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In the appendix we first prove Theorem 1, Lemma 4, and Theorem 5, the equality M = M used in the proof
of Theorem 6 and then the two lemmas concerning properties of Kullback-Leibler projections. Finally we prove
the ordering of covariance matrices in CP and CR scenarios discussed in Remark 3.

Below we give a proof of Theorem 1.

Proof of Theorem 1. We prove that X, and X are exchangeable given Z, = z,. The proof that
Xy, XE X , X p are exchangeable is a straightforward extension as well as the proof of the fact that

n,lr»“¥n,25 - s
(Xns Yo, Zp), (X5, 1, Y0, 2 ), (X5, 0, Y, Z), o (X 5y Yo, Zy) are exchangeable. We recall that the random
variables 11,75, ..., T, are exchangeable if their joint distribution is invariant under permutations of the com-
ponents.

We denote by m € II a permutation applied to X,, resulting in X}. That transformation consists of
permutations on the layers Z,, = z denoted by 7, for z € Z and we use a notation i, € {i : Z; = z} to denote

the indices of subsequent observations on the layer Z,, = z. Consider P(X,, = x,,, X}, = x}|Z,, = z,,, Il = 7).

Note that this probability equals P(X,, = x,|Z,, = z,,II = 7) if x% is an image of x,, under transformation 7
and 0 otherwise. Note that if x} is an image of x,, then for all z € Z and for all i, € {i: Z; = z}

* —_— .
Iiz = l‘ﬂ.z (i2)"

In case when 7(x,) = x}, we have

P(X,, =%, X} =x0|Zy, = 2, [l =7) = P(X,, = X4|Zy, = 2, I =7) (1)

and

P(X, =xp|Zy, = 2,1 =7) = P(X,, = x| Z,, = 2,,) = HP(Vi:Zi:in = 2;|Z; = 2)

:HHP(X,LZ :xiz‘Ziz :Z) :HHP(XlZ :.’Eiz|Zi2 :Z,H:ﬂ')

= HHP(X‘frz(iz) = ziz|Ziz =z, Il = W) = P(Xn = X:L|Zn = Z,,11 = ﬂ)?

where the first and the fourth equations follow from conditional independence of X,, and II given Z,,, and the
second and the third use independence of (X;, Z;)"_;. We also have that

PX, =x,, X! =xp|Zy = 2p, 1 =7) = P(X,, = x| Zy, = Zp, Il = 71),
where the above equation follows from analogous reasoning as in (1) applied to 7=1. When 7(x,,) # x, then
P(X, =%, X} =x|Zp, = 2,1 =7) = P(X,, = x,, X} = Xp|Zp, = 2, I =7) = 0.

Thus
P(X, =xp, X} =%x)|Zy, = 2,1 =7) = P(X,, =x,, X} = Xp|Zy, = 2, [l = 7).
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and as the above equation holds for all 7w € II, we obtain
P(X, =xp, X} =x|Zy, = 2y,) = P(X,, =x,, X} = Xp|Zp, = z,).
As we have proven the exchangeability of the sample and resampled samples given Z,,, the test statistics

based on them are also exchangeable given Z,,. By averaging over Z, the property also holds unconditionally.
For exchangeable random variables T, Ty, T5,...,Tf and for i € {1,...,B, B+ 1}

B
1
P <1+ZH(TSTJ) —i> 178
b=1

as the rank of T among T, T}, Ty, ..., T} is uniformly distributed on {1,...,B + 1}. Thus

B .
P<1+ZI[(T§Tb*)§i> - HfB

b=1

and from that we obtain

P Ly WT<Ty) _ i\
1+ B ~1+B) 1+4B

For any o € [ i i) and o <1 we thus have

B+1’ B+1
1+ 30 (T <Ty
P +Zb:1 ( — b)SOL < a. (2)
1+ B
In the considered case of conditional independence the exchangeability of T, 77,7y ,...,T% holds given
Z,,=7,, thus the last inequality (2) holds given Z,, = z,.It follows by averaging that (2) holds unconditionally.
O

In order to prove Lemma 4 we start with following simple lemma, which is crucial for our argument.

Lemma 1. Assume that as 1 — oo, P(Wi(r) <t] Wl(r)7 ce Wl(f)l) L% P(Qi < t) =: Fi(t) for all continuity

points of F;, 1 =1,...,d. Then (Wl(r), cey Wy)) 4, (Q1,...,Q4) and (Q;)%_, are independent.

Proof. Assume that t; is a continuity point of F;. Then for i =1,...,d,

PW <ty W <ty = PW) <ty W < L) Fi(t)

+E []I(Wf’“) <ty W <ti) (P(Wi(’”) <t | W, w - Fi(ti))} .

By Lebesgue’s dominated convergence theorem, the latter term converges to 0 as » — co. Thus, by induction,
the cumulative distribution function of (er), ceey Wy)) converges to Fy -.. .- F,; for all continuity points, which
completes the proof. O

The above result generalizes to the case when all Wi(r) are multivariate.

Lemma 2. Let m, = (mY), ... 7mElT))T € N?. Suppose that W, = (Wl(r), ol Wér)) has multivariate hypergeo-
metric distribution Hyp,(n,, m,) defined by

e, ()
(")

d
P(W, = (ky, ... kq)) = . keN k<m® N ki=n,
=1

Assume that as r — oo,
|m.|— oo, n./Im,|— a € (0,1), my/|Im.|— 8= (P1,...,84) € Tu.

Then .
— (W,. - |:;m,T> 45 Ny(0,%),

|| vl

where ¥ is a (d — 1)-rank matriz with elements ¥; ; = a(1 — a)f; (6;; — B;)-



The univariate case is proved in [1, Th. 2.1]. We could not find an appropriate reference for the general
case. However, we refrain from giving a formal proof of the multivariate case, as it follows from the univiariate
case in analogous way as Lemma 4 follows from Lemma 2 and we present a full argument below.

We now prove Lemma 4.

Proof. First, observe that (6) in Section 3 in the main text can be rewritten as

(r)

Hzl l(k o lw)

P(W, = k) = 2= i),
(b<r> b(r))
where (, ) := %57 whenever a = [b]. Denote by W) the ith row of matrix W,, i.e. a random vector
yeeey0n i—1 Oi*
(V[/i(jr))g:17 i=1,...,1. Clearly, Wl(T) ~ Hpr((sz),bT)7 where Hyp is defined in Lemma 2. Since |b.|= n,, by

Lemma 2, we have

(r)
(r) . 1 (r) _ M d
7" = 1% b | -5 Z1 ~ N4(0,%1),

1 A/ My < 1 Ny > ! d( 1)

where (31);; = aq (1 — a1)Bi(di; — B;)-
Now consider a conditional distribution of W glven (W( Jk<i, © > 1. We have

7—1
W | (W) pei ~ Hyp, (ai”, b, — Z(Wé”)T) .

k=1

Since Wi(;) follows the hypergeometric distribution with parameters (nr, agr), b;r)> by the law of large numbers,

we have
w)
# - Oéiﬁj.
Observing that m = b, — 2;11 W,Er) l=n,— >0 ag"), we have as r — oo,
(r) T i—1 17,(r)
a,; Q5 br - — W a.s,
l(i) and k(l_)l k25 3.
my 1- Zk 1 %%k My

We apply Lemma 2 conditionally on (W,ET))kQ-, to obtain for i =2,...,1,

(T)

r ._ 1 (r) T (r) ‘( (r>) d
AR 17 A S— W) W 7
! n (7") ( ! Ny — i1 (r) < Z )) k) e<i 4

r kl k=1@

where Z; ~ N(0,%;) with

(%) < (1—1 = )ﬁjw—m

gl =
172k 1 Ok k=1 Ok

By Lemma 1, we have
(Zz", .. 2N Lz, 7)),

where Z7, ..., Z; are independent. By direct calculation, it is easy to see that
L O N N (T o R S a0z
\/TTT % Ny % T P ki“k >
where
_ (r) () _ (r)
ny a; \ -
’Y/(crz) =— 27:13 ! alk oG for k < ¢ and %( 2) %
r Ny — Z] 145 r

We have lim,_, o 'y,(fi) =I'y i, where

k—1
Fk,i:_ I_Zajaili for k < i and Fi,iz
j=1 1- Zj:l Qj



Thus,

1 (r) _ 1 (7")
— | W b, g iz =:Q ~ N(0,%),
A/ Ny ( ’ Ny i R ek L @ 0.%)

where ¥ = (Ek l) Ekl denotes covariance of jth coordinate of ith consecutive subvector of the length J of Q)
with kth coordlnate of the [th subvector. Thus

i k
Efjl = Cov (Z UiZej, Zre,kzz,z> .
£=1 /=1

Since no row is distinguished, in order to establish (7) in the main text it is enough to consider ¢ = 1 and
k € {1,2}. We have

Sy =Cov(Z15, Z1) = (S1)j0 = on(1 — 1) B;(8; — B)

and

a a
E?é = Cov (Zl,ja V1—ai1Zy; — T —2a1 Zl,l) =2 (%)) = —naB; (6 —B1).

1—041
O

We prove now Theorem 5. The proof follows [2] and it is based on the multivariate Berry-Esseen theorem

(I3D)-

Proof of Theorem 5. Without loss of generality, we assume that X = {1,2,..., 1}, ¥ ={1,2,...,J} and Z =
{1,2,...,K} and let M =1-J- K. We define a function k(-), which assigns a triple (z,y,2) € X x Y x Z to
each index i = 1,2,..., M, in the following way

k(i) = (z,y,z)and i =2 +T-(y—1)+1-J-(z—1).

Thus, in the notation using the function k, we write e.g. a vector of all probabilities (p(z,y,2))s,y.» as
(p(k(i))M,. We let

Ak n* z, Y,z 1 . *
b ($7y,2):¥:EZ]I(XZ 233,}/;‘:%21‘:2)7

n
i=1
Pei = p(x]2)p(y|z)p(2) and we define py.; (tci stands for true conditional independence) in the following way

n(y, z) n(z) =: p(z]2)p(y|2)p(2),

Brei(,9,7) = plal2) S

thus, since p* follows the multinomial distribution with an observation (z,y, z) having a probability equal to
Prei(2, Y, 2), conditionally on the original sample we have that

E*p*(x,y, z) = p(x]2)p(y|2)p(2)

and
. Lpei(z,y, 2)(1 — Prei(x, v, 2 if (z,y,2) = (2,9,7
(Cov™ (5" (2,4, a2 )2 007 ={ ”fglgm&,;fz)ﬁj(x{yf{Z,g) )
We define
ST = n(Cov® (5" (.4, 2))a ) ls”
and
Q1 = SN2 (X, Y, 25) = k() — prea(k(i)) ™7

f
ZQ* — VnSTYE (57 (k(0)) — Prea (k(0) 2T

where 3_p; = Cov* ((A*(k(z)))l ' ). As p(z,y,z) > 0 for all (z,y,2), the matrix $_ar is invertible, cf. e.g.
[4]. Onme element of the vector p* is omitted to ensure that the covariance matrix is invertible. As we have



vay,z p*(z,y,z) = 1, the full dimension matrix Y s singular. Then we apply multivariate Berry-Esseen theorem

(13D
|P*(W* e A) — P(Z € A)|

<r >
J=1

Vn
and d = M — 1. We notice that as

3
M—-1

STV (1(X2,Y5, 25) = k(1)) — Brea (b)) )

Prei = Pei and By = Xy as.,
where ¥_j; denotes the matrix ¥ without the last row and the last column, and for all j =1,2,..., M —1

-1 < H(XJ* = 1'7Y3' = yvzj = Z) 7ﬁtci(xay7z) < 17

. 1113
we have that E* Ej\f (I((X5,Y;,Z5) = k(i) — ﬁtm-(k(i)))ij\il ! H is bounded for almost all sequences. Thus in

view of (3), conditionally, W* — N(0,I) and as f?jv/lz converges to Z:}V/[z a.s., from Slutsky’s theorem we have

that

Vi (5% (k(3)) = Prea(R(0) 2, & N(0,5_ar).

Now the conclusion follows by the continuous mapping theorem. O
We prove now the lemma which is used in the proof of Theorem 6.

Lemma 3. Matrices M = HeprY and M = Hop S defined in the proof of Theorem 6 are equal, idempotent

and their trace tr(M) = tr(M) = (|X|-1)(|]Y|-1)| Z|

Proof. We show the result for M. The proof in the case of M is the same but more tedious (we skip the details).
Matrix M = HY = Heopr(pei)2, where X is an asymptotic covariance matrix for CR scenario, has the following
form

"ot

M =T =2y =y e = )~ T =22 = (|2
_ H(y — y//7 2= Z//)p(xlllzll) + H(Z — Z”)p(x”|Z”)p(y”|z”). (4)

Multiplication of matrices H and X yields:

— / ./ — ! _ /! o
Mx//7y//7zll _ Z Hx’,y’,z’iﬂﬂ”,y”,zH _ Z (H(l‘ =T, y=y,z==z ) _ ]I(.’I} =Tr,z=z )

T,Y,% z,Y,2 z',y’ 2’
g o p(z,y,2) p(, z)
a b
I(ly=vy,z=27 I(z =2
Bt p?y’ 3 )4 (p(z) ) > ( Iy =y", 2 = 2")p(a'|2 )p("|2")p(y/, &)
7 —— e
c d
+1@ =a"y =y = ) ) = Ly =y 2 = (a2
f a-e
+1(z = 2")p(a"|2")p(y"[2") + 1y = ¥, 2 = 2")p(a”|2") — I(z = 2")p(a"|")p(y"|2")
b-e ce d-e
+ H(:I; — x//7y — y//,z — ZN) _]I(x — x//’z _ Z//)p(y//|zll) _]I(x _ x//’z _ Z//)p(xlllzﬁ)
a-f b-f c-f
+1(z = 2")p("[2")p(y"|z") =Nz = 2",y =y", 2 = 2") =Wz = 2",z = 2")p(y"]2")
d-f

_ H(y — y//7 5= Z//)p(:r//|zl/) + ]I(Z — Z//)p(l'//IZ//)p(y//|Z//).

Below we present detailed calculations for the terms c-e and d- f (the calculations for other terms are analogous):



p(xl|z/)p(x/llzl/)p(yl’ z/)

c-e= Z ly=y,z2=2"y =y", 2 =2")

o p(y,2)
— g =z = ) 3D PRI gy s a1 s
=Iy=y"2z= Z”)pg(vx”IZ”), )
d-f= I(z=2"(a =2",y =y", 2/ =2") @12 )ply’, )
8
=1z = ) PEEWLED) g a1

p(2)
We now show that tr(M) = |X|—1)(|¥|-1)|Z| and M? = M
Yo MEyz = (1-plylz) - plale) +plal)p(yl2))

x,Y,z x,Y,z
= [X V2= [X 2=V 21+ Z]= (12 =D (YI-1D)|Z]

4 // 2

We compute now (M Bz Y 4% % . The first term in the first bracket is multiplied by the consecutive terms in
the second bracket, then the second term in the first bracket and so on:

SN MEANE Y  = (e =aly =y 2 =) L =2z = 2 )p(y|2)

x/’y/ 2!

( ;
_ ]I(x/ — //72:/ — le)p(y//|z/) H(y/ — y//7ZI — Z//)p(x//|2//) + H(Z/ — Z//)p(x/l|Z//)p(yll|zll)>

=(z=a"y=y",2=2") Nz =2a",2=2")py"z") — Uy =y", 2 = 2")p(="|2")

+1(z = 2")p(a”[2")p(y"|2")) — (W = 2", 2 = 2")p(y"|2") = Lz = 2", 2 = 2" )p(y"|2")
—1(z = 2")p(a"]2")p(y"|2") +1(2 = ) ("2 )p(y"12") = Wy =y, 2 = 2" )p(z"|2")
—1(z = 2")p(z"|2")p(y"12") = Wy = y", 2 = 2")p(z"|z") + 1(z = 2" )p(z"|z")p(y"|"))
+ (I(z = 2")p(a"|2")p(y"|2") — H(z =2 ) (@"|2")p(y"]2") — 1z = 2")p(" 2" )p(y"]2")

o ="y =y" 2 = ")~ Iz =",z = " )p(y"]")

/—\

+1(z = 2")p(a"[")p(y"[2")) =
_ ]I(y _ y//’ - z”)p(;z:”|z”) + H(Z _ z”)p(x”|z”)p(y”|z’ ) M;c’l’},z” z”

We prove now two lemmas which justify choice of null distributions in the numerical experiments.

Lemma 4. Probability mass function pq;(x,y,z) = p(x|2)p(y|z)p(z) minimises Dy, (pllq) over q € Pe; defined

Pei = {q(z,y,2) : q(x,y,2) = q(z]2)q(y|2)q(2)}.

Proof. Indeed,

Dkr(pllg) — D (pl|pe:) (5)

Next, by breaking the above expression into three sums, we obtain
p(2)

)1 )1
E Epwl Og +§p Epy\ Og E a(2)

The expression y__ p(z|z)log 2 pl2) s equal to Kullback-Leibler divergence of p(z|z) and q(x|z) for a fixed

q(z[2)
value of Z (similarly >-, p(y|z)log pg;z;* Drr(p(-|2)||q(:|2)) and Y~ p(z)log 2’22 = Dk (pllg)). Thus (5) is
non-negative and equal to 0 if and only if ¢(x|z) = p(z|z), q(y|z) = p(y|z) and ¢(z) = p(z). O



Lemma 5. Probability mass function p.; minimises Dy, (pal|lq) over q € Pg; such that

Pei = {q(x,y, Z) : Q(‘rv Y, Z) = q(m|z)q(y|z)q(z)},
where py = Ape; + (1 — XN)p and X € [0,1]

Proof. In view of Lemma 4 it is enough to show that py .; = p.; what, due to the form of p.; will follow from

pa(w, 2) = p(z,2) and pr(y, 2) = p(y, 2).
‘We have that

p)\(x’ Z) = Zp)\(xaya Z) = Z (pci(xaya Z) + (1 - )\)p(.T, y,Z))

Y

= Mp(x|2) Y p(yl2)p(z) + (1 = Np(x, 2) = p(x, 2).

Similarly, we have that py(y, z) = p(y, z). Thus px ¢; = Dei- O

We prove now that the asymptotic covariance matrices in Conditional Permutation and Conditional Ran-
domisation scenario are ordered (see Remark 3 in the main text).

Lemma 6. The covariance matriz for CR scenario dominates the covariance matriz for CP scenario:
>3
i.e. matriz X — X is positive semi-definite.

Proof. We prove » > Y. Define

roor

(R)ZWoA = (8- )2 0% =1(2 = 2)[I(z = o")p(a|2)p(y, 2)p(y, 2) /p(2)
— p(z]2)p(@'|2)p(y, 2)p(y', 2) /p(2)].

We note that for any z the matrix R(z) defined as

~ ’ ’

(R(2)); =77 (2) = Lz = 2")p([2) - p(z]2)p(a’]2)

is positive semi-definite. Now we define elements of matrix R(z) = (rg’yy’(z))g’yy’ as

’

e (2) =12 (2)ply, 2)p(y', 2)
and we show that R(z) > 0. Namely, for any non-zero vector a = (a(,y))s,, it holds

AR()a =33 auyrii (2)awy =D auyrt (2)p(y, )Py 2) sy

z,y z'y’ z,y z'y’

= Z (Z aw,yp(yv Z)) Tgl('z) Zaw’,y'p(y/a Z) >0,

x,x’

where the last inequality follows as ]?(z) > 0. However,

A

(RYZ = v =120z = ) /p(2),

€,z Y,
thus for any non-zero vector a = (a(z,y, 2))4,y,. we have that

dRa=" D ry et awye =D D eyeriit (2)1(z = 2)/p(2)aw

. ’ P
z,y,z 2’y 2 .Y,z 27,y 2

=S Y e Gaars | [o(2) 2 0.

z,y x’,y’



References

[1] S. Lahiri and A. Chatterjee. A Berry-Esseen theorem for hypergeometric probabilities under minimal con-
ditions. Proc. Am. Math. Soc., 135(5):1535-1545, 2007.

[2] Kesar Singh. On the Asymptotic Accuracy of Efron’s Bootstrap. Ann. Stat., 9(6):1403-1433, nov 1981.
[3] V. Bentkus. A Lyapunov-type bound in R?. Theory Probab. its Appl., 49:311-371, 2005.

[4] George A. F. Seber. A Matriz Handbook for Statisticians. Wiley Series in Probability and Mathematical
Statistics. John Wiley & Sons, Hoboken, New Jersey, 2008.



