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 a b s t r a c t

SLOPE is a popular method for dimensionality reduction in high-dimensional regression. Its esti-
mated coefficients can be zero, yielding sparsity, or equal in absolute value, yielding clustering. 
As a result, SLOPE can eliminate irrelevant predictors and identify groups of predictors that have 
the same influence on the response. The concept of the SLOPE pattern allows us to formalize 
and study its sparsity and clustering properties. In particular, the SLOPE pattern of a coefficient 
vector captures the signs of its components (positive, negative, or zero), the clusters (groups of 
coefficients with the same absolute value), and the ranking of those clusters. This is the first pa-
per to thoroughly investigate the consistency of the SLOPE pattern. We establish necessary and 
sufficient conditions for SLOPE pattern recovery, which in turn enable the derivation of an irrep-
resentability condition for SLOPE given a fixed design matrix 𝑋. These results lay the groundwork 
for a comprehensive asymptotic analysis of SLOPE pattern consistency.

1.  Introduction

High-dimensional data is currently ubiquitous in many areas of science and industry. Efficient extraction of information from 
such data sets often requires dimensionality reduction based on identifying the low-dimensional structure behind the data generation 
process. In this article we focus on a particular statistical model describing the data: the linear regression model

𝑌 = 𝑋𝛽 + 𝜀, (1.1)

where 𝑌 ∈ ℝ𝑛 is a vector of responses, 𝑋 ∈ ℝ𝑛×𝑝 is a design matrix, 𝛽 ∈ ℝ𝑝 is an unknown vector of regression coefficients and 𝜀 ∈ ℝ𝑛

is a random noise.
It is well-known that the classical least squares estimator of 𝛽 is BLUE (the best linear unbiased estimator) when the design matrix 

𝑋 is of full column rank. However, it is also well-known that this estimator often exhibits a large variance and a large mean squared 
estimation error, especially when 𝑝 is large or when the columns of 𝑋 are strongly correlated. Moreover, it is not uniquely determined 
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\begin {equation}\label {eq:regmodel} \Y =\X \beta +\beps ,\end {equation}


$Y\in \R ^n$


$X\in \R ^{n\times p}$


$\beta \in \R ^p$


$\varepsilon \in \R ^n$


$\beta $


$X$


$p$


$X$


$p>n$


\begin {equation}\label {eq:pen} \hat \beta =\argmin _{b\in \R ^p} \left \{\|\Y -\X b\|_2^2+ C \,\mathrm {pen} (b)\right \},\end {equation}


$C>0$


$\mathrm {pen}$


$\mathrm {pen}(\beta )=\ell _0(\beta )=\#\{i\colon \beta _i\neq 0\}$


$\ell _1$


$\ell _1$


$\ell _1$


$\ell _1$


$\ell _1$


$\ell _2$


$\ell _1$


\begin {equation}\label {eq:SLOPE} \min _{b \in \mathbb {R}^p} \left \{ \frac {1}{2} \|Y - X b\|_2^2 + \sum _{i=1}^p \lambda _i |b|_{(i)} \right \},\end {equation}


$|b|_{(1)} \ge |b|_{(2)} \ge \dots \ge |b|_{(p)}$


$b$


$\Lambda = (\lambda _1, \dots , \lambda _p)'$


$\lambda _1 > 0$


$\lambda _1 \ge \lambda _2 \ge \dots \ge \lambda _p \ge 0$


$\Lambda $


$\lambda \|\cdot \|_1$


$\Lambda =(\lambda ,\ldots ,\lambda )'$


$\lambda >0$


$\Lambda $


$b \mapsto \|Y - Xb\|_2^2$


$\ker (X)=\{0\}$


$\ell _1$
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$n=100$


$p=200$
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$i^{th}$


$j^{th}$


$X$


$0.9048^{|i-j|}$


$k=30$


$X$


$Y$


$\beta $


$\beta $


$n=100$


$p=200$


$\mathbb {P}(X_{i1}=1)=\mathbb {P}(X_{i1}=-1)=0.5$


$\mathbb {P}(X_{i(j+1)}\neq X_{ij})=1-\mathbb {P}(X_{i(j+1)}= X_{ij})=0.0476$


$\rho (X_{\cdot i},X_{\cdot j})=0.9048^{|i-j|}$


$\beta _1=\ldots =\beta _{30}=40$


$\beta _{31}=\ldots =\beta _{200}=0$


$\sigma =5$


$X$
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$\Lambda $
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$\gamma $


$\beta $
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$\ell _1$


$b \in \R ^p$


$b$


$\model (b)$


$\mathrm {rank}(|b|)_i\in \{0,1,\dots ,k\}$


$k$


$\{|b_1|,\dots , |b_p|\}$


$\mathrm {rank}(|b|)_i=0$


$b_i=0$


$\mathrm {rank}(|b|)_i>0$


$|b_i|>0$


$\mathrm {rank}(|b|)_i< \mathrm {rank}(|b|)_j$


$|b_i|< |b_j|$


$\mathcal {P}^{\rm SLOPE}_p=\model (\R ^p)$


$a=(4.7,-4.7,0,1.8,4.7,-1.8)'$


$\model (a)=(2,-2,0,1,2,-1)'$


$b=(1.2,-2.3,3.5,1.2,2.3,-3.5)'$


$\model (b)=(1,-2,3,1,2,-3)'$


$0\neq M=(M_1,\ldots ,M_p)'\in \mathcal {P}^{\rm SLOPE}_p$


$k=\|M\|_\infty $


$\U _M\in \R ^{p\times k}$


$|M|_{\downarrow }=({|M|}_{(1)},\ldots ,{|M|}_{(p)})'$


$M$


$M=(-2,1,0,-1,2)'$


$k\ge 1$


$\R ^{k+}=\{\kappa \in \R ^k\colon \kappa _1>\ldots > \kappa _k>0\}.$


$0\neq M\in \mathcal {P}^{\rm SLOPE}_p$


$k=\|M\|_\infty $


$b\in \R ^p$


$\tilde X_M$


$\tilde \Lambda _M$


$X\in \R ^{n\times p}$


$\Lambda \in \R ^{p+}$


$M\in \mathcal {P}^{\rm SLOPE}_p$


$\tilde X_M=XU_M$


$\tilde \Lambda _M= (U_{|M|_{\downarrow }})'\Lambda $


$M=\model (\beta )$


$\beta \in \R ^p$


$\|M\|_\infty <p$


$M=(M_1,\ldots ,M_p)'$


$\X $


$X$


$\tilde {\X }_M$


$\model (\beta )=M$


$\X \beta =\X \U _M\kappa = \tilde {\X }_M \kappa $


$\kappa \in \R ^{k+}$


$M_i=0$


$\X _i$
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$K\subset \{1,\ldots ,p\}$
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$(\X _i)_{i\in K}$


$\sum \limits _{i\in K}\sign (M_i)\X _i$


$X=(X_1|X_2|X_3|X_4|X_5)$


$M=(1,2,-2,0,1)'$


$\Lambda =(\lambda _1,\lambda _2,\lambda _3,\lambda _4,\lambda _5)'\in \R ^{5+}$


$\ell _1$


$\ell _1$


$\ell _1$


$|b|_{(1)}\ge \ldots \ge |b|_{(p)}$


$b$


$\|\cdot \|$


$\R ^p$


$\|\cdot \|^*$


$\|b\|^*=\max \{v'b\colon \|v\|\le 1\}$


$b\in \R ^p$


$\ell _1$


\begin {equation}\label {def:dualnorm} J^*_\Lambda (b)=\max \left \{\frac {|b|_{(1)}}{\lambda _1},\frac {\sum _{i=1}^{2}|b|_{(i)}}{\sum _{i=1}^{2}\lambda _i},\ldots ,\frac {\sum _{i=1}^{p}|b|_{(i)}}{\sum _{i=1}^{p}\lambda _i}\right \},\quad b\in \R ^p.\end {equation}


$\|\cdot \|$
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$\ell _1$


$b\in \R ^p$


$b_1\ge \ldots \ge b_p\ge 0$


$b\in \R ^p$


$\ell _1$


$b\in \R ^p$


$M=\model (b)$


\begin {equation}\label {eq:aff} \partial {J_\Lambda }(b) = \left \{ v\in \R ^{p}: J^*_\Lambda (v)\le 1 \mbox { and } U_{M}' v = \tilde \Lambda _M \right \}.\end {equation}


$\partial {J_\Lambda }(b)$


$\Lambda =(\lambda _1,\ldots ,\lambda _p)'$


$\lambda _1>\ldots >\lambda _p>0$


$a,b\in \R ^p$


$\model (a)=\model (b)$


$\partial {J_\Lambda }(a)= \partial {J_\Lambda }(b)$


$\Lambda =(\lambda _1,\ldots ,\lambda _p)'$


\begin {equation}\label {eq:SLOPEproblem} S_{X,\Lambda }(Y)=\argmin _{b\in \R ^p} \left \{\frac {1}{2}\|Y-Xb\|_2^2+ J_\Lambda (b)\right \}.\end {equation}


$S_{X,\Lambda }(Y)$


$S_{X,\Lambda }(Y)$


$S_{X,\Lambda }(Y)$


$X\in \R ^{n\times p}$


$Y\in \R ^n$


$S_{X,\Lambda }(Y)$


$\R ^{n\times p}$


$\mathrm {ker}(\X )=\{0\}$


$\Snew {\X }{\bLambda }{\Y }$


$f$


$b$


$0\in \partial f(b)$


$\partial \frac {1}{2}\|Y-Xb\|_2^2 = \{-X'(Y-Xb)\}$


$\tilde {\P }_M=(\tilde \X _M')^+\tilde \X _M'=\tilde \X _M \tilde \X _M^+$


$\col (\tilde \X _M)$


$A^+$


$A$


$X\in \R ^{n\times p}$


$0\neq \beta \in \R ^p$


$Y=X\beta +\varepsilon $


$\varepsilon \in \R ^n$


$\Lambda \in \R ^{p+}$


$M=\model (\beta )\in \mathcal {P}^{\rm SLOPE}_p$


$k=\|M\|_\infty $


\begin {align}\label {eq:pi} \pi = \X '(\tilde \X _M')^+\tilde \bLambda _M+\X '(\I _n-\tilde {\P }_M)Y.\end {align}


$\hat \beta \in S_{X,\Lambda }(Y)$


$\model (\hat {\beta })=\model (\beta )$


$\hat \beta =U_M s\in S_{X,\Lambda }(Y)$


$\pi =\X '(\Y -X\hat \beta )$


$X$


$\varepsilon $


$\mathrm {N}(0,\sigma ^2\I _n)$


\begin {align*}A &= \left \{\omega \in \Omega \colon \mbox {there exists} s\in \R ^{k+} \text {such that }\tilde \X _M'\Y (\omega )- \tilde \bLambda _M = \tilde \X _M'\tilde \X _M s\right \}, \\ B &= \left \{\omega \in \Omega \colon \pi (\omega )\in \partial {J_\Lambda }(M)\right \}.\end {align*}


$\tilde {X}'_M = \tilde {X}'_M \tilde {P}_M$


$\tilde {X}'_MY(\omega )$


$\beps _A(\omega )=\tilde {P}_M \beps (\omega )$


$\pi (\omega )$


$\beps _B(\omega )=(\I _n-\tilde {P}_M)\beps (\omega )$


$\tilde {P}_M$
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$A$


$B$


$J_\Lambda ^*(\pi )\le 1$


$\tilde \Lambda _M\in \col (\tilde X_M')$


$\tilde X_M'(\tilde X_M')^+\tilde \Lambda _M=\tilde \Lambda _M$


$\pi $


$U_M' \pi =\tilde \Lambda _M$


$\tilde X_M'(\tilde X_M')^+\tilde \Lambda _M=\tilde \Lambda _M$


$\tilde {\P }_M$


$\col (\tilde {\X }_M)$


$0'=[(I_n-\tilde {\P }_M)\tilde {\X }_M]'=U_M'X'(I_n-\tilde {P}_M)$


$S_{X,\Lambda }(\Y )$


$0\neq S\in \{-1,0,1\}^p$


$k=\|S\|_1$


$k$


$S$


$\U _S\in \R ^{p\times k}$


$U_S=({\rm diag}(S))_{\mathrm {supp}(S)}$


${\rm diag}(S)\in \R ^{p\times p}$


$({\rm diag}(S))_{\mathrm {supp}(S)}$


${\rm diag}(S)$


$\mathrm {supp}(S)$


$0\neq \beta \in \R ^p$


$S\in \{-1,0,1\}^p$


$\kappa _0\in (0,\infty )^{k}$


$\beta =U_S\kappa _0$


$\tilde {\X }_S$


$\tilde {\lambda }_S$


$b=(b_1,\ldots ,b_p) \in \mathbb {R}^p$


$\sign (b)=(\sign (b_1),\ldots ,\sign (b_p))$


$\betaLASSO $


$\sign (\betaLASSO )=\sign (\beta )=S$


$\varepsilon =0$


$Y=X\beta $


$\X '(\tilde \X '_S)^+ 1_k\in \partial {\|\cdot \|_1}(S)$


$\|\X '(\tilde \X '_S)^+ 1_k\|_\infty \le 1$


$1_k\in \col (\tilde \X '_S)$


$\ker (X_S)=\{0\}$


$1_k\in \col (\tilde \X '_S)$


$\|\X '(\tilde \X '_S)^+ 1_k\|_\infty \le 1$


$\|\X _{\overline I}'\X _I(\X _I'\X _I)^{-1}S_I\|_\infty \le 1$


$I={\rm supp}(S)$


$\overline I=\{1,\ldots ,p\}\setminus I$


$X_I$


$X_{\overline I}$


$X$


$I$


$\overline I$


$\varepsilon =0$


$\varepsilon $


$X \in \mathbb {R}^{n \times p}$


$\beta \in \mathbb {R}^p$


$\model (\beta ) = M \neq 0$


$Y=X\beta $


$\Lambda \in \mathbb {R}^{p+}$


$\hat {\beta } \in S_{X, \Lambda }(X\beta )$


$\model (\hat {\beta }) = \model (\beta )$


$\lambda _1^0>0$


$\Lambda \in \mathbb {R}^{p+}$


$\lambda _1 < \lambda _1^0$


$\hat {\beta } \in S_{X, \Lambda }(X\beta )$


$\model (\hat {\beta }) = \model (\beta )$


$\Lambda \in \mathbb {R}^{p+}$


$X'(\tilde {X}_M')^{+}\tilde {\Lambda }_M \in \partial J_\Lambda (M)$


$J_\Lambda ^*(X'(\tilde {X}_M')^{+}\tilde \Lambda _M)\le 1$


$\tilde \Lambda _M \in \col (\tilde X_M')$


$\lambda _1^0>0$


$\Lambda \in \mathbb {R}^{p+}$


$\lambda _1 < \lambda _1^0$


$X'(\tilde {X}_M')^{+}\tilde {\Lambda }_M \in \partial J_\Lambda (M)$


$\alpha > 0$


$J_\Lambda $


$J_\Lambda (\cdot )$


$\Lambda \in \R ^{p+}$


$\alpha >0$


$\alpha >0$


$\hat {\beta } \in S_{X, \alpha \Lambda }(X\beta )$


$\model (\hat {\beta }) = \model (\beta )$


$\alpha _0>0$


$\alpha \in (0,\alpha _0)$


$\hat \beta \in S_{X,\alpha \Lambda }(X\beta )$


$\model (\hat \beta )=\model (\beta )$


$X'(\tilde {X}_M')^{+}\tilde \Lambda _M\in \partial {J_\Lambda }(M)$


$M=\model (\beta )$


\begin {equation}\label {eq:SLOPE_IR} J^*_\bLambda \left ( \X '(\tilde \X '_M)^+\tilde \bLambda _M\right )\le 1 \mbox { and } \tilde \bLambda _M\in \col (\tilde \X _M').\end {equation}


$\ker (\tilde X_M)=\{0\}$


$X'(\tilde {X}_M')^{+}=X'\tilde {X}_M(\tilde {X}_M'\tilde {X}_M)^{-1}$
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$X=(X_1|X_2)\in \R ^{n\times 2}$
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$M=\model (\beta )=(1,0)'$
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$\tilde \Lambda _M=\lambda _1=4$


$\bar \beta =(5,3)'$


$M=\model (\bar \beta )=(2,1)'$
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$\tilde \Lambda _M=\Lambda $


$\ker (\tilde \X _M)=\{0\}$
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$\model (\hat \beta (\alpha ))=(2,1)'$
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$\model (\hat \beta (\alpha ))=(1,1)'$
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$\hat \beta (\alpha )=0$


$\alpha >0$


$\model (\hat \beta (\alpha ))\neq \model (\beta )=(1,0)'$
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$\model (\bar \beta )$


$\alpha \in (0,0.4)$


$\model (\hat \beta (\alpha ))=(2,1)'=\model (\bar \beta )$
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$\ker (X)=\{0\}$
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$S_{\X ,\alpha \Lambda }(X\beta )$


$\alpha \in (0,\infty ) \mapsto \hat \beta (\alpha )$


$J_\Lambda (b)$


$\Lambda \in \R ^{p+}$


$\alpha >0$


$S_{X,\alpha \Lambda }(Y)$
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$\pi _\alpha \ :={\pi }/\alpha $


$\partial J_{\Lambda }(M)$


$\pi /\alpha $


\begin {equation}\label {eq:upper_bound_pi} \pi _\alpha =X'(\tilde X_M')^+\tilde \Lambda _M+\frac {1}{\alpha }X'(I_n-\tilde P_M)Y=X'(\tilde X_M')^+\tilde \Lambda _M+\frac {1}{\alpha }X'(I_n-\tilde P_M)\varepsilon ,\end {equation}
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$\beta =U_M s$


$s\in \R ^{\|M\|_\infty +}$


\begin {equation}\label {eq:upperbound} \mathbb {P}\left (\exists \hat \beta \in S_{X,\alpha \Lambda }(Y) \mbox { such that }\model (\hat \beta )=\model (\beta )\right )\le \begin {cases}\mathbb {P}\left (J_\Lambda ^*(\pi _\alpha )\le 1 \right ),\\ 0 \mbox { if } \tilde \Lambda _M \notin \col (\tilde X_M'). \end {cases}\end {equation}


$\tilde \Lambda _M \in \operatorname {col}(\tilde X_M')$


$J_\Lambda ^*(\pi _\alpha )\le 1$
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$B(x, r) = \{ y \mid \| y - x \| \leq r \}$
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$\| \cdot \|$


$X\in \R ^{n\times p}$


$0\neq M\in \mathcal {P}_p^{\rm SLOPE}$


$\Lambda =(\lambda _1,\ldots ,\lambda _p)'\in \R ^{p+}$


$(\beta ^{(r)})_{r\ge 1}$
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$Y^{(r)}=X\beta ^{(r)}+\varepsilon $


$\varepsilon $
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$\alpha _r\to \infty $


$\alpha _r/\Delta _r\to 0$
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$\beps \in \R ^n$


$X'(\tilde X_M')^+\tilde \Lambda _M\in \mathrm {ri}(\partial {J_\Lambda }(M))$


$X'(\tilde X_M')^+\tilde \Lambda _M\in \partial {J_\Lambda }(M)$
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$J_\Lambda ^*(X'(\tilde X_M')^+\tilde \Lambda _M)\le 1$


$\|M\|_\infty $


$X'(\tilde X_M')^+\tilde \Lambda _M\in \mathrm {ri}(\partial {J_\Lambda }(M))$


\begin {equation}\begin {cases}J_\Lambda ^*(X'(\tilde X_M')^+\tilde \Lambda _M)\le 1 \mbox { and }\tilde \Lambda _M\in \col (\tilde X_M'),\\ \left |\left \{i\in \{1,\ldots ,p\}\colon \sum _{j=1}^{i}|X'(\tilde X_M')^+\tilde \Lambda _M|_{(j)}=\sum _{j=1}^{i}\lambda _j\right \}\right |=\|M\|_\infty . \end {cases} \label {Xeqn11-4.3}\end {equation}


$\varepsilon $


$-\varepsilon $


$\ell _1$


$J_\Lambda ^*(X'(\tilde X_M')^+\tilde \Lambda _M)>1$


$\alpha >0$


$1/2$


$\alpha >0$


$1$


$\X $


$p$


$n$


$p$


$n$


$n \ge p$


\begin {equation}\label {reg2} \Y _n=\X _n\beta +\beps _n,\end {equation}


$\X _n\in \R ^{n\times p}$


$\beps _n=(\epsilon _1,\ldots ,\epsilon _n)'$
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\begin {equation}\label {assumption on design} \frac {1}{n}\X _n' \X _n \stackrel {\mathbb {P}}{\longrightarrow } \C ,\end {equation}
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\begin {align*}\frac {\max _{i=1,\ldots ,n} |X_{ij}^{(n)}|}{\sqrt {\sum _{i=1}^n (X_{ij}^{(n)})^2}} \stackrel {\mathbb {P}}{\longrightarrow }0.\end {align*}
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\begin {align*}\bLambda _n=\alpha _n\bLambda ,\end {align*}
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$\Zb \sim \mathrm {N}(CU_M(U'_MCU_M)^{-1}\tilde \Lambda _M, \sigma ^2[C-CU_M (U'_M CU_M)^{-1}U'_M C])$


\begin {align}\label {eq:Cri} \C \U _M(\U _M'\C \U _M)^{-1}\tilde {\bLambda }_M\in \mathrm {ri}(\partial J_\Lambda (M)).\end {align}
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$(\xi _1,\ldots ,\xi _p)$


$t\in \R ^p$


$t'\C t = \E [(\sum _{i=1}^p t_i \xi _i)^2]>0$


$\sum _{i=1}^p t_i \xi _i\neq 0$


$t\in \R ^p\setminus \{0\}$


$n$


$\betaSLOPE _n$


$A$


$B'$


$C$


$(\alpha _n)_n$


$(\betaSLOPE _n)_n$


$\beta $


\begin {equation}\label {property: ASAMRP} \model (\betaSLOPE _n)\stackrel {a.s.}{\longrightarrow }\model (\beta ).\end {equation}


$\alpha _n=c\sqrt {n \log \log n}$


$c>0$


$\log \log n$


$Y=X\beta +\varepsilon $


$X\in \R ^{n\times p}$


$\varepsilon \in \R ^n$


$\mathrm {N}(0,1)$


$\Lambda =(\lambda _1,\ldots ,\lambda _p)'$


$Z_{(1)}\ge \ldots \ge Z_{(p)}$


$\mathrm {N}(0,1)$


$\E [Z_{(i)}]$


$i\in \{1,\ldots ,p\}$


$E(i,p)$


$\Phi $


$\mathrm {N}(0,1)$


\begin {equation}\label {lambdasim} \Lambda =(\lambda _1,\ldots ,\lambda _p)\;\;\mbox {with}\;\;\lambda _i=E(i,p)+E(p-1,p)-2E(p,p).\end {equation}


$X$


$p=100$


$c$


$X\in \R ^{n\times p}$


$X'X=I_{100}$


$\beta \in \R ^p$


\begin {equation}\label {beta} \beta _1=\ldots =\beta _{25}=c,\;\; \beta _{26}=\ldots =\beta _{50}=-c/2,\; \beta _{51}=\ldots =\beta _{100}=0\;.\end {equation}


$\alpha _{0.95}$


$0.95$


${\pi }_\alpha $


$M=\model (\beta )$


$M_1=\ldots =M_{25}=2$


$M_{26}=\ldots =M_{50}=-1$


$M_{51}=\ldots =M_{100}=0$


\begin {equation*}X' (\tilde X_M')^+\tilde \Lambda _M=\mu ,\end {equation*}


$\mu _1=\ldots =\mu _{25}=\frac {1}{25}\sum _{i=1}^{25} \lambda _i$


$\mu _{26}=\ldots =\mu _{50}=-\frac {1}{25}\sum _{i=26}^{50} \lambda _i$


$\mu _{51}=\ldots =\mu _{100}=0$


\begin {equation}\nonumber X'(I_n-\tilde X_M \tilde X_M^+)X=\begin {pmatrix} \Sigma & 0&0\\ 0&\Sigma &0\\ 0 &0& I_{p/2} \end {pmatrix},\end {equation}


$\Sigma $


$p/4\times p/4$


\begin {equation}\Sigma =\begin {pmatrix}1-4/p&-4/p&\ldots &-4/p\\ -4/p & 1-4/p & \ddots & \vdots \\ \vdots & \ddots & \ddots & -4/p \\ -4/p & \ldots & -4/p & 1-4/p \end {pmatrix}. \label {Xeqn18-5.3}\end {equation}


$\Sigma $


$p/4$


$\alpha _{0.95}$


$50\,000$


$Z \sim \mathrm {N}(0, X'(I-\tilde X_M \tilde X_M^+)X)$


$\alpha _{0.95} = 9.45$


$\alpha \Lambda $


$\alpha =9.45$


$\Lambda $


$9.45\Lambda $


$0.95$


$c$


$n\rightarrow \infty $


$n$


$p = 100$


\begin {equation}C = \begin {pmatrix} \Sigma & 0 & 0 & 0 \\ 0 & \Sigma & 0 & 0 \\ 0 & 0 & \Sigma & 0 \\ 0 & 0 & 0 & \Sigma \end {pmatrix} \label {Xeqn19-5.4}\end {equation}


$\Sigma $


$25 \times 25$


$\Sigma _{i,i} = 1$


$\Sigma _{i,j} = 0.8$


$i \neq j$


$\beta \in \mathbb {R}^p$


\begin {equation*}\beta _1 = \ldots = \beta _{25} = 30,\quad \beta _{26} = \ldots = \beta _{50} = -30,\quad \beta _{51} = \ldots = \beta _{100} = 0.\end {equation*}


$M = \model (\beta )$


\begin {equation*}CU_M (U_M' C U_M)^{-1} \tilde {\Lambda }_M=\mu ,\end {equation*}


$Z$


\begin {equation}\Sigma _Z= C - C U_M (U_M' C U_M)^{-1} U_M' C = \begin {pmatrix} \Sigma -U & U & 0 & 0\\ U & \Sigma - U & 0 & 0 \\ 0 & 0 & \Sigma & 0 \\ 0 & 0 & 0 & \Sigma \end {pmatrix}, \label {Xeqn20-5.5}\end {equation}


$U$


$25 \times 25$


$(1 + 24 \cdot 0.8)/50$


$Z\sim \mathrm {N}(0, \Sigma _Z)$


$\alpha =2.89$


$\mathbb {P}\left (J_{\Lambda }^{\star }\left (\mu +\frac {1}{\alpha }Z\right )\leq 1\right ) \approx 0.95$


$2.89\Lambda \sqrt {n}$


$\Lambda $


$n \to \infty $


$n$


$\alpha _{0.95}=2.89$


$0.95$


$n\geq 1500$


$\tilde X=XU_{\hat M}$


$\tilde {X} = XU_{\hat {M}}$


$n$


$n = 25$


$p = 100$


$100$


$50$


$25$


$30$


$25$


$-30$


$n=25$


$\gamma =0.25$


$\lambda $


$\beta $


$\beta $


$\beta $


$\beta $


$\ell _1$


$\gamma $


$X\beta =X\gamma $


$\beta $


$\beta $


$\ell _1$


$\gamma $


$X\beta =X\gamma $


$\ell _1$


$n=100$


$p=200$


$i^{th}$


$j^{th}$


$X$


$0.9048^{|i-j|}$


$k=100$


$X$


$Y$


$40$


$X$


$Y$


$k=100=n$


$40$


$\beta $


$M=0$


$M\neq 0$


$\tilde {\Lambda }$


$\tilde {\Lambda }_M$


$\tilde {\Lambda }$


$\tilde {\Lambda }_l$


$l=1,\ldots ,k$


$k=\|M\|_\infty $


$s\in \R ^{k+}$


$b=U_Ms$


$|b|_{\downarrow }=U_{|M|_{\downarrow }}s$


$p_l=|\{i\colon |M_i|\geq k+1-l\}|$


$\tilde \Lambda _l= \lambda _{p_{l-1}+1}+\ldots +\lambda _{p_l}$


$l=1,\ldots ,k$


$\partial {J_\Lambda }(b)\subset \left \{ v\in \R ^{p}\colon J_\Lambda ^*(v)\le 1 \mbox { and } U_{M}' v = \tilde \Lambda \right \}$


$v\in \partial {J_\Lambda }(b)$


$J^*_{\Lambda }(v)\le 1$


$\ell _1$


$j\in \{1,2,\ldots ,p\}$


$\sum _{i=1}^{j}|v|_{(i)}\le \sum _{i=1}^{j}\lambda _i$


$U_M'v=\tilde \Lambda $


$l\in \{1,\ldots ,k\}$


\begin {equation}\begin {aligned} \label {eq:main} \sum \limits _{i=1}^{l} [U'_M v]_i =\sum \limits _{i\colon |M_i|\ge k+1-l}\sign (M_i)v_i & \le \sum \limits _{i\colon |M_i|\ge k+1-l}|v_i|\\ & \le \sum \limits _{i=1}^{p_l}|v|_{(i)} \le \sum \limits _{i=1}^{p_l}\lambda _i = \sum \limits _{i=1}^{l} \tilde \Lambda _i. \end {aligned}\end {equation}


\begin {equation*}\begin {aligned} b'v=(U_Ms)'v= & \sum _{i=1}^k s_i [U'_M v]_i = \sum _{l=1}^{k-1} (s_l-s_{l+1})\sum _{i=1}^{l} [U'_M v]_i + s_k\sum _{i=1}^{k}[U'_M v]_i \\ & \leq \sum _{l=1}^{k-1} (s_l-s_{l+1})\sum _{i=1}^{l} \tilde {\Lambda }_i + s_k\sum _{i=1}^{k}\tilde {\Lambda }_i= \sum _{l=1}^{k} s_l\tilde {\Lambda }_l= J_{\Lambda }(b). \end {aligned}\end {equation*}


$v\in \partial {J_\Lambda }(b)$


$b'v = J_{\Lambda }(b)$


$U'_M v = \tilde \Lambda $


$\partial {J_\Lambda }(b)\supset \left \{ v\in \R ^{p}\colon J_\Lambda ^*(v)\le 1 \mbox { and } U_{M}' v = \tilde \Lambda _M \right \}$


$v\in \R ^p$


$J_\Lambda ^*(v)\le 1$


$U'_M v=\tilde \Lambda $


$v\in \partial {J_\Lambda }(b)$


$b'v = J_{\Lambda }(b)$


$b=U_Ms$


\begin {equation*}b'v = (U_M s)'v = s' U'_M v = s' \tilde \Lambda =J_\Lambda (b).\end {equation*}


$\Lambda \in \R ^{p+}$


$b\in \R ^p$


$\Lambda \in \partial {J_\Lambda }(b)$


$b_1\ge \ldots \ge b_p\ge 0$


$b_i<0$


$i\in \{1,\ldots ,p\}$


$J_\Lambda ^*(\check \pi )\le 1$


$\Lambda \notin \partial {J_\Lambda }(b)$


$b_i<b_j$


$1\le i <j\le p$


$\check \pi $


$J_\Lambda ^*(\check \pi )\le 1$


$\lambda _i>\lambda _j$


$\lambda _ib_i+\lambda _jb_j<\lambda _jb_i+\lambda _ib_j$


$\Lambda \notin \partial {J_\Lambda }(b)$


$\psi $


$v_1,\ldots ,v_p\in \{-1,1\}$


$r$


$\{1,\ldots ,p\}$


$a,b\in \R ^p$


$J_\Lambda (b)= J_\Lambda (\psi (b))$


$J_\Lambda ^*(b)= J_\Lambda ^*(\psi (b))$


$b'a=\psi (b)'\psi (a)$


$\partial {J_\Lambda }(\psi (b))=\psi (\partial {J_\Lambda }(b))$


$\model (a)=\model (b)$


$\partial {J_\Lambda }(a)=\partial {J_\Lambda }(b)$


$M=\model (a)$


$\tilde M=\model (b)$


$\partial {J_\Lambda }(a)= \partial {J_\Lambda }(b)$


$M= \tilde M$


$\partial {J_\Lambda }(a)$


$a$


$\partial {J_\Lambda }(a)=\partial {J_\Lambda }(M)$


$\partial {J_\Lambda }(b)=\partial {J_\Lambda }(\tilde {M})$


$M= |M|_{\downarrow }$


$M_1 \ge M_2 \ge \ldots \ge M_p \ge 0$


$M'\bLambda =J_{\bLambda }(M)$


$\bLambda =(\lambda _1,\ldots ,\lambda _p)' \in \partial {J_\Lambda }(M)$


$\partial {J_\Lambda }(M)=\partial {J_\Lambda }(\tilde M)$


$\tilde M_1 \ge \ldots \ge \tilde M_p \ge 0$


$\bLambda \in \partial {J_\Lambda }(\tilde M)$


$M=\tilde M$


$M_p=\tilde M_p=0$


$M_p=\tilde M_p=1$


$M_p=0$


$\tilde M_p=1$


$\check \pi =(\lambda _1,\ldots ,\lambda _{p-1},0)'$


$J_\Lambda ^*(\check \pi )\le 1$


$\check \pi \in \partial {J_\Lambda }(M)$


$\check \pi \notin \partial {J_\Lambda }(\tilde M)$


$M_p=1$


$\tilde M_p=0$


$M=\tilde M$


$M_i= M_{i+1}$


$\tilde M_i=\tilde M_{i+1}$


$M_i> M_{i+1}$


$\tilde M_i>\tilde M_{i+1}$


$M_i= M_{i+1}$


$\tilde M_i>\tilde M_{i+1}$


$\check \pi $


$J_\Lambda ^*(\check \pi )\le 1$


$\lambda _i M_i+ \lambda _{i+1}M_{i+1}=\lambda _{i+1}M_i+\lambda _iM_{i+1}$


$\lambda _i \tilde M_i+\lambda _{i+1}\tilde M_{i+1}> \lambda _{i+1} \tilde M_i+\lambda _{i}\tilde M_{i+1}$


$\check \pi \in \partial {J_\Lambda }(M)$


$\check \pi \notin \partial {J_\Lambda }(\tilde M)$


$M_i> M_{i+1}$


$\tilde M_i=\tilde M_{i+1}$


$M\neq |M|_{\downarrow }$


$\psi $


$\psi (M)=|M|_{\downarrow }$


$\partial {J_\Lambda }(M)=\partial {J_\Lambda }(\tilde M)$


$\partial {J_\Lambda }(\psi (M))=\partial {J_\Lambda }(\psi (\tilde M))$


$\psi (\tilde M)=\psi (M)$


$M=\tilde M$


$J_\Lambda ^*(x)\leq 1$


\begin {equation}\label {eq:ICj} |x|_{(1)}+\ldots + |x|_{(j)} \le \lambda _1+\ldots + \lambda _j, \qquad \qquad j=1,\ldots , p.\end {equation}


$x\in \R ^p$


$J_\Lambda ^*(x)\leq 1$


$b\in \R ^p$


$x$


$\partial J_\Lambda (b)$


$b_i\neq 0$


$\sign (x_i)=\sign (b_i)$


$|b_i| > |b_j|$


$|x_i| \geq |x_j|$


$j\in \{ n_1, n_2, \ldots , n_k\}$


$n_j=|\{i\colon |M_i|\geq k+1-j\}|$


$(M_1,\ldots ,M_p)'=\model (b)$


$\hat \beta \in S_{X,\Lambda }(Y)$


$\model (\hat \beta )=M$


$\hat \beta =\U _Ms$


$s\in \R ^{k+}$


$\X '(\Y -\X \hat \beta )\in \partial {J_\bLambda }(\hat {\beta })=\partial {J_\bLambda }(M)$


$\U _M'$


$\tilde \X _M'(\Y -\X \hat \beta )=\tilde \bLambda _M$


\begin {align}\label {eq:lastE} \tilde \X _M'\Y - \tilde \bLambda _M = \tilde \X _M'\X \hat \beta =\tilde \X _M'\tilde \X _M s.\end {align}


$(\tilde \X _M')^+$


$\tilde {\P }_M=(\tilde \X _M')^+\tilde \X _M'$


$\col (\tilde \X _M)$


$\X \hat \beta \in \col (\tilde \X _M)$


$\tilde {\P }_M\X \hat \beta =\X \hat \beta $


$s\in \R ^{k+}$


\begin {equation}\label {eq:cone} \tilde \bLambda _M = \tilde \X _M'\Y - \tilde \X _M'\tilde \X _M s.\end {equation}


$\U _M s\in S_{X,\Lambda }(Y)$


$\U _M$


$\model (\U _Ms)=M$


$\partial {J_\Lambda }(U_Ms)=\partial {J_\Lambda }(M)$


$\U _M s\in S_{X,\Lambda }(Y)$


$i) \Rightarrow iii) \Rightarrow iv) \Rightarrow ii) \Rightarrow i)$


$i)\Rightarrow iii):$


$\Lambda \in \R ^{p+}$


$\hat \beta \in S_{X,\Lambda }(X\beta )$


$\model (\hat \beta )=\model (\beta )$


$\varepsilon =0$


$X'(\tilde {X}_M')^{+}\tilde \Lambda _M\in \partial {J_\Lambda }(M)$


$iii)\Rightarrow iv):$


$X'(\tilde {X}_M')^{+}\tilde \Lambda _M\in \partial {J_\Lambda }(M)$


$\Lambda \in \R ^{p+}$


$\alpha >0$


$\Lambda $


$\lambda _1^0>0$


$\Lambda \in \R ^{p+}$


$\lambda _1<\lambda _1^0$


$X'(\tilde {X}_M')^{+}\tilde \Lambda _M\in \partial {J_\Lambda }(M)$


$iv)\Rightarrow ii):$


$\beta $


$\beta =U_Ms$


$s\in \R ^{k+}$


$k=\|M\|_\infty $


$Y=X\beta $


$\lambda _1$


$\tilde X_M'Y- \tilde \Lambda _M\in \tilde X_M'\tilde X_M\R ^{k+}$


$ii)\Rightarrow i):$


$0\neq b\in \R ^p$


$M=\model (b)$


$\partial {J_\Lambda }(b)$


$\aff (\partial {J_\Lambda }(b))=\{v\in \R ^p\colon U_M'v=\tilde \Lambda _M\}$


$1$


$r$


$\infty $


$\tilde \Lambda _M\notin \col (\tilde {X}_M')$


$\tilde \Lambda _M\in \col (\tilde {X}_M')$


$\beta ^{(r)}=U_{M}s^{(r)}$


$s^{(r)}\in \R ^{k+}$


$\tilde X_M'Y^{(r)}= \tilde X_M' \tilde {X}_M s^{(r)}+\tilde X'_M\beps $


$\tilde X'_M(\tilde X'_M)^+=\tilde X'_M\tilde {X}_M(\tilde {X}'_M \tilde {X}_M)^+$


$\col (\tilde X_M')$


\begin {align*}\tilde {X}'_M Y^{(r)}-\alpha _r \tilde \Lambda _M &= \tilde {X}'_M \tilde {X}_M s^{(r)} - \alpha _r \tilde \Lambda _M + \tilde {X}'_M \beps \\ &= \tilde {X}'_M \tilde {X}_M s^{(r)} -\alpha _r \tilde {X}'_M \tilde {X}_M (\tilde {X}'_M \tilde {X}_M)^{+} \tilde \Lambda _M + \tilde {X}'_M \tilde {X}_M (\tilde {X}'_M \tilde {X}_M)^{+} \tilde {X}'_M \beps \\ &= \tilde {X}'_M \tilde {X}_M \Delta _r \left (\frac {1}{\Delta _r}s^{(r)} - \frac {\alpha _r}{\Delta _r}(\tilde {X}'_M \tilde {X}_M)^{+}\tilde \Lambda _M + \frac {1}{\Delta _r}(\tilde {X}'_M \tilde {X}_M)^{+}\tilde {X}'_M \beps \right ).\end {align*}


$\Delta _r$


$s^{(r)}/\Delta _r\in \R ^{k+}$


$(k,\ldots ,1)$


$\lim _{r\to \infty }\alpha _r/\Delta _r=0$


$\lim _{r\to \infty }1/\Delta _r=0$


$r$


$\beps $


$r$


$r\to \infty $


$X'(\tilde X_M')^+\tilde \Lambda _M\in \mathrm {ri}(\partial {J_\Lambda }(M))$


\begin {equation}\label {eq:asympt} X'(\tilde X_M')^+\tilde \Lambda _M +\frac {1}{ \alpha _r}X'(I_n-\tilde {P}_M)\varepsilon \overset {r \to \infty }{\longrightarrow }X'(\tilde X_M')^+\tilde \Lambda _M.\end {equation}


$X'(\tilde X_M')^+\tilde \Lambda _M +\alpha _r^{-1}X'(I_n-\tilde {P}_M) \varepsilon \in \mathrm {aff}(\partial {J_\Lambda }(M))$


$\tilde \Lambda _M\in \col (\tilde X_M')$


$(I_n-\tilde {P}_M)$


$\col (\tilde {X}_M)^\bot $


$X'(\tilde X_M')^+\tilde \Lambda _M\in \mathrm {ri}(\partial {J_\Lambda }(M))$


$r$


$r$


$\beps _n=(\epsilon _1,\ldots ,\epsilon _n)'$


$(\epsilon _i)_i$


$\sigma ^2$


$n^{-1}\X _n' \X _n \stackrel {\mathbb {P}}{\longrightarrow } \C >0$


$\frac {\max _{i=1,\ldots ,n} |X_{ij}^{(n)}|}{\sqrt {\sum _{i=1}^n (X_{ij}^{(n)})^2}} \stackrel {\mathbb {P}}{\longrightarrow }0$


$\X _n=(X_{ij}^{(n)})_{ij}$


$j=1,\ldots ,p.$


$\X _n$


$\xi $


$\xi $


$\E [\xi _i^2]<\infty $


$i=1,\ldots ,p$


$(\X _n)_n$


$(\epsilon _n)_n$


$(\Lambda _n)_n$


$\bLambda _n=\alpha _n\bLambda $


$\bLambda \in \R ^{p+}$


$(\alpha _n)_n$


$M$


$\tilde {\bLambda } = \U '_{|M|\downarrow }\bLambda $


$\tilde {\bLambda }_n = \alpha _n \tilde {\bLambda }$


$\tilde {\X }_n = \X _n \U _M$


\begin {align}\frac 1{\sqrt {n}} \X _n' \beps _n & \stackrel {d}{\longrightarrow } Z\sim \mathrm {N}(0,\sigma ^2C). \label {eq:d}\end {align}


\begin {align}\frac 1n \X _n' \beps _n &\stackrel {\mathbb {P}}{\longrightarrow } 0.\label {eq:p}\end {align}


\begin {align}0<\limsup _{n\to \infty } \frac { \|X_n'\beps _n\|_\infty }{\sqrt {n\log \log n}}<\infty \qquad \mbox {a.s.} \label {eq:lsup}\end {align}


$A\subset \R ^p$


\begin {align}\label {eq:d1} \mathbb {P}\left (\frac {1}{\sqrt {n}} \X _n' \beps _n \in A\mid (X_n)_n\right ) \stackrel {\mathbb {P}}{\longrightarrow } \mathbb {P}\left (Z\in A\right ).\end {align}


$L^1$


$(n_k)_k$


$(n_{k_l})_l$


$l\to \infty $


\begin {align}\label {eq:d2} \mathbb {P}\left (\frac {1}{\sqrt {n_{k_l}}} \X _{n_{k_l}}' \beps _{n_{k_l}} \in A\mid (X_n)_n\right ) \stackrel {a.s.}{\longrightarrow } \mathbb {P}\left (Z\in A\right ).\end {align}


$\mathbb {P}_{\mathbf {X}}$


$\mathbb {P}(\cdot \mid (X_n)_n)$


$(\Omega ,\mathcal {F})$


$(n_k)_k$


$(n_{k_l})_l$


\begin {align*}\mathrm {Var}_{\mathbf {X}}\left (\frac {1}{\sqrt {n_{k_l}}}X'_{n_{k_l}} \beps _{n_{k_l}}\right )&=\frac {1}{{n_{k_l}}}\E \left [X_{n_{k_l}}' \beps _{n_{k_l}} \beps _{n_{k_l}}'X_{n_{k_l}} \mid (X_{n})_{n} \right ]\\ &=\frac {1}{{n_{k_l}}}X_{n_{k_l}}' \E \left [\beps _{n_{k_l}} \beps _{n_{k_l}}' \right ]X_{n_{k_l}} =\frac {\sigma ^2 }{{n_{k_l}}}X_{n_{k_l}}' X_{n_{k_l}} \stackrel {a.s.}{\longrightarrow } \sigma ^2C>0,\end {align*}


$(\Omega ,\mathcal {F},\mathbb {P}_{\mathbf {X}})$


$\mathrm {Var}_{\mathbf {X}}(n^{-1}\X _n'\beps _n)\stackrel {\mathbb {P}}{\longrightarrow }0$


$\mathbb {P}_\textbf {X}(n^{-1}\|\X _n'\beps _n\|>\delta )\stackrel {\mathbb {P}}{\longrightarrow }0$


$(\X _n)_n$


$(\xi _i \epsilon _i)_i$


$M=\model (\beta )$


$\alpha _n/n\to 0$


$n$


$n$


$M=0$


$M\neq 0$


$\tilde {\X }_n' \tilde {\X }_n$


$n$


$s_0\in \R ^{k+}$


$\beta = \U _M s_0$


$k=\|M\|_\infty $


$\alpha _n/n\to 0$


$s_n \stackrel {\mathbb {P}}{\longrightarrow } s_0$


$\R ^{k+}$


$n$


$s_n$


$\beta =\U _M s_0$


$\X _n\beta =\X _n \U _M s_0 = \tilde {\X }_n s_0$


$\Y _n = \tilde {\X }_n s_0+\beps _n$


$(\tilde {\X }_n'\tilde {\X }_n)^{-1}\tilde {\X }_n' \Y _n$


$s_0$


$n^{-1}\X _n'\X _n \stackrel {a.s.}{\longrightarrow } C$


$n^{-1} \X _n' \beps _n \stackrel {a.s.}{\longrightarrow } 0$


$M\neq 0$


\begin {align*}\pi _n^{(1)} = \X _n' (\tilde {\X }'_n)^+ \tilde {\bLambda }_n, \qquad \qquad \pi _n^{(2)} =\X '_n (\I _n-\tilde {\P }_n) \Y _n,\\ \pi _n = \pi _n^{(1)}+\pi _n^{(2)},\end {align*}


$M=0$


$\pi _n = \pi _n^{(2)} = X_n' Y_n$


$J^*_{\bLambda _n}(\pi _n)\leq 1$


$\tilde {\Lambda }_n\in \col (\tilde {X}'_M)$


$\alpha J_{\Lambda }=J_{\alpha \Lambda }$


$\alpha _n^{-1}\pi _n^{(1)}$


$n^{-1/2} \pi _n^{(2)}$


$(\alpha _n/\sqrt {n})_n$


$M\neq 0$


$\left (n^{-1/2}\pi _n^{(2)}\right )_n$


$Z$


$\lim _{n \to \infty } {\alpha _n}/{\sqrt {n}} = \infty $


$\alpha _n^{-1}\pi _n^{(2)}\stackrel {\mathbb {P}}{\longrightarrow }0$


$M\neq 0$


$\lim _{n \to \infty } {\alpha _n}/{\sqrt {n\log \log n}} = \infty $


$\alpha _n^{-1}\pi _n^{(2)}\stackrel {a.s.}{\longrightarrow }0$


$\beta =\U _M s_0$


$\Y _n = \tilde {\X }_n s_0+\beps _n$


$\tilde {\P }_n$


$\col (\tilde {\X }_n)$


$(\I _n-\tilde {\P }_n)\tilde {\X }_n=0$


\begin {align*}n^{-1/2}\pi _n^{(2)} &= n^{-1/2} \X _n' (\I _n-\tilde {\P }_n)\Y _n = n^{-1/2} \X _n' (\I _n-\tilde {\P }_n)\beps _n \\ & = \left [\I _p-\X _n'\X _n \U _M(\U _M'\X _n'\X _n\U _M)^{-1}\U _M'\right ] \left [n^{-1/2}\X _n'\beps \right ].\end {align*}


\begin {align}\label {eq:ddd} n^{-1}\X _n'\X _n \U _M(\U _M'n^{-1}\X _n'\X _n\U _M)^{-1}\U _M'\stackrel {\mathbb {P}}{\longrightarrow }\C \U _M (\U _M' \C \U _M)^{-1} \U _M'.\end {align}


$\mathrm {Var}_{\textbf {X}}(\alpha _n^{-1} \pi _n^{(2)})\stackrel {\mathbb {P}}{\longrightarrow }0$


$(X_n)_n$


$\alpha _n^{-1} \pi _n^{(2)}\stackrel {\mathbb {P}_{\mathbf {X}}}{\longrightarrow }0$


$n^{-1}\X _n'\X _n\stackrel {a.s.}{\longrightarrow }C$


$n$


$M=\model (\beta )$


\begin {align}\label {eq:ech} \lim _{n\to \infty }\mathbb {P}\left (\model (\betaSLOPE _n)=M\right ) & = \lim _{n\to \infty }\mathbb {P}\left ( \pi _n \in \partial J_{\alpha _n\Lambda }(M)\right ) = \lim _{n\to \infty }\mathbb {P}\left ( \alpha _n^{-1}\pi _n \in \partial J_{\Lambda }(M)\right )\\ &\geq \lim _{n\to \infty }\mathbb {P}\left ( \alpha _n^{-1}\pi _n \in \mathrm {ri}(\partial J_{\Lambda }(M))\right )=1,\nonumber \end {align}


$(\alpha _n^{-1}\pi _n)_n$


$\C \U _M(\U _M'\C \U _M)^{-1}$


$\alpha _n/\sqrt {n}\to \infty $


$\C \U _M(\U _M'\C \U _M)^{-1}\in \partial J_\Lambda (M)$


$(\alpha _n^{-1}\pi _n)_n$


$\C \U _M(\U _M'\C \U _M)^{-1}$


$n$


$U_M'a_n=\tilde {\Lambda }$


$a_0\in \mathrm {ri}(J_\Lambda (M))$


$a_n \in J_\Lambda (M)$


$n$


$\pi _n \in J_{\Lambda _n}(M)$


$n$


$\betaSLOPE _n$


$\beps _n=(\epsilon _1,\ldots ,\epsilon _n)'$


$(\epsilon _i)_i$


\begin {align}\label {eq:epsA} \E [\epsilon _n]=0\quad \mbox {and}\quad \mathrm {Var}(\epsilon _n)=\sigma ^2\quad \mbox {for all} n, \quad \mbox { and } \sup _n\E [|\epsilon _n|^r]<\infty \end {align}


$r>2$


$\X _1, \X _2,\ldots $


\begin {equation}\label {assumption on design2} \frac {1}{n}\X _n' \X _n \stackrel {a.s.}{\longrightarrow } \C ,\end {equation}


$\C $


$p\times p$


$\X _n=\left (X_{ij}^{(n)}\right )_{ij}$


\begin {align}\label {eq:badass0} \lim _{n\to \infty } \frac {(\log n)^\rho }{\sqrt {n}} \sup _{i,j} \left |X_{ij}^{(n)}\right | = 0\quad \mbox {a.s. for all} \rho >0\end {align}


$(c_i)_i$


$d>2/r$


$m_0\in \mathbb {N}$


$n>m\geq m_0$


\begin {align}\label {eq:badass} \sup _j\left [\sum _{i=1}^m \left (X_{ij}^{(n)}-X_{ij}^{(m)}\right )^2 + \sum _{i=m+1}^n \left (X_{ij}^{(n)}\right )^2\right ]\leq \left (\sum _{i=m+1}^n c_i\right )^d\quad \mbox { a.s.}, \\ \left (\sum _{i=m_0}^n c_i\right )^d = O(n)\quad \mbox {a.s.} \label {eq:badass2}\end {align}


$(\X _n)_n$


$(\epsilon _n)_n$


$\X _n$


$\ell _2$


$j$


$\X _n$


$\X _m$


\begin {align}\label {eq:LLN} \limsup _{n\to \infty } \frac { \|X_n'\beps _n\|_\infty }{\sqrt {n\log \log n}}<\infty \qquad \mbox {a.s.}\end {align}


$j=1,\ldots ,p$


\begin {align}\label {eq:Anj} n^{-1} A_n^{(j)} := n^{-1} \sum _{i=1}^n \left (X_{ij}^{(n)}\right )^2=\left (n^{-1}\X _n'\X _n\right )_{jj} \stackrel {a.s.}{\longrightarrow } C_{jj}>0.\end {align}


$a_{ni}^{(j)}:=X_{ij}^{(n)}$


$i=1,\ldots ,n$


$j=1,\ldots ,p$


$n\geq 1$


$0$


$\mathbb {P}(\cdot |(\X _n)_n)$


$(\Omega ,\mathcal {F},\mathbb {P}_{\mathbf {X}})$


$j=1,\ldots ,n$


$(\X _n)_{n}$


$(\alpha _n)_n$


\begin {align*}\lim _{n \to \infty } \frac {\alpha _n}{n}=0\qquad \mbox {and}\qquad \lim _{n \to \infty } \frac {\alpha _n}{\sqrt {n \log \log n} } = \infty .\end {align*}


$\model (\betaSLOPE _n)\stackrel {a.s.}{\longrightarrow }\model (\beta )$


\begin {align*}\limsup _{n\to \infty } \frac { \|X_n'\beps _n\|_\infty }{\sqrt {n\log \log n}}>0\qquad \mbox {a.s.}\end {align*}


$\alpha _n^{-1}\X _n'\beps _n\stackrel {a.s.}{\longrightarrow }0$


$\alpha _n/\sqrt {n\log \log n}\to \infty $


$\beps _n$


$\beps _n$


$\beps _n$


$\beps _{n+1}$


$\lim _{n\to \infty } \alpha _n/\sqrt {n\log n}=\infty $


$\beps _n=(\epsilon _1,\ldots ,\epsilon _n)'$


$(\epsilon )_i$


\begin {align}\label {assumption on design3} \frac {1}{n}\X _n'\X _n \stackrel {a.s.}{\longrightarrow }C>0.\end {align}


$(\beps _n)_n$


$(\X _n)_n$


$n^{-1}\X _n'\beps _n\stackrel {a.s.}{\longrightarrow }0$


$\mathbb {P}(\cdot \mid (\X _n)_n)$


$(n^{-1}\X _n'\beps _n)_j$


$(\Omega ,\mathcal {F},\mathbb {P}(\cdot \mid (\X _n)_n))$


$\Y _n=\X _n\beta +\beps _n$


$\beta \in \R ^p$


$\beps _n=(\epsilon _1,\ldots ,\epsilon _n)'$


$(\epsilon )_i$


$(\beps _n)_n$


$(\X _n)_n$


$\bLambda _n=(\lambda _1^{(n)},\ldots ,\lambda _p^{(n)})'$


$n$


$\Snew {\X _n}{\bLambda _n}{\Y _n}=\{\betaSLOPE _n\}$


$\beta \neq 0$


$\betaSLOPE _n\stackrel {a.s.}{\longrightarrow }\beta $


\begin {align}\label {eq:alphanA} \lim _{n\to \infty }\frac {\lambda _1^{(n)}}{n}= 0.\end {align}


$\beta =0$


$\betaSLOPE _n\stackrel {a.s.}{\longrightarrow }0$


$X_n'X_n$


$n$


$\ker (\X _n)=\{0\}$


$\betaSLOPE _n$


$\beta $


$\Y _n=\X _n\beta +\beps _n$


$\pi _n=\X _n'(\Y _n-\X _n\betaSLOPE _n)$


\begin {align}\label {eq:cond1} J_\Lambda ^*(\pi _n)\leq 1\end {align}


\begin {align}\label {eq:cond2} \U _{M_n}' \pi _n = \tilde \bLambda _n,\end {align}


$M_n=\model (\betaSLOPE _n)$


$\tilde \bLambda _n=U_{|M_n|\downarrow }'\bLambda _n$


$\pi _n$


$\betaOLS _n$


$\hat \beta ^{SLOPE}_n \stackrel {a.s.}{\longrightarrow } \beta $


$(n^{-1}X_n'X_n)^{-1}\left (n^{-1}\pi _n\right )\stackrel {a.s.}{\longrightarrow }0$


$(n^{-1}X_n'X_n)^{-1}\left (n^{-1}\pi _n\right )\stackrel {a.s.}{\longrightarrow }0$


$n^{-1}\pi _n\stackrel {a.s.}{\longrightarrow }0$


$n^{-1}\lambda _1^{(n)}\to 0$


$\| \pi ^n\|_\infty \leq \lambda _1^{(n)}$


$\hat \beta ^{SLOPE}_n \stackrel {a.s.}{\longrightarrow } \beta $


$\beta \neq 0$


$\betaSLOPE _n$


$n^{-1}\pi _n\stackrel {a.s.}{\longrightarrow }0$


\begin {align}\label {eq:ineq2cond} p \|\pi _n\|_\infty \geq \| U_{M_n}' \pi _n \|_\infty = \| \tilde \Lambda _n\|_\infty \geq \lambda _1^{(n)}\end {align}


$M_n\neq 0$


$\hat \beta ^{SLOPE}_n = 0$


$M_n(\omega )=0$


\begin {align*}J_{n^{-1}\Lambda _n}^*\left (n^{-1}X_n(\omega )' Y_n(\omega )\right )\leq 1.\end {align*}


$n^{-1}X_n' Y_n\stackrel {a.s.}{\longrightarrow }C\beta $


$\beta \neq 0$


$M_n\neq 0$


$n$


$\beta \neq 0$


$n$


$\X '(\tilde \X _M')^+\tilde \Lambda _M$


$0\neq \beta \in \R ^p$


$\model (\beta )=M$


$\hat \beta \in S_{\X ,\alpha \Lambda }(X\beta )$


$\model (\hat \beta )=M$


$\beta -\hat \beta \in \col (U_M)$


$\frac {1}{\alpha }X'X(\beta -\hat \beta ) \in \X '\X \,\col (U_M)$


$\partial {J_\Lambda }(\hat \beta )=\partial {J_\Lambda }(M)$


$X'X\col (U_M)=\col (X'\tilde X_M)$


$\partial {J_\Lambda }(M)$


$\bar \Pi =X'(\tilde {X}'_M)^{+}\tilde {\Lambda }_M$


$X\in \R ^{n\times p}$


$0\neq M\in \mathcal {P}^{\rm SLOPE}_p$


$\Lambda \in \R ^{p+}$


$\tilde X_M=XU_M$


$\tilde \Lambda _M=U_{|M|_{\downarrow }}'\Lambda $


$\bar \Pi =X'(\tilde {X}'_M)^{+}\tilde {\Lambda }_M$


$\tilde {\Lambda }_M\notin \col (\tilde X_M')$


$\aff (\partial {J_\Lambda }(M))\cap \col (X'\tilde X_M)=\emptyset $


$\tilde {\Lambda }_M\in \col (\tilde X_M')$


$\aff (\partial {J_\Lambda }(M))\cap \col (X'\tilde X_M)=\{\bar \Pi \}$


$\col (X'\tilde {X}_M)\cap \partial {J_\Lambda }(M)\not =\emptyset $


$\aff (\partial {J_\Lambda }(M))=\{v\in \R ^p\colon U_M'v=\tilde \Lambda _M \}$


$\aff (\partial {J_\Lambda }(M))\cap \col (X'\tilde X_M)\neq \emptyset $


$z\in \R ^k$


$k=\|M\|_\infty $


$X'\tilde X_Mz\in \aff (\partial {J_\Lambda }(M))$


$\tilde \Lambda _M=U_M'X'\tilde X_Mz=\tilde X_M'\tilde X_M'z$


$\tilde {\Lambda }_M\in \col (\tilde X_M')$


$\tilde {\Lambda }_M\in \col (\tilde X_M')$


$\bar \Pi \in \aff (\partial {J_\Lambda }(M))$


$\tilde X_M'(\tilde X_M')^+$


$\col (\tilde X_M')$


$\col ((\tilde X_M')^+)=\col (\tilde X_M)$


$\bar \Pi \in \col (X'\tilde X_M)$


$\bar \Pi $


$\col (X'\tilde {X}_M) \cap \col (U_M)^\perp =\{0\}$


$v\in \col (X'\tilde {X}_M) \cap \col (U_M)^\perp $


$v=X'\tilde {X}_Mz$


$z\in \R ^k$


$U_M'v=0$


$\tilde X_M'\tilde {X}_Mz=0$


$\tilde X_Mz=0$


$v=\{0\}$


$\Pi \in \aff (\partial {J_\Lambda }(M))\cap \col (X'\tilde X_M)$


$\Pi -\bar \Pi \in \col (X'\tilde X_M)$


$U_M'(\Pi -\bar \Pi )=0$


$\Pi =\bar \Pi $


$\bar \Pi \in \partial {J_\Lambda }(M)$


$\col (X'\tilde {X}_M)\cap \partial {J_\Lambda }(M)\not =\emptyset $


$\bar \beta =(5,3)'$


$M=\model (\bar \beta )=(2,1)'$


$\tilde X_M=X$


$\col (X'\tilde X_{M})=\R ^2$


$\col (X'\tilde X_{M})$


$\partial {J_\Lambda }(M)$


$\beta =(5,0)'$


$M=\model (\beta )=(1,0)'$


$\bar \Pi $


$\col (X'\tilde X_M)=\col ((1,0.6)')$


$\aff (\partial {J_\Lambda }(M))$


$\bar \Pi \notin \partial {J_\Lambda }(M)=\{4\}\times [-2,2]$


$M=\model (\beta )=(1,0)'$


$\col (X'\tilde X_M)=\col ((1,0.6)')$


$\partial {J_\Lambda }(M)=\{4\}\times [-2,2]$
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when 𝑝 > 𝑛. Therefore, scientists often resort to the penalized least squares estimators of the form,
𝛽 = arg min

𝑏∈ℝ𝑝
{

‖𝑌 −𝑋𝑏‖22 + 𝐶 pen(𝑏)
}

, (1.2)

where 𝐶 > 0 and pen is the penalty on the model complexity. Typical examples of the penalties include pen(𝛽) = 𝓁0(𝛽) = #{𝑖∶ 𝛽𝑖 ≠
0}, which appears in popular model selection criteria such as AIC [1], BIC [2], RIC [3], mBIC [4] or EBIC [5], or the 𝓁2 or 𝓁1
norms, resulting in famous ridge [6,7] or LASSO [8,9] estimators. In cases where the penalty function is not differentiable, penalized 
estimators usually possess the dimensionality reduction properties as illustrated e.g. in [10]. For instance, LASSO may yield some 
zero components [11,12] and thus its dimensionality reduction property is straightforward: elimination of irrelevant predictors.

However, in a variety of applications one is interested not only in eliminating variables which are not important but also in merging 
similar values of regression coefficients. The prominent statistical example is the multiple regression with categorical variables at many 
levels, where one may substantially reduce the model dimension and improve the estimation and prediction properties by merging 
regression coefficients corresponding to “similar” levels (see e.g. [13–17]). Another well-known example of advantages resulting 
from merging different model parameters are modern Convolutional Neural Networks (CNN), where the “parameter sharing” has 
allowed to “dramatically lower the number of unique model parameters and to significantly increase network sizes without requiring 
a corresponding increase in training data” [18].

In this article, we explore the dimensionality reduction properties of the well-known convex optimization method, the Sorted 
L-One Penalized Estimator (SLOPE) [19–21]. SLOPE has gained considerable attention due to its rich statistical properties (see, e.g., 
[20,22–24] for false discovery rate control under various settings, and [25–27] for results on the minimax rates of estimation and 
prediction).

Following [19,20], we define the SLOPE estimator as the solution to the optimization problem

min
𝑏∈ℝ𝑝

{

1
2
‖𝑌 −𝑋𝑏‖22 +

𝑝
∑

𝑖=1
𝜆𝑖|𝑏|(𝑖)

}

, (1.3)

where |𝑏|(1) ≥ |𝑏|(2) ≥ ⋯ ≥ |𝑏|(𝑝) denote the absolute values of the components of 𝑏 sorted in nonincreasing order, and Λ = (𝜆1,… , 𝜆𝑝)′

is a sequence of tuning parameters satisfying 𝜆1 > 0 and 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 ≥ 0.
The SLOPE estimator is arguably the most significant penalized estimator developed in recent years. It can be viewed as an 

extension of the Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR) [28], where the tuning parameter Λ has 
components that decrease arithmetically. It is also closely related to the Pairwise Absolute Clustering and Sparsity (PACS) method 
[29]. In this context, the term “clustering” reflects the fact that some components of the OSCAR, PACS, and SLOPE estimators may 
have the same absolute value, while the terms “sparsity” and “shrinkage” indicate that some components of these estimators can be 
exactly zero.

SLOPE is also an extension of LASSO whose penalty term is 𝜆‖ ⋅ ‖1 (i.e., when Λ = (𝜆,… , 𝜆)′ with 𝜆 > 0). Note that contrarily to 
SLOPE with a decreasing sequence Λ, LASSO does not exhibit clusters. Clustering and sparsity properties for both OSCAR and SLOPE 
are intuitively illustrated by drawing the elliptic contour lines of the residual sum of squares 𝑏↦ ‖𝑌 −𝑋𝑏‖22 (when ker(𝑋) = {0}) 
together with the balls of the sorted 𝓁1 norm (see, e.g., Figure 2 in [28], Figure 1 in [21] or Figure 3 in [30]). Known theoretical 
properties of SLOPE include its ability to cluster correlated predictors [28,31], as well as predictors with a similar influence on the 
𝐿2 loss function [32]. Specifically, when 𝑋 is orthogonal, SLOPE may also cluster components of 𝛽 equal in absolute value [33]. 
Therefore, dimensionality reduction properties of SLOPE are due to elimination of irrelevant predictors and grouping predictors 
having the same influence on 𝑌 . Note that, contrary to fused LASSO [34], a cluster for SLOPE does not have, in broad generality, 
adjacent components.

The clustering properties of SLOPE offer several advantages. One of the most important is its ability to reduce the problem’s 
dimensionality from 𝑝 to the number of clusters, thereby lowering variance and enhancing the stability of the estimator. The practical 
benefits of these clustering effects have been demonstrated, for example, in [32], where SLOPE proved effective for sparse portfolio 
selection. In this setting, SLOPE regularization not only yields sparse and well-diversified portfolios but also improves out-of-sample 
performance and reduces trading costs by minimizing portfolio turnover. Unlike LASSO, which encourages sparsity but may inconsis-
tently handle similar assets, SLOPE promotes the grouping of assets with comparable risk-return profiles, resulting in portfolios that 
are both sparse and structured.

These theoretical and practical strengths highlight the importance of developing a rigorous mathematical foundation for the 
clustering properties of the SLOPE estimator — a goal this article seeks to accomplish.

The key concept for analyzing the clustering properties of SLOPE is the SLOPE pattern, which was first introduced in [35]. It 
allows to describe the structure (sparsity and clusters) induced by SLOPE. The SLOPE pattern extracts from a given vector:

a) The sign of each component (positive, negative, or zero),
b) The clusters (i.e., indices of components with equal absolute values),
c) The hierarchy among the clusters.

The notion of a SLOPE pattern is stronger and substantially more informative than various other structures, such as the model subspace 
[10,36] or the sets of irrelevant or clustered components [29]. Specifically, two vectors that share the same SLOPE pattern also share 
the same model subspace and have identical sets of zero components as well as components equal in absolute value.

Note that for a given regression model Eq. (1.1) the SLOPE pattern depends on relative scaling of different variables. In the 
situations where there are no clear reasons or rules for selection of specific measurement units, we suggest defining the SLOPE 
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pattern with respect to the standardized design matrix. Note that standardizing explanatory variables is also a standard solution for 
a similar problem of scale-dependent definition of principal components in PCA.

This article focuses on recovering the pattern of 𝛽 by SLOPE. From a mathematical perspective, the main result is Theorem 3.1, 
which specifies two conditions (named positivity and subdifferential conditions) characterizing pattern recovery by SLOPE in both 
noisy and noiseless settings. A byproduct of Theorem 3.1 is the SLOPE irrepresentability condition: a necessary and sufficient con-
dition for pattern recovery in the noiseless case. The word “irrepresentability” is a tribute to works written a decade ago on sign 
recovery by LASSO [37–41]. However, when deriving the irrepresentability condition for SLOPE we developed a substantially differ-
ent mathematical framework, which paves the way for similar analyses of other penalized estimators. Even in the case of the LASSO 
(see Remark 3.2), the sign recovery characterization provided by Theorem 3.1 is new and could simplify the proofs of well-known 
results regarding the LASSO irrepresentability condition. Furthermore, Theorem 3.1 provides a sufficient, though not necessary, con-
dition under which a SLOPE solution shares the same model subspace for the sorted 𝓁1 norm as 𝛽, and correctly identifies the sets 
of irrelevant or clustered components of 𝛽. In this way we strengthen the results of [10,29,36]. Finally, the proposed positivity and 
subdifferential conditions are crucial in developing an algorithm for computing the solution path of SLOPE [42] or to study pattern 
recovery by proximal-thresholded SLOPE [43, Theorem 2.2].

In Theorem 4.1 we consider a noisy case and under the open SLOPE irrepresentability condition (a condition slightly stronger 
than the SLOPE irrepresentability condition) we prove that the probability of pattern recovery by SLOPE tends to 1 as soon as 𝑋 is 
fixed and gaps between distinct absolute values of 𝛽 diverge to infinity. Additionally, in Theorems 4.2 and 4.3 we apply the SLOPE 
irrepresentability condition to derive results on the asymptotic pattern recovery by SLOPE when the number of variables 𝑝 is fixed 
and the sample size 𝑛 diverges to infinity.

While the SLOPE ability to identify the pattern of the vector of regression coefficients 𝛽 is interesting by itself, the related reduction 
of model dimension also brings an advantage in terms of precision of 𝛽 estimation. This phenomenon is illustrated in Fig. 1, which 
presents the difference in precision of LASSO, Fused LASSO and SLOPE estimators, when some of the regression coefficients are equal 
to each other. In this example 𝑛 = 100, 𝑝 = 200, and the rows of the design matrix are generated as independent binary Markov chains, 
with ℙ(𝑋𝑖1 = 1) = ℙ(𝑋𝑖1 = −1) = 0.5 and ℙ(𝑋𝑖(𝑗+1) ≠ 𝑋𝑖𝑗 ) = 1 − ℙ(𝑋𝑖(𝑗+1) = 𝑋𝑖𝑗 ) = 0.0476. This value corresponds to the probability of 
the crossover event between genetic markers spaced every 5 centimorgans and our design matrix can be viewed as an example of 
100 independent haplotypes, each resulting from a single meiosis event. In this example, the correlation between columns of the 
design matrix decays exponentially, 𝜌(𝑋⋅𝑖, 𝑋⋅𝑗 ) = 0.9048|𝑖−𝑗|. The design matrix is then standardized, so that each column has a zero 
mean and a unit variance, and the response variable is generated according to the linear model Eq. (1.1) with 𝛽1 = … = 𝛽30 = 40, 
𝛽31 = … = 𝛽200 = 0 and 𝜎 = 5. In this experiment the data matrix 𝑋 and the regression model are constructed such that the LASSO 
irrepresentability condition holds. The tuning parameter for LASSO is selected as the smallest value of 𝜆 for which LASSO can properly 
identify the sign of 𝛽. Similarly, the tuning parameter Λ is designed such that the SLOPE irrepresentability condition holds and Λ is 
multiplied by the smallest constant for which SLOPE properly returns the SLOPE pattern. The selected tuning parameters for LASSO 
and SLOPE are represented in the left panel of Fig. 1. For both LASSO and SLOPE, the proposed tuning parameters are close to the 
values minimizing the mean squared estimation error. The fused LASSO was performed using the fusedlasso function from the genlasso 
library in R. The tuning parameters 𝜆 and 𝛾 were manually selected, so as to minimize the mean squared estimation error. Since in 

Fig. 1. Comparison of LASSO, Fused LASSO and SLOPE when the cluster structure is present in the data. Here 𝑛 = 100, 𝑝 = 200, the rows of 𝑋 matrix 
are simulated as independent binary Markov chains, with the transition probability 0.0476 (corresponding to 5 centimorgans genetic distance). The 
correlation between 𝑖𝑡ℎ and 𝑗𝑡ℎ column of 𝑋 decays exponentially as 0.9048|𝑖−𝑗|. First 𝑘 = 30 columns of 𝑋 are associated with 𝑌  and their nonzero 
regression coefficients are all equal to 40 (other details are provided in the text). Left panel represents the value of the tuning parameter for LASSO 
(solid line) and the sequence of tuning parameters for SLOPE (crosses). The sequences are selected such that both LASSO and SLOPE recover their 
corresponding patterns with a minimal bias. Right panel represents LASSO, Fused LASSO and SLOPE estimates. The tuning parameters for Fused 
LASSO were selected manually as to minimize the estimation error.
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this example all methods properly estimate the null components of 𝛽, the right panel in Fig. 1 illustrates only the accuracy of the 
estimation of the nonzero coefficients. Here we can observe that the SLOPE ability to identify the cluster structure leads to superior 
estimation properties. SLOPE estimates the regression coefficient vector 𝛽 with virtually no error, while the LASSO estimates range 
roughly between 36 and 44, and the Fused LASSO estimates fall between approximately 38.8 and 41.9. As a result, the squared error 
of the SLOPE estimate is more than twenty times smaller than that of the Fused LASSO, and over 100 times smaller than that of the 
LASSO (0.53 vs 13.25 vs 63.4).

1.1.  Structure of the paper

Section 2 introduces the concept of the SLOPE pattern, which captures the sparsity and clustering structure in the regression 
coefficients. It also defines key mathematical tools such as the pattern matrix, clustered design matrix, and subdifferential of the 
sorted 𝓁1 norm.

Theorem 3.1, the main result of Section 3, provides necessary and sufficient conditions for exact SLOPE pattern recovery in both 
noisy and noiseless settings. This extends previous work by introducing a “SLOPE irrepresentability condition,” generalizing the 
LASSO irrepresentability framework. Even for the LASSO case (see Remark 3.2), the sign recovery characterization in Theorem 3.1 
is new and may simplify existing proofs.

Section 4 investigates the conditions under which SLOPE recovers the true pattern, either as the signal strength increases or as the 
sample size grows, given appropriate tuning. It introduces the notion of open irrepresentability, a stronger version of the standard 
irrepresentability condition, which guarantees asymptotic pattern recovery in high-dimensional settings.

Section 5 presents simulation studies that validate the theoretical results from Sections 3 and 4. The simulations demonstrate that 
appropriate tuning of the SLOPE penalty yields high probabilities of correct pattern recovery, and they show that SLOPE outperforms 
LASSO and Fused LASSO when the true regression vector exhibits clustering.

We conclude the paper with a discussion in Section 6.
The appendix provides detailed proofs of the main theorems. It also includes auxiliary results such as a law of iterated logarithm 

for strong consistency and computational verifications of irrepresentability conditions.

2.  Preliminaries and basic notions on clustering properties by SLOPE

The SLOPE pattern, whose definition is recalled hereafter, is the central notion in this article.
Definition 2.1. Let 𝑏 ∈ ℝ𝑝. The SLOPE pattern of 𝑏, patt(𝑏), is defined by 

patt(𝑏)𝑖 = sign(𝑏𝑖) rank(|𝑏|)𝑖, ∀𝑖 ∈ {1,… , 𝑝}

where rank(|𝑏|)𝑖 ∈ {0, 1,… , 𝑘}, 𝑘 is the number of nonzero distinct values in {|𝑏1|,… , |𝑏𝑝|}, rank(|𝑏|)𝑖 = 0 if 𝑏𝑖 = 0, rank(|𝑏|)𝑖 > 0 if 
|𝑏𝑖| > 0 and rank(|𝑏|)𝑖 < rank(|𝑏|)𝑗 if |𝑏𝑖| < |𝑏𝑗 |.

We denote by SLOPE
𝑝 = patt(ℝ𝑝) the set of SLOPE patterns.

Example 2.2. For 𝑎 = (4.7,−4.7, 0, 1.8, 4.7,−1.8)′ we have patt(𝑎) = (2,−2, 0, 1, 2,−1)′. For 𝑏 = (1.2,−2.3, 3.5, 1.2, 2.3,−3.5)′ we have 
patt(𝑏) = (1,−2, 3, 1, 2,−3)′.

Definition 2.3. Let 0 ≠𝑀 = (𝑀1,… ,𝑀𝑝)′ ∈ SLOPE
𝑝  with 𝑘 = ‖𝑀‖∞ nonzero clusters. The pattern matrix 𝑈𝑀 ∈ ℝ𝑝×𝑘 is defined as 

follows 
(𝑈𝑀 )𝑖𝑗 = sign(𝑀𝑖)𝟏(|𝑀𝑖|=𝑘+1−𝑗), 𝑖 ∈ {1,… , 𝑝}, 𝑗 ∈ {1,… , 𝑘}.

Hereafter, the notation |𝑀|↓ = (|𝑀|(1),… , |𝑀|(𝑝))′ represents the components of 𝑀 ordered non-increasingly by absolute value.
Example 2.4. If 𝑀 = (−2, 1, 0,−1, 2)′, then 

𝑈𝑀 =
(

−1 0 0 0 1
0 1 0 −1 0

)′

 and 𝑈
|𝑀|↓

=
(

1 1 0 0 0
0 0 1 1 0

)′

.

For 𝑘 ≥ 1 we denote by ℝ𝑘+ = {𝜅 ∈ ℝ𝑘 ∶ 𝜅1 >… > 𝜅𝑘 > 0}. Definition 2.3 implies that for 0 ≠𝑀 ∈ SLOPE
𝑝  and 𝑘 = ‖𝑀‖∞, for 𝑏 ∈ ℝ𝑝

we have 
patt(𝑏) =𝑀 ⟺ there exists 𝜅 ∈ ℝ𝑘+ such that 𝑏 = 𝑈𝑀𝜅.

2.1.  Clustered matrix 𝑋̃𝑀  and clustered parameter Λ̃𝑀

Definition 2.5. Let 𝑋 ∈ ℝ𝑛×𝑝, Λ ∈ ℝ𝑝+ and 𝑀 ∈ SLOPE
𝑝 . The clustered matrix is defined by 𝑋̃𝑀 = 𝑋𝑈𝑀 . The clustered parameter is 

defined by Λ̃𝑀 = (𝑈
|𝑀|↓

)′Λ.

If 𝑀 = patt(𝛽) for 𝛽 ∈ ℝ𝑝 satisfies ‖𝑀‖∞ < 𝑝, then the pattern 𝑀 = (𝑀1,… ,𝑀𝑝)′ leads naturally to reduce the dimension of the 
design matrix 𝑋 in the regression problem, by replacing 𝑋 by 𝑋̃𝑀 . Actually, if patt(𝛽) =𝑀 , then 𝑋𝛽 = 𝑋𝑈𝑀𝜅 = 𝑋̃𝑀𝜅 for 𝜅 ∈ ℝ𝑘+. 
In particular,
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(i) null components 𝑀𝑖 = 0 lead to discard the column 𝑋𝑖 from the design matrix 𝑋,
(ii) a cluster 𝐾 ⊂ {1,… , 𝑝} of 𝑀 (components of 𝑀 equal in absolute value) leads to replacing the columns (𝑋𝑖)𝑖∈𝐾 by one column 

equal to the signed sum: ∑
𝑖∈𝐾

sign(𝑀𝑖)𝑋𝑖.

Example 2.6. Let 𝑋 = (𝑋1|𝑋2|𝑋3|𝑋4|𝑋5), 𝑀 = (1, 2,−2, 0, 1)′ and Λ = (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5)′ ∈ ℝ5+. Then the clustered matrix and the 
clustered parameter are given hereafter: 

𝑋̃𝑀 = (𝑋2 −𝑋3|𝑋1 +𝑋5) and Λ̃𝑀 =
(

𝜆1 + 𝜆2
𝜆3 + 𝜆4

)

.

2.2.  Sorted 𝓁1 norm, dual sorted 𝓁1 norm and subdifferential

The sorted 𝓁1 norm is defined as follows: 

𝐽Λ(𝑏) =
𝑝
∑

𝑖=1
𝜆𝑖|𝑏|(𝑖), 𝑏 ∈ ℝ𝑝,

where |𝑏|(1) ≥ … ≥ |𝑏|(𝑝) are the sorted components of 𝑏 with respect to the absolute value. Given a norm ‖ ⋅ ‖ on ℝ𝑝, we recall that 
the dual norm ‖ ⋅ ‖∗ is defined by ‖𝑏‖∗ = max{𝑣′𝑏∶ ‖𝑣‖ ≤ 1} for any 𝑏 ∈ ℝ𝑝. In particular, the dual sorted 𝓁1 norm has an explicit 
expression given in [44] and recalled hereafter:

𝐽 ∗
Λ(𝑏) = max

{

|𝑏|(1)
𝜆1

,
∑2
𝑖=1 |𝑏|(𝑖)
∑2
𝑖=1 𝜆𝑖

,… ,
∑𝑝
𝑖=1 |𝑏|(𝑖)
∑𝑝
𝑖=1 𝜆𝑖

}

, 𝑏 ∈ ℝ𝑝. (2.1)

Related to the dual norm, the subdifferential of a norm ‖ ⋅ ‖ at 𝑏 is recalled below (see e.g. [45] pages 167 and 180)
𝜕‖ ⋅ ‖(𝑏) = {𝑣 ∈ ℝ𝑝 ∶ ‖𝑧‖ ≥ ‖𝑏‖ + 𝑣′(𝑧 − 𝑏) ∀ 𝑧 ∈ ℝ𝑝},

= {𝑣 ∈ ℝ𝑝 ∶ ‖𝑣‖∗ ≤ 1 and 𝑣′𝑏 = ‖𝑏‖}. (2.2)

For the sorted 𝓁1 norm, geometric descriptions of the subdifferential at 𝑏 ∈ ℝ𝑝 have been given in the particular case where 𝑏1 ≥ … ≥
𝑏𝑝 ≥ 0 [35,46,47]. Hereafter, for an arbitrary 𝑏 ∈ ℝ𝑝, Proposition 2.1 provides a new and useful formula for the subdifferential of the 
sorted 𝓁1 norm. This representation is the crux of the mathematical content of the present paper.
Proposition 2.1. Let 𝑏 ∈ ℝ𝑝 and 𝑀 = patt(𝑏). Then we have the following formula:

𝜕𝐽Λ(𝑏) =
{

𝑣 ∈ ℝ𝑝 ∶ 𝐽 ∗
Λ(𝑣) ≤ 1 and 𝑈 ′

𝑀𝑣 = Λ̃𝑀
}

. (2.3)

In Proposition A.2 we derive a simple characterization of elements in 𝜕𝐽Λ(𝑏). The notion of SLOPE pattern is related to the 
subdifferential via the following result.
Proposition 2.2. Let Λ = (𝜆1,… , 𝜆𝑝)′ where 𝜆1 >… > 𝜆𝑝 > 0 and 𝑎, 𝑏 ∈ ℝ𝑝. We have patt(𝑎) = patt(𝑏) if and only if 𝜕𝐽Λ(𝑎) = 𝜕𝐽Λ(𝑏).

A proof of Proposition 2.2 can be found in [35]. In the Appendix, we provide an independent proof, which is based on Proposi-
tion 2.1.

From now on, to comply with Proposition 2.2, we assume that the tuning parameter Λ = (𝜆1,… , 𝜆𝑝)′ satisfies 
𝜆1 >… > 𝜆𝑝 > 0.

2.3.  Characterization of SLOPE minimizers

The SLOPE estimator is a minimizer of the following optimization problem:

𝑆𝑋,Λ(𝑌 ) = arg min
𝑏∈ℝ𝑝

{1
2
‖𝑌 −𝑋𝑏‖22 + 𝐽Λ(𝑏)

}

. (2.4)

In this article we do not assume that 𝑆𝑋,Λ(𝑌 ) contains a unique element and potentially 𝑆𝑋,Λ(𝑌 ) can be a non-trivial compact 
and convex set. Note however that cases in which 𝑆𝑋,Λ(𝑌 ) is not a singleton are very rare. Indeed, the set of matrices 𝑋 ∈ ℝ𝑛×𝑝

for which there exists a 𝑌 ∈ ℝ𝑛 where 𝑆𝑋,Λ(𝑌 ) is not a singleton has a null Lebesgue measure on ℝ𝑛×𝑝 [35]. If ker(𝑋) = {0}, then 
𝑆𝑋,Λ(𝑌 ) consists of one element. Recall that a convex function 𝑓 attains its minimum at a point 𝑏 if and only if 0 ∈ 𝜕𝑓 (𝑏). Since 
𝜕 1
2‖𝑌 −𝑋𝑏‖22 = {−𝑋′(𝑌 −𝑋𝑏)}, the SLOPE estimator satisfies the following characterization: 

𝛽 ∈ 𝑆𝑋,Λ(𝑌 ) ⇔ 𝑋′(𝑌 −𝑋𝛽) ∈ 𝜕𝐽Λ(𝛽).

3.  Characterization of pattern recovery by SLOPE

The characterization of pattern recovery by SLOPE given in Theorem 3.1 is a crucial result in this article. We recall that 𝑃𝑀 =
(𝑋̃′

𝑀 )+𝑋̃′
𝑀 = 𝑋̃𝑀 𝑋̃+

𝑀  is the orthogonal projection onto col(𝑋̃𝑀 ), where 𝐴+ represents the Moore-Penrose pseudo-inverse of the matrix 
𝐴 (see e.g. [48]).
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Theorem 3.1. Let 𝑋 ∈ ℝ𝑛×𝑝, 0 ≠ 𝛽 ∈ ℝ𝑝, 𝑌 = 𝑋𝛽 + 𝜀 for 𝜀 ∈ ℝ𝑛, Λ ∈ ℝ𝑝+. Let 𝑀 = patt(𝛽) ∈ SLOPE
𝑝  and 𝑘 = ‖𝑀‖∞. Define 

𝜋 = 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 +𝑋′(𝐼𝑛 − 𝑃𝑀 )𝑌 . (3.1)

There exists 𝛽 ∈ 𝑆𝑋,Λ(𝑌 ) with patt(𝛽) = patt(𝛽) if and only if the two conditions below hold true: 
{

there exists𝑠 ∈ ℝ𝑘+such that 𝑋̃′
𝑀𝑌 − Λ̃𝑀 = 𝑋̃′

𝑀 𝑋̃𝑀𝑠,  (positivity condition)
𝜋 ∈ 𝜕𝐽Λ(𝑀). (subdifferential condition)

If the positivity and subdifferential conditions are satisfied, then 𝛽 = 𝑈𝑀𝑠 ∈ 𝑆𝑋,Λ(𝑌 ) and 𝜋 = 𝑋′(𝑌 −𝑋𝛽).

Remark 3.1.

(i) When 𝑋 is deterministic and 𝜀 has a N(0, 𝜎2𝐼𝑛) distribution, then the event of pattern recovery by SLOPE is the intersection of 
statistically independent events:

𝐴 =
{

𝜔 ∈ Ω∶ there exists𝑠 ∈ ℝ𝑘+such that 𝑋̃′
𝑀𝑌 (𝜔) − Λ̃𝑀 = 𝑋̃′

𝑀 𝑋̃𝑀𝑠
}

,

𝐵 =
{

𝜔 ∈ Ω∶ 𝜋(𝜔) ∈ 𝜕𝐽Λ(𝑀)
}

.

Indeed, since 𝑋̃′
𝑀 = 𝑋̃′

𝑀𝑃𝑀  then 𝑋̃′
𝑀𝑌 (𝜔) depends on 𝜀𝐴(𝜔) = 𝑃𝑀𝜀(𝜔). Moreover, 𝜋(𝜔) depends on 𝜀𝐵(𝜔) = (𝐼𝑛 − 𝑃𝑀 )𝜀(𝜔). Since 

𝑃𝑀  is an orthogonal projection, 𝜀𝐴 and 𝜀𝐵 have a null covariance matrix. But 𝜀 is Gaussian and hence 𝜀𝐴 and 𝜀𝐵 are independent. 
Therefore events 𝐴 and 𝐵 are independent.

(ii) Under the positivity condition, the subdifferential condition is equivalent to 𝐽 ∗
Λ(𝜋) ≤ 1. Indeed, observe that Λ̃𝑀 ∈ col(𝑋̃′

𝑀 ) (or 
equivalently, 𝑋̃′

𝑀 (𝑋̃′
𝑀 )+Λ̃𝑀 = Λ̃𝑀 ) is necessary for the positivity condition. In view of Eq. (2.3), using the definition of 𝜋, we see 

that 𝑈 ′
𝑀𝜋 = Λ̃𝑀  is equivalent to 𝑋̃′

𝑀 (𝑋̃′
𝑀 )+Λ̃𝑀 = Λ̃𝑀 . This follows from the fact that 𝑃𝑀  is the projection matrix onto the vector 

subspace col(𝑋̃𝑀 ), and thus 0′ = [(𝐼𝑛 − 𝑃𝑀 )𝑋̃𝑀 ]′ = 𝑈 ′
𝑀𝑋

′(𝐼𝑛 − 𝑃𝑀 ).
(iii) The assertion of Theorem 3.1 cannot be strengthened. Indeed, if 𝑆𝑋,Λ(𝑌 ) contains more than one element, then two different 

minimizers may have different SLOPE patterns.

Even though many theoretical properties on sign recovery by LASSO are known (see e.g. [39]), we believe that it is relevant to 
give a characterization of sign recovery by LASSO similar to the characterization of pattern recovery by SLOPE given in Theorem 3.1. 
Such a characterization could simplify proofs of well-known results on LASSO irrepresentability condition.
Remark 3.2. Let 0 ≠ 𝑆 ∈ {−1, 0, 1}𝑝 and 𝑘 = ‖𝑆‖1 (𝑘 is the number of nonzero components of 𝑆). The signed matrix 𝑈𝑆 ∈ ℝ𝑝×𝑘 is 
defined by 𝑈𝑆 = (diag(𝑆))supp(𝑆) where diag(𝑆) ∈ ℝ𝑝×𝑝 is a diagonal matrix and (diag(𝑆))supp(𝑆) denotes the submatrix of diag(𝑆) obtained 
by keeping columns corresponding to indices in supp(𝑆). Observe that for any 0 ≠ 𝛽 ∈ ℝ𝑝 there exists a unique 𝑆 ∈ {−1, 0, 1}𝑝 and a 
unique 𝜅0 ∈ (0,∞)𝑘 such that 𝛽 = 𝑈𝑆𝜅0. Define the reduced matrix 𝑋̃𝑆 and reduced parameter 𝜆̃𝑆 by 

𝑋̃𝑆 = 𝑋𝑈𝑆 and 𝜆̃𝑆 = 𝜆1𝑘,  where 1𝑘 = (1,… , 1)′ ∈ ℝ𝑘.

Moreover, for 𝑏 = (𝑏1,… , 𝑏𝑝) ∈ ℝ𝑝 define sign(𝑏) = (sign(𝑏1),… , sign(𝑏𝑝)). Similarly to the proof of Theorem 3.1, one may prove that 
the necessary and sufficient conditions for the LASSO sign recovery (i.e., the existence of estimator 𝛽LASSO such that sign(𝛽LASSO) =
sign(𝛽) = 𝑆) are the following 

{

there exists 𝜅 ∈ ℝ𝑘
+such that 𝑋̃′

𝑆𝑌 − 𝜆̃𝑆 = 𝑋̃′
𝑆𝑋̃𝑆𝜅,  (positivity condition)

𝑋′(𝑋̃′
𝑆 )

+1𝑘 +
1
𝜆𝑋

′(𝐼𝑛 − 𝑋̃𝑆𝑋̃+
𝑆 )𝑌 ∈ 𝜕‖ ⋅ ‖1(𝑆).  (subdifferential condition)

In the noiseless case, when 𝜀 = 0 and 𝑌 = 𝑋𝛽, the subdifferential condition reduces to 𝑋′(𝑋̃′
𝑆 )

+1𝑘 ∈ 𝜕‖ ⋅ ‖1(𝑆) (or equivalently, 
‖𝑋′(𝑋̃′

𝑆 )
+1𝑘‖∞ ≤ 1 and 1𝑘 ∈ col(𝑋̃′

𝑆 )). Moreover, when ker(𝑋𝑆 ) = {0} then 1𝑘 ∈ col(𝑋̃′
𝑆 ) occurs and ‖𝑋′(𝑋̃′

𝑆 )
+1𝑘‖∞ ≤ 1 is equivalent 

to ‖𝑋′
𝐼
𝑋𝐼 (𝑋′

𝐼𝑋𝐼 )−1𝑆𝐼‖∞ ≤ 1 where 𝐼 = supp(𝑆), 𝐼 = {1,… , 𝑝} ⧵ 𝐼 and 𝑋𝐼  (resp. 𝑋𝐼 ) denotes the submatrix of 𝑋 obtained by keeping 
columns corresponding to indices in 𝐼 (resp 𝐼). This latter expression is known as the irrepresentability condition [37,40,41].

3.1.  SLOPE irrepresentability condition

As illustrated by Fuchs [37] (Theorem 2), Bühlmann and van de Geer [49] (Theorem 7.1) and also recalled in Remark 3.2, 
the irrepresentability condition is related to sign recovery by LASSO in the noiseless case, i.e., when the noise 𝜀 = 0. Analogously, 
analyzing pattern recovery by SLOPE in the noiseless case allows to introduce the SLOPE irrepresentability condition. This condition 
will be very useful in the remainder of the article when the noise term 𝜀 is no longer zero. Corollaries 3.2 and 3.3, which provide a 
characterization of pattern recovery by SLOPE in the noiseless case (as defined in [50]), follow as consequences of Theorem 3.1.
Corollary 3.2. Let 𝑋 ∈ ℝ𝑛×𝑝 and 𝛽 ∈ ℝ𝑝 where patt(𝛽) =𝑀 ≠ 0. In the noiseless case, when 𝑌 = 𝑋𝛽 , the following statements are 
equivalent:

(i) There exists Λ ∈ ℝ𝑝+ and 𝛽 ∈ 𝑆𝑋,Λ(𝑋𝛽) such that patt(𝛽) = patt(𝛽).
(ii) For all 𝜆01 > 0, there exists Λ ∈ ℝ𝑝+ with 𝜆1 < 𝜆01 and 𝛽 ∈ 𝑆𝑋,Λ(𝑋𝛽) such that patt(𝛽) = patt(𝛽).
(iii) There exists Λ ∈ ℝ𝑝+ such that 𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 ∈ 𝜕𝐽Λ(𝑀) (or equivalently 𝐽 ∗
Λ(𝑋

′(𝑋̃′
𝑀 )+Λ̃𝑀 ) ≤ 1 and Λ̃𝑀 ∈ col(𝑋̃′

𝑀 )).
(iv) For all 𝜆01 > 0, there exists Λ ∈ ℝ𝑝+ with 𝜆1 < 𝜆01 such that 𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 ∈ 𝜕𝐽Λ(𝑀).
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Typically, for penalized estimators, the penalty term is scaled by a tuning parameter 𝛼 > 0. The following corollary addresses the 
tuning of the SLOPE penalty 𝐽Λ.

Corollary 3.3. When the penalty term 𝐽Λ(⋅), with a fixed Λ ∈ ℝ𝑝+, is scaled by a parameter 𝛼 > 0, the following statements are 
equivalent:

(i) There exists 𝛼 > 0 and 𝛽 ∈ 𝑆𝑋,𝛼Λ(𝑋𝛽) such that patt(𝛽) = patt(𝛽).
(ii) There exists 𝛼0 > 0 such that for all 𝛼 ∈ (0, 𝛼0) there exists 𝛽 ∈ 𝑆𝑋,𝛼Λ(𝑋𝛽) for which patt(𝛽) = patt(𝛽).
(iii) 𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 ∈ 𝜕𝐽Λ(𝑀).

From now on, given 𝑀 = patt(𝛽), we refer to the following inequality and inclusion as the SLOPE irrepresentability condition:

𝐽 ∗
Λ
(

𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀

)

≤ 1 and Λ̃𝑀 ∈ col(𝑋̃′
𝑀 ). (3.2)

Remark 3.3.

(i) When ker(𝑋̃𝑀 ) = {0}, we have 𝑋′(𝑋̃′
𝑀 )+ = 𝑋′𝑋̃𝑀 (𝑋̃′

𝑀 𝑋̃𝑀 )−1, and consequently, the SLOPE irrepresentability condition becomes 

𝐽 ∗
Λ(𝑋

′𝑋̃𝑀 (𝑋̃′
𝑀 𝑋̃𝑀 )−1Λ̃𝑀 ) ≤ 1.

(ii) A geometric interpretation of 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀  is provided in the Appendix, see Appendix D.

Example 3.4. We give two illustrations in the particular case where Λ = (4, 2)′, 𝛽 = (5, 0)′, 𝛽 = (5, 3)′ and 𝑋 = (𝑋1|𝑋2) ∈ ℝ𝑛×2 such 
that 

𝑋′𝑋 =
(

1 0.6
0.6 1

)

.

• The SLOPE irrepresentability condition does not occur when 𝛽 = (5, 0)′. Indeed, 𝑀 = patt(𝛽) = (1, 0)′, 𝑋̃𝑀 = 𝑋1 (thus 𝑋̃′
𝑀 𝑋̃𝑀 = 1) 

and Λ̃𝑀 = 𝜆1 = 4. Therefore 

𝐽 ∗
Λ(𝑋

′(𝑋̃′
𝑀 )+Λ̃𝑀 ) = 𝐽 ∗

Λ(𝑋
′𝑋̃𝑀 (𝑋̃′

𝑀 𝑋̃𝑀 )−1Λ̃𝑀 ) = 𝐽 ∗
Λ(4𝑋

′𝑋̃𝑀 ) = 6.4∕6 > 1.

• The SLOPE irrepresentability condition occurs when 𝛽 = (5, 3)′. Indeed, 𝑀 = patt(𝛽) = (2, 1)′, 𝑋̃𝑀 = 𝑋 and Λ̃𝑀 = Λ. Therefore 
ker(𝑋̃𝑀 ) = {0} and 

𝐽 ∗
Λ(𝑋

′(𝑋̃′
𝑀 )+Λ̃𝑀 ) = 𝐽 ∗

Λ(𝑋
′𝑋(𝑋′𝑋)−1Λ) = 𝐽 ∗

Λ(Λ) = 1 ≤ 1.

Fig. 2 confirms graphically that SLOPE irrepresentability condition does not occur for 𝛽 (resp. occurs for 𝛽). Note that, in this setup, 
the SLOPE solution is unique (since ker(𝑋) = {0}); we denote by 𝛽(𝛼) the unique element of 𝑆𝑋,𝛼Λ(𝑋𝛽) and the SLOPE solution path 
refers to the function 𝛼 ∈ (0,∞) ↦ 𝛽(𝛼).

Fig. 2. On the left, the signal is 𝛽 = (5, 0)′. Based on this figure one may observe that the pattern of 𝛽 cannot be recovered by SLOPE in the noiseless 
case. Indeed, for 𝛼 ∈ (0, 1) we have patt(𝛽(𝛼)) = (2, 1)′; when 𝛼 ∈ [1, 4∕3) we have patt(𝛽(𝛼)) = (1, 1)′ and when 𝛼 > 4∕3 then 𝛽(𝛼) = 0. Consequently, for 
every 𝛼 > 0 we have patt(𝛽(𝛼)) ≠ patt(𝛽) = (1, 0)′. On the right, the signal is 𝛽 = (5, 3)′. Based on this figure one may observe that patt(𝛽) is recovered 
by SLOPE in the noiseless case. Indeed, for 𝛼 ∈ (0, 0.4) we have patt(𝛽(𝛼)) = (2, 1)′ = patt(𝛽).
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4.  Asymptotic probability on pattern recovery and pattern consistency

From now on, in the definition of SLOPE Eq. (2.4), we consider that the penalty term 𝐽Λ(𝑏), with fixed Λ ∈ ℝ𝑝+, is multiplied by a 
scaling parameter 𝛼 > 0. We denote by 𝑆𝑋,𝛼Λ(𝑌 ) the set of SLOPE solutions. This scaling parameter may, for instance, vary in (0,∞)
for the solution path, or it can be chosen depending on the standard error of the noise. In this section we consider two asymptotic 
scenarios and establish conditions on tuning parameters for which the pattern of 𝛽 is recovered. In Section 4.1 we consider the case 
where gaps between distinct absolute values of 𝛽 diverge and in Section 4.2 the case where the sample size 𝑛 diverges. The proofs 
rely on Theorem 3.1. We show that the positivity and subdifferential conditions are satisfied under our settings. It turns out that for 
the positivity condition the tuning parameter cannot be too large, while for the subdifferential condition it cannot be too small. In 
this way we consider a tuning parameter of the form 𝛼Λ, where Λ ∈ ℝ𝑝+ is fixed and 𝛼 varies. We determine the assumptions for the 
sequence (𝛼) for which both positivity and subdifferential conditions hold true, i.e., for which the pattern is recovered.

4.1. 𝑋 is a fixed matrix

The subdifferential condition, given in Theorem 3.1, says that a vector 𝜋 defined in Eq. (3.1) belongs to 𝜕𝐽𝛼Λ(𝑀), where 𝛼 is a 
scaling parameter. This condition is equivalent to requiring that a vector 𝜋𝛼 ∶= 𝜋∕𝛼 is an element of 𝜕𝐽Λ(𝑀). We denote the vector 
𝜋∕𝛼 by

𝜋𝛼 = 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 + 1

𝛼
𝑋′(𝐼𝑛 − 𝑃𝑀 )𝑌 = 𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 + 1
𝛼
𝑋′(𝐼𝑛 − 𝑃𝑀 )𝜀, (4.1)

where in the latter equality we have used the fact that (𝐼𝑛 − 𝑃𝑀 ) is an orthogonal projection onto col(𝑋̃𝑀 )⊥ and therefore (𝐼𝑛 −
𝑃𝑀 )𝑋𝛽 = (𝐼𝑛 − 𝑃𝑀 )𝑋̃𝑀𝑠 = 0, where 𝛽 = 𝑈𝑀𝑠 and 𝑠 ∈ ℝ‖𝑀‖∞+.

By Theorem 3.1, the probability of pattern recovery by SLOPE is upper bounded by

ℙ
(

∃𝛽 ∈ 𝑆𝑋,𝛼Λ(𝑌 ) such that patt(𝛽) = patt(𝛽)
)

≤

{

ℙ
(

𝐽 ∗
Λ(𝜋𝛼) ≤ 1

)

,
0 if Λ̃𝑀 ∉ col(𝑋̃′

𝑀 ).
(4.2)

Note that the condition Λ̃𝑀 ∈ col(𝑋̃′
𝑀 ) and 𝐽 ∗

Λ(𝜋𝛼) ≤ 1 is necessary for pattern recovery by SLOPE, but not equivalent to it. Therefore, 
the inequality in Eq. (4.2) is, in general, not an equality. The first point in Theorem 4.1 shows that the probability of pattern recovery 
matches with the upper bound Eq. (4.2) when the gaps between the different absolute values of components of 𝛽 are large enough. 
The last point establishes pattern consistency for SLOPE. The formulation of the theorem involves the notion of the relative interior 
of a set, which we recall below for completeness.
Definition 4.1. The affine hull of a set 𝐶 ⊆ ℝ𝑛, denoted by aff(𝐶), is the set of all affine combinations of points in 𝐶: 

aff(𝐶) =
{

𝜃1𝑥1 +⋯ + 𝜃𝑘𝑥𝑘 ∶ 𝑥1,… , 𝑥𝑘 ∈ 𝐶, 𝜃1 +⋯ + 𝜃𝑘 = 1
}

.

Definition 4.2. The relative interior of a set 𝐶, denoted ri(𝐶), is the interior of 𝐶 relative to its affine hull: 
ri(𝐶) =

{

𝑥 ∈ 𝐶 ∶ 𝐵(𝑥, 𝑟) ∩ aff(𝐶) ⊆ 𝐶 for some 𝑟 > 0
}

,

where 𝐵(𝑥, 𝑟) = {𝑦 ∣ ‖𝑦 − 𝑥‖ ≤ 𝑟} is the ball of radius 𝑟 centered at 𝑥, under any norm ‖ ⋅ ‖. All norms define the same relative interior.
Theorem 4.1. Let 𝑋 ∈ ℝ𝑛×𝑝, 0 ≠𝑀 ∈ SLOPE

𝑝 , and Λ = (𝜆1,… , 𝜆𝑝)′ ∈ ℝ𝑝+. Consider a sequence of signals (𝛽(𝑟))𝑟≥1 with pattern 𝑀 : 

𝛽(𝑟) = 𝑈𝑀𝑠
(𝑟) with 𝑠(𝑟) ∈ ℝ𝑘+ and 𝑘 = ‖𝑀‖∞,

whose strength is increasing in the following sense:

Δ𝑟 = min
1≤𝑖<𝑘

(

𝑠(𝑟)𝑖 − 𝑠(𝑟)𝑖+1
) 𝑟→∞
⟶ ∞,  with the convention 𝑠(𝑟)𝑘+1 = 0

and let 𝑌 (𝑟) = 𝑋𝛽(𝑟) + 𝜀, where 𝜀 is a vector in ℝ𝑛.

(i) Sharpness of the upper bound: Let 𝛼 > 0. If 𝜀 is random, then the upper bound Eq. (4.2) is asymptotically reached: 

lim
𝑟→∞

ℙ
(

∃𝛽 ∈ 𝑆𝑋,𝛼Λ(𝑌 (𝑟)) such that patt(𝛽) =𝑀
)

=

{

ℙ
(

𝐽 ∗
Λ(𝜋𝛼) ≤ 1

)

,
0 if Λ̃𝑀 ∉ col(𝑋̃′

𝑀 ).

(ii) Pattern consistency: If 𝛼𝑟 → ∞, 𝛼𝑟∕Δ𝑟 → 0 as 𝑟 → ∞ and 

𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 ∈ ri(𝜕𝐽Λ(𝑀)),

then for any 𝜀 ∈ ℝ𝑛 we have 

∃ 𝑟0 > 0 ∀ 𝑟 ≥ 𝑟0 ∃ 𝛽 ∈ 𝑆𝑋,𝛼𝑟Λ(𝑌
(𝑟)) such that patt(𝛽) =𝑀.
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Remark 4.3. 

(i) The condition 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 ∈ ri(𝜕𝐽Λ(𝑀)), called open irrepresentability condition, is slightly stronger than the irrepresentability 

condition 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 ∈ 𝜕𝐽Λ(𝑀). Note that the tight gap between these conditions is not specific to SLOPE. For instance, for 

LASSO, the irrepresentability condition which is sufficient for support recovery in the noisy case is stronger than the weak 
irrepresentability condition for the noiseless case (see [49] pages 190–192 and 244).

(ii) For the open irrepresentability condition we must check that the cardinality of the set of equalities among the 𝑝 inequalities 
corresponding to 𝐽 ∗

Λ(𝑋
′(𝑋̃′

𝑀 )+Λ̃𝑀 ) ≤ 1, see Eq. (2.1), is exactly ‖𝑀‖∞. That is, 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 ∈ ri(𝜕𝐽Λ(𝑀)) is equivalent to the 

following computationally verifiable conditions:
⎧

⎪

⎨

⎪

⎩

𝐽 ∗
Λ(𝑋

′(𝑋̃′
𝑀 )+Λ̃𝑀 ) ≤ 1 and Λ̃𝑀 ∈ col(𝑋̃′

𝑀 ),
|

|

|

|

{

𝑖 ∈ {1,… , 𝑝}∶
∑𝑖
𝑗=1 |𝑋

′(𝑋̃′
𝑀 )+Λ̃𝑀 |(𝑗) =

∑𝑖
𝑗=1 𝜆𝑗

}

|

|

|

|

= ‖𝑀‖∞.
(4.3)

This equivalence follows from Proposition A.2.
(iii) Let us assume that the distributions of 𝜀 and −𝜀 are equal. Because the unit ball of the dual sorted 𝓁1 norm is convex, when 

𝐽 ∗
Λ(𝑋

′(𝑋̃′
𝑀 )+Λ̃𝑀 ) > 1 then, independently of 𝛼 > 0, the probability of pattern recovery is smaller than 1∕2, namely 

ℙ
(

∃𝛽 ∈ 𝑆𝑋,𝛼Λ(𝑌 ) such that patt(𝛽) =𝑀
)

≤ 1∕2.

This inequality corroborates Theorem 4.6 in [50]. For LASSO, a similar inequality on the probability of sign recovery is given in 
[39].

(iv) In Section 5, we illustrate that, under the open irrepresentability condition, one may select 𝛼 > 0 to fix the asymptotic probability 
of pattern recovery at a level arbitrarily close to 1 (a similar result for LASSO is given in [51]).

4.2. 𝑋 is random, 𝑝 is fixed, 𝑛 tends to infinity

In this section we discuss asymptotic properties of the SLOPE estimator in the low-dimensional regression model in which 𝑝 is 
fixed and the sample size 𝑛 tends to infinity.

For each 𝑛 ≥ 𝑝 we consider a linear regression problem
𝑌𝑛 = 𝑋𝑛𝛽 + 𝜀𝑛, (4.4)

where 𝑋𝑛 ∈ ℝ𝑛×𝑝 is a random design matrix. We now list our assumptions:

A. 𝜀𝑛 = (𝜖1,… , 𝜖𝑛)′, where (𝜖𝑖)𝑖 are i.i.d. centered with finite variance.
B1. A sequence of design matrices 𝑋1, 𝑋2,… satisfies the condition

1
𝑛
𝑋′
𝑛𝑋𝑛

ℙ
⟶ 𝐶, (4.5)

where 𝐶 is a deterministic positive definite symmetric 𝑝 × 𝑝 matrix.
B2. For each 𝑗 = 1,… , 𝑝, 

max𝑖=1,…,𝑛 |𝑋
(𝑛)
𝑖𝑗 |

√

∑𝑛
𝑖=1(𝑋

(𝑛)
𝑖𝑗 )2

ℙ
⟶ 0.

C. (𝑋𝑛)𝑛 and (𝜖𝑛)𝑛 are independent.

We will consider a sequence of tuning parameters (Λ𝑛)𝑛 defined by 
Λ𝑛 = 𝛼𝑛Λ,

where Λ ∈ ℝ𝑝+ is fixed and (𝛼𝑛)𝑛 is a sequence of positive numbers.
Let 𝛽SLOPE𝑛  be an element from the set 𝑆𝑋𝑛 ,Λ𝑛 (𝑌𝑛) of SLOPE minimizers. Under assumption B1, for large 𝑛 with high probability, 

the set 𝑆𝑋𝑛 ,Λ𝑛 (𝑌𝑛) consists of one element. Indeed, we have 

ℙ
(

ker(𝑋𝑛) = {0}
)

= ℙ
(

𝑋′
𝑛𝑋𝑛 is positive definite

) 𝑛→∞
⟶ 1

and ker(𝑋𝑛) = {0} ensures the existence of the unique SLOPE minimizer. In a natural setting, the strong consistency of 𝛽SLOPE𝑛  can 
be characterized in terms of behaviour of the tuning parameter, see Theorem C.2 or [33, Th. 4.1]. At this point we note that if 
Eq. (4.5) holds almost surely, then condition 𝛼𝑛∕𝑛→ 0 ensures that 𝛽SLOPE𝑛

𝑎.𝑠.
⟶ 𝛽. Thus, if 𝛽 does not have any clusters nor zeros, i.e., 

‖patt(𝛽)‖∞ = 𝑝, then the 𝛼𝑛∕𝑛→ 0 suffices for patt(𝛽SLOPE𝑛 )
𝑎.𝑠.
⟶ patt(𝛽). However, if ‖patt(𝛽)‖ < 𝑝, then the situation is more complex 

as we shall show below.
The first of our asymptotic results concerns the consistency of the pattern recovery by the SLOPE estimator. We note that condition 

B2 is not necessary for the SLOPE pattern recovery. This assumption was introduced to ensure the existence of a Gaussian vector in 
Theorem 4.2(i).

The formulation of the following theorem involves the notion of the pattern matrix 𝑈𝑀 , as defined in Definition 2.3.
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Theorem 4.2. Under the assumptions A, B1, C, the following statements hold true.
(i) If 𝐵2 is additionally satisfied and moreover 𝛼𝑛 =

√

𝑛, then 
lim
𝑛→∞

ℙ
(

patt(𝛽SLOPE𝑛 ) = patt(𝛽)
)

= ℙ
(

𝐽 ∗
Λ(𝑍) ≤ 1

)

,

where 𝑍 ∼ N(𝐶𝑈𝑀 (𝑈 ′
𝑀𝐶𝑈𝑀 )−1Λ̃𝑀 , 𝜎2[𝐶 − 𝐶𝑈𝑀 (𝑈 ′

𝑀𝐶𝑈𝑀 )−1𝑈 ′
𝑀𝐶]).

(ii) Assume 
𝐶𝑈𝑀 (𝑈 ′

𝑀𝐶𝑈𝑀 )−1Λ̃𝑀 ∈ ri(𝜕𝐽Λ(𝑀)). (4.6)

The pattern of SLOPE estimator is consistent, i.e. 

patt(𝛽SLOPE𝑛 )
ℙ

⟶ patt(𝛽),

if and only if 

lim
𝑛→∞

𝛼𝑛
𝑛

= 0 and lim
𝑛→∞

𝛼𝑛
√

𝑛
= ∞.

(iii) The condition 
𝐽 ∗
Λ
(

𝐶𝑈𝑀 (𝑈 ′
𝑀𝐶𝑈𝑀 )−1Λ̃𝑀

)

≤ 1 (4.7)

is necessary for pattern consistency of SLOPE estimator.
The random vector 𝑍 belongs to the smallest affine space containing 𝜕𝐽Λ(𝑏), i.e., aff(𝜕𝐽Λ(𝑏)) = {𝑣 ∈ ℝ𝑝 ∶ 𝑈 ′

𝑀𝑣 = Λ̃𝑀}, see Lemma A.3.
Condition Eq. (4.6) is the open SLOPE irrepresentability condition in the 𝑛→ ∞ regime. The above result should be compared 

with [40, Theorem 1], where the same conditions on the LASSO tuning parameter ensure consistency of sign recovery by the LASSO 
estimator. Below we make a step further and consider the strong consistency of SLOPE pattern recovery by 𝛽SLOPE𝑛 . Although this was 
not Zhao’s and Yu’s main focus, it can be deduced from [40, Theorem 1] that if for 𝑐 ∈ (0, 1) the LASSO tuning parameter 𝜆𝑛 satisfies 
𝜆𝑛∕𝑛→ 0 and 𝜆𝑛∕𝑛

1+𝑐
2 → ∞, then under the strong LASSO irrepresentability condition, one has sign(𝛽LASSO𝑛 )

𝑎.𝑠.
⟶ sign(𝛽). Even though 

the patterns are discrete objects, as the underlying probability space is uncountable, the convergence in probability does not imply 
the almost sure convergence. We show below that if 𝛼𝑛∕𝑛 → 0 and 𝛼𝑛∕

√

𝑛→ ∞, then patt(𝛽SLOPE𝑛 ) is not strongly consistent and one 
actually has to impose a slightly stronger condition Eq. (4.8).

For the purpose of the a.s. convergence, we strengthen the assumption on design matrices:
B’. Assume that the rows of 𝑋𝑛 are independent and that each row of 𝑋𝑛 has the same law as 𝜉, where 𝜉 is a random vector whose 

components are linearly independent a.s. and that 𝔼[𝜉2𝑖 ] < ∞ for 𝑖 = 1,… , 𝑝.

Remark 4.4. Under B’, by the strong law of large numbers, we have 𝑛−1𝑋′
𝑛𝑋𝑛

𝑎.𝑠.
⟶ 𝐶, where 𝐶 = (𝐶𝑖𝑗 )𝑖𝑗 with 𝐶𝑖𝑗 = 𝔼[𝜉𝑖𝜉𝑗 ]. Moreover, 

𝐶 is positive definite if and only if the random variables (𝜉1,… , 𝜉𝑝) are linearly independent a.s. Indeed, for 𝑡 ∈ ℝ𝑝 we have 𝑡′𝐶𝑡 =
𝔼[(

∑𝑝
𝑖=1 𝑡𝑖𝜉𝑖)

2] > 0 if and only if ∑𝑝
𝑖=1 𝑡𝑖𝜉𝑖 ≠ 0 a.s. for all 𝑡 ∈ ℝ𝑝 ⧵ {0}.

Since B’ ensures that Eq. (4.5) holds a.s., it also implies that for large 𝑛, almost surely there exists a unique SLOPE minimizer. We 
denote this element by 𝛽SLOPE𝑛 .

Theorem 4.3. Under 𝐴, 𝐵′ and 𝐶 assume that a sequence (𝛼𝑛)𝑛 satisfies 
lim
𝑛→∞

𝛼𝑛
𝑛

= 0 and lim
𝑛→∞

𝛼𝑛
√

𝑛 log log 𝑛
= ∞. (4.8)

If Eq. (4.6) holds, then the sequence (𝛽SLOPE𝑛 )𝑛 recovers almost surely the pattern of 𝛽 asymptotically, i.e.,

patt(𝛽SLOPE𝑛 )
𝑎.𝑠.
⟶ patt(𝛽). (4.9)

Remark 4.5. Assume that Eq. (4.6) is satisfied and set 𝛼𝑛 = 𝑐
√

𝑛 log log 𝑛 for 𝑐 > 0. Then Eq. (4.8) is not satisfied and with positive 
probability, the true SLOPE pattern is not recovered. See also Appendix B, where we present more refined results on the strong 
consistency of the SLOPE pattern. The log log 𝑛 correction in Eq. (4.8) comes from the law of iterated logarithm.

5.  Simulation study

This simulation study aims at illustrating Theorems 4.1 and 4.2. Hereafter, we consider the linear regression model 𝑌 = 𝑋𝛽 + 𝜀, 
where 𝑋 ∈ ℝ𝑛×𝑝 and 𝜀 ∈ ℝ𝑛 has i.i.d. N(0, 1) entries. Up to a constant, we choose components of Λ = (𝜆1,… , 𝜆𝑝)′ as expected values 
of ordered standard Gaussian statistics. Let 𝑍(1) ≥ … ≥ 𝑍(𝑝) be ordered statistics of i.i.d. N(0, 1) random variables. An approximation 
of 𝔼[𝑍(𝑖)] for some 𝑖 ∈ {1,… , 𝑝}, denoted 𝐸(𝑖, 𝑝), is given hereafter (see [52] and references therein) 

𝐸(𝑖, 𝑝) = −Φ−1
(

𝑖 − 0.375
𝑝 + 1 − 0.750

)

,

where Φ is the cumulative distribution function of an N(0, 1) random variable. We set
Λ = (𝜆1,… , 𝜆𝑝) with 𝜆𝑖 = 𝐸(𝑖, 𝑝) + 𝐸(𝑝 − 1, 𝑝) − 2𝐸(𝑝, 𝑝). (5.1)
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5.1.  Sharp upper bound when 𝑋 is orthogonal

This example illustrates Theorem 4.1, which concerns the limiting probability of pattern recovery as signal strength tends to 
infinity. We assume that 𝑝 = 100, 𝑐 is a positive real number, 𝑋 ∈ ℝ𝑛×𝑝 is orthogonal (𝑋′𝑋 = 𝐼100), and 𝛽 ∈ ℝ𝑝 is defined as follows:

𝛽1 = … = 𝛽25 = 𝑐, 𝛽26 = … = 𝛽50 = −𝑐∕2, 𝛽51 = … = 𝛽100 = 0 . (5.2)

To compute the value 𝛼0.95 of the scaling parameter for which the upper bound is 0.95 we note that 𝜋𝛼 is a Gaussian vector having a 
N
(

𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 , 𝛼−2𝑋′(𝐼 − 𝑋̃𝑀 𝑋̃

+
𝑀 )𝑋

)

distribution. Moreover, since 𝑀 = patt(𝛽) satisfies: 𝑀1 = … =𝑀25 = 2, 𝑀26 = … =𝑀50 = −1 and 𝑀51 = … =𝑀100 = 0 we have
𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 = 𝜇,

where 𝜇1 = … = 𝜇25 =
1
25

∑25
𝑖=1 𝜆𝑖, 𝜇26 = … = 𝜇50 = − 1

25
∑50
𝑖=26 𝜆𝑖,

𝜇51 = … = 𝜇100 = 0, and

𝑋′(𝐼𝑛 − 𝑋̃𝑀 𝑋̃
+
𝑀 )𝑋 =

⎛

⎜

⎜

⎝

Σ 0 0
0 Σ 0
0 0 𝐼𝑝∕2

⎞

⎟

⎟

⎠

,

where Σ is the matrix of the dimension 𝑝∕4 × 𝑝∕4 given by

Σ =

⎛

⎜

⎜

⎜

⎜

⎝

1 − 4∕𝑝 −4∕𝑝 … −4∕𝑝
−4∕𝑝 1 − 4∕𝑝 ⋱ ⋮
⋮ ⋱ ⋱ −4∕𝑝

−4∕𝑝 … −4∕𝑝 1 − 4∕𝑝

⎞

⎟

⎟

⎟

⎟

⎠

. (5.3)

The matrix Σ appears twice in the covariance structure, as both nonzero clusters have the same size of 𝑝∕4.
Since the open SLOPE irrepresentability condition holds, there exists the value 𝛼0.95 such that 

ℙ
(

𝐽 ∗
Λ(𝜋𝛼0.95 ) ≤ 1

)

= 0.95.

In practice, we simulated 50 000 instances of the random vector 𝑍 ∼ N(0, 𝑋′(𝐼 − 𝑋̃𝑀 𝑋̃+
𝑀 )𝑋) and identified the value 𝛼0.95 = 9.45, 

such that 
ℙ
(

𝐽 ∗
Λ

(

𝜇 + 1
𝛼0.95

𝑍
)

≤ 1
)

≈ 0.95.

Fig. 3 illustrates that indeed the probability of pattern recovery in the model Eq. (5.2) by SLOPE with a regularizing sequence 9.45Λ
converges to 0.95 as 𝑐 increases to infinity.

Fig. 3. Probability of the pattern recovery in the model Eq. (5.2) by SLOPE with a tuning parameter 𝛼Λ, where 𝛼 = 9.45 and Λ is given in Eq. (5.1).

Applied and Computational Harmonic Analysis 80 (2026) 101810 

11 



M. Bogdan et al.

5.2.  Limiting probability when 𝑛→ ∞

In this section, we illustrate Theorem 4.2, which describes the asymptotic performance of SLOPE as the sample size 𝑛 tends to 
infinity. We consider a setting in which both the predictors and the regression coefficients exhibit a clustered structure.

Specifically, we assume that the design covariance matrix for 𝑝 = 100 regressors is block-diagonal:

𝐶 =

⎛

⎜

⎜

⎜

⎜

⎝

Σ 0 0 0
0 Σ 0 0
0 0 Σ 0
0 0 0 Σ

⎞

⎟

⎟

⎟

⎟

⎠

(5.4)

where Σ is a compound symmetry matrix of dimension 25 × 25, with Σ𝑖,𝑖 = 1 and Σ𝑖,𝑗 = 0.8 for 𝑖 ≠ 𝑗.
The true regression coefficient vector 𝛽 ∈ ℝ𝑝 is defined as:

𝛽1 = … = 𝛽25 = 30, 𝛽26 = … = 𝛽50 = −30, 𝛽51 = … = 𝛽100 = 0.

Thus, in this example, the pattern 𝑀 = patt(𝛽) satisfies: 
𝑀1 = … =𝑀25 = 1, 𝑀26 = … =𝑀50 = −1, 𝑀51 = … =𝑀100 = 0.

Furthermore, we have:
𝐶𝑈𝑀 (𝑈 ′

𝑀𝐶𝑈𝑀 )−1Λ̃𝑀 = 𝜇,

where 

𝜇1 = … = 𝜇25 =
1
50

50
∑

𝑖=1
𝜆𝑖, 𝜇26 = … = 𝜇50 = −𝜇1, 𝜇51 = … = 𝜇100 = 0.

Finally, the covariance matrix of the vector 𝑍 in Theorem 4.2 takes the form:

Σ𝑍 = 𝐶 − 𝐶𝑈𝑀 (𝑈 ′
𝑀𝐶𝑈𝑀 )−1𝑈 ′

𝑀𝐶 =

⎛

⎜

⎜

⎜

⎜

⎝

Σ − 𝑈 𝑈 0 0
𝑈 Σ − 𝑈 0 0
0 0 Σ 0
0 0 0 Σ

⎞

⎟

⎟

⎟

⎟

⎠

, (5.5)

where 𝑈 is the 25 × 25 matrix in which all entries are equal to (1 + 24 ⋅ 0.8)∕50.
By simulating 50000 instances of the multivariate normal vector 𝑍 ∼ N(0,Σ𝑍 ) we found the value 𝛼 = 2.89, such that 

ℙ
(

𝐽⋆Λ
(

𝜇 + 1
𝛼𝑍

)

≤ 1
)

≈ 0.95

According to Theorem 4.2 SLOPE with the tuning sequence 2.89Λ√𝑛 – where Λ is specified in Eq. (5.1) – should recover the true 
pattern with the probability 0.95 as 𝑛→ ∞. This phenomenon is illustrated in Fig. 4, where the probability of the pattern recovery 
stabilizes at 0.95 for 𝑛 ≥ 1500.

Additionally, Fig. 5 illustrates the root mean square error (RMSE) of the SLOPE estimator and compares it to the RMSE of both 
the ordinary least squares (LS) estimator and the debiased SLOPE estimator. The latter is obtained by performing a least squares fit 
using the reduced model selected by SLOPE, i.e., using the design matrix 𝑋̃ = 𝑋𝑈𝑀̂ .

As shown in the figure, SLOPE consistently outperforms LS in terms of RMSE in this example. Moreover, the estimation accuracy 
can be further improved by debiasing SLOPE – specifically, by applying least squares estimation within the reduced model. In the 
setting considered here, this two-stage version of SLOPE achieves near-perfect performance, with a negligible estimation error.

Fig. 4. Estimates of probability of pattern recovery by SLOPE as a function of 𝑛. The scaling parameter 𝛼0.95 = 2.89 is chosen to fix the limiting 
probability of pattern recovery at 0.95.
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Fig. 5. Estimated Root Mean Squares of the estimators obtained by Least Squares (LS), SLOPE with the sequence of parameters as in Fig. 4 (SLOPE) 
and the Least Squares estimators using SLOPE dimensionality reduction, i.e., 𝑋̃ = 𝑋𝑈𝑀̂ (LScor).

Fig. 6. Comparison of SLOPE and Fused LASSO estimators for 𝑛 = 25 and 𝑝 = 100. Among the 100 regression coefficients, 50 are nonzero: the first 
25 are equal to 30, and the next 25 are equal to −30.

5.3.  Small 𝑛 performance

In Fig. 6 we present a representative example of the performance of SLOPE for the setting from Section 5.2 and a very small 
𝑛 = 25. We compare SLOPE to Fused LASSO, since the coefficients are clustered according to the proximity of variables in the design 
matrix. For SLOPE we use the sequence of tuning parameters as proposed in Section 5.2, while the Fused LASSO is tuned manually 
to minimize the estimation error. We used the fusedlasso function from the genlasso library and manually selected 𝛾 = 0.25 as the 
value for which we obtained the smallest RMSE over the range of 𝜆 values automatically proposed by the fusedlasso algorithm. We 
can observe that while SLOPE cannot precisely estimate the pattern, shrinkage towards the common absolute mean in both clusters 
allows for obtaining a very precise estimation of 𝛽, which is substantially more accurate than the fused lasso estimator. We believe 
that this is due to the fact that SLOPE effectively shrinks both clusters towards the same absolute value, while fused LASSO does not 
have this advantage.

6.  Discussion

In this article we make an important step in understanding the clustering properties of SLOPE and we have shown that the 
irrepresentability condition provides theoretical guarantees for SLOPE pattern recovery. However, this by no means closes the topic 
of the SLOPE pattern recovery. Similarly to the irrepresentability condition for LASSO, the SLOPE irrepresentability condition is 
rather stringent and imposes a strict restriction on the number of nonzero clusters in 𝛽. On the other hand, in [51] it is shown that a 
much weaker condition for LASSO is required to separate the estimators of the null components of 𝛽 from the estimators of nonzero 
regression coefficients. This condition, called accessibility (also called identifiability), requires that the vector 𝛽 has the minimal 𝓁1
norm among all vectors 𝛾 such that 𝑋𝛽 = 𝑋𝛾. Thus, when the accessibility condition is satisfied one can recover the sign of 𝛽 by 
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Fig. 7. Comparison of LASSO and SLOPE when the cluster structure is present in the data. Here 𝑛 = 100, 𝑝 = 200, and the correlation between 𝑖𝑡ℎ
and 𝑗𝑡ℎ column of 𝑋 is equal to 0.9048|𝑖−𝑗|. First 𝑘 = 100 columns of 𝑋 are associated with 𝑌  and their nonzero regression coefficients are all equal 
to 40. The SLOPE and LASSO irrepresentability conditions are not satisfied, but SLOPE, contrary to LASSO, satisfies the accessibility condition.

thresholding LASSO estimates. Empirical results from [51] suggest that this weaker condition is also sufficient for the sign recovery 
by the adaptive LASSO [41]. In this case rescaling the design matrix according to the initial estimates of regression coefficients 
modifies the original irrepresentability condition, so it can be satisfied for a given specific true sign vector of regression coefficients. 
In the recent article [50] it is shown that a similar result holds for SLOPE, whose accessibility condition holds if the vector 𝛽 has 
the smallest sorted 𝓁1 norm among all vectors 𝛾 such that 𝑋𝛽 = 𝑋𝛾. In [50] or in [43, Theorem 2.2] it is shown that when the 
accessibility condition is satisfied then applying the proximal operator of the sorted 𝓁1 norm to SLOPE allows to recover the pattern 
of the regression coefficients. Fig. 7 illustrates this phenomenon and shows that the accessibility condition for SLOPE can be much 
less restrictive than the accessibility condition for LASSO. In this example the matrix 𝑋 and the vector 𝑌  are generated as in example 
illustrated in Fig. 1 and the only difference is that now first 𝑘 = 100 = 𝑛 regression coefficients are all equal to 40. In this situation the 
accessibility condition for LASSO is not satisfied and LASSO cannot properly separate the null and nonzero regression coefficients. 
Also, despite the selection of the tuning parameter so as to minimize the squared estimation error, the precision of LASSO estimates 
is very poor. As far as SLOPE is concerned, the irrepresentability condition is not satisfied but the accessibility condition holds. Thus, 
while SLOPE cannot properly identify the pattern, it estimates 𝛽 with such a good precision that the difference between the estimated 
and the true pattern is hardly visible on the graph. These favorable ranking and estimation properties of the SLOPE method enable 
pattern recovery through appropriately selected thresholded versions of SLOPE. We also expect that the mathematical understanding 
of SLOPE irrepresentability condition presented in this article will lead to the development of efficient adaptive versions of SLOPE, 
with improved estimation and pattern recovery properties.

The results presented in this article pave the way for a full understanding of the SLOPE pattern recovery properties. We expect 
that our SLOPE irrepresentability condition will be a basic block for proving further results on the pattern recovery of SLOPE and 
adaptive SLOPE in the high-dimensional regime. We also look forward to research on other statistical models and loss functions. One 
specific focus of interest is the graphical SLOPE (see [53,54]), which could be used for identification of colored graphical models 
[55], with specific parameter sharing patterns in the precision matrix. Such repetitive patterns occur naturally in many situations, 
e.g., in the case of the autoregressive type of dependence between variables in the database or when variables are influenced by the 
same structural factors. We believe that an efficient exploitation of these unknown patterns by SLOPE will lead to a great reduction 
of the number of parameters and improvement of the graphical models estimation properties.

Finally, we would like to recall that an interest in identifying the parameter sharing patterns goes beyond classical parametric 
models and is prevalent also in the modern machine learning community. As mentioned in the introduction, the prominent example is 
provided by the Convolutional Neural Networks (CNN), where the “parameter sharing” has made it possible to dramatically improve 
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computational and statistical efficiency. While the parameter sharing in CNN is driven entirely by the expert knowledge, regularization 
by SLOPE allows to identify and exploit patterns based on the data. In principle one can also use SLOPE in the Bayesian context and 
combine the information in the data with the imprecise prior knowledge on possible parameter sharing patterns (see [56] for the 
preliminary version of adaptive Bayesian SLOPE). It is expected that recent developments in efficient implementations of the SLOPE 
optimization algorithm (see, e.g. [57,58]) will soon allow for an integration of SLOPE regularization with the deep neural network 
architectures.
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Appendix A.  Proofs

A.1.  Proof of Proposition 2.1

Note that if 𝑀 = 0, then the statement holds by Eq. (2.2). Thus we may later assume that 𝑀 ≠ 0. To ease the notation, we write 
Λ̃ instead of Λ̃𝑀 . The elements of Λ̃ are denoted by Λ̃𝑙, 𝑙 = 1,… , 𝑘. Let 𝑘 = ‖𝑀‖∞. Before proving Proposition 2.1 note that, by 
assumption, there exists 𝑠 ∈ ℝ𝑘+ such that 𝑏 = 𝑈𝑀𝑠. Consequently, |𝑏|↓ = 𝑈

|𝑀|↓
𝑠 and thus 

𝐽Λ(𝑏) = 𝜆1|𝑏|(1) +…+ 𝜆𝑝|𝑏|(𝑝) = Λ′𝑈
|𝑀|↓

𝑠 = Λ̃′𝑠 = 𝑠1Λ̃1 +…+ 𝑠𝑘Λ̃𝑘.

Moreover, with 𝑝𝑙 = |{𝑖∶ |𝑀𝑖| ≥ 𝑘 + 1 − 𝑙}|, we have Λ̃𝑙 = 𝜆𝑝𝑙−1+1 +…+ 𝜆𝑝𝑙 , 𝑙 = 1,… , 𝑘.

Proof of Proposition 2.1.  First we prove the inclusion 𝜕𝐽Λ(𝑏) ⊂
{

𝑣 ∈ ℝ𝑝 ∶ 𝐽 ∗
Λ(𝑣) ≤ 1 and 𝑈 ′

𝑀𝑣 = Λ̃
}

. Let 𝑣 ∈ 𝜕𝐽Λ(𝑏). Since 𝐽 ∗
Λ(𝑣) ≤ 1

(see Eq. (2.2)) then, by definition of the dual sorted 𝓁1 norm, for all 𝑗 ∈ {1, 2,… , 𝑝} we have ∑𝑗
𝑖=1 |𝑣|(𝑖) ≤

∑𝑗
𝑖=1 𝜆𝑖. It remains to prove 

that 𝑈 ′
𝑀𝑣 = Λ̃. For all 𝑙 ∈ {1,… , 𝑘} we have the following inequality
𝑙

∑

𝑖=1
[𝑈 ′

𝑀𝑣]𝑖 =
∑

𝑖∶ |𝑀𝑖|≥𝑘+1−𝑙
sign(𝑀𝑖)𝑣𝑖 ≤

∑

𝑖∶ |𝑀𝑖|≥𝑘+1−𝑙
|𝑣𝑖|

≤
𝑝𝑙
∑

𝑖=1
|𝑣|(𝑖) ≤

𝑝𝑙
∑

𝑖=1
𝜆𝑖 =

𝑙
∑

𝑖=1
Λ̃𝑖.

(A.1)

Note that

𝑏′𝑣 = (𝑈𝑀𝑠)′𝑣 =
𝑘
∑

𝑖=1
𝑠𝑖[𝑈 ′

𝑀𝑣]𝑖 =
𝑘−1
∑

𝑙=1
(𝑠𝑙 − 𝑠𝑙+1)

𝑙
∑

𝑖=1
[𝑈 ′

𝑀𝑣]𝑖 + 𝑠𝑘
𝑘
∑

𝑖=1
[𝑈 ′

𝑀𝑣]𝑖

≤
𝑘−1
∑

𝑙=1
(𝑠𝑙 − 𝑠𝑙+1)

𝑙
∑

𝑖=1
Λ̃𝑖 + 𝑠𝑘

𝑘
∑

𝑖=1
Λ̃𝑖 =

𝑘
∑

𝑙=1
𝑠𝑙Λ̃𝑙 = 𝐽Λ(𝑏).

Moreover, since 𝑣 ∈ 𝜕𝐽Λ(𝑏), we have 𝑏′𝑣 = 𝐽Λ(𝑏) (see Eq. (2.2)). Therefore 
𝑙

∑

𝑖=1
[𝑈 ′

𝑀𝑣]𝑖 =
𝑙

∑

𝑖=1
Λ̃𝑖  for 𝑙 = 1,… , 𝑘

and thus the inequalities given in Eq. (A.1) are the equalities. Thus 
[𝑈 ′

𝑀𝑣]𝑙 = Λ̃𝑙  for 𝑙 = 1,… , 𝑘

and hence that 𝑈 ′
𝑀𝑣 = Λ̃.

Now we prove the other inclusion, 𝜕𝐽Λ(𝑏) ⊃
{

𝑣 ∈ ℝ𝑝 ∶ 𝐽 ∗
Λ(𝑣) ≤ 1 and 𝑈 ′

𝑀𝑣 = Λ̃𝑀
}

. Assume that 𝑣 ∈ ℝ𝑝 satisfies 𝐽 ∗
Λ(𝑣) ≤ 1 and 

𝑈 ′
𝑀𝑣 = Λ̃. To prove that 𝑣 ∈ 𝜕𝐽Λ(𝑏) it remains to establish that 𝑏′𝑣 = 𝐽Λ(𝑏) (see Eq. (2.2)). Since 𝑏 = 𝑈𝑀𝑠, we have

𝑏′𝑣 = (𝑈𝑀𝑠)′𝑣 = 𝑠′𝑈 ′
𝑀𝑣 = 𝑠′Λ̃ = 𝐽Λ(𝑏).

 ∎
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A.2.  Proof of Proposition 2.2

Lemma A.1. Let Λ ∈ ℝ𝑝+ and 𝑏 ∈ ℝ𝑝. If Λ ∈ 𝜕𝐽Λ(𝑏) then 𝑏1 ≥ … ≥ 𝑏𝑝 ≥ 0.

Proof.  Let us assume that 𝑏𝑖 < 0 for some 𝑖 ∈ {1,… , 𝑝}. For 
𝜋̌ = (𝜆1,… , 𝜆𝑖−1,−𝜆𝑖, 𝜆𝑖+1,… , 𝜆𝑝)

we have 𝐽 ∗
Λ(𝜋̌) ≤ 1 and one may deduce that 

Λ′𝑏 < 𝜋̌′𝑏 ≤ max{𝜋′𝑏∶ 𝐽 ∗
Λ(𝜋) ≤ 1} = 𝐽Λ(𝑏).

Consequently Λ ∉ 𝜕𝐽Λ(𝑏) leading to a contradiction. Let us assume that 𝑏𝑖 < 𝑏𝑗 for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑝. Let us define 𝜋̌, where 𝐽 ∗
Λ(𝜋̌) ≤ 1, 

as follows 

𝜋̌𝑘 =

⎧

⎪

⎨

⎪

⎩

𝜆𝑘  if 𝑘 ≠ 𝑖, 𝑘 ≠ 𝑗,
𝜆𝑗  if 𝑘 = 𝑖,
𝜆𝑖  if 𝑘 = 𝑗,

𝑘 = 1,… , 𝑝.

Since 𝜆𝑖 > 𝜆𝑗 , by the rearrangement inequality we have 𝜆𝑖𝑏𝑖 + 𝜆𝑗𝑏𝑗 < 𝜆𝑗𝑏𝑖 + 𝜆𝑖𝑏𝑗 . Thus, one may deduce the following inequality 
Λ′𝑏 < 𝜋̌′𝑏 ≤ max{𝜋′𝑏∶ 𝜋 ∈ ℝ𝑝 𝐽 ∗

Λ(𝜋) ≤ 1} = 𝐽Λ(𝑏).

Consequently Λ ∉ 𝜕𝐽Λ(𝑏) leading to a contradiction. ∎
Let 𝜓 be an orthogonal transformation defined by 

𝜓 ∶ 𝑏 ∈ ℝ𝑝 ↦ (𝑣1𝑏𝑟(1),… , 𝑣𝑝𝑏𝑟(𝑝))

where 𝑣1,… , 𝑣𝑝 ∈ {−1, 1} and 𝑟 is a permutation on {1,… , 𝑝}. Before proving Proposition 2.2 let us recall that for any 𝑎, 𝑏 ∈ ℝ𝑝 we 
have 𝐽Λ(𝑏) = 𝐽Λ(𝜓(𝑏)), 𝐽 ∗

Λ(𝑏) = 𝐽 ∗
Λ(𝜓(𝑏)) and 𝑏′𝑎 = 𝜓(𝑏)′𝜓(𝑎) implying thus 𝜕𝐽Λ(𝜓(𝑏)) = 𝜓(𝜕𝐽Λ(𝑏)).

Proof of Proposition 2.2.  If patt(𝑎) = patt(𝑏) then, according to Proposition 2.1, 𝜕𝐽Λ(𝑎) = 𝜕𝐽Λ(𝑏). Let us set 𝑀 = patt(𝑎) and 𝑀̃ =
patt(𝑏), it remains to prove that if 𝜕𝐽Λ(𝑎) = 𝜕𝐽Λ(𝑏) then 𝑀 = 𝑀̃ . Since the subdifferential 𝜕𝐽Λ(𝑎) depends on 𝑎 only through its 
pattern, then by Proposition 2.1 we have 𝜕𝐽Λ(𝑎) = 𝜕𝐽Λ(𝑀) and similarly 𝜕𝐽Λ(𝑏) = 𝜕𝐽Λ(𝑀̃).

First let us assume that 𝑀 = |𝑀|↓ namely 𝑀1 ≥𝑀2 ≥ … ≥𝑀𝑝 ≥ 0. In this case, 𝑀 ′Λ = 𝐽Λ(𝑀) and hence Λ = (𝜆1,… , 𝜆𝑝)′ ∈
𝜕𝐽Λ(𝑀). Since 𝜕𝐽Λ(𝑀) = 𝜕𝐽Λ(𝑀̃), it follows from Lemma A.1 that 𝑀̃1 ≥ … ≥ 𝑀̃𝑝 ≥ 0, because Λ ∈ 𝜕𝐽Λ(𝑀̃). To prove that 𝑀 = 𝑀̃ , 
first let us establish that 𝑀𝑝 = 𝑀̃𝑝 = 0 or 𝑀𝑝 = 𝑀̃𝑝 = 1. If 𝑀𝑝 = 0 and 𝑀̃𝑝 = 1 then, let us set 𝜋̌ = (𝜆1,… , 𝜆𝑝−1, 0)′, where 𝐽 ∗

Λ(𝜋̌) ≤ 1. 
Because 

𝐽Λ(𝑀) = Λ′𝑀 = 𝜋̌′𝑀 and 𝐽Λ(𝑀̃) = Λ′𝑀̃ > 𝜋̌′𝑀̃

we have 𝜋̌ ∈ 𝜕𝐽Λ(𝑀) and 𝜋̌ ∉ 𝜕𝐽Λ(𝑀̃) which provides a contradiction. We proceed analogously for 𝑀𝑝 = 1 and 𝑀̃𝑝 = 0. To complete 
the proof that 𝑀 = 𝑀̃ , let us establish that 𝑀𝑖 =𝑀𝑖+1 and 𝑀̃𝑖 = 𝑀̃𝑖+1 or 𝑀𝑖 > 𝑀𝑖+1 and 𝑀̃𝑖 > 𝑀̃𝑖+1. If 𝑀𝑖 =𝑀𝑖+1 and 𝑀̃𝑖 > 𝑀̃𝑖+1
then, let us define 𝜋̌, where 𝐽 ∗

Λ(𝜋̌) ≤ 1, as follows 

𝜋̌𝑘 =

⎧

⎪

⎨

⎪

⎩

𝜆𝑘  if 𝑘 ≠ 𝑖, 𝑘 ≠ 𝑖 + 1,
𝜆𝑖+1  if 𝑘 = 𝑖,
𝜆𝑖  if 𝑘 = 𝑖 + 1,

𝑘 = 1,… , 𝑝.

Since 𝜆𝑖𝑀𝑖 + 𝜆𝑖+1𝑀𝑖+1 = 𝜆𝑖+1𝑀𝑖 + 𝜆𝑖𝑀𝑖+1 and 𝜆𝑖𝑀̃𝑖 + 𝜆𝑖+1𝑀̃𝑖+1 > 𝜆𝑖+1𝑀̃𝑖 + 𝜆𝑖𝑀̃𝑖+1 then 
𝐽Λ(𝑀) = Λ′𝑀 = 𝜋̌′𝑀 and 𝐽Λ(𝑀̃) = Λ′𝑀̃ > 𝜋̌′𝑀̃.

Consequently 𝜋̌ ∈ 𝜕𝐽Λ(𝑀) and 𝜋̌ ∉ 𝜕𝐽Λ(𝑀̃) which provides a contradiction. We proceed analogously for 𝑀𝑖 > 𝑀𝑖+1 and 𝑀̃𝑖 = 𝑀̃𝑖+1. 
Finally, if 𝑀 ≠ |𝑀|↓ then let us pick an orthogonal transformation 𝜓 as defined above for which 𝜓(𝑀) = |𝑀|↓. Since 𝜕𝐽Λ(𝑀) =
𝜕𝐽Λ(𝑀̃) implies that 𝜕𝐽Λ(𝜓(𝑀)) = 𝜕𝐽Λ(𝜓(𝑀̃)), the first part of the proof establishes that 𝜓(𝑀̃) = 𝜓(𝑀) and thus 𝑀 = 𝑀̃ .

 ∎
Recall that 𝐽 ∗

Λ(𝑥) ≤ 1 if and only if
|𝑥|(1) +…+ |𝑥|(𝑗) ≤ 𝜆1 +…+ 𝜆𝑗 , 𝑗 = 1,… , 𝑝. (A.2)

The following result follows from the proof of Proposition 2.1.
Proposition A.2. Assume 𝑥 ∈ ℝ𝑝 satisfies 𝐽 ∗

Λ(𝑥) ≤ 1 and let 𝑏 ∈ ℝ𝑝. Then, 𝑥 belongs to 𝜕𝐽Λ(𝑏) if and only if the following three conditions 
hold true:

1. If 𝑏𝑖 ≠ 0, then sign(𝑥𝑖) = sign(𝑏𝑖),
2. If |𝑏𝑖| > |𝑏𝑗 | then |𝑥𝑖| ≥ |𝑥𝑗 |,
3. The equalities hold in Eq. (A.2) for 𝑗 ∈ {𝑛1, 𝑛2,… , 𝑛𝑘}, where 𝑛𝑗 = |{𝑖∶ |𝑀𝑖| ≥ 𝑘 + 1 − 𝑗}| with (𝑀1,… ,𝑀𝑝)′ = patt(𝑏).
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A.3.  Proof of Theorem 3.1

Proof of Theorem 3.1.  Necessity. Let us assume that there exists 𝛽 ∈ 𝑆𝑋,Λ(𝑌 ) with patt(𝛽) =𝑀 . Consequently, 𝛽 = 𝑈𝑀𝑠 for some 
𝑠 ∈ ℝ𝑘+.

By Proposition 2.2, 𝑋′(𝑌 −𝑋𝛽) ∈ 𝜕𝐽Λ(𝛽) = 𝜕𝐽Λ(𝑀). Multiplying this inclusion by 𝑈 ′
𝑀 , due to Eq. (2.3), we get 𝑋̃′

𝑀 (𝑌 −𝑋𝛽) = Λ̃𝑀
and so 

𝑋̃′
𝑀𝑌 − Λ̃𝑀 = 𝑋̃′

𝑀𝑋𝛽 = 𝑋̃′
𝑀 𝑋̃𝑀𝑠. (A.3)

The positivity condition is proven.
We apply (𝑋̃′

𝑀 )+ from the left to Eq. (A.3) and use the fact that 𝑃𝑀 = (𝑋̃′
𝑀 )+𝑋̃′

𝑀  is the projection onto col(𝑋̃𝑀 ). Since 𝑋𝛽 ∈ col(𝑋̃𝑀 ), 
we have 𝑃𝑀𝑋𝛽 = 𝑋𝛽. Thus, 

𝑃𝑀𝑌 − (𝑋̃′
𝑀 )+Λ̃𝑀 = 𝑋𝛽.

The above equality gives the subdifferential condition:
𝜕𝐽Λ(𝑀) ∋ 𝑋′(𝑌 −𝑋𝛽) = 𝑋′(𝑌 − (𝑃𝑀𝑌 − (𝑋̃′

𝑀 )+Λ̃𝑀 )) (A.4)

= 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 +𝑋′(𝐼𝑛 − 𝑃𝑀 )𝑌 = 𝜋.

Sufficiency. Assume that the positivity condition and the subdifferential conditions hold true. Then, by the positivity condition, one 
may pick 𝑠 ∈ ℝ𝑘+ for which

Λ̃𝑀 = 𝑋̃′
𝑀𝑌 − 𝑋̃′

𝑀 𝑋̃𝑀𝑠. (A.5)

Let us show that 𝑈𝑀𝑠 ∈ 𝑆𝑋,Λ(𝑌 ). By definition of 𝑈𝑀 , we have patt(𝑈𝑀𝑠) =𝑀 thus 𝜕𝐽Λ(𝑈𝑀𝑠) = 𝜕𝐽Λ(𝑀). Moreover, using Eqs. (A.4) 
and (A.5) one may deduce

𝜕𝐽Λ(𝑈𝑀𝑠) ∋ 𝜋 = 𝑋′(𝑌 − 𝑃𝑀𝑌 + (𝑋̃′
𝑀 )+Λ̃𝑀 )

= 𝑋′(𝑌 − 𝑃𝑀𝑌 + (𝑋̃′
𝑀 )+(𝑋̃𝑀𝑌 − 𝑋̃′

𝑀 𝑋̃𝑀𝑠))

= 𝑋′(𝑌 −𝑋𝑈𝑀𝑠).

Consequently 𝑈𝑀𝑠 ∈ 𝑆𝑋,Λ(𝑌 ). ∎

A.4.  Proof of Corollaries 3.2 and 3.3

Proof of Corollary 3.2.  We will prove the implications 𝑖) ⇒ 𝑖𝑖𝑖) ⇒ 𝑖𝑣) ⇒ 𝑖𝑖) ⇒ 𝑖).

𝑖) ⇒ 𝑖𝑖𝑖) ∶ Suppose there exist Λ ∈ ℝ𝑝+ and 𝛽 ∈ 𝑆𝑋,Λ(𝑋𝛽) such that patt(𝛽) = patt(𝛽). Then, by Theorem 3.1 and since 𝜀 = 0, 
the subdifferential condition reads as: 𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 ∈ 𝜕𝐽Λ(𝑀).

𝑖𝑖𝑖) ⇒ 𝑖𝑣) ∶ The condition 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 ∈ 𝜕𝐽Λ(𝑀) remains true when Λ ∈ ℝ𝑝+ is scaled by a scalar parameter 𝛼 > 0. Indeed 

𝑋′(𝑋̃′
𝑀 )+ ̃(𝛼Λ)𝑀 = 𝛼𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 ∈ 𝛼𝜕𝐽Λ(𝑀) = 𝜕𝐽𝛼Λ(𝑀)

Therefore, up to scaling of Λ, for any 𝜆01 > 0 there exists Λ ∈ ℝ𝑝+ with 𝜆1 < 𝜆01, such that 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 ∈ 𝜕𝐽Λ(𝑀).

𝑖𝑣) ⇒ 𝑖𝑖) ∶ To prove that SLOPE can recover the pattern of 𝛽 in the noiseless case, it remains to show that the positivity 
condition holds. Since 𝛽 = 𝑈𝑀𝑠 for some 𝑠 ∈ ℝ𝑘+, where 𝑘 = ‖𝑀‖∞, and 𝑌 = 𝑋𝛽, we have 

𝑋̃′
𝑀𝑌 − Λ̃𝑀 = 𝑋̃′

𝑀 𝑋̃𝑀𝑠 − Λ̃𝑀 .

Therefore, for 𝜆1 sufficiently small, we have 𝑋̃′
𝑀𝑌 − Λ̃𝑀 ∈ 𝑋̃′

𝑀 𝑋̃𝑀ℝ𝑘+, which proves the positivity condition.

𝑖𝑖) ⇒ 𝑖) ∶ This implication follows directly by construction. ∎
Proof of Corollary 3.3.  The proof of Corollary 3.3 follows by an analogous argument. ∎

A.5.  Proof of Theorem 4.1

Lemma A.3. Let 0 ≠ 𝑏 ∈ ℝ𝑝 and 𝑀 = patt(𝑏). Then the smallest affine space containing 𝜕𝐽Λ(𝑏) is aff(𝜕𝐽Λ(𝑏)) = {𝑣 ∈ ℝ𝑝 ∶ 𝑈 ′
𝑀𝑣 = Λ̃𝑀}.

Proof.  According to Proposition 2.1 we have 
aff(𝜕𝐽Λ(𝑏)) ⊂ {𝑣 ∈ ℝ𝑝 ∶ 𝑈 ′

𝑀𝑣 = Λ̃𝑀}.

Moreover, according to Theorem 4 in [35] we have 
dim(aff(𝜕𝐽Λ(𝑏))) = ‖𝑀‖∞ = dim({𝑣 ∈ ℝ𝑝 ∶ 𝑈 ′

𝑀𝑣 = Λ̃𝑀}),

which achieves the proof. ∎
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Proof of Theorem 4.1.  (i) Sharpness of the upper bound. According to Theorem 3.1, pattern recovery by SLOPE is equivalent to 
have simultaneously the positivity condition and the subdifferential condition satisfied. The upper bound Eq. (4.2) coincides with the 
probability of the subdifferential condition. Thus to prove that this upper bound is sharp, it remains to show that the probability of the 
positivity condition tends to 1 when 𝑟 tends to ∞. Clearly the upper bound is reached when Λ̃𝑀 ∉ col(𝑋̃′

𝑀 ) thus we assume hereafter 
that Λ̃𝑀 ∈ col(𝑋̃′

𝑀 ). Recall that 𝛽(𝑟) = 𝑈𝑀𝑠(𝑟) for 𝑠(𝑟) ∈ ℝ𝑘+ and thus 𝑋̃′
𝑀𝑌

(𝑟) = 𝑋̃′
𝑀 𝑋̃𝑀𝑠(𝑟) + 𝑋̃′

𝑀𝜀. As 𝑋̃′
𝑀 (𝑋̃′

𝑀 )+ = 𝑋̃′
𝑀 𝑋̃𝑀 (𝑋̃′

𝑀 𝑋̃𝑀 )+

is the projection on col(𝑋̃′
𝑀 ), we obtain

𝑋̃′
𝑀𝑌

(𝑟) − 𝛼𝑟Λ̃𝑀 = 𝑋̃′
𝑀 𝑋̃𝑀𝑠

(𝑟) − 𝛼𝑟Λ̃𝑀 + 𝑋̃′
𝑀𝜀

= 𝑋̃′
𝑀 𝑋̃𝑀𝑠

(𝑟) − 𝛼𝑟𝑋̃′
𝑀 𝑋̃𝑀 (𝑋̃′

𝑀 𝑋̃𝑀 )+Λ̃𝑀 + 𝑋̃′
𝑀 𝑋̃𝑀 (𝑋̃′

𝑀 𝑋̃𝑀 )+𝑋̃′
𝑀𝜀

= 𝑋̃′
𝑀 𝑋̃𝑀Δ𝑟

(

1
Δ𝑟
𝑠(𝑟) −

𝛼𝑟
Δ𝑟

(𝑋̃′
𝑀 𝑋̃𝑀 )+Λ̃𝑀 + 1

Δ𝑟
(𝑋̃′

𝑀 𝑋̃𝑀 )+𝑋̃′
𝑀𝜀

)

.

Note that by the assumption on Δ𝑟:
• the vector 𝑠(𝑟)∕Δ𝑟 ∈ ℝ𝑘+ is (component-wise) larger than or equal to (𝑘,… , 1);
• lim𝑟→∞ 𝛼𝑟∕Δ𝑟 = 0 and lim𝑟→∞ 1∕Δ𝑟 = 0.

Consequently, for 𝑟 large enough we have 
𝑋̃′
𝑀𝑌

(𝑟) − 𝛼𝑟Λ̃𝑀 ∈ 𝑋̃′
𝑀 𝑋̃𝑀ℝ𝑘+.

Since this fact is true for any realization of 𝜀, one may deduce that 
lim
𝑟→∞

ℙ
(

𝑋̃′
𝑀𝑌

(𝑟) − 𝛼𝑟Λ̃𝑀 ∈ 𝑋̃′
𝑀 𝑋̃𝑀ℝ𝑘+) = 1.

(ii) Pattern consistency. In the proof of the previous part, we see that positivity condition occurs when 𝑟 is sufficiently large. Thus it 
remains to prove that subdifferential condition occurs as 𝑟 → ∞ when 𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 ∈ ri(𝜕𝐽Λ(𝑀)). First we observe that

𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 + 1

𝛼𝑟
𝑋′(𝐼𝑛 − 𝑃𝑀 )𝜀

𝑟→∞
⟶ 𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 . (A.6)

Note by Lemma A.3 that 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 + 𝛼−1𝑟 𝑋′(𝐼𝑛 − 𝑃𝑀 )𝜀 ∈ aff(𝜕𝐽Λ(𝑀)). Indeed, since Λ̃𝑀 ∈ col(𝑋̃′

𝑀 ) we have 

𝑈 ′
𝑀𝑋

′(𝑋̃′
𝑀 )+Λ̃𝑀

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=Λ̃𝑀

+ 1
𝛼𝑟
𝑈 ′
𝑀𝑋

′(𝐼𝑛 − 𝑃𝑀 )𝜀(𝜔)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

= Λ̃𝑀 .

The second term above is zero due to the fact that (𝐼𝑛 − 𝑃𝑀 ) is an orthogonal projection onto col(𝑋̃𝑀 )⊥. When 𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 ∈

ri(𝜕𝐽Λ(𝑀)), due to Eq. (A.6), one may deduce that for sufficiently large 𝑟 we have 

𝑋′(𝑋̃′
𝑀 )+Λ̃𝑀 + 1

𝛼𝑟
𝑋′(𝐼𝑛 − 𝑃𝑀 )𝜀 ∈ 𝜕𝐽Λ(𝑀).

Consequently, when 𝑟 is sufficiently large, both the positivity and the subdifferential conditions occur which, by Theorem 3.1, con-
cludes the proof. ∎

A.6.  Proofs from Section 4.2

In this part we give proofs of Theorems 4.2 and 4.3. They are preceded by a series of simple lemmas. For reader’s convenience 
we recall the setting of Section 4.2.

A. 𝜀𝑛 = (𝜖1,… , 𝜖𝑛)′, where (𝜖𝑖)𝑖 are i.i.d. centered with finite variance 𝜎2.
B1. 𝑛−1𝑋′

𝑛𝑋𝑛
ℙ

⟶ 𝐶 > 0.

B2.
max𝑖=1,…,𝑛 |𝑋

(𝑛)
𝑖𝑗 |

√

∑𝑛
𝑖=1(𝑋

(𝑛)
𝑖𝑗 )2

ℙ
⟶ 0, where 𝑋𝑛 = (𝑋(𝑛)

𝑖𝑗 )𝑖𝑗 , for each 𝑗 = 1,… , 𝑝.

B’. Rows of 𝑋𝑛 are i.i.d. distributed as 𝜉, where 𝜉 is a random vector whose components are linearly independent a.s. and such that 
𝔼[𝜉2𝑖 ] < ∞ for 𝑖 = 1,… , 𝑝.

C. (𝑋𝑛)𝑛 and (𝜖𝑛)𝑛 are independent.

We consider a sequence of tuning parameters (Λ𝑛)𝑛 defined by Λ𝑛 = 𝛼𝑛Λ, where Λ ∈ ℝ𝑝+ is fixed and (𝛼𝑛)𝑛 is a sequence of positive 
numbers.

To ease the notation, we write the clustered matrices and clustered parameters without the subscript indicating the model 𝑀 , i.e., 
Λ̃ = 𝑈 ′

|𝑀|↓
Λ, Λ̃𝑛 = 𝛼𝑛Λ̃ and 𝑋̃𝑛 = 𝑋𝑛𝑈𝑀 .

Lemma A.4. 

(i) Under A, B1, B2 and C, 
1
√

𝑛
𝑋′
𝑛𝜀𝑛

𝑑
⟶ 𝑍 ∼ N(0, 𝜎2𝐶). (A.7)
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(ii) Under A, B1 and C, 
1
𝑛
𝑋′
𝑛𝜀𝑛

ℙ
⟶ 0. (A.8)

(iii) Under A, B’ and C, 

0 < lim sup
𝑛→∞

‖𝑋′
𝑛𝜀𝑛‖∞

√

𝑛 log log 𝑛
<∞ a.s. (A.9)

Proof.  Proof of Eq. (A.7). It is enough to show that for any Borel subset 𝐴 ⊂ ℝ𝑝 one has 

ℙ

(

1
√

𝑛
𝑋′
𝑛𝜀𝑛 ∈ 𝐴 ∣ (𝑋𝑛)𝑛

)

ℙ
⟶ ℙ(𝑍 ∈ 𝐴). (A.10)

Since both sides above are bounded, the convergence in probability implies convergence in 𝐿1 and therefore establishes Eq. (A.7). 
To show Eq. (A.10) we will prove that for any subsequence (𝑛𝑘)𝑘, there exists a sub-subsequence (𝑛𝑘𝑙 )𝑙 for which, as 𝑙 → ∞, 

ℙ

(

1
√𝑛𝑘𝑙

𝑋′
𝑛𝑘𝑙
𝜀𝑛𝑘𝑙 ∈ 𝐴 ∣ (𝑋𝑛)𝑛

)

𝑎.𝑠.
⟶ ℙ(𝑍 ∈ 𝐴). (A.11)

Let ℙ𝐗 denote the regular conditional probability ℙ(⋅ ∣ (𝑋𝑛)𝑛) on (Ω, ). By assumptions B1 and B2, from sequences (𝑛𝑘)𝑘 one can 
choose a subsequence (𝑛𝑘𝑙 )𝑙 for which 

1
𝑛𝑘𝑙

𝑋′
𝑛𝑘𝑙
𝑋𝑛𝑘𝑙

𝑎.𝑠.
⟶ 𝐶 > 0 and

max𝑖=1,…,𝑛𝑘𝑙
|𝑋

(𝑛𝑘𝑙 )
𝑖𝑗 |

√

∑𝑛𝑘𝑙
𝑖=1(𝑋

(𝑛𝑘𝑙 )
𝑖𝑗 )2

𝑎.𝑠
⟶ 0, 𝑗 = 1,… , 𝑝.

We have

Var𝐗

(

1
√𝑛𝑘𝑙

𝑋′
𝑛𝑘𝑙
𝜀𝑛𝑘𝑙

)

= 1
𝑛𝑘𝑙

𝔼
[

𝑋′
𝑛𝑘𝑙
𝜀𝑛𝑘𝑙 𝜀

′
𝑛𝑘𝑙
𝑋𝑛𝑘𝑙

∣ (𝑋𝑛)𝑛
]

= 1
𝑛𝑘𝑙

𝑋′
𝑛𝑘𝑙

𝔼
[

𝜀𝑛𝑘𝑙 𝜀
′
𝑛𝑘𝑙

]

𝑋𝑛𝑘𝑙
= 𝜎2

𝑛𝑘𝑙
𝑋′
𝑛𝑘𝑙
𝑋𝑛𝑘𝑙

𝑎.𝑠.
⟶ 𝜎2𝐶 > 0,

and one can apply multivariate Lindeberg-Feller CLT on the space (Ω, ,ℙ𝐗) to prove Eq. (A.11). Alternatively, the same result follows 
from [59, Corollary 1.1]1, which concerns more general Central Limit Theorem for linearly negative quadrant dependent variables 
with weights forming a triangular array (in particular assumption B2 coincides with [59, (1.8)]).

For (ii) we observe that previous derivations imply that Var𝐗(𝑛−1𝑋′
𝑛𝜀𝑛)

ℙ
⟶ 0. We deduce that ℙX(𝑛−1‖𝑋′

𝑛𝜀𝑛‖ > 𝛿)
ℙ

⟶ 0 and hence 
(ii) follows upon averaging over (𝑋𝑛)𝑛.

Eq.  (A.9) is the law of iterated logarithm for an i.i.d. sequence (𝜉𝑖𝜖𝑖)𝑖. ∎
Lemma A.5. Let 𝑀 = patt(𝛽). Assume 𝛼𝑛∕𝑛→ 0.

(i) Under A, B1 and C, the positivity condition is satisfied for large 𝑛 with high probability.
(ii) Under A, B’ and C, the positivity condition is almost surely satisfied for large 𝑛.
Proof.  If 𝑀 = 0, then the positivity condition is trivially satisfied. Thus, we consider 𝑀 ≠ 0.

(i) Since 𝑋̃′
𝑛𝑋̃𝑛 is invertible for large 𝑛 with high probability, the positivity condition is equivalent to 

𝑠𝑛 ∶= (𝑋̃′
𝑛𝑋̃𝑛)−1[𝑋̃′

𝑛𝑌𝑛 − Λ̃𝑛] ∈ ℝ𝑘+.

Let 𝑠0 ∈ ℝ𝑘+ be defined through 𝛽 = 𝑈𝑀𝑠0, where 𝑘 = ‖𝑀‖∞. We will show that if 𝛼𝑛∕𝑛→ 0, then 𝑠𝑛
ℙ

⟶ 𝑠0. Since ℝ𝑘+ is an open 
set, this will imply that for large 𝑛 with high probability, the positivity condition is satisfied.

First we rewrite 𝑠𝑛 as 
𝑠𝑛 = (𝑋̃′

𝑛𝑋̃𝑛)−1𝑋̃′
𝑛𝑌𝑛 − 𝛼𝑛(𝑋̃

′
𝑛𝑋̃𝑛)−1Λ̃.

Since 𝛽 = 𝑈𝑀𝑠0, we conclude 𝑋𝑛𝛽 = 𝑋𝑛𝑈𝑀𝑠0 = 𝑋̃𝑛𝑠0, so the linear regression model takes the form 𝑌𝑛 = 𝑋̃𝑛𝑠0 + 𝜀𝑛. Thus, 
(𝑋̃′

𝑛𝑋̃𝑛)−1𝑋̃′
𝑛𝑌𝑛 is the OLS estimator of 𝑠0.

By assumption B and Lemma A.4, we deduce that 

(𝑋̃′
𝑛𝑋̃𝑛)−1𝑋̃′

𝑛𝑌𝑛 = 𝑠0 + (𝑛−1𝑋̃′
𝑛𝑋̃𝑛)−1𝑈𝑀

1
𝑛
𝑋′
𝑛𝜀𝑛

ℙ
⟶ 𝑠0 + [(𝑈 ′

𝑀𝐶𝑈𝑀 )−1𝑈𝑀 ]0 = 𝑠0.

To complete the proof, we note that 

𝛼𝑛(𝑋̃′
𝑛𝑋̃𝑛)−1Λ̃ =

𝛼𝑛
𝑛
[

𝑛(𝑋̃′
𝑛𝑋̃𝑛)−1Λ̃

] ℙ
⟶ 0

[

(𝑈 ′
𝑀𝐶𝑈𝑀 )−1Λ̃

]

= 0.

1 For our application, the assumption of nonnegative weights in [59, Corollary 1.1] is not essential.
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(ii) If one assumes B’ instead of B1, then 𝑛−1𝑋′
𝑛𝑋𝑛

𝑎.𝑠.
⟶ 𝐶 and by Eq. (A.9), 𝑛−1𝑋′

𝑛𝜀𝑛
𝑎.𝑠.
⟶ 0. The result follows along the same lines as 

(i).

 ∎
For 𝑀 ≠ 0 we denote

𝜋(1)𝑛 = 𝑋′
𝑛(𝑋̃

′
𝑛)

+Λ̃𝑛, 𝜋(2)𝑛 = 𝑋′
𝑛(𝐼𝑛 − 𝑃𝑛)𝑌𝑛,

𝜋𝑛 = 𝜋(1)𝑛 + 𝜋(2)𝑛 ,

which simplifies in the 𝑀 = 0 case to 𝜋𝑛 = 𝜋(2)𝑛 = 𝑋′
𝑛𝑌𝑛.

Recall that the subdifferential condition is equivalent to 𝐽 ∗
Λ𝑛
(𝜋𝑛) ≤ 1 and Λ̃𝑛 ∈ col(𝑋̃′

𝑀 ) and the latter is satisfied in our setting. 
Since 𝛼𝐽Λ = 𝐽𝛼Λ, the subdifferential condition is satisfied if and only if 

1 ≥ 𝐽 ∗
Λ
(

𝛼−1𝑛 𝜋𝑛
)

= 𝐽 ∗
Λ

(

𝛼−1𝑛 𝜋(1)𝑛 +

√

𝑛
𝛼𝑛

𝑛−1∕2𝜋(2)𝑛

)

.

In view of results shown below, 𝛼−1𝑛 𝜋(1)𝑛  converges almost surely, while 𝑛−1∕2𝜋(2)𝑛  converges in distribution to a Gaussian vector. Thus, 
the pattern recovery properties of SLOPE estimator strongly depend on the behavior of the sequence (𝛼𝑛∕

√

𝑛)𝑛.

Lemma A.6. (a)

(i) Assume A, B1 and C. If 𝑀 ≠ 0, then 

1
𝛼𝑛
𝜋(1)𝑛

ℙ
⟶ 𝐶𝑈𝑀 (𝑈 ′

𝑀𝐶𝑈𝑀 )−1Λ̃.

(ii) Assume A, B1, B2 and C. The sequence 
(

𝑛−1∕2𝜋(2)𝑛
)

𝑛
 converges in distribution to a Gaussian vector 𝑍 with 

𝑍 ∼ N
(

0, 𝜎2
[

𝐶 − 𝐶𝑈𝑀 (𝑈 ′
𝑀𝐶𝑈𝑀 )−1𝑈 ′

𝑀𝐶
])

.

(iii) Assume A, B1 and C. If lim𝑛→∞ 𝛼𝑛∕
√

𝑛 = ∞, then 𝛼−1𝑛 𝜋(2)𝑛
ℙ

⟶ 0.

(b) Assume A, B’ and C.

(i’) If 𝑀 ≠ 0, then 
1
𝛼𝑛
𝜋(1)𝑛

𝑎.𝑠.
⟶ 𝐶𝑈𝑀 (𝑈 ′

𝑀𝐶𝑈𝑀 )−1Λ̃.

(ii’) If lim𝑛→∞ 𝛼𝑛∕
√

𝑛 log log 𝑛 = ∞, then 𝛼−1𝑛 𝜋(2)𝑛
𝑎.𝑠.
⟶ 0.

Proof. 

(i) Assumption B1 implies that 

𝑋′
𝑛𝑋̃𝑛(𝑋̃′

𝑛𝑋̃𝑛)−1 =
1
𝑛
𝑋′
𝑛𝑋𝑛𝑈𝑀 (𝑈 ′

𝑀𝑛
−1𝑋′

𝑛𝑋𝑛𝑈𝑀 )−1
ℙ

⟶ 𝐶𝑈𝑀 (𝑈 ′
𝑀𝐶𝑈𝑀 )−1.

(ii) When 𝛽 = 𝑈𝑀𝑠0, then the linear regression model takes the form 𝑌𝑛 = 𝑋̃𝑛𝑠0 + 𝜀𝑛. Since 𝑃𝑛 is the projection matrix onto col(𝑋̃𝑛), 
we have (𝐼𝑛 − 𝑃𝑛)𝑋̃𝑛 = 0. Thus,

𝑛−1∕2𝜋(2)𝑛 = 𝑛−1∕2𝑋′
𝑛(𝐼𝑛 − 𝑃𝑛)𝑌𝑛 = 𝑛−1∕2𝑋′

𝑛(𝐼𝑛 − 𝑃𝑛)𝜀𝑛
=
[

𝐼𝑝 −𝑋′
𝑛𝑋𝑛𝑈𝑀 (𝑈 ′

𝑀𝑋
′
𝑛𝑋𝑛𝑈𝑀 )−1𝑈 ′

𝑀
][

𝑛−1∕2𝑋′
𝑛𝜀
]

.

By assumption B1 we have, 

𝑛−1𝑋′
𝑛𝑋𝑛𝑈𝑀 (𝑈 ′

𝑀𝑛
−1𝑋′

𝑛𝑋𝑛𝑈𝑀 )−1𝑈 ′
𝑀

ℙ
⟶ 𝐶𝑈𝑀 (𝑈 ′

𝑀𝐶𝑈𝑀 )−1𝑈 ′
𝑀 . (A.12)

Thus, by Lemma A.4(i) and Slutsky’s theorem, we obtain (ii). (iii) follows similarly as Lemma A.4(ii): with the aid of Eq. (A.12) 
we show that VarX(𝛼−1𝑛 𝜋(2)𝑛 )

ℙ
⟶ 0, which implies that conditionally on (𝑋𝑛)𝑛 we have 𝛼−1𝑛 𝜋(2)𝑛

ℙ𝐗
⟶ 0.

Assumption B’ implies that 𝑛−1𝑋′
𝑛𝑋𝑛

𝑎.𝑠.
⟶ 𝐶 and thus (i’) is proven in the same way as (i). (ii’) follows from Eq. (A.9).

 ∎
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Proof of Theorem 4.2.  (i) is a direct consequence of Lemmas A.5 and A.6. Since positivity condition is satisfied for large 𝑛 with high 
probability, for (ii) we have with 𝑀 = patt(𝛽),

lim
𝑛→∞

ℙ
(

patt(𝛽SLOPE𝑛 ) =𝑀
)

= lim
𝑛→∞

ℙ
(

𝜋𝑛 ∈ 𝜕𝐽𝛼𝑛Λ(𝑀)
)

= lim
𝑛→∞

ℙ
(

𝛼−1𝑛 𝜋𝑛 ∈ 𝜕𝐽Λ(𝑀)
)

(A.13)

≥ lim
𝑛→∞

ℙ
(

𝛼−1𝑛 𝜋𝑛 ∈ ri(𝜕𝐽Λ(𝑀))
)

= 1,

where in the last equality we use the Portmanteau Theorem, assumption Eq. (4.6) and the fact that sequence (𝛼−1𝑛 𝜋𝑛)𝑛 converges in 
distribution to 𝐶𝑈𝑀 (𝑈 ′

𝑀𝐶𝑈𝑀 )−1 if and only if 𝛼𝑛∕
√

𝑛→ ∞.
Condition Eq. (4.7) implies that 𝐶𝑈𝑀 (𝑈 ′

𝑀𝐶𝑈𝑀 )−1 ∈ 𝜕𝐽Λ(𝑀). Since (𝛼−1𝑛 𝜋𝑛)𝑛 converges in probability to 𝐶𝑈𝑀 (𝑈 ′
𝑀𝐶𝑈𝑀 )−1, the 

necessity of this condition is explained by Eq. (A.13). ∎
Proof of Theorem 4.3.  By Lemma A.5, the positivity condition is satisfied for large 𝑛 almost surely. By Lemma A.6 (i) and (iii), we 
have 

𝑎𝑛 ∶=
1
𝛼𝑛
𝜋𝑛

𝑎.𝑠.
⟶ 𝐶𝑈𝑀 (𝑈 ′

𝑀𝐶𝑈𝑀 )−1Λ̃ =∶ 𝑎0.

It is easy to see that 𝑈 ′
𝑀𝑎𝑛 = Λ̃. By the condition 𝑎0 ∈ ri(𝐽Λ(𝑀)) it follows that 𝑎𝑛 ∈ 𝐽Λ(𝑀) almost surely for sufficiently large 𝑛. 

Therefore 𝜋𝑛 ∈ 𝐽Λ𝑛 (𝑀) for large 𝑛 almost surely and thus the subdifferential condition is also satisfied. ∎

Appendix B.  Refined results on strong consistency of the SLOPE pattern

In this appendix we aim to give weaker assumptions on the design matrix than condition B’, but which ensure the almost sure 
convergence of the pattern of 𝛽SLOPE𝑛 .

A’. 𝜀𝑛 = (𝜖1,… , 𝜖𝑛)′, where (𝜖𝑖)𝑖 are independent random variables such that 
𝔼[𝜖𝑛] = 0 and Var(𝜖𝑛) = 𝜎2 for all𝑛,  and sup

𝑛
𝔼[|𝜖𝑛|𝑟] < ∞ (B.1)

for some 𝑟 > 2.
B”. A sequence of design matrices 𝑋1, 𝑋2,… satisfies the condition

1
𝑛
𝑋′
𝑛𝑋𝑛

𝑎.𝑠.
⟶ 𝐶, (B.2)

where 𝐶 is a deterministic positive definite symmetric 𝑝 × 𝑝 matrix.
With 𝑋𝑛 =

(

𝑋(𝑛)
𝑖𝑗

)

𝑖𝑗
, 

lim
𝑛→∞

(log 𝑛)𝜌
√

𝑛
sup
𝑖,𝑗

|

|

|

𝑋(𝑛)
𝑖𝑗
|

|

|

= 0 a.s. for all𝜌 > 0 (B.3)

and there exist nonnegative random variables (𝑐𝑖)𝑖, constants 𝑑 > 2∕𝑟 and 𝑚0 ∈ ℕ such that for 𝑛 > 𝑚 ≥ 𝑚0,

sup
𝑗

[ 𝑚
∑

𝑖=1

(

𝑋(𝑛)
𝑖𝑗 −𝑋(𝑚)

𝑖𝑗

)2
+

𝑛
∑

𝑖=𝑚+1

(

𝑋(𝑛)
𝑖𝑗

)2
]

≤

( 𝑛
∑

𝑖=𝑚+1
𝑐𝑖

)𝑑

 a.s., (B.4)

( 𝑛
∑

𝑖=𝑚0

𝑐𝑖

)𝑑

= 𝑂(𝑛) a.s. (B.5)

C. (𝑋𝑛)𝑛 and (𝜖𝑛)𝑛 are independent.

We note that conditions Eqs. (B.3) and (B.4) are trivially satisfied in the i.i.d. rows setting of Remark 4.4 or assumption B’. The 
main ingredient of the proof of the strong pattern consistency is the law of iterated logarithm Eq. (A.9) which holds trivially under 
B’. Below, we establish the same result under more general B”. The technical assumption Eq. (B.4) is a kind of weak continuity 
assumption on the rows of 𝑋𝑛 as it says that the 𝓁2-distance between 𝑗th rows of 𝑋𝑛 and 𝑋𝑚 should not be too large.

Lemma B.1. Assume A’, B” and C. Then 

lim sup
𝑛→∞

‖𝑋′
𝑛𝜀𝑛‖∞

√

𝑛 log log 𝑛
<∞ a.s. (B.6)

Proof.  In view of Eq. (4.5) we have for 𝑗 = 1,… , 𝑝, 

𝑛−1𝐴(𝑗)
𝑛 ∶= 𝑛−1

𝑛
∑

𝑖=1

(

𝑋(𝑛)
𝑖𝑗

)2
=
(

𝑛−1𝑋′
𝑛𝑋𝑛

)

𝑗𝑗
𝑎.𝑠.
⟶ 𝐶𝑗𝑗 > 0. (B.7)
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We apply the general law of iterated logarithm for weights forming a triangular array from [60]. The result follows directly from [60, 
Theorem 1]. Defining 𝑎(𝑗)𝑛𝑖 ∶= 𝑋(𝑛)

𝑖𝑗  for 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑝, 𝑛 ≥ 1 and 0 otherwise, we have 

(𝑋′
𝑛𝜀𝑛)𝑗 =

∞
∑

𝑖=−∞
𝑎(𝑗)𝑛𝑖 𝜖𝑖

and therefore we fall within the framework of [60, Eq. (1.3)]. Then, Eqs. (B.1)–(B.5) coincide with [60, (1.2), (1.6), (1.7), (1.8)] 
respectively. Let ℙ(⋅|(𝑋𝑛)𝑛) be a regular conditional probability. Then, applying [60, Theorem 1 (i)] on the probability space (Ω, ,ℙ𝐗)
to our sequence we obtain that for 𝑗 = 1,… , 𝑛, 

ℙ
⎛

⎜

⎜

⎜

⎝

lim sup
𝑛→∞

|

|

|

(𝑋′
𝑛𝜀𝑛)𝑗

|

|

|

√

2𝐴(𝑗)
𝑛 log log𝐴(𝑗)

𝑛

≤ 𝜎
|

|

|

|

|

(𝑋𝑛)𝑛

⎞

⎟

⎟

⎟

⎠

= 1 a.s.

Averaging over (𝑋𝑛)𝑛 and using Eq. (B.7) again, we obtain the assertion. ∎

Theorem B.2. Assume A’, B” and C. Suppose that (𝛼𝑛)𝑛 satisfies 

lim
𝑛→∞

𝛼𝑛
𝑛

= 0 and lim
𝑛→∞

𝛼𝑛
√

𝑛 log log 𝑛
= ∞.

If Eq. (4.6) is satisfied, then patt(𝛽SLOPE𝑛 )
𝑎.𝑠.
⟶ patt(𝛽).

Comments:

a) Under reasonable assumptions (see e.g. [60, Theorem 1 (iii)]) one can show that 

lim sup
𝑛→∞

‖𝑋′
𝑛𝜀𝑛‖∞

√

𝑛 log log 𝑛
> 0 a.s.

Since 𝛼−1𝑛 𝑋′
𝑛𝜀𝑛

𝑎.𝑠.
⟶ 0 is necessary for the a.s. pattern recovery, we can show that the condition 𝛼𝑛∕

√

𝑛 log log 𝑛→ ∞ cannot be 
weakened. Thus, the gap between the convergence in probability and the a.s. convergence is integral to the problem and in 
general cannot be reduced.

b) One can relax assumption B” by imposing stronger conditions on the error 𝜀𝑛. E.g. if 𝜀𝑛 is Gaussian, then one can use results from 
[61]. We note that [61] offers a very similar result as [60], but their assumptions are not quite comparable, see [61, Section 3 
i)] for detailed discussion.

c) For Gaussian errors, one can consider a more general setting where one does not assume any relation between 𝜀𝑛 and 𝜀𝑛+1, i.e., 
the error need not be incremental. For orthogonal design such approach was taken in [33]. It is proved there that one obtains the 
a.s. SLOPE pattern consistency with the second limit condition of Theorem B.2 replaced by lim𝑛→∞ 𝛼𝑛∕

√

𝑛 log 𝑛 = ∞. This result 
can be generalized to non-orthogonal designs.

Appendix C.  Strong consistency of SLOPE estimator

Lemma C.1. Assume that 𝜀𝑛 = (𝜖1,… , 𝜖𝑛)′ with (𝜖)𝑖 i.i.d., centered and having finite variance. Suppose 
1
𝑛
𝑋′
𝑛𝑋𝑛

𝑎.𝑠.
⟶ 𝐶 > 0. (C.1)

and that (𝜀𝑛)𝑛 and (𝑋𝑛)𝑛 are independent. Then 𝑛−1𝑋′
𝑛𝜀𝑛

𝑎.𝑠.
⟶ 0.

Proof.  Let ℙ(⋅ ∣ (𝑋𝑛)𝑛) denote the regular conditional probability. By [62, Th. 1.1] applied to a sequence (𝑛−1𝑋′
𝑛𝜀𝑛)𝑗 on the probability 

space (Ω, ,ℙ(⋅ ∣ (𝑋𝑛)𝑛)), we obtain 

ℙ
(

lim
𝑛→∞

𝑛−1(𝑋′
𝑛𝜀𝑛)𝑗 = 0 ∣ (𝑋𝑛)𝑛

)

= 1, 𝑗 = 1,… , 𝑝, a.s.

Thus, applying the expectation to both sides above we obtain the assertion. ∎

Theorem C.2. Assume that 𝑌𝑛 = 𝑋𝑛𝛽 + 𝜀𝑛, where 𝛽 ∈ ℝ𝑝, 𝜀𝑛 = (𝜖1,… , 𝜖𝑛)′ with (𝜖)𝑖 i.i.d., centered and finite variance. Suppose Eq. (C.1) 
and that (𝜀𝑛)𝑛 and (𝑋𝑛)𝑛 are independent. Let Λ𝑛 = (𝜆(𝑛)1 ,… , 𝜆(𝑛)𝑝 )′. Then, for large 𝑛, 𝑆𝑋𝑛 ,Λ𝑛 (𝑌𝑛) = {𝛽SLOPE𝑛 } almost surely.

If 𝛽 ≠ 0, then 𝛽SLOPE𝑛
𝑎.𝑠.
⟶ 𝛽 if and only if 

lim
𝑛→∞

𝜆(𝑛)1
𝑛

= 0. (C.2)

If 𝛽 = 0 and Eq. (C.2) holds true, then 𝛽SLOPE𝑛
𝑎.𝑠.
⟶ 0.
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Proof of Theorem C.2.  The assumption Eq. (C.1) implies that the matrix 𝑋′
𝑛𝑋𝑛 is positive definite for large 𝑛 almost surely and hence 

ensuring that ker(𝑋𝑛) = {0}. It is known that under trivial kernel, the set of SLOPE minimizers contains one element only.
By Proposition 2.1, 𝛽SLOPE𝑛  is the SLOPE estimator of 𝛽 in a linear regression model 𝑌𝑛 = 𝑋𝑛𝛽 + 𝜀𝑛 if and only if for 𝜋𝑛 = 𝑋′

𝑛(𝑌𝑛 −
𝑋𝑛𝛽SLOPE𝑛 ) we have 

𝐽 ∗
Λ(𝜋𝑛) ≤ 1 (C.3)

and 
𝑈 ′
𝑀𝑛
𝜋𝑛 = Λ̃𝑛, (C.4)

where 𝑀𝑛 = patt(𝛽SLOPE𝑛 ) and Λ̃𝑛 = 𝑈 ′
|𝑀𝑛|↓

Λ𝑛. By the definition of 𝜋𝑛 we have 

𝛽SLOPE𝑛 = (𝑋′
𝑛𝑋𝑛)−1𝑋′

𝑛𝑌𝑛 − (𝑋′
𝑛𝑋𝑛)−1𝜋𝑛 = 𝛽OLS𝑛 −

( 1
𝑛
𝑋′
𝑛𝑋𝑛

)−1( 1
𝑛
𝜋𝑛
)

.

Since in our setting 𝛽OLS𝑛  is strongly consistent, 𝛽𝑆𝐿𝑂𝑃𝐸𝑛
𝑎.𝑠.
⟶ 𝛽 if and only if

(𝑛−1𝑋′
𝑛𝑋𝑛)−1

(

𝑛−1𝜋𝑛
) 𝑎.𝑠.
⟶ 0. In view of Eq. (C.1), we have (𝑛−1𝑋′

𝑛𝑋𝑛)−1
(

𝑛−1𝜋𝑛
) 𝑎.𝑠.
⟶ 0 if and only if 𝑛−1𝜋𝑛

𝑎.𝑠.
⟶ 0.

Assume 𝑛−1𝜆(𝑛)1 → 0. By Eq. (C.3) we have ‖𝜋𝑛‖∞ ≤ 𝜆(𝑛)1 , which gives 

‖

‖

‖

‖

𝜋𝑛
𝑛
‖

‖

‖

‖∞
≤
𝜆(𝑛)1
𝑛

→ 0.

Therefore, Eq. (C.2) implies that 𝛽𝑆𝐿𝑂𝑃𝐸𝑛
𝑎.𝑠.
⟶ 𝛽.

Now assume that 𝛽 ≠ 0 and 𝛽SLOPE𝑛  is strongly consistent, i.e., 𝑛−1𝜋𝑛
𝑎.𝑠.
⟶ 0. Then, Eq. (C.4) gives 

𝑝‖𝜋𝑛‖∞ ≥ ‖𝑈 ′
𝑀𝑛
𝜋𝑛‖∞ = ‖Λ̃𝑛‖∞ ≥ 𝜆(𝑛)1 (C.5)

provided 𝑀𝑛 ≠ 0. Applying Eq. (C.3) for 𝛽𝑆𝐿𝑂𝑃𝐸𝑛 = 0, we note that 𝑀𝑛(𝜔) = 0 if and only if 
𝐽 ∗
𝑛−1Λ𝑛

(

𝑛−1𝑋𝑛(𝜔)′𝑌𝑛(𝜔)
)

≤ 1.

In view of Lemma C.1, it can be easily verified that 𝑛−1𝑋′
𝑛𝑌𝑛

𝑎.𝑠.
⟶ 𝐶𝛽. Since 

‖

‖

‖

‖

1
𝑛
𝜋𝑛
‖

‖

‖

‖∞
≥

‖

‖

‖

‖

1
𝑛
𝜋𝑛
‖

‖

‖

‖∞
𝟏(𝑀𝑛=0) =

‖

‖

‖

‖

1
𝑛
𝑋′
𝑛𝑌𝑛

‖

‖

‖

‖∞
𝟏(𝑀𝑛=0),

we see that for 𝛽 ≠ 0, we have 𝑀𝑛 ≠ 0 for large 𝑛 almost surely. Thus, for 𝛽 ≠ 0 we eventually obtain for large 𝑛

𝜆(𝑛)1
𝑛

≤ 𝑝
‖

‖

‖

‖

𝜋𝑛
𝑛
‖

‖

‖

‖∞
a.s.

 ∎

Appendix D.  Geometric interpretation of 𝑿′(𝑿̃′
𝑴 )+𝚲̃𝑴

Let 0 ≠ 𝛽 ∈ ℝ𝑝 where patt(𝛽) =𝑀 . For a SLOPE minimizer 𝛽 ∈ 𝑆𝑋,𝛼Λ(𝑋𝛽) the following occurs: 
1
𝛼
𝑋′𝑋(𝛽 − 𝛽) ∈ 𝜕𝐽Λ(𝛽).

In addition when patt(𝛽) =𝑀 , then the following facts hold:

• 𝛽 − 𝛽 ∈ col(𝑈𝑀 ), so that 1𝛼𝑋′𝑋(𝛽 − 𝛽) ∈ 𝑋′𝑋 col(𝑈𝑀 ).
• 𝜕𝐽Λ(𝛽) = 𝜕𝐽Λ(𝑀).

Therefore, the noiseless pattern recovery by SLOPE clearly implies that the vector space 𝑋′𝑋col(𝑈𝑀 ) = col(𝑋′𝑋̃𝑀 ) intersects 𝜕𝐽Λ(𝑀). 
Actually, the vector Π̄ = 𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀  appearing in Corollary 3.2 has a geometric interpretation given in Proposition D.1.

Proposition D.1. Let 𝑋 ∈ ℝ𝑛×𝑝, 0 ≠𝑀 ∈ SLOPE
𝑝  and Λ ∈ ℝ𝑝+. We recall that 𝑋̃𝑀 = 𝑋𝑈𝑀 , Λ̃𝑀 = 𝑈 ′

|𝑀|↓
Λ and Π̄ = 𝑋′(𝑋̃′

𝑀 )+Λ̃𝑀 . We 
have the following statements:

i) If Λ̃𝑀 ∉ col(𝑋̃′
𝑀 ) then aff(𝜕𝐽Λ(𝑀)) ∩ col(𝑋′𝑋̃𝑀 ) = ∅.

ii) If Λ̃𝑀 ∈ col(𝑋̃′
𝑀 ) then aff(𝜕𝐽Λ(𝑀)) ∩ col(𝑋′𝑋̃𝑀 ) = {Π̄}.

iii) Pattern recovery by SLOPE in the noiseless case is equivalent to col(𝑋′𝑋̃𝑀 ) ∩ 𝜕𝐽Λ(𝑀) ≠ ∅.
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Fig. D.8. This figure illustrates Π̄ in purple as the unique intersection point between col(𝑋′𝑋̃𝑀 ) = col((1, 0.6)′) in blue and aff(𝜕𝐽Λ(𝑀)) in red. Since 
Π̄ ∉ 𝜕𝐽Λ(𝑀) = {4} × [−2, 2] then, in the noiseless case, SLOPE cannot recover 𝑀 = patt(𝛽) = (1, 0)′. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

Proof.  i) We recall that, according to Lemma A.3, aff(𝜕𝐽Λ(𝑀)) = {𝑣 ∈ ℝ𝑝 ∶ 𝑈 ′
𝑀𝑣 = Λ̃𝑀}. If aff(𝜕𝐽Λ(𝑀)) ∩ col(𝑋′𝑋̃𝑀 ) ≠ ∅ then there 

exists 𝑧 ∈ ℝ𝑘, where 𝑘 = ‖𝑀‖∞, such that 𝑋′𝑋̃𝑀𝑧 ∈ aff(𝜕𝐽Λ(𝑀)). Consequently, Λ̃𝑀 = 𝑈 ′
𝑀𝑋

′𝑋̃𝑀𝑧 = 𝑋̃′
𝑀 𝑋̃

′
𝑀𝑧 thus Λ̃𝑀 ∈ col(𝑋̃′

𝑀 )
which establishes i).
ii) If Λ̃𝑀 ∈ col(𝑋̃′

𝑀 ) then Π̄ ∈ aff(𝜕𝐽Λ(𝑀)). Indeed, since 𝑋̃′
𝑀 (𝑋̃′

𝑀 )+ is the projection on col(𝑋̃′
𝑀 ) we have 

𝑈 ′
𝑀 Π̄ = 𝑋̃′

𝑀 (𝑋̃′
𝑀 )+Λ̃𝑀 = Λ̃𝑀 .

Moreover, since col((𝑋̃′
𝑀 )+) = col(𝑋̃𝑀 ) we deduce that Π̄ ∈ col(𝑋′𝑋̃𝑀 ). To prove that Π̄ is the unique point in the intersection, let 

us prove that col(𝑋′𝑋̃𝑀 ) ∩ col(𝑈𝑀 )⟂ = {0}. Indeed, if 𝑣 ∈ col(𝑋′𝑋̃𝑀 ) ∩ col(𝑈𝑀 )⟂ then 𝑣 = 𝑋′𝑋̃𝑀𝑧 for some 𝑧 ∈ ℝ𝑘 and 𝑈 ′
𝑀𝑣 = 0. 

Therefore, 𝑋̃′
𝑀 𝑋̃𝑀𝑧 = 0, consequently 𝑋̃𝑀𝑧 = 0 and thus 𝑣 = {0}. Finally, if Π ∈ aff(𝜕𝐽Λ(𝑀)) ∩ col(𝑋′𝑋̃𝑀 ) then Π − Π̄ ∈ col(𝑋′𝑋̃𝑀 )

and 𝑈 ′
𝑀 (Π − Π̄) = 0 which implies that Π = Π̄ and establishes ii).

According to Corollary 3.2, pattern recovery by SLOPE in the noiseless case is equivalent to Π̄ ∈ 𝜕𝐽Λ(𝑀) which is equiva-
lent, by i) and ii), to col(𝑋′𝑋̃𝑀 ) ∩ 𝜕𝐽Λ(𝑀) ≠ ∅. ∎
Example D.1.

• We observe on the right picture in Fig. 2 that the noiseless pattern recovery occurs when 𝛽 = (5, 3)′ (thus 𝑀 = patt(𝛽) = (2, 1)′). 
To corroborate this fact note that 𝑋̃𝑀 = 𝑋 thus col(𝑋′𝑋̃𝑀 ) = ℝ2 and consequently col(𝑋′𝑋̃𝑀 ) intersects 𝜕𝐽Λ(𝑀).

• We observe on the left picture in Fig. 2 that the noiseless pattern recovery does not occur when 𝛽 = (5, 0)′ (thus 𝑀 = patt(𝛽) =
(1, 0)′). To corroborate this fact, Fig. D.8 illustrates that col(𝑋′𝑋̃𝑀 ) = col((1, 0.6)′) does not intersect 𝜕𝐽Λ(𝑀) = {4} × [−2, 2].
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