightarrow{d}\left(Z_{1}, \ldots, Z_{I}\right),
$$

where Z_{1}, \ldots, Z_{I} are independent. By direct calculation, it is easy to see that

$$
\frac{1}{\sqrt{n_{r}}}\left(W_{i}^{(r)}-\frac{1}{n_{r}} a_{i}^{(r)} b_{r}^{\top}\right)=\sum_{k=1}^{i} \gamma_{k, i}^{(r)} Z_{k}^{(r)}
$$

where

$$
\gamma_{k, i}^{(r)}=-\sqrt{\frac{n_{r}-\sum_{j=1}^{k-1} a_{j}^{(r)}}{n_{r}}} \frac{a_{i}^{(r)}}{n_{r}-\sum_{j=1}^{k} a_{j}^{(r)}} \quad \text { for } k<i \text { and } \quad \gamma_{i, i}^{(r)}=\sqrt{\frac{n_{r}-\sum_{j=1}^{i-1} a_{j}^{(r)}}{n_{r}}}
$$

We have $\lim _{r \rightarrow \infty} \gamma_{k, i}^{(r)}=\Gamma_{k, i}$, where

$$
\Gamma_{k, i}=-\sqrt{1-\sum_{j=1}^{k-1} \alpha_{j}} \frac{\alpha_{i}}{1-\sum_{j=1}^{k} \alpha_{j}} \quad \text { for } k<i \text { and } \quad \Gamma_{i, i}=\sqrt{1-\sum_{j=1}^{i-1} \alpha_{j}}
$$

Thus,

$$
\frac{1}{\sqrt{n_{r}}}\left(W_{i}^{(r)}-\frac{1}{n_{r}} a_{i}^{(r)} b_{r}^{\top}\right)_{i=1}^{I} \xrightarrow{d}\left(\sum_{k=1}^{i} \Gamma_{k, i} Z_{k}\right)_{i=1}^{I}=: Q \sim N(0, \Sigma),
$$

where $\Sigma=\left(\Sigma_{i, j}^{k, l}\right) . \Sigma_{i, j}^{k, l}$ denotes covariance of j th coordinate of i th consecutive subvector of the length J of Q with k th coordinate of the l th subvector. Thus

$$
\Sigma_{i, j}^{k, l}=\operatorname{Cov}\left(\sum_{\ell=1}^{i} \Gamma_{\ell, i} Z_{\ell, j}, \sum_{\ell=1}^{k} \Gamma_{\ell, k} Z_{\ell, l}\right)
$$

Since no row is distinguished, in order to establish (7) in the main text it is enough to consider $i=1$ and $k \in\{1,2\}$. We have

$$
\Sigma_{1, j}^{1, l}=\operatorname{Cov}\left(Z_{1, j}, Z_{1, l}\right)=\left(\Sigma_{1}\right)_{j, l}=\alpha_{1}\left(1-\alpha_{1}\right) \beta_{j}\left(\delta_{j l}-\beta_{l}\right)
$$

and

$$
\Sigma_{1, j}^{2, l}=\operatorname{Cov}\left(Z_{1, j}, \sqrt{1-\alpha_{1}} Z_{2, l}-\frac{\alpha_{2}}{1-\alpha_{1}} Z_{1, l}\right)=-\frac{\alpha_{2}}{1-\alpha_{1}}\left(\Sigma_{1}\right)_{j, l}=-\alpha_{1} \alpha_{2} \beta_{j}\left(\delta_{j l}-\beta_{l}\right)
$$

We prove now Theorem 5. The proof follows [2] and it is based on the multivariate Berry-Esseen theorem ([3]).

Proof of Theorem 5. Without loss of generality, we assume that $\mathcal{X}=\{1,2, \ldots, I\}, \mathcal{Y}=\{1,2, \ldots, J\}$ and $\mathcal{Z}=$ $\{1,2, \ldots, K\}$ and let $M=I \cdot J \cdot K$. We define a function $k(\cdot)$, which assigns a triple $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$ to each index $i=1,2, \ldots, M$, in the following way

$$
k(i)=(x, y, z) \text { and } i=x+I \cdot(y-1)+I \cdot J \cdot(z-1) .
$$

Thus, in the notation using the function k, we write e.g. a vector of all probabilities $(p(x, y, z))_{x, y, z}$ as $(p(k(i)))_{i=1}^{M}$. We let

$$
\hat{p}^{*}(x, y, z)=\frac{n^{*}(x, y, z)}{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(X_{i}^{*}=x, Y_{i}=y, Z_{i}=z\right)
$$

$p_{c i}=p(x \mid z) p(y \mid z) p(z)$ and we define $\hat{p}_{t c i}$ (tci stands for true conditional independence) in the following way

$$
\hat{p}_{t c i}(x, y, z)=p(x \mid z) \frac{n(y, z)}{n(z)} \frac{n(z)}{n}=: p(x \mid z) \hat{p}(y \mid z) \hat{p}(z)
$$

thus, since \hat{p}^{*} follows the multinomial distribution with an observation (x, y, z) having a probability equal to $\hat{p}_{t c i}(x, y, z)$, conditionally on the original sample we have that

$$
\mathbb{E}^{*} \hat{p}^{*}(x, y, z)=p(x \mid z) \hat{p}(y \mid z) \hat{p}(z)
$$

and

$$
\left(\operatorname{Cov}^{*}\left(\left(\hat{p}^{*}(x, y, z)\right)_{x, y, z}\right)\right)_{x, y, z^{\prime}}^{x^{\prime}, y^{\prime}, z^{\prime}}=\left\{\begin{array}{cl}
\frac{1}{n} \hat{p}_{t c i}(x, y, z)\left(1-\hat{p}_{t c i}(x, y, z)\right) & \text { if }(x, y, z)=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
-\frac{1}{n} \hat{p}_{t c i}(x, y, z) \hat{p}_{t c i}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) & \text { if }(x, y, z) \neq\left(x^{\prime}, y^{\prime}, z^{\prime}\right)
\end{array}\right.
$$

We define

$$
\hat{\Sigma}_{x, y, z}^{x^{\prime}, y^{\prime}, z^{\prime}}=n\left(\operatorname{Cov}^{*}\left(\left(\hat{p}^{*}(x, y, z)\right)_{x, y, z}\right)\right)_{x, y, z}^{x^{\prime}, z^{\prime}, z^{\prime}}
$$

and

$$
\begin{gathered}
Q_{j}^{*}:=\frac{1}{\sqrt{n}} \hat{\Sigma}_{-M}^{-1 / 2}\left(\mathbb{I}\left(\left(X_{j}^{*}, Y_{j}, Z_{j}\right)=k(i)\right)-\hat{p}_{t c i}(k(i))\right)_{i=1}^{M-1}, \\
W^{*}=\sum_{j=1}^{n} Q_{j}^{*}=\sqrt{n} \hat{\Sigma}_{-M}^{-1 / 2}\left(\hat{p}^{*}(k(i))-\hat{p}_{t c i}(k(i))\right)_{i=1}^{M-1},
\end{gathered}
$$

where $\hat{\Sigma}_{-M}=\operatorname{Cov}^{*}\left(\left(\hat{p}^{*}(k(i))\right)_{i=1}^{M-1}\right)$. As $p(x, y, z)>0$ for all (x, y, z), the matrix $\hat{\Sigma}_{-M}$ is invertible, cf. e.g. [4]. One element of the vector \hat{p}^{*} is omitted to ensure that the covariance matrix is invertible. As we have
$\sum_{x, y, z} \hat{p}^{*}(x, y, z)=1$, the full dimension matrix $\hat{\Sigma}$ is singular. Then we apply multivariate Berry-Esseen theorem ([3])

$$
\begin{align*}
& \left|P^{*}\left(W^{*} \in A\right)-P(Z \in A)\right| \\
& \quad \leq K_{d} \sum_{j=1}^{n} \mathbb{E}^{*}\left\|\frac{1}{\sqrt{n}} \hat{\Sigma}_{-M}^{-1 / 2}\left(\mathbb{I}\left(\left(X_{j}^{*}, Y_{j}, Z_{j}\right)=k(i)\right)-\hat{p}_{t c i}(k(i))\right)_{i=1}^{M-1}\right\|^{3} \tag{3}
\end{align*}
$$

and $d=M-1$. We notice that as

$$
\hat{p}_{t c i} \rightarrow p_{c i} \text { and } \hat{\Sigma}_{-M} \rightarrow \Sigma_{-M} \quad \text { a.s. },
$$

where Σ_{-M} denotes the matrix Σ without the last row and the last column, and for all $j=1,2, \ldots, M-1$

$$
-1 \leq \mathbb{I}\left(X_{j}^{*}=x, Y_{j}=y, Z_{j}=z\right)-\hat{p}_{t c i}(x, y, z) \leq 1
$$

we have that $\mathbb{E}^{*}\left\|\hat{\Sigma}_{-M}^{-1 / 2}\left(\mathbb{I}\left(\left(X_{j}^{*}, Y_{j}, Z_{j}\right)=k(i)\right)-\hat{p}_{t c i}(k(i))\right)_{i=1}^{M-1}\right\|^{3}$ is bounded for almost all sequences. Thus in view of (3), conditionally, $W^{*} \rightarrow N(0, I)$ and as $\hat{\Sigma}_{-M}^{-1 / 2}$ converges to $\Sigma_{-M}^{-1 / 2}$ a.s., from Slutsky's theorem we have that

$$
\sqrt{n}\left(\hat{p}^{*}(k(i))-\hat{p}_{t c i}(k(i))\right)_{i=1}^{M} \xrightarrow{d} N\left(0, \Sigma_{-M}\right) .
$$

Now the conclusion follows by the continuous mapping theorem.
We prove now the lemma which is used in the proof of Theorem 6.
Lemma 3. Matrices $M={\underset{\tilde{M}}{C M I}} \Sigma$ and $\tilde{M}=H_{C M I} \tilde{\Sigma}$ defined in the proof of Theorem 6 are equal, idempotent and their trace $\operatorname{tr}(M)=\operatorname{tr}(\tilde{M})=(|\mathcal{X}|-1)(|\mathcal{Y}|-1)|\mathcal{Z}|$
Proof. We show the result for \tilde{M}. The proof in the case of M is the same but more tedious (we skip the details). Matrix $M=H \Sigma=H_{C M I}\left(p_{c i}\right) \Sigma$, where Σ is an asymptotic covariance matrix for CR scenario, has the following form

$$
\begin{align*}
M_{x, y, z}^{x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}}=\mathbb{I}\left(x=x^{\prime \prime}, y=y^{\prime \prime}, z=z^{\prime \prime}\right)-\mathbb{I}(x= & \left.x^{\prime \prime}, z=z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right) \\
& -\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)+\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right) \tag{4}
\end{align*}
$$

Multiplication of matrices H and Σ yields:

$$
\begin{aligned}
& \tilde{M}_{x, y, z}^{x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}}=\sum_{x^{\prime}, y^{\prime}, z^{\prime}} H_{x, y, z}^{x^{\prime}, y^{\prime}, z^{\prime}} \tilde{\Sigma}_{x^{\prime}, y^{\prime}, z^{\prime}}^{x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}}=\sum_{x^{\prime}, y^{\prime}, z^{\prime}}(\underbrace{\frac{\mathbb{I}\left(x=x^{\prime}, y=y^{\prime}, z=z^{\prime}\right)}{p(x, y, z)}}_{a}-\underbrace{\frac{\mathbb{I}\left(x=x^{\prime}, z=z^{\prime}\right)}{p(x, z)}}_{b} \\
& -\underbrace{\frac{\mathbb{I}\left(y=y^{\prime}, z=z^{\prime}\right)}{p(y, z)}}_{c}+\underbrace{\frac{\mathbb{I}\left(z=z^{\prime}\right)}{p(z)}}_{d})(-\underbrace{\mathbb{I}\left(y^{\prime}=y^{\prime \prime}, z^{\prime}=z^{\prime \prime}\right) p\left(x^{\prime} \mid z^{\prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime}, z^{\prime}\right)}_{e} \\
& +\underbrace{\mathbb{I}\left(x^{\prime}=x^{\prime \prime}, y^{\prime}=y^{\prime \prime}, z^{\prime}=z^{\prime \prime}\right) p\left(x^{\prime} \mid z^{\prime}\right) p\left(y^{\prime}, z^{\prime}\right)}_{f})=-\underbrace{\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)}_{a \cdot e} \\
& +\underbrace{\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)}_{b \cdot e}+\underbrace{\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)}_{c \cdot e}-\underbrace{\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)}_{d \cdot e} \\
& +\underbrace{\mathbb{I}\left(x=x^{\prime \prime}, y=y^{\prime \prime}, z=z^{\prime \prime}\right)}_{a \cdot f}-\underbrace{\mathbb{I}\left(x=x^{\prime \prime}, z=z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)}_{b \cdot f}-\underbrace{\mathbb{I}\left(x=x^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)}_{c \cdot f} \\
& +\underbrace{\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)}_{d \cdot f}=\mathbb{I}\left(x=x^{\prime \prime}, y=y^{\prime \prime}, z=z^{\prime \prime}\right)-\mathbb{I}\left(x=x^{\prime \prime}, z=z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right) \\
& -\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)+\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right) \text {. }
\end{aligned}
$$

Below we present detailed calculations for the terms $c \cdot e$ and $d \cdot f$ (the calculations for other terms are analogous):

$$
\begin{aligned}
c \cdot e & =\sum_{x^{\prime}, y^{\prime}, z^{\prime}} \mathbb{I}\left(y=y^{\prime}, z=z^{\prime}\right) \mathbb{I}\left(y^{\prime}=y^{\prime \prime}, z^{\prime}=z^{\prime \prime}\right) \frac{p\left(x^{\prime} \mid z^{\prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime}, z^{\prime}\right)}{p(y, z)} \\
& =\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) \sum_{x^{\prime}} \frac{p\left(x^{\prime} \mid z\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p(y, z)}{p(y, z)}=\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) \sum_{x^{\prime}} p\left(x^{\prime} \mid z\right) \\
& =\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right), \\
d \cdot f & =\sum_{x^{\prime}, y^{\prime}, z^{\prime}} \mathbb{I}\left(z=z^{\prime}\right) \mathbb{I}\left(x^{\prime}=x^{\prime \prime}, y^{\prime}=y^{\prime \prime}, z^{\prime}=z^{\prime \prime}\right) \frac{p\left(x^{\prime} \mid z^{\prime}\right) p\left(y^{\prime}, z^{\prime}\right)}{p(z)} \\
& =\mathbb{I}\left(z=z^{\prime \prime}\right) \frac{p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime}, z^{\prime \prime}\right)}{p(z)}=\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)
\end{aligned}
$$

We now show that $\operatorname{tr}(\tilde{M})=|\mathcal{X}|-1)(|\mathcal{Y}|-1)|\mathcal{Z}|$ and $\tilde{M}^{2}=\tilde{M}$

$$
\begin{aligned}
\sum_{x, y, z} \tilde{M}_{x, y, z}^{x, y, z} & =\sum_{x, y, z}(1-p(y \mid z)-p(x \mid z)+p(x \mid z) p(y \mid z)) \\
& =|\mathcal{X}| \cdot|\mathcal{Y}| \cdot|\mathcal{Z}|-|\mathcal{X}| \cdot|\mathcal{Z}|-|\mathcal{Y}| \cdot|\mathcal{Z}|+|\mathcal{Z}|=(|\mathcal{X}|-1)(|\mathcal{Y}|-1)|\mathcal{Z}|
\end{aligned}
$$

We compute now $\left(\tilde{M}^{2}\right)_{x, y, z}^{x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}}$. The first term in the first bracket is multiplied by the consecutive terms in the second bracket, then the second term in the first bracket and so on:

$$
\begin{aligned}
& \sum_{x^{\prime}, y^{\prime}, z^{\prime}} \tilde{M}_{x, y, y^{\prime}, z^{\prime}}^{x^{\prime}, \tilde{M}_{x}^{\prime}, y^{\prime}, z^{\prime}} x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime} \\
& \left.\quad-\mathbb{I}\left(y=y^{\prime}, z=z^{\prime}\right) p\left(x^{\prime} \mid z^{\prime}\right)+\mathbb{I}\left(z=z^{\prime}\right) p\left(x^{\prime} \mid z^{\prime}\right) p\left(y^{\prime} \mid z^{\prime}\right)\right) \cdot\left(\mathbb{I}\left(x^{\prime}=x^{\prime \prime}, y^{\prime}=y^{\prime \prime}, z^{\prime}=z^{\prime \prime}\right)\right. \\
& \left.-\mathbb{I}\left(x^{\prime}=x^{\prime \prime}, z^{\prime}=z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)-\mathbb{I}\left(y^{\prime}=y^{\prime \prime}, z^{\prime}=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)+\mathbb{I}\left(z^{\prime}=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)\right) \\
& =\left(\mathbb{I}\left(x=x^{\prime \prime}, y=y^{\prime \prime}, z=z^{\prime \prime}\right)-\mathbb{I}\left(x=x^{\prime \prime}, z=z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)-\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)\right. \\
& \left.+\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)\right)-\left(\mathbb{I}\left(x=x^{\prime \prime}, z=z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)-\mathbb{I}\left(x=x^{\prime \prime}, z=z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)\right. \\
& \left.-\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)+\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)\right)-\left(\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)\right. \\
& \left.-\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)-\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)+\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)\right) \\
& +\left(\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)-\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)-\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)\right. \\
& \left.+\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)\right)=\mathbb{I}\left(x=x^{\prime \prime}, y=y^{\prime \prime}, z=z^{\prime \prime}\right)-\mathbb{I}\left(x=x^{\prime \prime}, z=z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right) \\
& -\mathbb{I}\left(y=y^{\prime \prime}, z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right)+\mathbb{I}\left(z=z^{\prime \prime}\right) p\left(x^{\prime \prime} \mid z^{\prime \prime}\right) p\left(y^{\prime \prime} \mid z^{\prime \prime}\right)=M_{x, y, z}^{x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}} .
\end{aligned}
$$

We prove now two lemmas which justify choice of null distributions in the numerical experiments.
Lemma 4. Probability mass function $p_{c i}(x, y, z)=p(x \mid z) p(y \mid z) p(z)$ minimises $D_{K L}(p \| q)$ over $q \in \mathcal{P}_{c i}$ defined as

$$
\mathcal{P}_{c i}=\{q(x, y, z): q(x, y, z)=q(x \mid z) q(y \mid z) q(z)\} .
$$

Proof. Indeed,

$$
\begin{align*}
D_{K L}(p \| q) & -D_{K L}\left(p \| p_{c i}\right) \tag{5}\\
= & \sum_{x, y, z} p(x, y, z) \log \frac{p(x, y, z)}{q(x, y, z)}-\sum_{x, y, z} p(x, y, z) \log \frac{p(x, y, z)}{p(x \mid z) p(y \mid z) p(z)} \\
= & \sum_{x, y, z} p(x, y, z) \log \frac{p(x \mid z) p(y \mid z) p(z)}{q(x \mid z) q(y \mid z) q(z)}
\end{align*}
$$

Next, by breaking the above expression into three sums, we obtain

$$
\sum_{z} p(z) \sum_{x} p(x \mid z) \log \frac{p(x \mid z)}{q(x \mid z)}+\sum_{z} p(z) \sum_{y} p(y \mid z) \log \frac{p(y \mid z)}{q(y \mid z)}+\sum_{z} p(z) \log \frac{p(z)}{q(z)}
$$

The expression $\sum_{x} p(x \mid z) \log \frac{p(x \mid z)}{q(x \mid z)}$ is equal to Kullback-Leibler divergence of $p(x \mid z)$ and $q(x \mid z)$ for a fixed value of Z (similarly $\sum_{y} p(y \mid z) \log \frac{p(y \mid z)}{q(y \mid z)}=D_{K L}(p(\cdot \mid z) \| q(\cdot \mid z))$ and $\sum_{z} p(z) \log \frac{p(z)}{q(z)}=D_{K L}(p \| q)$). Thus (5) is non-negative and equal to 0 if and only if $q(x \mid z)=p(x \mid z), q(y \mid z)=p(y \mid z)$ and $q(z)=p(z)$.

Lemma 5. Probability mass function $p_{c i}$ minimises $D_{K L}\left(p_{\lambda} \| q\right)$ over $q \in \mathcal{P}_{c i}$ such that

$$
\mathcal{P}_{c i}=\{q(x, y, z): q(x, y, z)=q(x \mid z) q(y \mid z) q(z)\}
$$

where $p_{\lambda}=\lambda p_{c i}+(1-\lambda) p$ and $\lambda \in[0,1]$
Proof. In view of Lemma 4 it is enough to show that $p_{\lambda, c i}=p_{c i}$ what, due to the form of $p_{c i}$ will follow from $p_{\lambda}(x, z)=p(x, z)$ and $p_{\lambda}(y, z)=p(y, z)$.

We have that

$$
\begin{aligned}
& p_{\lambda}(x, z)=\sum_{y} p_{\lambda}(x, y, z)=\sum_{y}\left(p_{c i}(x, y, z)+(1-\lambda) p(x, y, z)\right) \\
& \quad=\lambda p(x \mid z) \sum_{y} p(y \mid z) p(z)+(1-\lambda) p(x, z)=p(x, z)
\end{aligned}
$$

Similarly, we have that $p_{\lambda}(y, z)=p(y, z)$. Thus $p_{\lambda, c i}=p_{c i}$.
We prove now that the asymptotic covariance matrices in Conditional Permutation and Conditional Randomisation scenario are ordered (see Remark $\mathbf{3}$ in the main text).

Lemma 6. The covariance matrix for $C R$ scenario dominates the covariance matrix for $C P$ scenario:

$$
\tilde{\Sigma} \geq \Sigma
$$

i.e. matrix $\tilde{\Sigma}-\Sigma$ is positive semi-definite.

Proof. We prove $\tilde{\Sigma} \geq \Sigma$. Define

$$
\begin{aligned}
&(R)_{x, y, z}^{x^{\prime}, y^{\prime}, z^{\prime}}=(\tilde{\Sigma}-\Sigma)_{x, y, z}^{x^{\prime}, y^{\prime}, z^{\prime}}=\mathbb{I}\left(z=z^{\prime}\right)\left[\mathbb{I}\left(x=x^{\prime}\right) p(x \mid z) p(y, z) p\left(y^{\prime}, z\right) / p(z)\right. \\
&\left.\quad-p(x \mid z) p\left(x^{\prime} \mid z\right) p(y, z) p\left(y^{\prime}, z\right) / p(z)\right]
\end{aligned}
$$

We note that for any z the matrix $\tilde{R}(z)$ defined as

$$
(\tilde{R}(z))_{x}^{x^{\prime}}=r_{x}^{x^{\prime}}(z)=\mathbb{I}\left(x=x^{\prime}\right) p(x \mid z)-p(x \mid z) p\left(x^{\prime} \mid z\right)
$$

is positive semi-definite. Now we define elements of matrix $\bar{R}(z)=\left(r_{x, y^{x^{\prime}} y^{\prime}}(z)\right)_{x, y}^{x^{\prime}, y^{\prime}}$ as

$$
r_{x, y}^{x^{\prime}, y^{\prime}}(z)=r_{x}^{x^{\prime}}(z) p(y, z) p\left(y^{\prime}, z\right)
$$

and we show that $\bar{R}(z) \geq 0$. Namely, for any non-zero vector $a=(a(x, y))_{x, y}$ it holds

$$
\begin{aligned}
& a^{\prime} \bar{R}(z) a=\sum_{x, y} \sum_{x^{\prime}, y^{\prime}} a_{x, y} r_{x, y}^{x^{\prime}, y^{\prime}}(z) a_{x^{\prime}, y^{\prime}}=\sum_{x, y} \sum_{x^{\prime}, y^{\prime}} a_{x, y} r_{x}^{x^{\prime}}(z) p(y, z) p\left(y^{\prime}, z\right) a_{x^{\prime}, y^{\prime}} \\
&=\sum_{x, x^{\prime}}\left(\sum_{y} a_{x, y} p(y, z)\right) r_{x}^{x^{\prime}}(z)\left(\sum_{y^{\prime}} a_{x^{\prime}, y^{\prime}} p\left(y^{\prime}, z\right)\right) \geq 0
\end{aligned}
$$

where the last inequality follows as $\tilde{R}(z) \geq 0$. However,

$$
(R)_{x, y, z}^{x^{\prime}, z^{\prime}, z^{\prime}}=r_{x, y, z}^{x^{\prime}, y^{\prime}, z^{\prime}}=r_{x, y}^{x^{\prime}, y^{\prime}} \mathbb{I}\left(z=z^{\prime}\right) / p(z)
$$

thus for any non-zero vector $a=(a(x, y, z))_{x, y, z}$ we have that

$$
\begin{aligned}
& a^{\prime} R a=\sum_{x, y, z} \sum_{x^{\prime}, y^{\prime}, z^{\prime}} a_{x, y, z} r_{x, y, z}^{x^{\prime}, y^{\prime}, z^{\prime}} a_{x^{\prime}, y^{\prime}, z^{\prime}}=\sum_{x, y, z} \sum_{x^{\prime}, y^{\prime}, z^{\prime}} a_{x, y, z} r_{x, y}^{x^{\prime}, y^{\prime}}(z) \mathbb{I}\left(z=z^{\prime}\right) / p(z) a_{x^{\prime}, y^{\prime}, z^{\prime}} \\
&=\sum_{z}\left(\sum_{x, y} \sum_{x^{\prime}, y^{\prime}} a_{x, y, z} r_{x, y}^{x^{\prime}, y^{\prime}}(z) a_{x^{\prime}, y^{\prime}, z}\right) / p(z) \geq 0
\end{aligned}
$$

References

[1] S. Lahiri and A. Chatterjee. A Berry-Esseen theorem for hypergeometric probabilities under minimal conditions. Proc. Am. Math. Soc., 135(5):1535-1545, 2007.
[2] Kesar Singh. On the Asymptotic Accuracy of Efron's Bootstrap. Ann. Stat., 9(6):1403-1433, nov 1981.
[3] V. Bentkus. A Lyapunov-type bound in \mathbb{R}^{d}. Theory Probab. its Appl., 49:311-371, 2005.
[4] George A. F. Seber. A Matrix Handbook for Statisticians. Wiley Series in Probability and Mathematical Statistics. John Wiley \& Sons, Hoboken, New Jersey, 2008.

[^0]: *malgorzata.lazecka@ipipan.waw.pl
 \dagger bartosz.kolodziejek@pw.edu.pl
 \ddagger jan.mielniczuk@ipipan.waw.pl

