
Unix

Marek Kozłowski

Faculty of Mathematics and Information Sciences
Warsaw University of Technology



Outline of the Lecture

1 Free Libre Op en Source Software

2 Op erating Systems, POSIX, SUS, Unix

3 Unix, Unix-based and Unix-like Systems

4 Unix Principles



Outline of the lecture

1 Free Libre Op en Source Software

2 Op erating Systems, POSIX, SUS, Unix

3 Unix, Unix-based and Unix-like Systems

4 Unix Principles



Free Libre Op en Source Software

The term free means the right to:
use,
analyze,
mo dify,
redistribute

the software through availability of its source co de.

FLOSS separates authorship and ownership:
redistribution of the original or mo dified software is allowed if
and only if the information on original authors and original
license is included;
the software ‘b elongs’ to everyone.



FLOSS as Mathematics

For mathematical theorems the authors must b e provided while
the term ‘ownership’ do esn’t make much sense.

All p eople all welcome to:
use,
prove (analyze),
extend (mo dify),
teach (redistribute)

the theory.



Proprietary Software as Labs Equipment

Students may use faculty’s computers free of charge.

The computers still b elong to the faculty:
any unauthorized hardware or software mo difications are
prohibited,
students cannot sell nor even lend those computers to their
friends,
students cannot eat nor drink when using the computers,
students cannot use them for commercial purp oses,
the faculty can change the terms of use or can revoke the
p ermissions granted.



FLOSS: Free Speech vs. Free Beer

The term free refers to freedom (as free speech), not price (free
beer).

Freeware, demo, adware, trial and in some cases shareware are
free of charge but those are examples of proprietary software.
Authors/distributors own the software; users buy or receive free
of charge the p ermission to use it. The owners can define (and
change later) the terms of use.

FLOSS software do esn’t imply it is free of charge (see the next
slides).



Free Libre vs. Op en Source Software

FLOSS is a general term that covers Free Software as well as
Open Source Software .

The first one fo cuses on the philosophical and legal asp ects
(freedoms) it gives to users, whereas the latter one emphasizes
the technical asp ects.

Numerous FLOSS licences do exist although most of them are
based on the op en source BSD license or the free software GNU
GPL license .



Berkeley Software Distribution License

BSD license states that:
1 information on authors and license must b e included with

original or mo dified co de or binaries and other related materials,
2 the name of the authors cannot b e used to endorse or promote

pro ducts derived from the software without sp ecific prior written
p ermission,

3 the software is provided as is and any express nor limited
warranties are disclaimed.

Note that BSD and derived software can b e used as a part of
proprietary software.



GNU General Public License

With GNU GPL author’s rights are copyrighted and users’
freedom is guaranteed by copyleft :

1 any licensee who adheres to the terms and conditions is given
p ermission to mo dify the work, as well as to copy and
redistribute the work or any derivative version. The licensee is
allowed to charge a fee for this service, or do this free of charge,

2 the software may b e distributed only with the source co de and
the GNU GPL license,

3 any restrictions on the rights granted by the GPL cannot b e
imp osed on original nor mo dified co de.

Note that GNU GPL software cannot b e bundled with
proprietary software. The GNU Lesser General Public License
(LGPL) has b een designed as a compromise: it allows mixing
GNU and proprietary software as shared libraries.



FLOSS Do esn’t Mean Free of Charge!

The term FLOSS refers to freedom not costs. FLOSS licences
allow charging money for:

distributing media (selling CDs, DVDs, etc.),
educational services,
help in installation/configuration,
any kind of supp ort,
hardware compatibility guarantee,
software customization (tailoring to user’s needs),
. . .

CentOS and RedHat Enterprise Linux are almost the same
distributions. CentOS is available for free. RHEL is sold with a
wide range of supp ort services.



Outline of the lecture

1 Free Libre Op en Source Software

2 Op erating Systems, POSIX, SUS, Unix

3 Unix, Unix-based and Unix-like Systems

4 Unix Principles



Op erating System Tasks and Comp onents

Kernel :
manages computer hardware resources,
provides environment for pro cesses: controls pro cess execution,
manages shared resources access and provides inter-pro cess
communication,
manages file systems.

Pro cesses can communicate with a kernel via a set of system
cal ls .

An interface for users is provided by the shel l and a set of
programs that encapsulate system calls. Userland programs
(applications) are started via shell.



Portable Op erating System Interface for Unix

POSIX is an IEEE 1003 standards family that defines system
calls along with a shell and basic utilities.

Apart from the kernel and implementation details all
POSIX-compliant systems are ‘the same’ from the users’ p oint of
view.

POSIX compliant source co de is p ortable b etween POSIX
compliant op erating systems.



Single Unix Sp ecification

SUS standard was initially develop ed as a substantially cheap er
alternative to POSIX.

Since 1997 common revisions of POSIX and SUS are b eing
develop ed by Op en Group and IEEE (Austin Common
Standards Revision Group ).

The very latest release is SUSv4 (2008) also known as
POSIX:2008 (formally: IEEE Std 1003.1-2008). The previous and
commonly referred one is SUSv3 known as POSIX:2001
(formally: IEEE Std 1003.1-2001).



Unix

For many years Unix was a name of a single, proprietary
pro duct.

Nowadays any OS which is certified as SUS compliant may
qualify for the name Unix .

Commercial systems like AIX, HP-UX, IRIX, MacOS, Solaris,
Tru64, etc. are Unices .

Most FLOSS systems including Linux/GNU distributions and
op en *BSD systems are highly SUS compliant. Those are
commonly referred as Unix-like systems.

Most information presented throughout this course refer to any
of those.



Outline of the lecture

1 Free Libre Op en Source Software

2 Op erating Systems, POSIX, SUS, Unix

3 Unix, Unix-based and Unix-like Systems

4 Unix Principles



Unix Origins and C Language

1969: The first version of Unix created at AT&T Bell Labs.

1969-1972: Dennis Ritchie (Bell Labs) develops C programming
language aimed at writing hardware-indep endent op erating
system software.

1972: AT&T Unix re-written in C.

C (not: C++!) is the most natural programming language for
Unix.

Unix system calls are implemented as C functions.



AT&T Unix and Berkeley Unix

Anti-trust laws (1956) prohibit AT&T from entering the
computer business.

AT&T decide to distribute Unix co de free of charge to
universities and other research entities.

Research at University of California in Berkeley results in
numerous improvements and serious system redesign. A DARPA
grant leads in developing and integrating the TCP/IP stack into
Unix.

Subsequent Berkeley Unix releases: 1.xBSD (1978), 2.xBSD
(1979), 3.xBSD (1979) and 4.xBSD (1980).

Numerous BSD concepts were included in next AT&T releases:
System III (1982) and System V (1983).



Commercial SysV Unices

1983: U.S. Department of Justice settles its second antitrust case
against AT&T and breaks up the Bell System. This allows AT&T
turning their Unix (System V, in short: SysV , sys-five) into a
commercial, proprietary pro duct.

Since 80’ AT&T lost interest in collab oration with universities.

System V co de was b ought by numerous hardware vendors.
Based on this co de and free BSD co de they started pro ducing
their own server op erating systems: AIX (IBM), IRIX (Silicon
Graphics) HP-UX (Hewlett-Packard), Solaris (SUN), etc.



*BSD Systems

Numerous legal pro cesses in early 90’s lead to creation of the
4.4BSD-Lite .

4.4BSD-Lite is an op en source (BSD-licensed) Unix system based
on 4.4BSD but free of any proprietary AT&T source co de.

1995: The second release (4.4BSD-Lite2) ends the development of
Berkely Unix.

4.4BSD-Lite co de has b een adopted by numerous op en pro jects
including FreeBSD , NetBSD and OpenBSD that raised in late
90’. Those systems are commonly referred as *BSD systems.



GNU Pro ject

1983: Richard Stal lman starts the GNU Pro ject which aims at
creating a „complete Unix-compatible software system“
comp osed entirely of free software.

GNU means GNU’s Not Unix!

1983-1985: Stallman retires from MIT (for full indep endence) and
starts the Free Software Foundation which leads, sp onsors and
promotes the GNU pro ject.

1989: the first version of the GNU GPL license is published.



GNU/Linux

In early 90’s most of the GNU software is ready although the
kernel (Hurd ) is still incomplete.

1991: Linus Torvalds releases his GNU-licensed and
GNU-compatible Linux kernel.

GNU/Linux is a family of free *nix op erating systems based on
the Linux kernel and GNU software.

GNU/Linux distributions include: Arch , Debian , Fedora ,
Gentoo , Mandriva , SuSE , Ubuntu etc.

The main differences b etween them concern startup configuration
files and software management solutions.



*nix Systems

The following main branches can b e distinguished in the *nix
family:

proprietary Unix systems based on the AT&T System V co de
enriched with more or less BSD-derived extensions. The most
significant ones include: AIX , HP-UX , IRIX , Solaris ,
proprietary systems based mostly on the BSD co de – Tru64 ,
MacOS ,
BSD-licensed systems based on the 4.4BSD-Lite co de with no
AT&T proprietary co de, such as FreeBSD , OpenBSD and
NetBSD ,
GPL-licensed and written from scratch Linux/GNU
distributions.



Outline of the lecture

1 Free Libre Op en Source Software

2 Op erating Systems, POSIX, SUS, Unix

3 Unix, Unix-based and Unix-like Systems

4 Unix Principles



Unix Principles

Separation of pro cessing and interface

Mo dularity

Text manageability

Explicitness

File system interfaces

Privilege separation

KISS (Keep It Simple, Stupid!)



Mo dularity

Do one thing and do it wel l: simple ”bricks” that may b e
combined into complex shell commands or shell scripts.

Separation of (micro)kernel, system and applications.

Multi-layered standard-compliant architecture: one comp onent
can b e simply replaced with another one that provides the same
interfaces and functionality.



Text Manageability

ASCI I files are p ortable and offer simpler maintenance and b etter
fault tolerance.

Text-based interface offers more flexibility.

User interface provided by a command-line shell.

Editable Text Configuration (/etc ).

Services started/controlled by invoking shell scripts.

Most kernel, daemon and application events are logged in the
ASCI I format.

Variety of text pro cessing utilities and languages provided.



Explicitness

Trackable system calls.

Numerous pro cess control routines.

Interface to kernel address space and pro cesses (see the next
slide).

Installation and configuration tasks can b e p erformed manually
(although installers may b e provided).

Non-critical services and applications should not b e
automagically installed nor started.

Human is always right.



File System Interfaces

Stream-based access to files.

Devices (including terminals) and pseudo-devices seen as
(sp ecial) files.

Pro cesses and address spaces can b e seen as directories.

The same, unified mechanism for reading from / writing to
streams no matter if those are assigned to files, devices and other
pro cesses.



Privilege Separation

Administrator (root ) has unlimited privileges to all system
resources.

Each pro cess runs on b ehalf of and with privileges of some user
(a process owner ).

Tasks should run with minimal privileges that allow succeeding.

Pseudo-users with restricted privileges are created for each typ e
of service: they cannot log in to the system nor start a shell but
can own pro cesses.

Files of different typ es: executables, libraries, configuration files,
databases, logs, etc stored in separate directories for simplified
privilege management.



Systemd

System and service management solution designed for Linux
only; incompatible with other Unix-like systems.

Strongly inspired by Windows XP/7 concepts (svchost.exe).

Implemented by most mo dern Linux distros. For the list of
(glorious) exceptions see: https://nosystemd.org/ .

Preferred by (inexp erienced) desktop users due to
”plug-and-play” and ”user-friendly”, automagical configuration.

May slightly increase p erformance in desktop use.

Causes serious configuration problems, instabilities and critical
security issues in more professional usage.

Violates fundamental design principles of Unix-like op erating
systems.

https://nosystemd.org/

	Free Libre Open Source Software
	Operating Systems, POSIX, SUS, Unix
	Unix, Unix-based and Unix-like Systems
	Unix Principles

