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 A B S T R A C T

This work investigates the tail behavior of solutions to the affine stochastic fixed-point equation 
of the form 𝑋 𝑑

= 𝐴𝑋 + 𝐵, where 𝑋 and (𝐴,𝐵) are independent. Focusing on the light-tail 
regime, following (Burdzy et al., 2022), we introduce a local dependence measure along with an 
associated Legendre-type transform. These tools allow us to effectively describe the logarithmic 
right-tail asymptotics of the solution 𝑋.

Moreover, we extend our analysis to a related recursive sequence 𝑋𝑛 = 𝐴𝑛𝑋𝑛−1 + 𝐵𝑛, 
where (𝐴𝑛, 𝐵𝑛)𝑛 are i.i.d. copies of (𝐴,𝐵). For this sequence, we construct deterministic scaling 
(𝑓𝑛)𝑛 such that lim sup𝑛→∞𝑋𝑛∕𝑓𝑛 is a.s. positive and finite, with its non-random explicit value 
provided.

1. Introduction

We study the tail behavior of a solution 𝑋 to the stochastic fixed-point equation 

𝑋
𝑑
= 𝐴𝑋 + 𝐵, 𝑋 and (𝐴,𝐵) are independent. (1)

When such a solution exists, it is referred to as a perpetuity. Our primary focus is on the light-tail regime. Throughout the paper, 
we assume that 𝐴 and 𝐵 are almost surely nonnegative and nonzero with positive probability, thus excluding trivial cases. For 
comprehensive background material, we refer to [1].

The influence of the joint distribution of (𝐴,𝐵) on the tail behavior of 𝑋 is notably diverse. When conditions ensure a light-
tailed solution (see [2–6]), the analysis of (1) differs fundamentally from that in the heavy-tailed setting (cf. [7–12]). Roughly, 
the distinction between the light- and heavy-tailed cases hinges upon whether P(𝐴 ≤ 1) = 1 with light-tailed 𝐵 or P(𝐴 > 1) > 0. 
In particular, for light-tailed distributions, the dependence structure between 𝐴 and 𝐵 significantly affects the tail asymptotics. 
Conversely, for heavy-tailed solutions, marginal distributions predominantly determine asymptotics, with dependence structure 
influencing only multiplicative constants (see e.g. [8,13,14]).

Our methodology builds upon the framework established by [6], which analyzed the left-tail behavior (near 0+) of 𝑋. Following 
these ideas, we introduce a local dependence measure (LDM) along with its associated Legendre-type transform. These tools form 
the cornerstone of our analysis and effectively describe the logarithmic right-tail asymptotics of 𝑋.

Specifically, we assume the following limit exists for all 𝑦 > 0: (a LDM)

𝑔(𝑦) = lim
𝑡→∞

logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
logP(𝐵 > 𝑡)

,
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where the function 𝑡 ↦ − logP(𝐵 > 𝑡) is regularly varying with index 𝜌 > 0. Our first main result (Theorem  7.2) shows that if a 
solution to (1) exists and the function 𝑔 satisfies a technical condition (termed admissibility), then

lim
𝑡→∞

logP(𝑋 > 𝑡)
logP(𝐵 > 𝑡)

= 𝜆∗,

where 𝜆∗ is the unique nonzero fixed point of the function 𝜙𝜌(𝜆) = inf𝑦>0{𝑦𝜌𝜆+𝑔(𝑦)}. Moreover, we show that 𝜆∗ = inf𝑦∈(0,1)
{

𝑔(𝑦)
1−𝑦𝜌

}

.
It is natural, given (1), to consider the recursive sequence 

𝑋𝑛 = 𝐴𝑛𝑋𝑛−1 + 𝐵𝑛, 𝑛 ≥ 1, (2)

where (𝐴𝑛, 𝐵𝑛)𝑛≥1 are i.i.d. copies of (𝐴,𝐵), and 𝑋0 is independent of this sequence. This sequence forms a Markov chain whose 
stationary distribution solves (1). Our second main result (Theorem  8.1) identifies an upper envelope for (𝑋𝑛)𝑛≥0 when 𝑋0 = 0. We 
construct a deterministic scaling sequence (𝑓𝑛)𝑛 such that

lim sup
𝑛→∞

𝑋𝑛
𝑓𝑛

is almost surely positive and finite, with its deterministic explicit value provided. To the best of our knowledge, this constitutes the 
first characterization of the upper envelope for a sequence defined by (2). The proof extends techniques from [6], which derived a 
lower envelope under related but distinct assumptions.

Our study is inspired by several previous investigations into the tail behavior of 𝑋. A common strategy in earlier work 
(cf. [11,15–17]) involves bounding the tail probability of 𝑋 from above and below as

P(𝑋𝑛 > 𝑡) ≤ P(𝑋 > 𝑡) ≤ P(𝑋′
𝑛 > 𝑡),

where both (𝑋𝑛)𝑛≥0 and (𝑋′
𝑛)𝑛≥0 satisfy (2) for some special 𝑋0 and 𝑋′

0. Thus, understanding P(𝑋 > 𝑡) effectively reduces to analyzing 
the tail asymptotics of P(𝐴𝑌 + 𝐵 > 𝑡), with 𝑌  independent of (𝐴,𝐵) but not necessarily satisfying (1).

1.1. Relation to the literature

We note that similar ideas to the definition of LDM have appeared in related literature. In [17, Theorem 1], for instance, it is 
assumed that there exists a finite function 𝑓 such that 

𝑓 (𝑦) = lim
𝑡→∞

P(𝐴𝑦 + 𝐵 > 𝑡)
P(𝐵 > 𝑡)

. (3)

If 𝐴 and 𝐵 are independent, 𝐴 has a finite moment generating function, and 𝑡 ↦ P(𝐵 > log 𝑡) is regularly varying with index 
−𝛼 ≤ 0, then by the Breiman Lemma (see e.g. [18]) one obtains explicit form of 𝑓 (𝑦) = E[exp(𝛼𝑦𝐴)]. However, if 𝐴 and 𝐵 are not 
independent, yet (3) holds, the form of 𝑓 may differ (see [17, Remark 2.3]). Under (3) with P(𝐵 > 𝑡) ∼ 𝑎 𝑡𝑐𝑒−𝑏𝑡, E[𝑒𝑏𝐵𝟏𝐴=1] < 1 and 
some technical assumptions, [17] established that

lim
𝑡→∞

P(𝑋 > 𝑡)
P(𝐵 > 𝑡)

=
E[𝑓 (𝑋)]

1 − E[𝑒𝑏𝐵𝟏𝐴=1]
.

A closely related scenario is presented in [14], where it is assumed that 𝑡 ↦ P(𝐴 > 𝑡) is regularly varying with index −𝛼 < 0, 
along with the conditions E[𝐴𝛼] < 1 and lim sup𝑡→∞ P(𝐵 > 𝑡)∕P(𝐴 > 𝑡) <∞. In this setting, 𝑓 is defined as

𝑓 (𝑦) = lim
𝑡→∞

P(𝐴𝑦 + 𝐵 > 𝑡)
P(𝐴 > 𝑡)

,

and, under further technical conditions on the distribution of 𝐴, the tail asymptotics of 𝑋 are described by

lim
𝑡→∞

P(𝑋 > 𝑡)
P(𝐴 > 𝑡)

=
E[𝑓 (𝑋)]
1 − E[𝐴𝛼]

.

In the special case of independence between 𝐴 and 𝐵, explicit computation of 𝑓 becomes possible.
Another result obtained under similar conditions is Theorem 3 from [16], which considers a related stochastic fixed point-

equation of the form 𝑋 𝑑
= max{𝐴𝑋,𝐵}, where 𝑋 and the pair (𝐴,𝐵) are independent.

Thus, our contribution can be viewed as an advancement of this line of research, relaxing independence assumptions and thereby 
enabling analysis of a broader class of models.

Additionally, logarithmic asymptotics of the tail behavior of 𝑋 were considered in [19], under the assumption that the functions
𝑡 ↦ − logP(1∕(1 − 𝐴) > 𝑡) and 𝑡↦ − logP(𝐵 > 𝑡)

are regularly varying (or when either 𝐴 or 𝐵 is bounded), again requiring independence of 𝐴 and 𝐵. For general dependent 𝐴 and 
𝐵, however, only a lower bound on the tail was provided. As noted, the light tails heavily depend on the dependence structure of 
(𝐴,𝐵). This relation seems to be captured quite well by a function ℎ, which was defined in [19] by

ℎ(𝑡) = inf
{

−𝑠 logP
( 1 > 𝑠, 𝐵 > 𝑡 )} , 𝑡 > 0.
𝑠≥1 1 − 𝐴 𝑠

2 
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There it was shown (see [19, Theorem 5.1]) that

lim inf
𝑡→∞

logP(𝑋 > 𝑡)
ℎ(𝑡)

≥ −𝑐

with an explicit constant 𝑐 depending on the index of regular variation of ℎ. In Section 9 we present an example demonstrating that 
this lower bound is generally not optimal.

In contrast, our paper addresses this gap by deriving precise logarithmic asymptotics within a general framework built upon the 
local dependence measure. Our results extend and complement previous findings in light-tailed scenarios where the tail behavior 
of 𝑋 is predominantly governed by the distribution of 𝐵 rather than 𝐴.

In [6] a less common problem in the theory of (1) was considered. If 𝐴 and 𝐵 are nonnegative, then 𝑋, if exists, is also 
nonnegative. Thus, one may investigate the tail behavior of 𝑋 near the left endpoint of the support. One of the main results in [6] 
establishes that if the limit

𝑔(𝑦) = lim
𝜀→0+

logP(𝐴𝜀𝑦 + 𝐵 < 𝜀)
logP(𝐵 < 𝜀)

exists for 𝑦 ∈ [0,∞), where 𝜀 ↦ − logP(𝐵 < 𝜀) is a regularly varying function with index 𝜌 < 0 at 0, then—under some technical 
assumptions (analogous to the admissibility condition in the present paper)—one has

lim
𝜀→0+

logP(𝑋 < 𝜀)
logP(𝐵 < 𝜀)

= inf
𝑦>1

{

𝑦𝜌

𝑦𝜌 − 1
𝑔(𝑦)

}

.

Another result in [6] concerns the lower envelope of the sequence (2) with 𝑋0 = 0; specifically, there exists an explicit deterministic 
scaling sequence (ℎ𝑛)𝑛 such that

lim inf
𝑛→∞

𝑋𝑛
ℎ𝑛

is deterministic, positive and finite.
There are clear analogies between the statements and proofs in the present paper and those in [6]. However, aside from Lemmas 

6.6 and 8.5, which are taken directly from [6], all other results in our paper have independent proofs. Notably, our analysis reveals 
quantitatively different behavior for 𝜌 ∈ (0, 1] and 𝜌 > 1 (see, e.g., Theorem  4.2), a phenomenon that was not observed in [6]. 
While [6] applied the left-tail results to a Fleming–Viot-type process, in Section 9 we illustrate our findings using a new family of 
distributions.

We also note that the assumptions in the present paper and in [6] are compatible. Consequently, one can readily construct a 
distribution of (𝐴,𝐵) such that both the left and right tail behaviors of 𝑋 satisfying (1) are asymptotically available and the sequence 
𝑋𝑛 = 𝐴𝑛𝑋𝑛−1+𝐵𝑛 exhibits explicit lower and upper envelopes. For example, assume that the random pair (𝐴,𝐵) is positively quadrant 
dependent (see Section 4) and that for 𝜌, 𝜎 > 0 one has

lim
𝑡→∞

− logP(𝐵 > 𝑡)
𝑡𝜌

= 𝜆+ and lim
𝜀→0+

− logP(𝐵 < 𝜀)
𝜀−𝜎

= 𝜆−

together with
𝑎− = ess inf(𝐴) ≥ 0 and 𝑎+ = ess sup(𝐴) < 1.

Under these conditions, since E[log𝐴] < 0, E[max{log𝐵, 0}] < ∞, Theorems  4.2 and 7.2 in this paper together with [6, Theorem 4.1 
and Proposition 5.4] yield

lim
𝑡→∞

− logP(𝑋 > 𝑡)
𝑡𝜌

= 𝑐+ and lim
𝜀→0+

− logP(𝑋 < 𝜀)
𝜀−𝜎

= 𝑐−,

where

𝑐+ = 𝜆+

⎧

⎪

⎨

⎪

⎩

(

1 − 𝑎𝜌∕(𝜌−1)+

)𝜌−1
, if 𝜌 > 1,

1, if 𝜌 ∈ (0, 1),
and 𝑐− = 𝜆−

(

1 − 𝑎𝜎∕(1+𝜎)−
)−(1+𝜎) .

Moreover, if 𝑋0 = 0, then by Theorem  8.1 and [6, Theorem 6.1],

lim sup
𝑛→∞

𝑋𝑛

(log 𝑛)1∕𝜌
= 𝑐−1∕𝜌+ and lim inf

𝑛→∞

𝑋𝑛

(log 𝑛)−1∕𝜎
= 𝑐1∕𝜎− .

1.2. Organization of the paper

The remainder of the paper is organized as follows. In the next section, we give a short review of the theory of regularly varying 
functions. Section 3 introduces the local dependence measure and its Legendre-type transform, and establishes their key properties. 
We show that when 𝐴 and 𝐵 are independent (or more generally, positively quadrant dependent), the LDM admits an explicit 
representation. In Section 5, we derive the asymptotics of 𝑡 ↦ logP(𝐴𝑋 + 𝐵 > 𝑡) under independence between 𝑋 and (𝐴,𝐵), where 
𝑋 does not necessarily satisfy (1). This is a result that is instrumental in controlling the asymptotics of P(𝑋𝑛 > 𝑡). Section 6 discusses 
the existence, uniqueness, and basic properties of solutions to (1). Section 7 is devoted to our first main result, the precise logarithmic 
3 
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tail asymptotics of the solution to (1). In Section 8 we prove our second main result: the identification of the upper envelope for 
the sequence (𝑋𝑛)𝑛≥0 with 𝑋0 = 0. Finally, in Section 9 we describe a family of distributions of pairs (𝐴,𝐵) for which the LDM is 
computable and provide its general form. We use our earlier results to demonstrate that the lower bound in [19] is not optimal in 
general.

2. Regular variation

We write 𝑓 (𝑥) ∼ 𝑔(𝑥) if lim𝑥→∞ 𝑓 (𝑥)∕𝑔(𝑥) = 1. A measurable function 𝑓 ∶ (0,∞) → (0,∞) is said to be regularly varying of index 
𝜌 ∈ R if and only if 𝑓 (𝜆𝑥) ∼ 𝜆𝜌𝑓 (𝑥) for all 𝜆 > 0.

The class of regularly varying functions of index 𝜌 ∈ R is denoted by 𝜌. In particular, elements of the class 0 are called slowly 
varying functions.

We gather all the necessary properties of regularly varying functions in the lemma below. 

Lemma 2.1.  Let 𝑓 ∈ 𝜌 with 𝜌 > 0. Then:
(i) 𝑓 (𝑥) = 𝑥𝜌𝓁(𝑥) for some slowly varying function 𝓁 ∈ 0.
(ii) lim𝑥→∞ 𝑓 (𝑥) = ∞.
(iii) For any 𝐶 > 1 and 𝛿 > 0, there exists 𝐾 such that for 𝑥, 𝑦 ≥ 𝐾,

𝑓 (𝑦)
𝑓 (𝑥)

≤ 𝐶 max
{

( 𝑦
𝑥

)𝜌+𝛿
,
( 𝑦
𝑥

)𝜌−𝛿
}

.

(iv) There exists 𝑔 ∈ 1∕𝜌 such that
𝑓 (𝑔(𝑥)) ∼ 𝑔(𝑓 (𝑥)) ∼ 𝑥

and 𝑔 is determined uniquely to within asymptotic equivalence ∼.
(v) There exists 𝑓 ∈ 𝜌 such that 𝑓 continuous, strictly increasing and 𝑓 (𝑥) ∼ 𝑓 (𝑥).

Proof.  (i) follows directly from the definition of 𝜌. (ii) is proved in [20, Proposition 1.5.1], (iii) is known as the Potter bounds, [20, 
Theorem 1.5.6]. (iv) is proved in [20, Theorem 1.5.12]. For (v), fix 𝑋 > 0 so large that 𝑓 is locally bounded on [X, ∞) and define 
𝑓 (𝑥) = 𝜌 ∫ 𝑥𝑋 𝑡

−1𝑓 (𝑡)d𝑡 for 𝑥 ∈ (𝑋,∞). Extend the definition of 𝑓 to (0, 𝑋] in a way that it is continuous and strictly increasing on 
(0,∞). By Karamata’s Theorem, [20, Theorem 1.5.11], we have 𝑓 (𝑥) ∼ 𝑓 (𝑥). □

We note that Lemma  2.1(v) also follows from [20, Theorem 1.8.2].

3. Exponential decay and local dependence measure

Definition 3.1.  Let 𝑓 be a function defined on a neighborhood of infinity such that 𝑓 (𝑡) → ∞ as 𝑡 → ∞. We say that a nonnegative 
random variable 𝑋 has an exponential-𝑓 -decay tail if

lim
𝑡→∞

− logP(𝑋 > 𝑡)
𝑓 (𝑡)

= 𝜆,

where 𝜆 ∈ [0,∞]. We call such a random variable an ED𝑓 (𝜆)-random variable.
We note that if 𝑋 is a bounded random variable, then it is ED𝑓 (∞) for any 𝑓 .

Definition 3.2.  Let (𝐴,𝐵) be a pair of nonnegative random variables, and let 𝑓 ∈ 𝜌 with 𝜌 > 0. A function 𝑔∶ [0,∞) → [0,∞] is 
said to be the local dependence measure of (𝐴,𝐵) (denoted LDM𝜌

𝑓 ), if the limit

𝑔(𝑦) = lim
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

, 𝑦 ∈ [0,∞)

exists.

In general, for an arbitrary pair (𝐴,𝐵) and a function 𝑓 , the existence of 𝑔 on [0,∞) is not guaranteed. Nevertheless, we will 
show that 𝑔(𝑦) = 0 for 𝑦 > 𝑎−1+ , where

𝑎+ = ess sup(𝐴).

Our standing assumptions are that P(𝐴 ≥ 0, 𝐵 ≥ 0) = 1 and 𝑎+ ∈ (0,∞). Certain results additionally require 𝑎+ ∈ (0, 1]; whenever 
this stronger condition is needed, we state it explicitly.

Furthermore, if 𝐴 and 𝐵 are positively quadrant dependent (PQD) and 𝑔(0) < ∞, then 𝑔 exists on [0,∞) and its explicit form 
can be derived—it depends only on 𝑎+ and 𝑔(0) (see Section 4 for details). Another family of distributions for which an explicit 
expression for 𝑔 is available is presented in Section 9.

Assume that 𝑓 ∈ 𝜌 with 𝜌 > 0, is such that 𝑓 continuous, strictly increasing and 𝑓 (𝑥) ∼ 𝑓 (𝑥). Clearly, we have ED𝑓 (𝜆) = ED𝑓 (𝜆)
and LDM𝜌

𝑓 = LDM𝜌
𝑓
. In view of Lemma  2.1, without loss of generality, we will assume from now on that every regularly varying 

function 𝑓 is continuous and strictly increasing.
4 
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Lemma 3.3.  Assume that (𝐴,𝐵) are nonnegative random variables and 𝑓 ∈ 𝜌 with 𝜌 > 0. Then:
(i) For every 𝑦 > 𝑎−1+ ,

lim
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

= 0.

(ii) If 𝑔(0) exists (possibly infinite), then for every 𝑦 ∈ [0, 𝑎−1+ ),

lim inf
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

≥ 𝑔(0)(1 − 𝑎+𝑦)𝜌.

(iii) If 𝑦 > 𝑥 ≥ 0 and both 𝑔(𝑥) and 𝑔(𝑦) exist, then 𝑔(𝑦) ≤ 𝑔(𝑥),

Proof. 
(i) Assume 𝑦 > 𝑎−1+ . Clearly, P(𝐴 > 1∕𝑦) > 0. Notice that {𝐴 > 1∕𝑦} = {𝐴𝑡𝑦 > 𝑡} ⊂ {𝐴𝑡𝑦 + 𝐵 > 𝑡} for 𝑡 > 0 and therefore,

0 ≤ lim inf
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

≤ lim sup
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

≤ lim
𝑡→∞

− logP(𝐴 > 1∕𝑦)
𝑓 (𝑡)

= 0.

(ii) Since P(𝐴 ≤ 𝑎+) = 1, we have
P(𝐴𝑡𝑦 + 𝐵 > 𝑡) ≤ P(𝑎+𝑡𝑦 + 𝐵 > 𝑡) = P(𝐵 > 𝑡(1 − 𝑎+𝑦)).

Thus, for 𝑦 ∈ [0, 1∕𝑎+),

lim inf
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

≥ lim
𝑡→∞

− logP(𝐵 > 𝑡(1 − 𝑎+𝑦))
𝑓 (𝑡)

= lim
𝑡→∞

− logP(𝐵 > 𝑡(1 − 𝑎+𝑦))
𝑓 (𝑡(1 − 𝑎+𝑦))

⋅
𝑓 (𝑡(1 − 𝑎+𝑦))

𝑓 (𝑡)
= 𝑔(0)(1 − 𝑎+𝑦)𝜌.

(iii) Let 𝑦 > 𝑥 ≥ 0. We note that since 𝐴 is a nonnegative random variable, for all 𝑡 > 0, we have the inclusion {𝐴𝑡𝑥 + 𝐵 > 𝑡} ⊂
{𝐴𝑡𝑦+𝐵 > 𝑡}. By the monotonicity of P and the assumption that both 𝑔(𝑥) and 𝑔(𝑦) are well defined we get that 𝑔(𝑦) ≤ 𝑔(𝑥). □

Remark 3.4. Lemma  3.3 implies several key properties of the local dependence measure 𝑔:
• On the interval (𝑎−1+ ,∞), the limit always exists and equals 0.
• If 𝑔 is well defined on [0, 𝑎−1+ ), then it is bounded below by 𝑔(0)(1 − 𝑎+𝑦)𝜌 on this interval.
• If 𝑔 exists on the entire [0,∞), then it is a nonincreasing function.

In Section 4, we show that the lower bound is attained for positively quadrant dependent 𝐴 and 𝐵.

Definition 3.5.  For a function 𝑔∶ (0,∞) → [0,∞], let 𝜙𝜌 ∶ [0,∞) → [0,∞] be a Legendre-type transform defined by
𝜙𝜌(𝜆) = inf

𝑦>0
{𝑦𝜌𝜆 + 𝑔(𝑦)} , 𝜆 ∈ [0,∞).

From this point forward, unless explicitly stated otherwise, we assume that 𝑔 exists on [0,∞).

Lemma 3.6.  Let 𝑔 be the LDM𝜌
𝑓  for (𝐴,𝐵), where 𝑓 ∈ 𝜌 with 𝜌 > 0. Let 𝜙𝜌 be its Legendre-type transform. Then:

(i) 𝜙𝜌 is finite, nondecreasing, concave.
(ii) 𝜙𝜌(0) = 𝜙𝜌(0+) = 0.
(iii) 𝜙𝜌 is continuous.
(iv) sup𝑦>0 {𝑔(𝑦)} ≥ 𝜙𝜌(𝜆).
(v) If there exists 𝜆 > 0 such that 𝜙𝜌(𝜆) > 𝜆, then 𝜙𝜌(𝜆) = 𝜆 for at most one 𝜆 > 0.
(vi) With 𝛾 = 𝑔(0) <∞ and 𝑎+ ∈ (0,∞),

𝜆𝑎−𝜌+ ≥ 𝜙𝜌(𝜆) ≥
⎧

⎪

⎨

⎪

⎩

(

𝛾1∕(1−𝜌) + 𝑎𝜌∕(𝜌−1)+ 𝜆1∕(1−𝜌)
)1−𝜌

,  if 𝜌 > 1,

min
{

𝛾, 𝜆𝑎−𝜌+
}

,  if 0 < 𝜌 ≤ 1.

Proof. 
(i) Finiteness follows from Lemma  3.3(i), monotonicity is obvious, 𝜙𝜌 as the point-wise infimum of a family of affine functions 

is concave.
(ii) We have 𝜙𝜌(0) = inf𝑦>0 {𝑔(𝑦)} = 0 by Lemma  3.3(i). Moreover, by the definition of 𝜙𝜌 we get 𝜙𝜌(𝜆) ≤ 𝑦𝜌𝜆+ 𝑔(𝑦) for any 𝑦 > 0. 

Thus, by taking 𝑦 sufficiently large (recall Lemma  3.3(i)) and letting 𝜆 ↓ 0+, we obtain 𝜙 (0+) ≤ 0.
𝜌

5 



J.L. Bihan and B. Kołodziejek Stochastic Processes and their Applications 190 (2025) 104740 
(iii) From (ii) we get continuity in 0. Continuity on (0,∞) is a consequence of the fact that 𝜙𝜌 is concave, which was stated in (i).
(iv) By the definition of 𝜙𝜌(𝜆), we have 𝜙𝜌(𝜆) ≤ 𝑦𝜌𝜆 + 𝑔(𝑦) for all 𝑦 > 0. Letting 𝑦 ↓ 0+ (noting that 𝑔 is a nonincreasing function, 

so its limit as 𝑦→ 0+ exists, although it may be infinite), we obtain 𝜙𝜌(𝜆) ≤ 𝑔(0+) = sup𝑦>0{𝑔(𝑦)}.
(v) Define 𝜓(𝜆) = 𝜙𝜌(𝜆) − 𝜆. Then 𝜓 is concave, continuous, and 𝜓(0) = 0. Suppose there exist 0 < 𝜆1 < 𝜆2 with 𝜙𝜌(𝜆1) = 𝜆1 and 

𝜙𝜌(𝜆2) = 𝜆2, so that 𝜓(0) = 𝜓(𝜆1) = 𝜓(𝜆2) = 0. By concavity, 𝜓 ≡ 0 on [0, 𝜆2] and 𝜓(𝜆) ≤ 0 for 𝜆 > 𝜆2. Now, if some 𝜆0 satisfies 
𝜙𝜌(𝜆0) > 𝜆0 (i.e., 𝜓(𝜆0) > 0), then we obtain a contradiction. Hence, the equation 𝜙𝜌(𝜆) = 𝜆 can have at most one solution for 
𝜆 > 0.

(vi) By Lemma  3.3(i), we have 𝑔(𝑦) = 0 for 𝑦 > 𝑎−1+ . Thus,
𝜙𝜌(𝜆) ≤ inf

𝑦>𝑎−1+
{𝑦𝜌𝜆} = 𝜆𝑎−𝜌+ .

Additionally, by Lemma  3.3 (ii) and the fact that 𝑔 is non-negative, we have 𝑔(𝑦) ≥ 𝛾 max{1 − 𝑎+𝑦, 0}𝜌 for 𝑦 ≥ 0. Therefore,

𝜙𝜌(𝜆) ≥ min

{

inf
𝑦∈(0,𝑎−1+ ]

{𝑦𝜌𝜆 + 𝛾(1 − 𝑎+𝑦)𝜌}, inf
𝑦>𝑎−1+

{𝑦𝜌𝜆}

}

= min

{

inf
𝑦∈(0,𝑎−1+ ]

{ℎ1(𝑦)}, 𝜆𝑎
−𝜌
+

}

,

where ℎ1 ∶ (0, 𝑎−1+ ] → R is defined by ℎ1(𝑦) = 𝜆𝑦𝜌 + 𝛾(1 − 𝑎+𝑦)𝜌.
If 0 < 𝜌 < 1, then ℎ1 is increasing on (0, 𝐾] and decreasing on [𝐾, 𝑎−1+ ], where 𝐾 = (𝑎+ + ( 𝑎+𝛾𝜆 )1∕(1−𝜌))−1. Therefore,

inf
(0,𝑎−1+ ]

{

ℎ1(𝑦)
}

= min
{

ℎ1(0), ℎ1(𝑎−1+ )
}

= min
{

𝛾, 𝜆𝑎−𝜌+
}

.

The case 𝜌 ∈ (0, 1) easily extends to 𝜌 = 1.
If 𝜌 > 1, then ℎ1 is decreasing on (0, 𝐾] and increasing on [𝐾, 𝑎−1+ ], where 𝐾 is as before. Therefore,

inf
(0,𝑎−1+ ]

{

ℎ1(𝑦)
}

= ℎ1(𝐾) =
𝜆𝛾

(

𝜆
1
𝜌−1 + 𝑎

𝜌
𝜌−1
+ 𝛾

1
𝜌−1

)𝜌−1
=
(

𝛾1∕(1−𝜌) + 𝑎𝜌∕(𝜌−1)+ 𝜆1∕(1−𝜌)
)1−𝜌

.

Moreover, it is easy to see that ℎ1(𝐾) ≤ 𝜆𝑎−𝜌+ . □

Definition 3.7.  For a LDM𝜌
𝑓  function 𝑔, we define 

𝜆∗ = inf
𝑦∈(0,1)

{

𝑔(𝑦)
1 − 𝑦𝜌

}

. (4)

Lemma 3.8. 
(i) Assume 𝑐 ≥ 0. Then, 𝜙𝜌(𝑐) ≥ 𝑐 if and only if 𝑐 ≤ 𝜆∗.
(ii) If 𝜆∗ <∞, then 𝜙𝜌(𝜆∗) = 𝜆∗.
(iii) Suppose 𝑎+ ≤ 1. Assume that 𝛾 = 𝑔(0) exists. Then,

𝜆∗ ≥
⎧

⎪

⎨

⎪

⎩

𝛾
(

1 − 𝑎𝜌∕(𝜌−1)+

)𝜌−1
,  if 𝜌 > 1 and 𝑎+ < 1,

𝛾,  if 0 < 𝜌 ≤ 1 or (𝑎+ = 1 and 𝛾 = ∞).

(iv) Suppose 𝑎+ ≤ 1. Then, 𝜆∗ = ∞ ⟺ 𝑔(0) = ∞.

Proof. 
(i) We have

𝜙𝜌(𝑐) ≥ 𝑐 ⟺ inf
𝑦>0

{𝑦𝜌𝑐 + 𝑔(𝑦)} ≥ 𝑐 ⟺ ∀ 𝑦 > 0 𝑦𝜌𝑐 + 𝑔(𝑦) ≥ 𝑐

⟺ ∀ 𝑦 ∈ (0, 1) 𝑦𝜌𝑐 + 𝑔(𝑦) ≥ 𝑐 ⟺ 𝑐 ≤ inf
𝑦∈(0,1)

{

𝑔(𝑦)
1 − 𝑦𝜌

}

.

(ii) Let (𝜆𝑛)𝑛 be a sequence such that 𝜆𝑛 ↓ 𝜆∗. Then, by (i) we have 𝜙𝜌(𝜆𝑛) < 𝜆𝑛 and by continuity of 𝜙𝜌, we obtain 𝜙𝜌(𝜆∗) ≤ 𝜆∗. 
Setting 𝑐 = 𝜆∗ in (i), we obtain the reversed bound.

(iii) By Lemma  3.3 (ii), we have 𝑔(𝑦) ≥ 𝛾(1 − 𝑎+𝑦)𝜌 for 𝑦 ∈ [0, 1) ⊂ [0, 𝑎−1+ ). Thus,
𝜆∗ ≥ inf

𝑦∈(0,1)

{

ℎ2(𝑦)
}

,

where ℎ2 ∶ (0, 1) → R is defined by ℎ2(𝑦) = 𝛾(1 − 𝑎+𝑦)𝜌∕(1 − 𝑦𝜌). If 𝜌 ∈ (0, 1], then ℎ2 is increasing on (0, 1) and therefore
inf

{

ℎ2(𝑦)
}

= ℎ2(0+) = 𝛾.

𝑦∈(0,1)

6 
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If 𝜌 > 1, then ℎ2 is increasing on (𝑎1∕(𝜌−1)+ , 1) and decreasing on (0, 𝑎1∕(𝜌−1)+ ). Therefore,

inf
𝑦∈(0,1)

{

ℎ2(𝑦)
}

= ℎ2
((

𝑎1∕(𝜌−1)+

)−)
=

⎧

⎪

⎨

⎪

⎩

𝛾
(

1 − 𝑎𝜌∕(𝜌−1)+

)𝜌−1
,  if 𝑎+ < 1 or 𝛾 ≠ ∞,

𝛾,  if 𝑎+ = 1 and 𝛾 = ∞.

(iv) If 𝑔(0) = ∞, then by (iii) we obtain 𝜆∗ ≥ ∞. If 𝜆∗ = ∞, then by definition of 𝜆∗, we have for any 𝑦 ∈ (0, 1), 𝑔(𝑦) ≥ (1 − 𝑦𝜌)𝜆∗. 
Since 𝑔 is nonincreasing, 𝑔(0) = ∞. □

4. Positive quadrant dependence

Definition 4.1.  We say that random variables 𝐴 and 𝐵 are positively quadrant dependent (PQD for short) if, for all 𝑎, 𝑏 ∈ R,

P(𝐴 > 𝑎,𝐵 > 𝑏) ≥ P(𝐴 > 𝑎)P(𝐵 > 𝑏).

It turns out that for a PQD pair (𝐴,𝐵), the LDM always exists [0,∞) and, moreover, has explicit form.
Recall that 𝑎+ = ess sup(𝐴) = inf {𝑥 ∈ R∶P(𝐴 > 𝑥) = 0} and that 𝐴 and 𝐵 are assumed to be a.s. nonnegative. 

Theorem 4.2.  Assume that 𝐴 and 𝐵 are PQD. Suppose that 𝛾 ∶= 𝑔(0) exists and is finite for some 𝑓 ∈ 𝜌 with 𝜌 > 0. Then, the local 
dependence measure 𝑔 of (𝐴,𝐵) exists on [0,∞).

(i) For 𝑦 ≥ 0,

𝑔(𝑦) = 𝛾 max{1 − 𝑎+𝑦, 0}𝜌.

(ii) If 𝑎+ ∈ (0, 1], then for 𝜆 ≥ 0,

𝜙𝜌(𝜆) =

⎧

⎪

⎨

⎪

⎩

(

𝛾1∕(1−𝜌) + 𝑎𝜌∕(𝜌−1)+ 𝜆1∕(1−𝜌)
)1−𝜌

,  if 𝜌 > 1,

min
{

𝛾, 𝜆𝑎−𝜌+
}

,  if 0 < 𝜌 ≤ 1,
and 𝜆∗ =

⎧

⎪

⎨

⎪

⎩

𝛾
(

1 − 𝑎𝜌∕(𝜌−1)+

)𝜌−1
,  if 𝜌 > 1,

𝛾,  if 0 < 𝜌 ≤ 1.

Proof. 
(i) By Lemma  3.3 (ii), for 𝑦 ≥ 0 we have

lim inf
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

≥ 𝛾 max{1 − 𝑎+𝑦, 0}𝜌.

We now show that for 𝑦 ∈ [0, 𝑎−1+ ], the quantity 𝛾(1 − 𝑎+𝑦)𝜌 is an upper bound for the superior limit. Fix 𝛿 ∈ (0, 𝑎+). Then, if 
0 ≤ 𝑦 ≤ 𝑎−1+ < (𝑎+ − 𝛿)−1, we obtain

P(𝐴𝑡𝑦 + 𝐵 > 𝑡) ≥ P(𝐴𝑡𝑦 + 𝐵 > 𝑡, 𝐴 > 𝑎+ − 𝛿) ≥ P((𝑎+ − 𝛿)𝑡𝑦 + 𝐵 > 𝑡, 𝐴 > 𝑎+ − 𝛿)

≥ P(𝐴 > 𝑎+ − 𝛿)P(𝐵 > 𝑡(1 − (𝑎+ − 𝛿)𝑦)),

where we have used the fact that 𝐴 and 𝐵 are PQD. Therefore,

lim sup
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

≤ lim
𝑡→∞

− logP(𝐴 > 𝑎+ − 𝛿) − logP(𝐵 > 𝑡(1 − (𝑎+ − 𝛿)𝑦))
𝑓 (𝑡)

Since 𝑓 (𝑡) → ∞ as 𝑡 → ∞, and from the fact that P(𝐴 > 𝑎+ − 𝛿) > 0, we obtain

lim sup
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

≤ lim
𝑡→∞

− logP(𝐵 > 𝑡(1 − (𝑎+ − 𝛿)𝑦))
𝑓 (𝑡(1 − (𝑎+ − 𝛿)𝑦))

⋅
𝑓 (𝑡(1 − (𝑎+ − 𝛿)𝑦))

𝑓 (𝑡)
= 𝛾(1 − (𝑎+ − 𝛿)𝑦)𝜌.

By letting 𝛿 ↓ 0+, we conclude that for 0 ≤ 𝑦 ≤ 𝑎−1+ ,

𝛾(1 − 𝑎+𝑦)𝜌 ≤ lim inf
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

≤ lim sup
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

≤ 𝛾(1 − 𝑎+𝑦)𝜌.

Thus, 𝑔 exists on [0, 𝑎−1+ ] and is equal to 𝛾(1 − 𝑎+𝑦)𝜌 on this interval. Finally, by Remark  3.4, for 𝑦 > 𝑎−1+  we have that 𝑔(𝑦)
exists and equals 0. This completes the proof of (i).

(ii) Since 𝑔(𝑦) = 0 for 𝑦 > 𝑎−1+ , we have

𝜙𝜌(𝜆) = min

{

inf
𝑦∈(0,𝑎−1+ ]

{

ℎ1(𝑦)
}

, inf
𝑦>𝑎−1+

{𝜆𝑦𝜌}

}

,

where ℎ1 ∶ (0, 𝑎−1+ ] → R is defined by ℎ1(𝑦) = 𝜆𝑦𝜌 + 𝛾(1 − 𝑎+𝑦)𝜌. By the proof of Lemma  3.6 (vi), the explicit formula for 𝜙𝜌
follows.
7 
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We have

𝜆∗ = inf
𝑦∈(0,1)

{

𝑔(𝑦)
1 − 𝑦𝜌

}

= inf
𝑦∈(0,1)

{

ℎ2(𝑦)
}

,

where ℎ2 ∶ (0, 1) → R is defined by ℎ2(𝑦) = 𝛾(1 − 𝑎+𝑦)𝜌∕(1 − 𝑦𝜌). The right hand side of the above equation was already 
calculated in the proof of Lemma  3.8 (iii). □

5. Tails of 𝑨𝑿 + 𝑩

Recall our standing assumption that 𝐴 and 𝐵 are a.s. nonnegative random variables and 𝑎+ ∶= ess sup(𝐴) ∈ (0,∞). In this section, 
𝑋 is assumed to be independent of (𝐴,𝐵) but does not necessarily satisfy (1).

Theorem 5.1.  Let 𝑔 be the LDM𝜌
𝑓  for the nonnegative random variables (𝐴,𝐵), where 𝑓 ∈ 𝜌 with 𝜌 > 0. Suppose 𝑋 is ED𝑓 (𝜆) with 

𝜆 ∈ [0,∞). Then 𝐴𝑋 + 𝐵 is ED𝑓 (𝜙𝜌(𝜆)).

Proof.  First, we prove that 

lim sup
𝑡→∞

− logP(𝐴𝑋 + 𝐵 > 𝑡)
𝑓 (𝑡)

≤ 𝜙𝜌(𝜆). (5)

For any 𝑦 > 0 and 𝑡 > 0, we have
P(𝐴𝑋 + 𝐵 > 𝑡) ≥ P(𝐴𝑋 + 𝐵 > 𝑡,𝑋 > 𝑡𝑦) ≥ P(𝐴𝑡𝑦 + 𝐵 > 𝑡,𝑋 > 𝑡𝑦) = P(𝐴𝑡𝑦 + 𝐵 > 𝑡)P(𝑋 > 𝑡𝑦).

Thus,

lim sup
𝑡→∞

− logP(𝐴𝑋 + 𝐵 > 𝑡)
𝑓 (𝑡)

≤ lim sup
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡) − logP(𝑋 > 𝑡𝑦)
𝑓 (𝑡)

≤ 𝑔(𝑦) + lim sup
𝑡→∞

− logP(𝑋 > 𝑡𝑦)
𝑓 (𝑡𝑦)

⋅
𝑓 (𝑡𝑦)
𝑓 (𝑡)

= 𝑔(𝑦) + 𝜆𝑦𝜌.

By taking inf𝑦>0 on both sides, we obtain (5).
Next, we establish the lower bound, 

lim inf
𝑡→∞

− logP(𝐴𝑋 + 𝐵 > 𝑡)
𝑓 (𝑡)

≥ 𝜙𝜌(𝜆). (6)

If 𝜆 = 0, then by Lemma  3.6 (ii), we have 𝜙𝜌(𝜆) = 0, and the above inequality is trivial. Now suppose 𝜆 > 0. Since 𝜙𝜌 is finite, there 
exists 𝑎 > 0 such that 𝜆𝑎𝜌 ≥ 𝜙𝜌(𝜆). We note that 

lim inf
𝑡→∞

− logP(𝐴𝑋 + 𝐵 > 𝑡,𝑋 > 𝑡𝑎)
𝑓 (𝑡)

≥ lim inf
𝑡→∞

− logP(𝑋 > 𝑡𝑎)
𝑓 (𝑡)

= lim inf
𝑡→∞

− logP(𝑋 > 𝑡𝑎)
𝑓 (𝑡𝑎)

⋅
𝑓 (𝑡𝑎)
𝑓 (𝑡)

= 𝜆𝑎𝜌 ≥ 𝜙𝜌(𝜆).
(7)

Moreover, by Lemma  3.6 (iv), we have sup𝑦>0{𝑔(𝑦)} ≥ 𝜙𝜌(𝜆). Fix 𝜂 > 0. There exists 𝑏 ∈ (0, 𝑎) such that 𝑔(𝑏) ≥ 𝜙𝜌(𝜆) − 𝜂∕2. We have 

lim inf
𝑡→∞

− logP(𝐴𝑋 + 𝐵 > 𝑡,𝑋 ≤ 𝑡𝑏)
𝑓 (𝑡)

≥ lim inf
𝑡→∞

− logP(𝐴𝑡𝑏 + 𝐵 > 𝑡)
𝑓 (𝑡)

= 𝑔(𝑏) ≥ 𝜙𝜌(𝜆) − 𝜂∕2. (8)

Combining (7) and (8), we deduce that there exists 𝑀 > 0 such that for all 𝑡 > 𝑀 ,

P(𝐴𝑋 + 𝐵 > 𝑡,𝑋 > 𝑡𝑎) + P(𝐴𝑋 + 𝐵 > 𝑡,𝑋 ≤ 𝑡𝑏) ≤ 2 exp(−𝑓 (𝑡)(𝜙𝜌(𝜆) − 𝜂)).

Now, fix 𝑦, ℎ > 0 such that ℎ < 𝑦. Then, 
P(𝐴𝑋 + 𝐵 > 𝑡, 𝑡(𝑦 − ℎ) < 𝑋 ≤ 𝑡𝑦) ≤ P(𝐴𝑡𝑦 + 𝐵 > 𝑡, 𝑡(𝑦 − ℎ) < 𝑋) = P(𝐴𝑡𝑦 + 𝐵 > 𝑡)P(𝑋 > 𝑡(𝑦 − ℎ)). (9)

Since

lim
𝑡→∞

− logP(𝑋 > 𝑡(𝑦 − ℎ))
𝑓 (𝑡)

= lim
𝑡→∞

− logP(𝑋 > 𝑡(𝑦 − ℎ))
𝑓 (𝑡(𝑦 − ℎ))

⋅
𝑓 (𝑡(𝑦 − ℎ))

𝑓 (𝑡)
= 𝜆(𝑦 − ℎ)𝜌,

for sufficiently large 𝑡, we obtain
P(𝑋 > 𝑡(𝑦 − ℎ)) ≤ exp(−𝑓 (𝑡)(𝜆(𝑦 − ℎ)𝜌 − 𝜂)).

If 𝑔(𝑦) <∞, then, from the definition of 𝑔, we conclude that
∃𝑀 > 0 such that ∀ 𝑡 > 𝑀 P(𝐴𝑡𝑦 + 𝐵 > 𝑡) ≤ exp(−𝑓 (𝑡)(𝑔(𝑦) − 𝜂)).

Thus, from (9), we get for sufficiently large 𝑡, 
𝜌 (10)
P(𝐴𝑋 + 𝐵 > 𝑡, 𝑡(𝑦 − ℎ) < 𝑋 ≤ 𝑡𝑦) ≤ exp(−𝑓 (𝑡)(𝑔(𝑦) + 𝜆(𝑦 − ℎ) − 2𝜂)).
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If 𝑔(𝑦) = ∞, then for any 𝐺 > 0 there exists 𝑁 > 0 such that for all 𝑡 > 𝑁 , we obtain a bound 
P(𝐴𝑋 + 𝐵 > 𝑡, 𝑡(𝑦 − ℎ) < 𝑋 ≤ 𝑡𝑦) ≤ exp(−𝑓 (𝑡)(𝐺 + 𝜆(𝑦 − ℎ)𝜌)). (11)

We now consider two cases: (i) 𝜌 ≥ 1 and (ii) 𝜌 ∈ (0, 1).
(i) By the convexity of (0,∞) ∋ 𝑥↦ 𝑥𝜌, we obtain

𝜆𝑦𝜌 − 𝜆(𝑦 − ℎ)𝜌 ≤ 𝜆ℎ𝜌𝑦𝜌−1.

Using (10), the definition of 𝜙𝜌, and the above inequality, we conclude that if 𝑔(𝑦) <∞, then for all 𝑦 > ℎ > 0 and sufficiently large 
𝑡,

P(𝐴𝑋 + 𝐵 > 𝑡, 𝑡(𝑦 − ℎ) < 𝑋 ≤ 𝑡𝑦) ≤ exp(−𝑓 (𝑡)(𝑔(𝑦) + 𝜆𝑦𝜌 − 𝜆𝑦𝜌 + 𝜆(𝑦 − ℎ)𝜌 − 2𝜂))

≤ exp(−𝑓 (𝑡)(𝜙𝜌(𝜆) − 𝜆ℎ𝜌𝑦𝜌−1 − 2𝜂)).

The same bound holds when 𝑔(𝑦) = ∞ by choosing 𝐺 sufficiently large in (11).
Fix 𝑛 ∈ N. Let ℎ0 = 0, ℎ𝑘 − ℎ𝑘−1 = 𝑎−𝑏

𝑛 = ℎ for 𝑘 = 1,… , 𝑛. Then for sufficiently large 𝑡,

P(𝐴𝑋 + 𝐵 > 𝑡, 𝑡𝑏 < 𝑋 ≤ 𝑡𝑎) =
𝑛
∑

𝑘=1
P(𝐴𝑋 + 𝐵 > 𝑡, 𝑡(𝑎 − ℎ𝑘) < 𝑋 ≤ 𝑡(𝑎 − ℎ𝑘−1))

≤
𝑛
∑

𝑘=1
exp(−𝑓 (𝑡)(𝜙𝜌(𝜆) − 𝜆ℎ𝜌(𝑎 − ℎ𝑘−1)𝜌−1 − 2𝜂))

≤ 𝑛 exp(−𝑓 (𝑡)(𝜙𝜌(𝜆) − 𝜆ℎ𝜌𝑎𝜌−1 − 2𝜂)).

Thus, for sufficiently large 𝑡,
P(𝐴𝑋 + 𝐵 > 𝑡) = P(𝐴𝑋 + 𝐵 > 𝑡,𝑋 ∈ 𝑡(𝑏, 𝑎]) + P(𝐴𝑋 + 𝐵 > 𝑡,𝑋 ∉ 𝑡(𝑏, 𝑎])

≤ 𝑛 exp(−𝑓 (𝑡)(𝜙𝜌(𝜆) − 𝜆ℎ𝜌𝑎𝜌−1 − 2𝜂)) + 2 exp(−𝑓 (𝑡)(𝜙𝜌(𝜆) − 𝜂))

≤ (𝑛 + 2)exp(−𝑓 (𝑡)(𝜙𝜌(𝜆) − 𝜆ℎ𝜌𝑎𝜌−1 − 2𝜂)).

Therefore, for sufficiently large 𝑡,
− logP(𝐴𝑋 + 𝐵 > 𝑡)

𝑓 (𝑡)
≥

− log(𝑛 + 2)
𝑓 (𝑡)

+ 𝜙𝜌(𝜆) − 𝜆ℎ𝜌𝑎𝜌−1 − 2𝜂.

Taking lim inf 𝑡→∞ on both sides, we get

lim inf
𝑡→∞

− logP(𝐴𝑋 + 𝐵 > 𝑡)
𝑓 (𝑡)

≥ 𝜙𝜌(𝜆) − 𝜆ℎ𝜌𝑎𝜌−1 − 2𝜂.

By letting 𝑛 ↑ ∞ (recall that ℎ = (𝑎 − 𝑏)∕𝑛) and then 𝜂 ↓ 0+, we obtain (6).
(ii) For 𝜌 ∈ (0, 1), we have 𝑦𝜌 − (𝑦 − ℎ)𝜌 ≤ ℎ𝜌 for 𝑦 > ℎ > 0. Similarly to case (i), for all 𝑦 > ℎ > 0 and sufficiently large 𝑡, we get

P(𝐴𝑋 + 𝐵 > 𝑡, 𝑡(𝑦 − ℎ) < 𝑋 ≤ 𝑡𝑦) ≤ exp(−𝑓 (𝑡)(𝑔(𝑦) + 𝜆𝑦𝜌 − 𝜆𝑦𝜌 + 𝜆(𝑦 − ℎ)𝜌 − 2𝜂))

≤ exp(−𝑓 (𝑡)(𝜙𝜌(𝜆) − 𝜆ℎ𝜌 − 2𝜂))

and this bound also holds when 𝑔(𝑦) = ∞. Proceeding as in (i), we obtain that for sufficiently large 𝑡,
P(𝐴𝑋 + 𝐵 > 𝑡) ≤ (𝑛 + 2)exp(−𝑓 (𝑡)(𝜙𝜌(𝜆) − 𝜆ℎ𝜌 − 2𝜂)).

The remaining part of the proof is analogous. □

6. The equation 𝑿 𝒅
= 𝑨𝑿 + 𝑩

The stochastic fixed-point Eq. (1) associated with the affine recursion 𝑋𝑛 = 𝐴𝑛𝑋𝑛−1 + 𝐵𝑛 has been extensively studied in the 
literature. We summarize key results on the existence and uniqueness of the solution below, [1]. 

Theorem 6.1.  Assume that P(𝐴 ≥ 0, 𝐵 ≥ 0) = 1,

E[log𝐴] < 0  and E[max{log𝐵, 0}] <∞.

Then there exists a unique solution 𝑋 to

𝑋
𝑑
= 𝐴𝑋 + 𝐵, (𝐴,𝐵) and 𝑋 are independent.

Moreover, 𝑋 is given by the a.s. convergent series representation

𝑋
𝑑
=

∞
∑

𝑛=1
𝐵𝑛

𝑛−1
∏

𝑘=1
𝐴𝑘,

where (𝐴𝑛, 𝐵𝑛)𝑛 are independent copies of (𝐴,𝐵).
Additionally, if 𝑋 = 𝐴 𝑋 + 𝐵  for 𝑛 = 1, 2,…, where 𝑋  is independent of (𝐴 ,𝐵 ) , then 𝑋  converges in distribution to 𝑋.
𝑛 𝑛 𝑛−1 𝑛 0 𝑛 𝑛 𝑛 𝑛
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We say that a real random variable 𝑌  is stochastically majorized by 𝑍 and we write 𝑌 ≤𝑠𝑡 𝑍 if P(𝑌 ≤ 𝑡) ≥ P(𝑍 ≤ 𝑡) for all 𝑡 ∈ R.

Lemma 6.2.  Let (𝐴𝑛, 𝐵𝑛)𝑛≥1 be a sequence of independent copies of a generic pair (𝐴,𝐵). Let 𝑋0 be independent of (𝐴𝑛, 𝐵𝑛)𝑛≥1 and define 
𝑋𝑛 = 𝐴𝑛𝑋𝑛−1 + 𝐵𝑛. Assume that 𝐴 ≥ 0 a.s.

(i) If 𝑋1 ≥𝑠𝑡 𝑋0, then 𝑋𝑛 ≥𝑠𝑡 𝑋𝑛−1 for all 𝑛 ≥ 1.
(ii) If 𝑋1 ≤𝑠𝑡 𝑋0, then 𝑋𝑛 ≤𝑠𝑡 𝑋𝑛−1 for all 𝑛 ≥ 1.

Proof.  (i) We proceed by induction, assume that 𝑋𝑛 ≥𝑠𝑡 𝑋𝑛−1 for 𝑛 ≥ 1. Then, since 𝐴𝑛+1 ≥ 0 a.s. and 𝑋𝑛 is independent of 
(𝐴𝑛+1, 𝐵𝑛+1), we obtain

𝑋𝑛+1
𝑑
= 𝐴𝑛+1𝑋𝑛 + 𝐵𝑛+1 ≥𝑠𝑡 𝐴𝑛+1𝑋𝑛−1 + 𝐵𝑛+1

𝑑
= 𝑋𝑛.

Point (ii) is proved in the same way. □

Corollary 6.3.  If 𝑋𝑛 converges in distribution to 𝑋, then 𝑋1 ≥𝑠𝑡 𝑋0 implies that 𝑋 ≥𝑠𝑡 𝑋𝑛 for all 𝑛 ∈ N and if 𝑋1 ≤𝑠𝑡 𝑋0, then 𝑋 ≤𝑠𝑡 𝑋𝑛
for all 𝑛 ∈ N.

Lemma 6.4.  Under the assumptions of Theorem  6.1, we have

ess sup(𝑋) = ess sup
( 𝐵
1 − 𝐴

∣ 𝐴 < 1
)

.

Proof.  Since E[log𝐴] < 0, we obtain P(𝐴 < 1) > 0. Denote 𝑥+ = ess sup(𝑋) and

𝑥0 = ess sup
( 𝐵
1 − 𝐴

∣ 𝐴 < 1
)

.

Let 𝑔𝑎,𝑏(𝑡) = 𝑎 𝑡 + 𝑏. With

𝐺(𝐴,𝐵) =
{

𝑔(𝑎1 ,𝑏1)◦… ◦𝑔(𝑎𝑛 ,𝑏𝑛) ∶ (𝑎𝑖, 𝑏𝑖) ∈ supp(𝐴,𝐵), 𝑖 = 1,… , 𝑛, 𝑛 ≥ 1
}

by [1, Proposition 2.5.3], we have

supp(𝑋) =
{ 𝑏
1 − 𝑎

∶ 𝑔𝑎,𝑏 ∈ 𝐺(𝐴,𝐵), 𝑎 < 1
}

.

Thus,
{ 𝑏
1 − 𝑎

∶ (𝑎, 𝑏) ∈ supp(𝐴,𝐵), 𝑎 < 1
}

⊂ supp(𝑋)

and therefore 𝑥+ ≥ 𝑥0. If 𝑥0 = ∞, then 𝑥+ = ∞ and there is nothing to prove.
Assume that 𝑥0 <∞. By [1, Lemma 2.5.1], for every (𝑎, 𝑏) ∈ supp(𝐴,𝐵) we have

𝑎 supp(𝑋) + 𝑏 ⊂ supp(𝑋)

and therefore 𝑎𝑥+ + 𝑏 ≤ 𝑥+ for all (𝑎, 𝑏) ∈ supp(𝐴,𝐵). Thus, 𝐴𝑥+ + 𝐵 ≤ 𝑥+ a.s. and
𝐵𝟏𝐴≥1 ≤ 𝑥+(1 − 𝐴)𝟏𝐴≥1 ≤ 𝑥0(1 − 𝐴)𝟏𝐴≥1 a.s.,

where the latter inequality follows from the fact that 𝑥+ ≥ 𝑥0.
By definition of 𝑥0 we have

𝐵𝟏𝐴<1 ≤ 𝑥0(1 − 𝐴)𝟏𝐴<1, a.s.

and therefore 𝐵 ≤ 𝑥0(1 − 𝐴) a.s. Thus,

𝑋
𝑑
=

∞
∑

𝑘=1
𝐴1 …𝐴𝑘−1𝐵𝑘 ≤ 𝑥0

∞
∑

𝑘=1
𝐴1 …𝐴𝑘−1(1 − 𝐴𝑘) = 𝑥0, a.s.,

which implies that P(𝑋 ≤ 𝑥0) = 1, i.e., 𝑥0 ≥ 𝑥+. □

We have established above that the right endpoint of the support of 𝑋 coincides with the right endpoint of the conditional 
distribution of 𝐵∕(1−𝐴) given 𝐴 < 1. Note that if this endpoint is finite, the asymptotic behavior of 𝑡 ↦ P(𝑋 > 𝑡) as 𝑡 → ∞ becomes 
trivial, and this case should thus be excluded from further analysis. It turns out that suitable conditions involving 𝑔(1) or 𝜆∗ are 
sufficient to ensure this exclusion, but only under the assumption that P(𝐴 ∈ [0, 1)) = 1. In what follows, we explain that restricting 
our analysis to such distributions does not lead to any significant loss of generality.

By [2, Theorem 4.1], if P(𝐴 > 1) > 0, then the tail of 𝑋 is at least of power-law type:

lim inf
logP(𝑋 > 𝑡)

> −∞.

𝑡→∞ log 𝑡

10 
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Since this behavior lies outside the light-tail regime we consider, we henceforth restrict to the case where 𝐴 ∈ [0, 1] a.s. Moreover, 
when P(𝐴 = 1) > 0, and under suitable nondegeneracy conditions, [21, Theorem 1.7] shows that the moment generating function 
E[exp(𝑡𝑋)] is finite if and only if

E[𝑒𝑡𝐵𝟏𝐴=1] < 1.

In addition, [22, Lemma 5] establishes that

lim inf
𝑡→∞

− logP(𝑋 > 𝑡)
𝑡

= sup{𝑡 ∈ R∶E[𝑒𝑡𝑋 ] < ∞} = sup{𝑡 ∈ R∶E[𝑒𝑡𝐵𝟏𝐴=1] < 1} =∶ 𝑡0.

If 𝑡0 < ∞, the analysis for the case P(𝐴 = 1) > 0 is complete. Under P(𝐴 = 1) > 0, we have 𝑡0 = ∞ if and only if P(𝐵 = 0 ∣ 𝐴 = 1) = 1. 
In this degenerate scenario, one can show that

𝑋
𝑑
= �̃�𝑋 + �̃�, 𝑋 and (�̃�, �̃�) are independent,

where (�̃�, �̃�) 𝑑= (𝐴,𝐵) ∣ {𝐴 < 1}. Indeed, for a bounded continuous function 𝑓 we have
E[𝑓 (𝑋)] = E[𝑓 (𝐴𝑋 + 𝐵)] = E[𝑓 (𝐴𝑋 + 𝐵)𝟏𝐴=1] + E[𝑓 (𝐴𝑋 + 𝐵)𝟏𝐴<1] = E[𝑓 (𝑋)]P(𝐴 = 1) + E[𝑓 (�̃�𝑋 + �̃�)]P(𝐴 < 1),

which immediately implies that E[𝑓 (𝑋)] = 𝐸[𝑓 (�̃�𝑋 + �̃�)].
Therefore, to avoid these solved cases, we eventually assume that P(𝐴 ∈ [0, 1)) = 1.

Lemma 6.5.  Let 𝑔 be a local dependence measure of (𝐴,𝐵) with P(𝐴 ∈ [0, 1), 𝐵 ≥ 0) = 1 for 𝑓 ∈ 𝜌, 𝜌 > 0. Then:

(i) If 𝑔(1) <∞, then ess sup
(

𝐵
1−𝐴 ∣ 𝐴 < 1

)

= ∞.

(ii) If 𝜆∗ <∞, then 𝑔(1) < ∞.

Proof. 
(i) First we notice that since 𝐴 < 1 a.s., then ess sup

(

𝐵
1−𝐴 ∣ 𝐴 < 1

)

= ess sup
(

𝐵
1−𝐴

)

. Moreover,

lim
𝑡→∞

− logP
(

𝐵
1−𝐴 > 𝑡

)

𝑓 (𝑡)
= lim
𝑡→∞

− logP(𝐴𝑡 + 𝐵 > 𝑡)
𝑓 (𝑡)

= 𝑔(1) < ∞.

Then for sufficiently large 𝑡 we get that P( 𝐵
1−𝐴 > 𝑡) > 0, which proves the assertion.

(ii) Condition 𝜆∗ < ∞ implies that there exists 𝑦0 ∈ (0, 1) such that 𝑔(𝑦0) < ∞. Since 𝑔 is nonincreasing, we have 𝑔(1) ≤ 𝑔(𝑦0) <
∞. □

We will also need the following result, which was proved in [6, Lemma 6.10]. 

Lemma 6.6.  Suppose that 𝑋 𝑑
= 𝐴𝑋 + 𝐵, where 𝑋 and (𝐴,𝐵) are independent. For any bounded, uniformly continuous function 𝑓 on R

and any increasing positive integer sequence (𝑛𝑘)𝑘, a.s.,

lim sup
𝑚→∞

1
𝑚

𝑚
∑

𝑘=1
𝑓 (𝑋𝑛𝑘 ) ≥ E[𝑓 (𝑋)].

7. Tails of 𝑿 𝒅
= 𝑨𝑿 + 𝑩

Throughout this section, we assume that P(𝐴 ∈ [0, 1), 𝐵 ≥ 0) = 1 (and thus E[log𝐴] < 0) and E[max{log𝐵, 0}] < ∞, which implies 
that there exists a unique solution 𝑋 to

𝑋
𝑑
= 𝐴𝑋 + 𝐵, 𝑋 and (𝐴,𝐵) are independent.

Definition 7.1.  We say that a LDM𝜌
𝑓  function 𝑔 is admissible if either: there exists 𝜆 > 0 such that 𝜙𝜌(𝜆) > 𝜆, or 𝜆∗ = 0.

Assume that the nonnegative random variables 𝐴 and 𝐵 are PQD, 𝑎+ = ess sup(𝐴) ∈ (0, 1] and that 𝑓 (𝑡) = − logP(𝐵 > 𝑡) is regularly 
varying with index 𝜌 > 0. Then, by Theorem  4.2, 𝑔 exists and is given by 𝑔(𝑦) = max{1 − 𝑎+𝑦, 0}𝜌 for 𝑦 ≥ 0. In this case, one can 
verify that the admissibility condition holds if and only if 𝑎+ ∈ (0, 1) or 𝜌 > 1; see Theorem  4.2 (ii) for explicit expression for 𝜙𝜌 and 
𝜆∗.

The notion of admissibility is introduced to exclude those distributions of (𝐴,𝐵) and choices of the function 𝑓 for which our 
analytical framework fails; see in particular Lemma  7.4, where an asymptotic lower bound on −P(𝑋 > 𝑡) is established. However, 
even without admissibility, we are still able to obtain an asymptotic upper bound for − logP(𝑋 > 𝑡); see Lemmas  7.5 and 7.6. In 
Section 9, we present an example in which this upper bound is sharper than the bound following from [19, Theorem 5.1].

Recall that our standing assumption is that both 𝐴 and 𝐵 are almost surely nonnegative and nonzero with positive probability. 
Moreover, throughout this section, we assume that 𝑔 is LDM𝜌

𝑓  for random variables (𝐴,𝐵), where 𝑓 ∈ 𝜌 and 𝜌 > 0. The main 
result in this section is as follows.
11 
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Theorem 7.2.  Assume that 𝑔 is admissible. Then 𝑋 is ED𝑓 (𝜆∗), where 𝜆∗ ∈ [0,∞] is defined in (4).
The proof of Theorem  7.2 relies on several lemmas. Unless stated explicitly, we do not assume that 𝑔 is admissible in the 

statements of the following lemmas. 

Lemma 7.3.  If there exists 𝜅 > 0 such that 𝜅 < 𝜙𝜌(𝜅), then there exists a nonnegative ED𝑓 (𝜅)-random variable 𝑍𝜅 such that 

𝑍𝜅 ≥𝑠𝑡 𝐴𝑍𝜅 + 𝐵, 𝑍𝜅 and (𝐴,𝐵) are independent. (12)

Proof.  Let 𝑍0 be a nonnegative random variable independent of (𝐴,𝐵), with the distribution defined by (recall that, without loss 
of generality, we assumed that 𝑓 is strictly increasing and continuous)

P(𝑍0 > 𝑡) = exp(−𝜅𝑓 (𝑡)), 𝑡 > 0.

Clearly, 𝑍0 is ED𝑓 (𝜅). Thus, by Theorem  5.1, we have

lim
𝑡→∞

− logP(𝐴𝑍0 + 𝐵 > 𝑡)
𝑓 (𝑡)

= 𝜙𝜌(𝜅) > 𝜅 = lim
𝑡→∞

− logP(𝑍0 > 𝑡)
𝑓 (𝑡)

,

which implies that there exists 𝑀 > 0 such that 
∀ 𝑡 ≥𝑀 P(𝑍0 > 𝑡) ≥ P(𝐴𝑍0 + 𝐵 > 𝑡). (13)

Let 𝑍𝜅 be a random variable, independent of (𝐴,𝐵), with the distribution defined by
P(𝑍𝜅 ∈ ⋅) = P(𝑍0 ∈ ⋅ ∣ 𝑍0 > 𝑀).

For 𝑡 ≥𝑀 , we obtain

P(𝐴𝑍𝜅 + 𝐵 > 𝑡) = P(𝐴𝑍0 + 𝐵 > 𝑡 ∣ 𝑍0 > 𝑀) ≤
P(𝐴𝑍0 + 𝐵 > 𝑡)
P(𝑍0 > 𝑀)

(13)
≤

P(𝑍0 > 𝑡)
P(𝑍0 > 𝑀)

= P(𝑍0 > 𝑡 ∣ 𝑍0 > 𝑀) = P(𝑍𝜅 > 𝑡),

while for 𝑡 < 𝑀 , we have P(𝑍𝜅 > 𝑡) = 1 ≥ P(𝐴𝑍𝜅 + 𝐵 > 𝑡). Thus, (12) holds true.
For 𝑡 ≥𝑀 , we have

− logP(𝑍𝜅 > 𝑡)
𝑓 (𝑡)

=
− logP(𝑍0 > 𝑡 ∣ 𝑍0 > 𝑀)

𝑓 (𝑡)
=

− logP(𝑍0 > 𝑡) + logP(𝑍0 > 𝑀)
𝑓 (𝑡)

𝑡→∞
⟶ 𝜅. □

Lemma 7.4.  If 𝑔 is admissible then, lim inf 𝑡→∞
(

−𝑓 (𝑡)−1 logP(𝑋 > 𝑡)
)

≥ 𝜆∗.

Proof.  The inequality holds trivially in the case 𝜆∗ = 0 and in the case where 𝑋 has a bounded support (so that ess sup
(

𝐵
1−𝐴 ∣ 𝐴 < 1

)

<
∞, recall Lemma  6.4), in which we have 𝜆∗ = ∞.

Assume that 𝜆∗ ∈ (0,∞] and ess sup
(

𝐵
1−𝐴 ∣ 𝐴 < 1

)

= ∞, which, by Lemma  6.4, implies that P(𝑋 > 𝑡) > 0 for any 𝑡 ∈ R. Moreover, 
since 𝜆∗ > 0, the admissibility of 𝑔 ensures that there exists 𝜅 > 0 such that 𝜅 < 𝜙𝜌(𝜅). Let 𝑍𝜅 be a random variable whose distribution 
is constructed in Lemma  7.3. Let 𝑋0 = 𝑍𝜅 . From (12), we obtain 𝑋1 ≤𝑠𝑡 𝑋0, which, by Corollary  6.3, implies

∀ 𝑡 ∈ R
− logP(𝑋 > 𝑡)

𝑓 (𝑡)
≥

− logP(𝑋0 > 𝑡)
𝑓 (𝑡)

.

Taking lim inf 𝑡→∞ on both sides, we get

lim inf
𝑡→∞

− logP(𝑋 > 𝑡)
𝑓 (𝑡)

≥ lim inf
𝑡→∞

− logP(𝑋0 > 𝑡)
𝑓 (𝑡)

= 𝜅.

Therefore,

lim inf
𝑡→∞

− logP(𝑋 > 𝑡)
𝑓 (𝑡)

≥ sup
{

𝜅 > 0∶𝜙𝜌(𝜅) > 𝜅
}

.

By Lemma  3.8, we have
{

𝑐 ≥ 0∶𝜙𝜌(𝑐) ≥ 𝑐
}

=

{

[0, 𝜆∗], 𝜆∗ < ∞,
[0,∞), 𝜆∗ = ∞.

However, by Lemma  3.6(v), the set {𝑐 ≥ 0∶𝜙𝜌(𝑐) = 𝑐
} contains at most two elements. Therefore,

sup
{

𝜅 > 0∶𝜙𝜌(𝜅) > 𝜅
}

= sup
{

𝑐 ≥ 0∶𝜙𝜌(𝑐) ≥ 𝑐
}

= 𝜆∗. □

Lemma 7.5.  If 𝑠 = lim sup𝑡→∞
(

−𝑓 (𝑡)−1 logP(𝑋 > 𝑡)
)

<∞, then 𝑠 ≤ 𝜆∗.

Proof.  For all 𝑡 > 0 and 𝑦 > 0, we have 
P(𝑋 > 𝑡) = P(𝐴𝑋 + 𝐵 > 𝑡) ≥ P(𝐴𝑋 + 𝐵 > 𝑡,𝑋 > 𝑡𝑦)

≥ P(𝐴𝑡𝑦 + 𝐵 > 𝑡,𝑋 > 𝑡𝑦) = P(𝐴𝑡𝑦 + 𝐵 > 𝑡)P(𝑋 > 𝑡𝑦).
(14)
12 
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Thus, for 𝑦 > 0,

𝑠 ≤ lim sup
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡) − logP(𝑋 > 𝑡𝑦)
𝑓 (𝑡)

≤ lim sup
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑓 (𝑡)

+ lim sup
𝑡→∞

− logP(𝑋 > 𝑡𝑦)
𝑓 (𝑡𝑦)

𝑓 (𝑡𝑦)
𝑓 (𝑡)

= 𝑔(𝑦) + 𝑠 𝑦𝜌.

Now, using the assumption that 𝑠 < ∞, we obtain 𝑠(1 − 𝑦𝜌) ≤ 𝑔(𝑦). Therefore

𝑠 ≤ inf
𝑦∈(0,1)

{

𝑔(𝑦)
1 − 𝑦𝜌

}

= 𝜆∗. □

Lemma 7.6.  If 𝜆∗ <∞, then lim sup𝑡→∞
(

−𝑓 (𝑡)−1 logP(𝑋 > 𝑡)
)

< ∞.

Proof.  The assumption 𝜆∗ < ∞ implies that there exists 𝑦 ∈ (0, 1) such that 𝑔(𝑦) <∞. Fix 𝜂 > 0. By the definition of 𝑔, we conclude 
that

∃𝑀 > 0 ∀ 𝑡 ≥𝑀
− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)

𝑓 (𝑡)
≤ 𝑔(𝑦) + 𝜂.

Using (14), we obtain for 𝑡 > 0 and 𝑘 = 0, 1,…,

− logP(𝑋 > 𝑡𝑦𝑘) + logP(𝑋 > 𝑡𝑦𝑘+1) ≤ − logP(𝐴𝑡𝑦𝑘+1 + 𝐵 > 𝑡𝑦𝑘)

≤ 𝑓 (𝑡𝑦𝑘)(𝑔(𝑦) + 𝜂),

provided 𝑡𝑦𝑘 ≥𝑀 . Summing these inequalities for 𝑘 = 0,… , 𝑛 ∈ N, we get 

− logP(𝑋 > 𝑡) + logP(𝑋 > 𝑡𝑦𝑛+1) ≤ (𝑔(𝑦) + 𝜂)
𝑛
∑

𝑘=0
𝑓 (𝑡𝑦𝑘), (15)

provided 𝑡𝑦𝑘 ≥𝑀 for 𝑘 = 0,… , 𝑛. Set 𝑛 = 𝑛𝑡 =
⌊

log(𝑀𝑡 )∕ log(𝑦)
⌋

. It is easy to verify that 

𝑡𝑦𝑛𝑡 ≥𝑀 ≥ 𝑡𝑦𝑛𝑡+1. (16)

Thus, (15) implies that

lim sup
𝑡→∞

{

− logP(𝑋 > 𝑡)
𝑓 (𝑡)

+
logP(𝑋 > 𝑡𝑦𝑛𝑡+1)

𝑓 (𝑡)

}

≤ (𝑔(𝑦) + 𝜂) lim sup
𝑡→∞

𝑛𝑡
∑

𝑘=0

𝑓 (𝑡𝑦𝑘)
𝑓 (𝑡)

.

Using Potter bounds, Lemma  2.1 (iv), for 𝐶 = 2 and 𝛿 = 𝜌∕2, we conclude that for sufficiently large 𝑡,
𝑓 (𝑡𝑦𝑘)
𝑓 (𝑡)

≤ 2𝑦𝑘𝜌∕2.

Since 𝑦 ∈ (0, 1), the series ∑∞
𝑘=0

𝑓 (𝑡𝑦𝑘)
𝑓 (𝑡)  is finite as 𝑡 → ∞. Finally, we observe that

lim sup
𝑡→∞

− logP(𝑋 > 𝑡)
𝑓 (𝑡)

+ lim inf
𝑡→∞

logP(𝑋 > 𝑡𝑦𝑛𝑡+1)
𝑓 (𝑡)

≤ lim sup
𝑡→∞

{

− logP(𝑋 > 𝑡)
𝑓 (𝑡)

+
logP(𝑋 > 𝑡𝑦𝑛𝑡+1)

𝑓 (𝑡)

}

< ∞.

By (16), we obtain P(𝑋 > 𝑡𝑦𝑛𝑡+1) ≥ P(𝑋 > 𝑀). Since 𝜆∗ < ∞, by Lemma  6.5, we have ess sup
(

𝐵
1−𝐴 ∣ 𝐴 < 1

)

= ∞, which, by Lemma 
6.4, implies that ess sup(𝑋) = ∞. Therefore P(𝑋 > 𝑀) > 0 and the second term on the left-hand side above is 0. This concludes the 
proof. □

Proof of Theorem  7.2.  If 𝜆∗ = ∞, then 𝑋 is ED𝑓 (𝜆∗) by Lemma  7.4. If 𝜆∗ < ∞, then Lemma  7.4 gives the lower bound, which, by 
Lemma  7.6, is the same as the upper bound of Lemma  7.5. □

8. Upper envelope for (𝑿𝒏)𝒏

Similarly as in the previous section, we assume that (𝐴,𝐵) satisfy P(𝐴 ∈ [0, 1), 𝐵 ≥ 0) = 1 and E[max{log𝐵, 0}] < ∞ and that 
𝑋 is the unique solution 𝑋 to (1). Let (𝐴𝑛, 𝐵𝑛)𝑛≥1 be a sequence of independent copies of (𝐴,𝐵). We set 𝑋0 = 0 and consider the 
sequence 𝑋𝑛 = 𝐴𝑛𝑋𝑛−1 + 𝐵𝑛 for 𝑛 ≥ 1.

In view of Lemma  2.1(v), without loss of generality, we assume that 𝑓 is continuous and strictly increasing so that 𝑓−1 is well 
defined. 

Theorem 8.1.  Let 𝑔 be an admissible LDM𝜌
𝑓  for (𝐴,𝐵), where 𝑓 ∈ 𝜌 and 𝜌 > 0. Assume that 𝜆∗ ∈ (0,∞). Then, almost surely

lim sup
𝑛→∞

𝑋𝑛

𝑓−1(log 𝑛)
= (𝜆∗)−1∕𝜌.

All lemmas in this section implicitly make the same assumptions as those in Theorem  8.1.
13 
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Lemma 8.2.  Almost surely, we have

lim sup
𝑛→∞

𝑋𝑛

𝑓−1(log 𝑛)
≤ (𝜆∗)−1∕𝜌.

Proof.  Fix 𝜖 > 0. There exists 𝛿 ∈ (0, 1) such that 𝛾 ∶= (1 − 𝛿)(1 + 𝜖) > 1. By Theorem  7.2, 𝑋 is ED𝑓 (𝜆∗). Since 𝜆∗ < ∞, there exists 
𝑀 > 0 such that

∀ 𝑡 ≥𝑀 P(𝑋 > 𝑡) ≤ 𝑒−𝜆
∗𝑓 (𝑡)(1−𝛿)

Define

𝑡𝑛 = 𝑓−1
(

(1 + 𝜖) log 𝑛
𝜆∗

)

, 𝑛 ∈ N.

Since 𝐵1 = 𝑋1 ≥𝑠𝑡 𝑋0 = 0, Corollary  6.3 implies that for all 𝑛 ∈ N, it holds that 𝑋 ≥𝑠𝑡 𝑋𝑛. As 𝑡𝑛 → ∞, for sufficiently large 𝑛, we 
obtain

P
(

𝑋𝑛 > 𝑡𝑛
)

≤ P(𝑋 > 𝑡𝑛) ≤ 𝑒−(1+𝜖)(1−𝛿) log 𝑛 = 𝑛−𝛾 .

Since 𝛾 > 1, we conclude that
∞
∑

𝑛=1
P
(

𝑋𝑛 > 𝑡𝑛
)

<∞.

By the Borel–Cantelli Lemma, we get that almost surely,

lim sup
𝑛→∞

𝑋𝑛

𝑓−1
(

(1+𝜖) log 𝑛
𝜆∗

) ≤ 1.

By Lemma  2.1 (iv), 𝑓−1 is regularly varying with index 1𝜌 , and therefore,

𝑓−1
(

(1 + 𝜖) log 𝑛
𝜆∗

)

∼
( 1 + 𝜖
𝜆∗

)

1
𝜌 𝑓−1(log 𝑛).

Hence, almost surely,

lim sup
𝑛→∞

𝑋𝑛

𝑓−1(log 𝑛)
≤
( 1 + 𝜖
𝜆∗

)

1
𝜌 .

By letting 𝜖 → 0+, we obtain the assertion. □

In the following lemma, we assume that 𝑋0 is arbitrary but independent of (𝐴𝑛, 𝐵𝑛)𝑛∈N. 

Lemma 8.3.  For any 𝛿 > 0, there exist 𝑦∗ ∈ (0, 1) and �̃� > 0 such that if 𝑡𝑦𝑛−1∗ ≥ �̃� , then, a.s.,
𝑃 (𝑋𝑛 > 𝑡 ∣ 𝑋0) ≥ 𝟏(𝑡𝑦𝑛∗ ,∞)(𝑋0) exp(−(1 + 𝛿)𝜆∗𝑓 (𝑡)).

Before proving the above result, we first present a simple lemma.

Lemma 8.4.  For all 𝑛 ≥ 1, 𝑦 > 0 and 𝑡 > 0 we have, a.s.,

P(𝑋𝑛 > 𝑡 ∣ 𝑋0) ≥ 𝟏(𝑦𝑛𝑡,∞)(𝑋0)
𝑛−1
∏

𝑘=0
P(𝑡 𝑦𝑘𝐴𝑦 + 𝐵 > 𝑡 𝑦𝑘).

Proof.  Notice that
P(𝑋𝑛 > 𝑡 ∣ 𝑋0) ≥ P(𝐴𝑛𝑋𝑛−1 + 𝐵𝑛 > 𝑡,𝑋𝑛−1 > 𝑡𝑦 ∣ 𝑋0) ≥ P(𝑡 𝐴𝑛𝑦 + 𝐵𝑛 > 𝑡,𝑋𝑛−1 > 𝑡𝑦 ∣ 𝑋0)

= P(𝑡 𝐴𝑦 + 𝐵 > 𝑡)P(𝑋𝑛−1 > 𝑡𝑦 ∣ 𝑋0).

We obtain the assertion by iterating the above inequality. □

Now we are ready to present the proof of Lemma  8.3.

Proof of Lemma  8.3.  Fix 𝛼 > 0 and let 𝑦∗ ∈ (0, 1) be such that 

𝜆∗ ≤
𝑔(𝑦∗)
1 − 𝑦𝜌∗

≤ 𝜆∗(1 + 𝛼). (17)

Such 𝑦∗ exists as a consequence of the definition of 𝜆∗ = inf𝑦∈(0,1) {𝑔(𝑦)∕(1 − 𝑦𝜌)} and the fact that 𝜆∗ > 0. Clearly 𝑔(𝑦∗) > 0. By 
Lemma  8.4, we have, a.s.,

P(𝑋𝑛 > 𝑡 ∣ 𝑋0) ≥ 𝟏(𝑦𝑛∗𝑡,∞)(𝑋0)
𝑛−1
∏

𝑘=0
P
(

𝑡𝑦𝑘∗𝐴𝑦∗ + 𝐵 > 𝑡𝑦𝑘∗
)

.

14 
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By the definition of 𝑔, there exists 𝑀 > 0 such that

∀ 𝑡 ≥𝑀 P(𝐴𝑡𝑦∗ + 𝐵 > 𝑡) ≥ exp(−(1 + 𝛼)𝑔(𝑦∗)𝑓 (𝑡)).

Thus, if 𝑡𝑦𝑘∗ ≥𝑀 for 𝑘 = 0,… , 𝑛 − 1, (which is equivalent to 𝑡𝑦𝑛−1∗ ≥𝑀), we obtain 

P(𝑋𝑛 > 𝑡 ∣ 𝑋0) ≥ 𝟏(𝑦𝑛∗𝑡,∞)(𝑋0) exp

(

−(1 + 𝛼)𝑔(𝑦∗)
𝑛−1
∑

𝑘=0
𝑓 (𝑡𝑦𝑘∗)

)

. (18)

Fix 𝜂 in (0, 𝜌). By Lemma  2.1 (iii), there exists 𝑀1 > 0 such that for all 𝑧 ∈ (0, 1] and for all 𝑡 > 0 such that 𝑡𝑧 ≥𝑀1, it holds that
𝑓 (𝑡𝑧)
𝑓 (𝑡)

≤ (1 + 𝛼)𝑧𝜌−𝜂

Assume that 𝑡𝑦𝑛−1∗ ≥𝑀1. Then for 𝑘 = 0,… , 𝑛 − 1, we have 𝑡𝑦𝑘∗ ≥ 𝑡𝑦𝑛−1∗ ≥𝑀1. Therefore, 

𝑓 (𝑡𝑦𝑘∗) ≤ (1 + 𝛼)𝑦𝑘(𝜌−𝜂)∗ 𝑓 (𝑡), 𝑘 = 0,… , 𝑛 − 1. (19)

Notice that for all 𝑛 ∈ N and sufficiently small 𝜂, we have 
1 − 𝑦𝑛(𝜌−𝜂)∗

1 − 𝑦𝜌−𝜂∗
≤ 1

1 − 𝑦𝜌−𝜂∗
≤ 1 + 𝛼

1 − 𝑦𝜌∗
, (20)

where the first inequality above follows from the fact that 𝑦∗ ∈ (0, 1) and the latter is true for sufficiently small 𝜂. Take 𝜂 ∈ (0, 𝜌)
satisfying the condition above.

Define �̃� = max
{

𝑀1,𝑀
} and assume 𝑡𝑦𝑛−1∗ ≥ �̃� . Then, by (18), (19), (20) and (17), we obtain

P(𝑋𝑛 > 𝑡 ∣ 𝑋0)
(19)
≥ 𝟏(𝑦𝑛∗𝑡,∞)(𝑋0) exp

(

−(1 + 𝛼)2𝑔(𝑦∗)
𝑛−1
∑

𝑘=0
𝑦𝑘(𝜌−𝜂)∗ 𝑓 (𝑡)

)

= 𝟏(𝑦𝑛∗𝑡,∞)(𝑋0) exp

(

−(1 + 𝛼)2𝑔(𝑦∗)
1 − 𝑦𝑛(𝜌−𝜂)∗

1 − 𝑦𝜌−𝜂∗
𝑓 (𝑡)

)

(20)
≥ 𝟏(𝑦𝑛∗𝑡,∞)(𝑋0) exp

(

−(1 + 𝛼)3𝑔(𝑦∗)
1

1 − 𝑦𝜌∗
𝑓 (𝑡)

) (17)
≥ 𝟏(𝑦𝑛∗𝑡,∞)(𝑋0) exp

(

−(1 + 𝛼)4𝜆∗𝑓 (𝑡)
)

.

Since, for all 𝛿 > 0, it holds that 1 + 𝛿 is of the form (1 + 𝛼)4 for some 𝛼 > 0, this concludes the proof. □

Lemma 8.5.  Let �̃�, 𝜆∗, 𝜖 > 0 and 𝑦∗ ∈ (0, 1). Suppose that 𝑓 is regularly varying with index 𝜌 > 0. There exists a strictly increasing 
sequence (𝑘𝑛)∞𝑛=1 of positive integers and a positive constant 𝑐 > �̃�𝑦∗ such that, for 𝑛 ≥ 1, 

𝑐 ≥ 𝑓−1
( log 𝑘𝑛+1
𝜆∗(1 + 𝜖)

)

𝑦𝑘𝑛+1−𝑘𝑛∗ > �̃�𝑦∗. (21)

Moreover, for any 𝛾 ∈ (0, 1), there exists 𝐾 > 0 such that for all 𝑛 ≥ 1, 

𝑘𝛾𝑛 ≤ 𝐾𝑛. (22)

Proof.  Denote 𝐻(𝑡) = 𝑓 (1∕𝑡). By definition, 𝑓 is regularly varying (at ∞) with index 𝜌 > 0 if and only if 𝐻 is regularly varying at 
0 with index −𝜌, [20, page 8]. Since 𝑓−1(𝑡) = 1∕𝐻−1(𝑡), (21) can be rewritten as

𝐻−1
( log 𝑘𝑛+1
𝜆∗(1 + 𝜖)

)(

1
𝑦∗

)𝑘𝑛+1−𝑘𝑛−1
< 1
�̃�

and 𝐻−1
( log 𝑘𝑛+1
𝜆∗(1 + 𝜖)

)(

1
𝑦∗

)𝑘𝑛+1−𝑘𝑛
≥ 1
𝑐
,

where 𝑐−1 < (�̃�𝑦∗)−1. The existence of a sequence (𝑘𝑛)∞𝑛=1 satisfying the two above conditions and (22) was established in [6, Lemma 
A.1]. □

We will use the following version of the Borel–Cantelli lemma, which can be found in [23, Theorem 5.1.2]. 

Lemma 8.6.  Suppose that (𝑛)𝑛≥0 is a filtration such that 0 = {∅, 𝛺}. Assume that 𝐴𝑛 ∈ 𝑛 for all 𝑛 ≥ 0. Then,

lim sup
𝑛→∞

𝐴𝑛 =

{ ∞
∑

𝑛=1
P(𝐴𝑛 ∣ 𝑛−1) = ∞

}

.

Lemma 8.7 (Kronecker’s Lemma). Assume that 𝑎𝑛 ↑ ∞. If ∑∞
𝑛=1 𝑥𝑛∕𝑎𝑛 converges, then lim𝑛→∞ 𝑎−1𝑛

∑𝑛
𝑚=1 𝑥𝑚 = 0. Equivalently, if 

lim𝑛→∞ 𝑎−1𝑛
∑𝑛
𝑚=1 𝑥𝑚 ≠ 0, then ∑∞

𝑛=1 𝑥𝑛∕𝑎𝑛 does not converge.

Lemma 8.8.  Almost surely, we have

lim sup
𝑋𝑛

𝑓−1(log 𝑛)
≥ (𝜆∗)−1∕𝜌.
𝑛→∞
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Proof.  Fix 𝜖 > 0 and define

𝑡𝑛 = 𝑓−1
(

log 𝑛
𝜆∗(1 + 𝜖)

)

.

Let (𝑛)𝑛≥0 denote the natural filtration of the sequence (𝑋𝑛)𝑛≥0. By Lemma  8.6, it suffices to show that for a strictly increasing 
sequence of positive integers (𝑘𝑛)𝑛≥1, we have, a.s.,

∞
∑

𝑛=1
P(𝑋𝑘𝑛 > 𝑡𝑘𝑛 ∣ 𝑘𝑛−1 ) = ∞,

which implies that P(lim sup𝑛→∞ 𝐴𝑘𝑛 ) = 1. Since lim sup𝑛→∞ 𝐴𝑛 ⊃ lim sup𝑛→∞ 𝐴𝑘𝑛 , this would prove the assertion.
Since (𝑋𝑘𝑛 )𝑛≥1 is a Markov chain, we have

P(𝑋𝑘𝑛+1 > 𝑡𝑘𝑛+1 ∣ 𝑘𝑛 ) = P(𝑋𝑘𝑛+1 > 𝑡𝑘𝑛+1 ∣ 𝑋𝑘𝑛 ).

By Lemma  8.3, applied to the sequence (𝑌𝑛)𝑛∈N∪{0} defined by 𝑌𝑖 = 𝑋𝑘𝑛+𝑖, we obtain that for any 𝛿 > 0, there exist 𝑦∗ ∈ (0, 1) and 
�̃� > 0 such that 

P(𝑋𝑘𝑛+1 > 𝑡 ∣ 𝑋𝑘𝑛 ) ≥ 𝟏
(𝑡𝑦

𝑘𝑛+1−𝑘𝑛
∗ ,∞)

(𝑋𝑘𝑛 ) exp(−(1 + 𝛿)𝜆
∗𝑓 (𝑡)), (23)

provided 𝑡𝑦𝑘𝑛+1−𝑘𝑛−1∗ ≥ �̃� .
We use the sequence (𝑘𝑛)𝑛≥1 from Lemma  8.5. The condition 𝑡𝑘𝑛+1𝑦

𝑘𝑛+1−𝑘𝑛−1
∗ ≥ �̃� is satisfied as a consequence of the lower bound 

in (21). Therefore, using (23) and the upper bound in (21), we obtain, a.s.,

P(𝑋𝑘𝑛+1 > 𝑡𝑘𝑛+1 ∣ 𝑋𝑘𝑛 ) ≥ 𝟏(𝑐,∞)(𝑋𝑘𝑛 ) exp
(

− 1+𝛿
1+𝜖 log 𝑘𝑛+1

)

= 𝟏(𝑐,∞)(𝑋𝑘𝑛 )
1

𝑘𝛾𝑛+1
,

where 𝛾 ∶= (1 + 𝛿)∕(1 + 𝜖). By decreasing 𝛿 if necessary, we ensure that 𝛾 < 1. Our goal is to show that ∑𝑛≥1 𝟏(𝑐,∞)(𝑋𝑘𝑛 )𝑘
−𝛾
𝑛+1 diverges 

a.s. By Lemma  8.7, applied to 𝑎𝑛 = 𝑘𝛾𝑛+1 and 𝑥𝑛 = 𝟏(𝑐,∞)(𝑋𝑘𝑛 ), to meet this goal, it suffices to show that, a.s., 

lim sup
𝑚→∞

1
𝑘𝛾𝑚+1

𝑚
∑

𝑛=1
𝟏(𝑐,∞)(𝑋𝑘𝑛 ) > 0. (24)

From (22), we have 𝑘𝛾𝑛 ≤ 𝐾𝑛 for some 𝐾 > 0 and all 𝑛 ≥ 1. Therefore, a.s.,

lim sup
𝑚→∞

1
𝑘𝛾𝑚+1

𝑚
∑

𝑛=1
𝟏(𝑐,∞)(𝑋𝑘𝑛 ) ≥ lim sup

𝑚→∞

𝐾−1

𝑚 + 1

𝑚
∑

𝑛=1
𝟏(𝑐,∞)(𝑋𝑘𝑛 ).

Let 𝑓𝑐 ∶R → R be defined by 𝑓𝑐 (𝑥) = (𝑥 − 𝑐)∕𝑐𝟏[𝑐,2𝑐](𝑥) + 𝟏(2𝑐,∞)(𝑥). Since 𝑓𝑐 is bounded and uniformly continuous on R, and since 
𝟏(𝑐,∞) ≥ 𝑓𝑐 ≥ 𝟏(2𝑐,∞), by Lemma  6.6 we have

lim sup
𝑚→∞

1
𝑚 + 1

𝑚
∑

𝑛=1
𝟏(𝑐,∞)(𝑋𝑘𝑛 ) ≥ lim sup

𝑚→∞

1
𝑚 + 1

𝑚
∑

𝑛=1
𝑓𝑐 (𝑋𝑘𝑛 ) ≥ E[𝑓𝑐 (𝑋)] ≥ P(𝑋 > 2𝑐).

Since P(𝑋 > 𝑡) > 0 for any 𝑡 ∈ R (recall that under 𝜆∗ < ∞, by Lemmas  6.4 and 6.5, we have ess sup(𝑋) = ∞), (24) follows. Therefore, 
by Lemma  8.6, for every 𝜖 > 0, we have almost surely

lim sup
𝑛→∞

𝑋𝑛

𝑓−1( log 𝑛
𝜆∗(1+𝜖) )

≥ 1.

Proceeding as in the proof of Lemma  8.2, we obtain

lim sup
𝑛→∞

𝑋𝑛

𝑓−1(log 𝑛)
≥
(

1
𝜆∗(1 + 𝜖)

)
1
𝜌
.

The proof is completed by letting 𝜖 → 0+. □

Proof of Theorem  8.1.  This follows directly from Lemmas  8.2 and 8.8. □

9. Example

In this section, we present a family of distributions of (𝐴,𝐵), which admit an explicit LDM, but is not PQD. Thus, allowing us 
to illustrate our results on explicit example outside PQD pairs. This family is indexed by an absolutely continuous, nondecreasing 
function 𝛼∶ [0, 1) ↦ [1,∞).

Let 𝜌 > 0, and consider a random vector (𝐴,𝐵) whose law consists of a unique atom and an absolutely continuous component. 
Specifically, assume that P(𝐴 = 0, 𝐵 = 1) = 1 − 𝑒−1, and that

P(𝐴 > 𝑎,𝐵 > 𝑏) = exp −𝛼(𝑎)𝛽(𝑏) , 𝑎 ∈ [0, 1), 𝑏 ≥ 1,
( )
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with

𝛽(𝑏) = 𝑏𝜌 and ess sup(𝐴) = 1.

Since 𝑒−1 = P(𝐴 > 0, 𝐵 > 1) = exp(−𝛼(0)𝛽(1)), we deduce that 𝛼(0) = 1. In addition, one may verify that 𝛼(1−) = ∞, that 
𝛼(𝑎) = − logP(𝐴 > 𝑎) for 𝑎 ≥ 0 and that logP(𝐵 > 𝑏) = −𝑏𝜌 for 𝑏 ≥ 1.

Our goal is to compute the LDM𝜌
𝑓  function for (𝐴,𝐵) with 𝑓 (𝑡) = − logP(𝐵 > 𝑡) = 𝑡𝜌. Note that 𝐴 and 𝐵 are not positively quadrant 

dependent, so that the results of Section 4 do not apply. Indeed, if (𝐴,𝐵) were PQD, then we would have for 𝑎 ∈ [0, 1) and 𝑏 ≥ 1,

exp(−𝛼(𝑎)𝑏𝜌) = P(𝐴 > 𝑎,𝐵 > 𝑏) ≥ P(𝐴 > 𝑎)P(𝐵 > 𝑏) = exp(−𝛼(𝑎) − 𝑏𝜌),

which implies that for all 𝑎 ∈ [0, 1) and all 𝑏 > 1 it holds that 𝛼(𝑎) ≤ 𝑏𝜌∕(𝑏𝜌 − 1). By letting 𝑏 ↑ ∞ we obtain 𝛼 ≡ 1, but such 𝛼 does 
not define a valid probability distribution.

By Lemma  3.3(i), we have 𝑔(𝑦) = 0 for 𝑦 > 1. Fix 𝑦 ∈ [0, 1) and consider 𝑡 > 1∕(1 − 𝑦). Then,

P(𝐴𝑡𝑦 + 𝐵 > 𝑡) = ∫

1

0 ∫

∞

𝑡(1−𝑦𝑎)

𝜕2 exp(−𝛼(𝑎)𝛽(𝑏))
𝜕𝑎 𝜕𝑏

d𝑏 d𝑎 = −∫

1

0

𝜕 exp(−𝛼(𝑎)𝛽(𝑏))
𝜕𝑎

|

|

|𝑏=𝑡(1−𝑦𝑎)
d𝑎

= 𝑡𝜌 ∫

1

0
(1 − 𝑦𝑎)𝜌𝑒−𝑡

𝜌(1−𝑦𝑎)𝜌𝛼(𝑎)𝛼′(𝑎)d𝑎 = 𝑡𝜌 ∫

∞

1
(1 − 𝑦𝛼−1(𝑢))𝜌𝑒−𝑡

𝜌(1−𝑦𝛼−1(𝑢))𝜌𝑢d𝑢,

where the substitution 𝑢 = 𝛼(𝑎) was used (with 𝛼−1 denoting the generalized inverse of 𝛼). Since (1 − 𝑦)𝜌 ≤ (1 − 𝑦𝛼−1(𝑢))𝜌 ≤ 1, we 
obtain

(1 − 𝑦)𝜌𝑡𝜌 ∫

∞

1
𝑒−𝑡

𝜌(1−𝑦𝛼−1(𝑢))𝜌𝑢d𝑢 ≤ P(𝐴𝑡𝑦 + 𝐵 > 𝑡) ≤ 𝑡𝜌 ∫

∞

1
𝑒−𝑡

𝜌(1−𝑦𝛼−1(𝑢))𝜌𝑢d𝑢.

By the Laplace method, it follows that 𝑔 exists and equals

𝑔(𝑦) = lim
𝑡→∞

− logP(𝐴𝑡𝑦 + 𝐵 > 𝑡)
𝑡𝜌

= inf
𝑢∈[1,∞)

{(1 − 𝑦𝛼−1(𝑢))𝜌𝑢} = inf
𝑎∈[0,1)

{(1 − 𝑦𝑎)𝛾𝛼(𝑎)} , 𝑦 ∈ [0, 1).

We obtain 𝑔(0) = 𝛼(0) = 1 and

𝜙𝜌(𝜆) = inf
𝑦>0

{𝑦𝜌𝜆 + 𝑔(𝑦)} =

⎧

⎪

⎨

⎪

⎩

min{1, 𝜆}, 𝜌 ∈ (0, 1],

min
{

inf𝑎∈[0,1)
{

(

𝛼(𝑎)1∕(1−𝜌) + 𝑎𝜌∕(𝜌−1)𝜆1∕(1−𝜌)
)1−𝜌

}

, 𝜆
}

, 𝜌 > 1.

Moreover, one can easily show that

𝜆∗ = inf
𝑦∈(0,1)

{

𝑔(𝑦)
1 − 𝑦𝜌

}

= inf
𝑎∈[0,1)

inf
𝑦∈(0,1)

{

𝛼(𝑎)(1 − 𝑦𝑎)𝜌

1 − 𝑦𝜌

}

=

{

inf𝑎∈[0,1) {𝛼(𝑎)} = 1, 𝜌 ∈ (0, 1],
inf𝑎∈[0,1)

{

𝛼(𝑎)(1 − 𝑎𝜌∕(𝜌−1))𝜌−1
}

, 𝜌 > 1.

We note that, in either case, 𝑔 is not admissible. Consider the case 𝜌 > 1. Then, if 𝑋 is a solution to (1), by Lemmas  7.5 and 7.6 
(which do not require admissibility), we obtain 

lim inf
𝑡→∞

logP(𝑋 > 𝑡)
𝑡𝜌

≥ − inf
𝑎∈[0,1)

{

𝛼(𝑎)
(

1 − 𝑎𝜌∕(𝜌−1)
)𝜌−1} . (25)

We are going to relate this result to the findings of [19]. In [19, Theorem 5.1], it was shown that 

lim inf
𝑡→∞

logP(𝑋 > 𝑡)
ℎ(𝑡)

≥ −
(

𝑠
(

1 −
(

1 − 1
𝑠

)𝛾∕(𝛾−1)))𝛾−1
, (26)

where

ℎ(𝑡) = inf
𝑥≥1

{

−𝑥 logP
(

𝐴 > 1 − 1
𝑥
, 𝐵 > 𝑡

𝑥

)}

,

𝛾 is the index of regular variation of ℎ and 𝑠 = lim𝑡→∞ 𝜎(𝑡), where 𝜎 is any function satisfying

ℎ(𝑡) = −𝜎(𝑡) logP
(

𝐴 > 1 − 1
𝜎(𝑡)

, 𝐵 > 𝑡
𝜎(𝑡)

)

+ 𝑜(1), 𝑡 → ∞.

In our setting, for 𝑡 > 1 one can write

ℎ(𝑡) = inf
𝑥∈[1,𝑡]

{

𝑥 𝛼
(

1 − 1
𝑥

)

𝛽
( 𝑡
𝑥

)}

= 𝑡𝜌 inf
𝑥∈[1,𝑡]

{

𝑥1−𝜌 𝛼
(

1 − 1
𝑥

)}

.

Now, we consider two cases:

(a) 𝛼(𝑎) = (1 − 𝑎)1−𝜌 with 𝜌 > 1,
(b) 𝛼(𝑎) = exp(𝑎∕(1 − 𝑎)) with 𝜌 > 2.
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In case (a) one immediately obtains ℎ(𝑡) = 𝑡𝜌 for 𝑡 > 1. In this situation, one can take 𝜎(𝑡) = min{𝑠, 𝑡} for any 𝑠 ≥ 1. Consequently, 
𝛾 = 𝜌 and (26) becomes (after taking sup𝑠≥1 of both sides)

lim inf
𝑡→∞

logP(𝑋 > 𝑡)
𝑡𝜌

≥ − inf
𝑠≥1

{

[

𝑠
(

1 −
(

1 − 1
𝑠

)𝜌∕(𝜌−1))]𝜌−1
}

.

A direct calculation shows that this lower bound agrees with the expression in (25).
Case (b). Then,

ℎ(𝑡) = 𝑡𝜌 inf
𝑥∈[1,𝑡]

{

𝑥1−𝜌𝑒𝑥−1
}

.

For 𝑡 > 𝜌 − 1 > 1, the infimum is attained at 𝑥 = 𝜌 − 1, yielding
ℎ(𝑡) = 𝑡𝜌(𝜌 − 1)1−𝜌𝑒𝜌−2.

Again, one obtains 𝛾 = 𝜌, and by taking 𝜎(𝑡) = 𝜌 − 1 = 𝑠, (26) gives

lim inf
𝑡→∞

logP(𝑋 > 𝑡)
𝑡𝜌

= lim inf
𝑡→∞

logP(𝑋 > 𝑡)
ℎ(𝑡)

⋅
ℎ(𝑡)
𝑡𝜌

≥ −

(

(𝜌 − 1)

(

1 −
(

1 − 1
𝜌 − 1

)𝜌∕(𝜌−1)
))𝜌−1

⋅ (𝜌 − 1)1−𝜌𝑒𝜌−2

= −𝑒𝑎∕(1−𝑎)
(

1 − 𝑎𝜌∕(𝜌−1)
)𝜌−1

|

|

|𝑎=1−(𝜌−1)−1
.

On the other hand, by (25), we have

lim inf
𝑡→∞

logP(𝑋 > 𝑡)
𝑡𝜌

= − inf
𝑎∈[0,1)

{

𝑒𝑎∕(1−𝑎)
(

1 − 𝑎𝜌∕(𝜌−1)
)𝜌−1} > −𝑒𝑎∕(1−𝑎)

(

1 − 𝑎𝜌∕(𝜌−1)
)𝜌−1

|

|

|𝑎=1−(𝜌−1)−1
,

which gives a sharper lower bound. Thus, the lower bound provided by Theorem 5.1 in [19] is, in general, not optimal.
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