
Shell Syntax Basics

Marek Kozłowski

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

1 Shell Basics

2 Running Simple Commands
Command Syntax
Options
File Names

3 Bash Features

4 Sp ecial Characters
Comp ound Commands
Wildcards and Relative Pathnames
Escap es and Quotes

5 Variables
Variable Usage
Environment

6 Configuration Files

Outline of the lecture

1 Shell Basics

2 Running Simple Commands
Command Syntax
Options
File Names

3 Bash Features

4 Sp ecial Characters
Comp ound Commands
Wildcards and Relative Pathnames
Escap es and Quotes

5 Variables
Variable Usage
Environment

6 Configuration Files

Shells and Commands

Most commands are implemented as small, standalone programs.

Programs’ syntax is shell-indep endent and up to resp ective
authors (although some conventions do exist).

File names, device names, streams, etc. are shell-indep endent to o.

Shells my differ on:
configuration files,
additional features,
some op erators and sp ecial characters,
variable defining and handling,
built-in commands,
control statements.

Numerous shells may b e installed and offered to users at the
same time.

Command Prompt

Command prompt (in short: prompt) is some string followed by
a blinking cursor that indicates shell’s readiness to interact with
a user.

By convention prompts of normal users end with the dollar ($) or
p ercent (%) while the ro ot’s prompt ends with the hash (#)
symb ols.

✍ Default prompts may include user name, host name
etc. and may be coloured:

Default prompts for users and the ro ot in Gento o Linux

me@myhost ~ $
myhost ~ #

Throughout this course we will use the $ and the # symb ols in
our examples to indicate commands executed by any user and
the ro ot user resp ectively.

Entering Commands

The following general rules apply to any Unix shell:
Command names, file names, options, variables, etc. are
case-sensitive.
Commands should fit into single lines.
Single backslash (\) at the end or non-matched quotes allow
continuing a command on the next line.
Hash (#) forces all remaining characters on that line to b e ignored
(commented out).
Sequences of blanks are used as word (parameter) separators.
There are ways of protecting literal meanings of all sp ecial
characters.

Bourne Shell vs C-shell

Bourne shel l (sh):
default AT&T shell released b efore commercialization of AT&T
Unix,
syntax influenced by ALGOL 68,
preferred for scripting / programming.

C shel l (csh):
BSD shell with some improvements (history, aliases, file name
completion etc.),
set as a default shell in BSDs,
coherent, C-like syntax,
nowadays usually replaced with an improved version: tcsh .

Mo dern Shells

Bourne shel ls (sh-compatible shells):
Korn shel l (ksh) – sh extension with some csh features included,
Bourne-again shel l (bash) – bashing together the features of sh,
csh and ksh (see the next slide),
zsh – assumed to b e an improvement of ksh (or bash);
feature-rich but complex,

fish – friendly interactive shell; not fully sh- nor csh-compatible,

tcsh – improved csh shell (usually sup ersedes csh).

Bourne-again (or: Born-again) Shell (bash)

Bash key features:

part of the GNU pro ject,

default shell for almost all Linux/GNU distributions and
Mac OS X (since 10.3),

available under most Unix-like systems,

POSIX compliant,

Bourne shell (sh) backward compatible,

incorp orates useful Korn shell (ksh) and C shell (csh) extensions.

We assume bash as a default shell throughout this course, however,
unless otherwise stated, the informations refer to any shell.

Outline of the lecture

1 Shell Basics

2 Running Simple Commands
Command Syntax
Options
File Names

3 Bash Features

4 Sp ecial Characters
Comp ound Commands
Wildcards and Relative Pathnames
Escap es and Quotes

5 Variables
Variable Usage
Environment

6 Configuration Files

Commands

As a command name we may typ e in:
an internal shell’s command (a built-in),
a name of a binary program,
a name of a script (an executable ASCI I file that needs to b e
interpreted by an external program).

From the user’s p oint of view built-ins, binaries and scripts are
undistinguishable.

If there are shell built-ins and programs with the same names
then built-ins take precedence.

Shell searches some list of directories for executables (programs
and scripts). The first one found is then executed.

Command Syntax

Command syntax (commonly accepted convention)

$ command [options] [filenames]

By commonly accepted convention options can b e given in any
sequence, however they should precede file names.

By the same convention two formats for options are used:

short options (POSIX syntax),
long options (GNU syntax).

Short Options (POSIX)

A short option consists of a dash (-) followed by a single letter.

✍ In the fol lowing example we list (ls) the content of
the /etc directory using long format (-l):

Listing a directory contents using a long format

$ ls -l /etc

Short options can b e group ed.

✍ The fol lowing commands are equivalent (the -A option
includes hidden files for listing):

Listing all files in a directory using a long format

$ ls -l -A /etc
$ ls -A -l /etc
$ ls -lA /etc
$ ls -Al /etc

Key-value Options

Some options require additional values.

✍ We display the /etc/passwd file content sorted. We
use the colon symbol as a field separator (-t :), we sort
by the 3rd field (-k 3) and apply numerical sorting (-n):

A file sorted numerically by the third field (colon separated)

$ sort -t : -k 3 -n /etc/passwd

Key-value options can b e group ed provided that values directly
follow the options they refer to and no ambiguity o ccurs.

✍ The fol lowing commands are equivalent:

A file sorted numerically by the third field (colon separated)

$ sort -t : -k 3 -n /etc/passwd
$ sort -t: -k3 -n /etc/passwd
$ sort -n -k3 -t: /etc/passwd
$ sort -nk3 -t: /etc/passwd

Long Options (GNU)

Long options are sp ecified as: --option-name .

Most GNU commands define equivalent short and long options.
In that case they may b e used interchangeable.

✍ The fol lowing commands are equivalent:

Listing all files in a directory

$ ls -A /etc
$ ls --almost-all /etc

Short and long options can b e used together and in any sequence
but long options cannot b e group ed.

✍ In this example we use both short and long options:

Listing all files in a directory using a long format

$ ls -l --almost-all /etc

Long Key-value Options

Long key-value options are sp ecified as: --option-name=value
(important: no blanks must precede nor follow the ‘=’ symb ol).

Mandatory values for short options are mandatory for long
options to o.

✍ The fol lowing commands are equivalent:

A file sorted numerically by the third field (colon separated)

$ sort -t : -k 3 -n /etc/passwd
$ sort --field-separator=: --key=3 --numeric-sort
/etc/passwd

Standard GNU Options

Programmers are encouraged to define long options equivalent to
short ones.

GNU users may assume that two long options are defined for
each command. Those are:
--help,
--version.

File Names and Options – Ambiguity

Options should precede file names.

Usually the first command parameter which do esn’t start with
the dash is considered to op en a file names list.

Double dash (--) may b e used as an explicit end-of-options
marker in case of ambiguity.

✍ touch creates an empty file of a given name if it
doesn’t exist. We’d like to create a file named --help :

Double dash as an end-of-options marker

$ touch --help
help on the ‘touch’ command
$ touch -- --help # ‘--help’ is a file name

File Names

If it makes any sense a file name can b e substituted with a file or
directory list.

If a directory name is missing many commands assume this
(current, working) directory.

Numerous commands in lack of needed file name parameters
op erate on standard input (default: keyb oard) for reading and
standard output (default: screen) for writing.

Outline of the lecture

1 Shell Basics

2 Running Simple Commands
Command Syntax
Options
File Names

3 Bash Features

4 Sp ecial Characters
Comp ound Commands
Wildcards and Relative Pathnames
Escap es and Quotes

5 Variables
Variable Usage
Environment

6 Configuration Files

Bash History

Bash keeps the history of user’s commands. By pressing the ↑
and ↓ keys users are able to quickly navigate through it.

The history displays enumerated list of recent commands. Then
we can recall a command by sp ecifying its numb er: !number .
The shortcut: !! refers to the latest command.

✍ The last two commands are equivalent:

Recalling a command by numb er

$ history
1 ls -lA /etc
2 sort -t : -k 3 -n /etc/passwd
$!2
$ sort -t : -k 3 -n /etc/passwd

Cleaning Bash History

For the current session bash stores history in memory.

Current bash session history can b e wip ed out by: history -c .

On closing a bash session the history is app ended to the bash
history file (.bash history) in user’s home directory.

After wiping out cache we may wish to remove a history file
content to o.

✍ We don’t remove a file. We just remove its content:

Emptying a bash history file

$ echo -n > ~/.bash history

Bash Auto-completion

We can start typing a word then press the <TAB> key. Bash will
try to complete the word. The following rules apply:

the first word is completed to a valid command,
next words are completed to valid file names,
in case of ambiguity press <TAB> twice – all p ossible completions
are displayed.

✍ The fol lowing pairs of commands give the same
results:

Using the auto-completion

$ ec<TAB>
$ echo
$ ls -l /et<TAB>
$ ls -l /etc

Outline of the lecture

1 Shell Basics

2 Running Simple Commands
Command Syntax
Options
File Names

3 Bash Features

4 Sp ecial Characters
Comp ound Commands
Wildcards and Relative Pathnames
Escap es and Quotes

5 Variables
Variable Usage
Environment

6 Configuration Files

Comp ound Commands

Commands delimited by semi-colon (;) on a single line will b e
run in sequence.

Each command returns some value indicating success or failure.
A command can b e run conditionally – dep ending on the success
(&&) or failure (||) of the previous command.

✍ cp copies a file to a new name; mv – renames (moves),
rm – deletes (removes). We delete file3 or move file5
depending on the result of copying:

Command sequences

$ cp file1 file2 ; rm file1
$ cp file3 file4 && rm file3
$ cp file5 file6 || mv file5 file6

Exit Status / Return Value

Each command (more precisely: pro cess) returns some exit status
when it terminates.

Contrary to C programming language exit status 0 means success
(logical true). In case of success we need no further explanation.

Other values denote failure (logical false). They may give more
information on the reasons for the failure.

Wildcards and Relative Pathnames

The following symb ols can b e used while sp ecifying paths and
filenames:

dot (.) current (working) directory,
double dot (..) parent directory,

tilde (~) home directory,
question mark (?) any character,

asterisk (*) any sequence (string).

✍ List al l two-character names in the working directory:

Using wildcards

$ ls ??

Absolute and Relative Paths

Paths that start with / are absolute paths (relative to the
topmost directory).

✍ This works independently from the working directory:

Absolute path

$ ls /somepath

All other paths are relative to the working directory.
✍ The fol lowing commands are equivalent:

Relative paths

$ ls somepath
$ ls ./somepath

Literal Meaning of Single Characters

Any single character preceded by a backslash (\) is considered by
a shell literally – backslash removes its sp ecial meaning. It’s often
referred as escaping .

✍ It is possible (but highly not recommended) to name a
file * or even ’ . Quoting or escaping is necessary to refer
to such files. It may be also used for protecting blanks in
filenames.
Note that # starts comments in this examples:

Escaping sp ecial characters

$ rm * # remove all files
$ rm * # remove a single file ‘*’
$ rm filename with spaces # remove three files
$ rm filename\ with\ spaces # remove a single file

Single Quotes

Single quotes (’) preserve literal meaning of all enclosed
characters.

✍ Single quotes al low clear notation if there are many
special characters to be escaped:

Using single quotes

$ rm a\ b\ c\ d\ e # remove a single file
$ rm ’a b c d e’ # remove a single file

Double Quotes

Double quotes (") preserve literal meaning of all quoted
characters except: \, $ and ` (on the tilde key):
$ allows referring to variable values (see the next section),
` allows so-called command substitution (see the presentation on
streams).

Due to some bugs or p o orly do cumented features bash may
interpret some additional characters in double quotes.

Sp ecial Characters in File Names

In file listings file names containing sp ecial characters may b e
shown enclosed in single quotes.

There is no way to place a single quote inside single quotes.

In file listings file names containing single quotes may b e shown
enclosed in double quotes.

✍ Using double quotes

What are the file names? ;-)

$ touch \"
’"’
$ touch \’
"’"

Notes on Escaping and Quoting

Escaping and quoting affect how a shell reads characters.

Those are transparent to commands.
✍ In al l cases touch receives --help

Escaping and quoting is for a shell, not a command

$ touch --help
$ touch ’--help’
$ touch "--help"
$ touch \-\-help

Quotes are parsed from left to right; there is no nesting.
✍ Single quotes have no effect here:

Parsing quotes from left to right

$ echo "’\$’"
’$’

Multi-Line Commands Revised

By finishing line with \ we escap e the end-of-line character.

Quotes matching is requisite – placing unmatched quotes allows
spanning commands over several lines.

Outline of the lecture

1 Shell Basics

2 Running Simple Commands
Command Syntax
Options
File Names

3 Bash Features

4 Sp ecial Characters
Comp ound Commands
Wildcards and Relative Pathnames
Escap es and Quotes

5 Variables
Variable Usage
Environment

6 Configuration Files

Variables as Lab els

As in numerous (all?) scripting languages variables act as ob ject
labels.

Variables itself are untyp ed and don’t need to b e declared
(however in some languages ob jects b eing lab eled can by strictly
typ ed). In shell we use a single data typ e – a string.

Referring to undefined variables do esn’t result in an error in
shells – empty strings are returned.

Why Variables?

Shells are programming languages.

Variables may store long string literals and simplify command
notation.

Variables are used for customizing shell.

So-called environment variables can b e inherited by child
processes.

Variables in Bourne Shells

The following information refer to all sh-compliant shells.
Csh-based shells use slightly different syntax, based on the C
programming language.

A common practice is using capital letters for variable names.

Variables are defined by value assignment: VARIABLE NAME=value
(important: no blanks may precede nor sup ersede the ‘=’).

We refer to values stored in variables by preceding variable
names with the dollar symb ol: $VARIABLE NAME . For ambiguity
avoidance we may also use the form: ${VARIABLE NAME} (see next
slides).

Managing Variables

Setting a variable

$ SOMEVAR="something"

Examining a variable

$ echo $SOMEVAR
$ echo ${SOMREVAR}

Displaying all variables

$ set

Unsetting a variable

$ unset SOMEVAR
$ SOMEVAR=

Using Variables – Examples

✍ echo displays a string interpreted by the shel l:

Managing variables

$ VAR1=/etc
$ echo $VAR1
/etc
$ ls -lA $VAR1
listing the /etc directory contents
$ unset VAR1
$ echo $VAR1

✍ We don’t want the VAR2ERPILLAR variable:

Curly braces for ambiguity avoidance

$ VAR2=CAT
$ echo ${VAR2}ERPILLAR
CATERPILLAR

Bash History Revised

Bash history is controlled by the following variables:
HISTSIZE – numb er of last commands stored in cache,
HISTFILE – file storing bash history,
HISTFILESIZE – numb er of commands stored in bash history file.

Environment

For each pro cess a set of variables defines its own environment.

Child pro cesses (pro cesses invoked by the current one) receive a
copy of parent’s environment during pro cess creation.

The command export adds a shell variable to its environment.

✍ We can export existing variables or join exporting and
assigning a value:

Exp orting variables

$ VARIABLE1=value1
$ export VARIABLE1
$ export VARIABLE2=value2

printenv and env print the list of environment variables.

Bash provides an additional declare built-in which allows
viewing and managing attributes (status) of all variables.

Imp ortant Variables

Some imp ortant environment variables are:

HOME home directory,
LC * , LANG lo cale settings,

PATH colon-separated list of directories searched for
executables,

PWD path to the working (current) directory,
SHELL login shell.

Other shell variables include:

IFS word separator (default: blanks),
PS1 (primary) prompt string description.

Redefining Shell Variables – Examples

✍ Redefining the default prompt:

Changing the default prompt

$ PS1=’Hello> ’
Hello>

✍ Adding the working directory in front of the search
path:

Mo difying the search path

$ PATH=.:$PATH

✍ Selecting the interface language (it should be done
before starting the GUI):

Changing default lo calization to Polish

$ export LANG=pl PL.UTF-8

Outline of the lecture

1 Shell Basics

2 Running Simple Commands
Command Syntax
Options
File Names

3 Bash Features

4 Sp ecial Characters
Comp ound Commands
Wildcards and Relative Pathnames
Escap es and Quotes

5 Variables
Variable Usage
Environment

6 Configuration Files

System vs. User’s Configuration Files

Most configuration files global for the system are placed in the
/etc (Edit-To-Configure) directory.

Most configuration files use ‘shell-friendly’ syntax:
those are ASCI I text files,
each line is considered a separate entry,
starts a comment,

Most global settings can b e overwritten by user’s settings. User’s
configuration files reside is user’s home directory, their names are
preceded with dot (which marks them as hidden files).

Bash Configuration Files

The names of shell initialization files use similar naming scheme.
Note that even configuration file names for bash can slightly vary
from one system to another. Consult your shell do cumentation
for details.

The following listing comes from bash do cumentation:

/etc/profile The systemwide initialization file, executed
for login shells

~/.bash profile The p ersonal initialization file, executed for
login shells,

~/.bashrc The individual p er-interactive-shell startup
file

~/.bash logout The individual login shell cleanup file,
executed when a login shell exits

	Shell Basics
	Running Simple Commands
	Command Syntax
	Options
	File Names

	Bash Features
	Special Characters
	Compound Commands
	Wildcards and Relative Pathnames
	Escapes and Quotes

	Variables
	Variable Usage
	Environment

	Configuration Files

