Shell Syntax Basics

Marek Kozlowski

‘@)

N\

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

Shell Basics

Running Simple Commands
m Command Syntax
= Options
m File Names

Bash Features

Special Characters
m Compound Commands
m Wildcards and Relative Pathnames
m HEscapes and Quotes

Variables
m Variable Usage
m Environment

A Configuration Files

Outline of the lecture

Shell Basics

Shells and Commands

Most commands are implemented as small, standalone programs.

Programs’ syntax is shell-independent and up to respective
authors (although some conventions do exist).

File names, device names, streams, etc. are shell-independent too.

Shells my differ on:

configuration files,

additional features,

some operators and special characters,
variable defining and handling,
built-in commands,

control statements.

Numerous shells may be installed and offered to users at the
same time.

Command Prompt

m Command prompt (in short: prompt) is some string followed by
a blinking cursor that indicates shell’s readiness to interact with
a user.

m By convention prompts of normal users end with the dollar ($) or
percent (%) while the root’s prompt ends with the hash (#)
symbols.

Default prompts may include user name, host name
etc. and may be coloured:

Default prompts for users and the root in Gentoo Linux

me@myhost ~ $
myhost ~ #
m Throughout this course we will use the $ and the # symbols in
our examples to indicate commands executed by any user and
the root user respectively.

Entering Commands

m The following general rules apply to any Unix shell:

m Command names, file names, options, variables, etc. are
case-sensitive.

m Commands should fit into single lines.

m Single backslash (\) at the end or non-matched quotes allow
continuing a command on the next line.

m Hash (#) forces all remaining characters on that line to be ignored
(commented out).

m Sequences of blanks are used as word (parameter) separators.

m There are ways of protecting literal meanings of all special
characters.

Bourne Shell vs C-shell

m Bourne shell (sh):

default AT&T shell released before commercialization of AT&T
Unix,

syntax influenced by ALGOL 68,

preferred for scripting / programming.

m C shell (csh):

BSD shell with some improvements (history, aliases, file name
completion etc.),

set as a default shell in BSDs,

coherent, C-like syntax,

nowadays usually replaced with an improved version: tcsh.

Modern Shells

m Bourne shells (sh-compatible shells):
m Korn shell (ksh) — sh extension with some csh features included,
m Bourne-again shell (bash) — bashing together the features of sh,
csh and ksh (see the next slide),
m zsh — assumed to be an improvement of ksh (or bash);
feature-rich but complex,

m fish — friendly interactive shell; not fully sh- nor csh-compatible,

m tcsh — improved csh shell (usually supersedes csh).

Bourne-again (or: Born-again) Shell (bash)

Bash key features:

part of the GNU project,

default shell for almost all Linux/GNU distributions and
Mac OS X (since 10.3),

available under most Unix-like systems,
POSIX compliant,
Bourne shell (sh) backward compatible,

incorporates useful Korn shell (ksh) and C shell (csh) extensions.

We assume bash as a default shell throughout this course, however,
unless otherwise stated, the informations refer to any shell.

Outline of the lecture

Running Simple Commands
m Command Syntax
= Options
m File Names

Commands

® As a command name we may type in:

® an internal shell’s command (a built-in),

® a name of a binary program,

m a name of a script (an executable ASCII file that needs to be
interpreted by an external program).

m From the user’s point of view built-ins, binaries and scripts are
undistinguishable.

m If there are shell built-ins and programs with the same names
then built-ins take precedence.

m Shell searches some list of directories for executables (programs
and scripts). The first one found is then executed.

Command Syntax

Command syntax (commonly accepted convention)

$ command [options] [filenames]

® By commonly accepted convention options can be given in any
sequence, however they should precede file names.

m By the same convention two formats for options are used:

m short options (POSIX syntax),
= long options (GNU syntax).

Short Options (POSIX)

m A short option consists of a dash (-) followed by a single letter.

& In the following example we list (1s) the content of
the /etc directory using long format (-1):

Listing a directory contents using a long format

$ 1s -1 /etc
m Short options can be grouped.

#) The following commands are equivalent (the -4 option
includes hidden files for listing):

Listing all files in a directory using a long format

$ 1s -1 -A /etc
$ 1s -A -1 /etc
$ 1s -1A /etc
$ 1s -Al /etc

Key-value Options

m Some options require additional values.
#y we display the /etc/passwd file content sorted. We
use the colon symbol as a field separator (-t :), we sort
by the 3™ field (-k 3) and apply numerical sorting (-n):
A file sorted numerically by the third field (colon separated)
$ sort -t : -k 3 -n /etc/passwd

m Key-value options can be grouped provided that values directly
follow the options they refer to and no ambiguity occurs.

#D The following commands are equivalent:

A file sorted numerically by the third field (colon separated)

$ sort -t : -k 3 -n /etc/passwd
sort -t: -k3 -n /etc/passwd
sort -n -k3 -t: /etc/passwd
sort -nk3 -t: /etc/passwd

@N A H

Long Options (GNU)

m Long options are specified as: --option-name .
m Most GNU commands define equivalent short and long options.
In that case they may be used interchangeable.

#) The following commands are equivalent:

Listing all files in a directory

$ 1s -A /etc
$ 1s -—almost-all /etc

m Short and long options can be used together and in any sequence
but long options cannot be grouped.

& In this ezample we use both short and long options:

Listing all files in a directory using a long format

$ 1s -1 --almost-all /etc

Key-value Options

m Long key-value options are specified as: -—option-name=value
(IMPORTANT: no blanks must precede nor follow the ‘=’ symbol).

m Mandatory values for short options are mandatory for long
options too.

The followtng commands are equivalent:

A file sorted numerically by the third field (colon separated)

$ sort -t : -k 3 -n /etc/passwd
$ sort --field-separator=: --key=3 --numeric-sort
/etc/passwd

Standard GNU Options

m Programmers are encouraged to define long options equivalent to
short ones.
m GNU users may assume that two long options are defined for
each command. Those are:
m —-help,
B —--version.

File Names and Options — Ambiguity

m Options should precede file names.

m Usually the first command parameter which doesn’t start with
the dash is considered to open a file names list.

m Double dash (--) may be used as an explicit end-of-options
marker in case of ambiguity.

#D touch creates an empty file of a given name if it
doesn’t exist. We’d like to create a file named --help :

Double dash as an end-of-options marker

$ touch --help
help on the ‘touch’ command
$ touch -- --help # ‘--help’ is a file name

m If it makes any sense a file name can be substituted with a file or
directory list.

m If a directory name is missing many commands assume this
(current, working) directory.

m Numerous commands in lack of needed file name parameters
operate on standard input (default: keyboard) for reading and
standard output (default: screen) for writing.

Outline of the lecture

Bash Features

Bash History

m Bash keeps the history of user’s commands. By pressing the T
and | keys users are able to quickly navigate through it.

m The history displays enumerated list of recent commands. Then
we can recall a command by specifying its number: ! number .
The shortcut: !! refers to the latest command.

#) The last two commands are equivalent:

Recalling a command by number

$ history

1 1s -1A /etc

2 sort -t : -k 3 -n /etc/passwd
$ 12
$ sort -t : -k 3 -n /etc/passwd

Cleaning Bash History

m For the current session bash stores history in memory.
m Current bash session history can be wiped out by: history -c .

m On closing a bash session the history is appended to the bash
history file (.bash_history) in user’s home directory.

m After wiping out cache we may wish to remove a history file
content too.
#1 We don’t remove a file. We just remove its content:

Emptying a bash history file

$ echo -n > ~/.bash history

Bash Auto-completion

m We can start typing a word then press the <TAB> key. Bash will
try to complete the word. The following rules apply:

m the first word is completed to a valid command,

m next words are completed to valid file names,

® in case of ambiguity press <TAB> twice — all possible completions

are displayed.

&) The following pairs of commands give the same
results:

Using the auto-completion

$ ec<TAB>

$ echo

$ 1s -1 /et<TAB>
$ 1s -1 /etc

Outline of the lecture

Special Characters
m Compound Commands
m Wildcards and Relative Pathnames
m HEscapes and Quotes

Compound Commands

m Commands delimited by semi-colon (;) on a single line will be
run in sequence.

m BEach command returns some value indicating success or failure.
A command can be run conditionally — depending on the success
(&&) or failure (| |) of the previous command.
cp copies a file to a new name; mv — renames (moves),

rm — deletes (removes). We delete file3 or move fileb
depending on the result of copying:

Command sequences

$ cp filel file2 ; rm filel
$ cp file3 file4 && rm file3
$ cp fileb file6 || mv fileb file6

Exit Status / Return Value

m Each command (more precisely: process) returns some exit status
when it terminates.

m Contrary to C programming language exit status 0 means success
(logical true). In case of success we need no further explanation.

m Other values denote failure (logical false). They may give more
information on the reasons for the failure.

Wildcards and Relative Pathnames

m The following symbols can be used while specifying paths and

filenames:
dot (.) current (working) directory,
double dot (..) parent directory,
tilde (~) home directory,
question mark (?) any character,

asterisk (*) any sequence (string).

#9 List all two-character names in the working directory:

Using wildcards

$ 1s 77

Absolute and Relative Paths

m Paths that start with / are absolute paths (relative to the
topmost directory).
This works independently from the working directory:

Absolute path

$ 1s /somepath

m All other paths are relative to the working directory.
&) The following commands are equivalent:

Relative paths

$ 1ls somepath
$ 1s ./somepath

Literal Meaning of Single Characters

m Any single character preceded by a backslash (\) is considered by

a shell literally — backslash removes its special meaning. It’s often

referred as escaping.
#0 It is possible (but highly not recommended) to name a
file * or even 7 . Quoting or escaping is necessary to refer
to such files. It may be also used for protecting blanks in
filenames.
Note that # starts comments in this ezamples:

Escaping special characters

$ rm * # remove all files

$ rm * # remove a single file ‘x’

$ rm filename with spaces # remove three files

$ rm filename\ with\ spaces # remove a single file

Single Quotes

m Single quotes (’) preserve literal meaning of all enclosed
characters.

& Single quotes allow clear notation if there are many
special characters to be escaped:

Using single quotes

$ rm a\ b\ c\ d\ e # remove a single file
$ rm ’a b c d e’ # remove a single file

Double Quotes

m Double quotes (") preserve literal meaning of all quoted
characters except: \, $ and ~ (on the tilde key):

m $ allows referring to variable values (see the next section),
m ~ allows so-called command substitution (see the presentation on
streams).
m Due to some bugs or poorly documented features bash may
interpret some additional characters in double quotes.

Special Characters in File Names

m In file listings file names containing special characters may be
shown enclosed in single quotes.

m There is no way to place a single quote inside single quotes.

m In file listings file names containing single quotes may be shown
enclosed in double quotes.

Using double quotes

What are the file names? ;-)

$ touch \"

rno

$ touch \’

non

Notes on Escaping and Quoting

m Escaping and quoting affect how a shell reads characters.

m Those are transparent to commands.
#1 In all cases touch receives --help

Escaping and quoting is for a shell, not a command

$ touch --help

$ touch ’--help’
$ touch "--help"
$ touch \-\-help

m Quotes are parsed from left to right; there is no nesting.
Single quotes have no effect here:

Parsing quotes from left to right

$ echo IIJ\$)II
'$

Multi-Line Commands Revised

m By finishing line with \ we escape the end-of-line character.

m Quotes matching is requisite — placing unmatched quotes allows
spanning commands over several lines.

Outline of the lecture

Variables
m Variable Usage
m Environment

Variables as Labels

m As in numerous (all?) scripting languages variables act as object
labels.

m Variables itself are untyped and don’t need to be declared

(however in some languages objects being labeled can by strictly
typed). In shell we use a single data type — a string.

m Referring to undefined variables doesn’t result in an error in
shells — empty strings are returned.

Why Variables?

m Shells are programming languages.

m Variables may store long string literals and simplify command
notation.

m Variables are used for customizing shell.

m So-called environment variables can be inherited by child
processes.

Variables in Bourne Shells

m The following information refer to all sh-compliant shells.
Csh-based shells use slightly different syntax, based on the C
programming language.

m A common practice is using capital letters for variable names.

m Variables are defined by value assignment: VARTABLE NAME=value
(IMPORTANT: no blanks may precede nor supersede the ‘=’).

m We refer to values stored in variables by preceding variable
names with the dollar symbol: $VARIABLE_NAME . For ambiguity
avoidance we may also use the form: ${VARIABLE_NAME} (see next
slides).

Managing Variables

Setting a variable

$ SOMEVAR="something"

Examining a variable

$ echo $SOMEVAR
$ echo ${SOMREVAR}

Displaying all variables

$ set

Unsetting a variable

$ unset SOMEVAR
$ SOMEVAR=

Using Variables — Examples

#1 echo displays a string interpreted by the shell:

Managing variables

$ VAR1=/etc
$ echo $VAR1
/etc
$ 1s -1A $VAR1
listing the /etc directory contents
$ unset VAR1
$ echo $VAR1

#Y We don’t want the VAR2ERPILLAR variable:
Curly braces for ambiguity avoidance

$ VAR2=CAT
$ echo ${VAR2}ERPILLAR
CATERPILLAR

Bash History Revised

m Bash history is controlled by the following variables:
m HISTSIZE — number of last commands stored in cache,
m HISTFILE — file storing bash history,
m HISTFILESIZE — number of commands stored in bash history file.

Environment

m For each process a set of variables defines its own environment.

m Child processes (processes invoked by the current one) receive a
copy of parent’s environment during process creation.
® The command export adds a shell variable to its environment.

#1 We can ezport existing variables or join exporting and
assigning a value:

Exporting variables

$ VARIABLEl=valuel
$ export VARIABLE1
$ export VARIABLE2=value2

® printenv and env print the list of environment variables.

m Bash provides an additional declare built-in which allows
viewing and managing attributes (status) of all variables.

Important Variables

m Some important environment variables are:
HOME home directory,
LC_x , LANG locale settings,
PATH colon-separated list of directories searched for
executables,
PWD path to the working (current) directory,
SHELL login shell.

m Other shell variables include:

IFS word separator (default: blanks),
PS1 (primary) prompt string description.

Redefining Shell Variables — Examples

Redefining the default prompt:

Changing the default prompt

$ PS1="Hello> °
Hello>

& Adding the working directory in front of the search
path:

Modifying the search path

$ PATH=.:$PATH

& Selecting the interface language (it should be done
before starting the GUI):

Changing default localization to Polish

$ export LANG=pl PL.UTF-8

Outline of the lecture

A Configuration Files

System vs. User’s Configuration Files

m Most configuration files global for the system are placed in the
/etc (Edit-To-Configure) directory.
m Most configuration files use ‘shell-friendly’ syntax:
m those are ASCII text files,
m each line is considered a separate entry,
m # starts a comment,
m Most global settings can be overwritten by user’s settings. User’s
configuration files reside is user’s home directory, their names are
preceded with dot (which marks them as hidden files).

Bash Configuration Files

m The names of shell initialization files use similar naming scheme.
Note that even configuration file names for bash can slightly vary
from one system to another. Consult your shell documentation
for details.

m The following listing comes from bash documentation:

/etc/profile The systemwide initialization file, executed
for login shells
~/.bash_profile The personal initialization file, executed for
login shells,
~/ .bashrc The individual per-interactive-shell startup
file
~/.bash_logout The individual login shell cleanup file,
executed when a login shell exits

	Shell Basics
	Running Simple Commands
	Command Syntax
	Options
	File Names

	Bash Features
	Special Characters
	Compound Commands
	Wildcards and Relative Pathnames
	Escapes and Quotes

	Variables
	Variable Usage
	Environment

	Configuration Files

