Basic Shell Commands

Marek Koztowski

@

&

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

Manual

Session Utilities

Gathering User and System Information
File Viewing and Editing

File Management

@ Dealing with Archives

File Finding

Outline of the lecture

Manual

Manual (man)

m For help on any command, file name, system call, C function or
general topic man pages are provided.

#1 We can display a man page on the man command:

Getting help on the man command

$ man man
m Man page navigation:
®m q — quit,
<SPACE> — next page,
nG — go to line number n,
G — go to the last line,
/pattern — search forward for pattern; special characters in
pattern need to be escaped,
n — next occurrence,
N — previous occurrence.

Man Page Structure

m Most man pages are organized following the same scheme:

= NAME,

SYNOPSIS,

DESCRIPTION,

OPTIONS,

RETURN VALUE,

FILES (related files),

SEE ALSO (names with section numbers for man pages),
AUTHORS and BUG REPORTS.

Manual Sections

® The manual is organized into 8 sections numbered as follows
(some System V systems can have 4, 5 and 7 swapped):

User Commands,

System Calls,

C Library Functions,

Devices and Special Files,

File Formats and Conventions,

Games et. Al.,

Miscellanea,

System Administration tools and Deamons.

EEEENENE

m Supplemental POSIX sections can be defined. They share the
same numbers followed by the letter P (for example: 1P for
POSIX-compliant commands).

m Names with numbers in parenthesis (for example: ki11(1),
kil1(3P)) refer to man pages in specific sections.

Selecting Manual Sections

® man with no options displays the first matching man page.
m We can specify the section number for man to seek.

m When in doubt we can request man pages on given name from all
sections (the -a option). They are displayed in sequence.

#1 Note that section numbers are not preceded with dash
(-) opposite to other options:

Specifying man sections

$ man kill # first match

$ man 1 kill # help on ‘kill’ command

$ man 2 kill # help on ‘kill’ system call
$ man -a kill # all man pages on ‘kill’

Man Pages on Files and Functions

m Don't specify parenthesis for functions.

m Specify configuration or device files with no paths; use respective
section numbers instead.

m Omit instance numbers.

Man pages on files and functions

$ man 3 printf # not: man printf ()
$ man 5 passwd # not: man /etc/passwd
$ man 4 sd # not: man /dev/sda2

Outline of the lecture

Session Utilities

Secure SHell (SSH) Protocol

m Allows connecting a remote tty (or a tty emulator application)
over a TCP/IP network.

m Provides a secure communication channel.
m Disconnecting or closing a terminal results in killing all processes
within the current SSH session.

m Under Windows use the PuTTY client (https://putty.org):

m works under 32-bit and 64-bit systems,
m single exe file, no installation needed,
m FLOSS license (open source).

m Under Unix use the ssh command.

https://putty.org

ssh Command

Connecting to a remote host via SSH:

$ ssh [username@]hostname[.domainname]

m Username and domainname can be omitted if they are the same for
client and server hosts.

GNU screen Utility

m screen starts a new shell instance which is terminal
independent. We can detach it from a terminal (and even log
out) and attach to any other we are logged in if required.

® screen is especially useful when performing time-consuming
tasks like: system upgrade, backup or complex computations.
® The most standard procedures include:

screen — start a session in screen,

<Ctrl><A> <D> — detach current session from terminal,

screen -r — re-attach a session running in screen,

screen -rD — re-attach a session running in screen; detach it first

if necessary,
® exit — end current session.
m If multiple screen instances are running, we are requested to
select screen’s ID when re-attaching (screen -rD somenumber).

script Utility

® script makes a copy of everything printed on terminal and saves
it into the ./typescript file.

® typescript may contain non-ASCII characters (colors and other
terminal control sequences).

m The exit command ends a script.

® script is commonly used inside sessions running in screen mode.

Outline of the lecture

Gathering User and System Information

Date and Time: date, cal

m date displays or sets date and time. There are syntax differences
between implementations, consult your manual for details. For
GNU date usage examples see Shell Syntaz Basics (the slide:
Command Syntaz Substitution).

REMEMBER: For displaying the current time use the date
command. The time command is designed for different purpose
(measuring command execution time).

m cal displays a calendar: with no parameter the current month,;
cal -y — the whole year. Other options can vary.

System Information: uname

m uname displays system name (for example: Linuz). Common
querying options include:
® -m — hardware platform,
m -n — host name,
H -p — Processor,
m -r — kernel,
uname -a prints all available information.

& Sample uname -a output for a Linuzx system:

uname information

$ uname -a

Linux alpha.mini.pw.edu.pl 2.6.36-gentoo-r5 #1 SMP
Thu Jan 27 12:47:37 CET 2011 x86_64 Intel(R) Xeon(R)
CPU L5420 @ 2.50GHz GenuineIntel GNU/Linux

Hardware Information (Linux)

m The following command may be available:

m lscpu,
m lspci,
m lsusb.

The -v options increases verbosity of the last two ones.

m Use some Linux LiveCD distro with those tools for examining a
new hardware.

RAM Usage: free

m The free command displays information on total and free
memory.

m Free memory can be used as buffers/cache for increasing system
performance. It can be freed immediately shall the need arise.

m Some implementations support the -h option (human readable
output — in kilobytes, megabytes, gigabytes, etc. rather than
bytes).

User Identity: :d

m The id displays the user and group names and IDs.
m Querying other users by name is possible with id username .

m The two utilities: whoami and groups which display current user
name and user groups names are now obsoleted by id -un and
id -Gn username respectively.

m A separate presentation is dedicated to user identities and groups.

User Information: finger (obsolete)

m finger is a user information lookup program.
m It is possible to search by user’s system or real names.

® The mail information can be inaccurate for some mailbox
formats. Other information (for example: a PGP key) may be
included.
Information returned by finger:

Getting user information

$ finger smith
Login: smithj Name: John Smith
Directory: /home/smithj Shell: /bin/bash
Last login: Fri Mar 4 08:00 (CET)
on pts/0 from somehost.somedomain.com
No mail.

No plan.

Currently Logged In Users: who, w

m who displays who is on the system.
m v displays logged in users and the commands they’re running.

m write username [terminal] sends a message to a user.
Specifying the terminal is necessary only if a user is logged on
more than once.

m mesg [y/n] enables/disables incoming messages. With no
parameter current status is displayed.

Outline of the lecture

File Viewing and Editing

m echo displays a line of text interpreted by the shell. It is
commonly used for testing commands with special characters.

m cat displays con-cat-enated files content on stdout (default: the
screen). With -n it precedes each line with a line number.

File Viewing (1): more, less

m more displays files in paged mode (one screen a time). The
<SPACE> key scrolls one page down. No backward scrolling is
possible.

B less is the most advanced file viewer. It is used by default by
man for displaying man pages, so the same navigation commands
do apply. less is especially useful for examining large files (for
example: log files).

File Viewing (2): head, tail

m head displays the first part of files (by default: 10 lines). The -n
option allows specifying the number of lines.

® tail is similar to head except it prints the last lines. The -f
option appends output when the file grows. It may be useful for
log file tracing.

A default log file ws /var/log/messages. Normal users
are usually not allowed to read it:

Tracing a default syslog-ng log file

tail -f /var/log/messages

BEasy Editors

m For the very basic editing of ASCII files one or more of the
following editors may be available:

m nano (or pico) — a GNU editor default for most Linux
systems. The list of available commands is displayed in the
bottom panel. The * symbol denotes the <CTRL> key,

m joe — simple editor similar to nano. The help panel is
available too, all time the status bar informs:

Ctri-K H for help,
m ee (Easy Editor) — the basic editor for BSD systems.

m The EDITOR environment variable defines the default editor.

Outline of the lecture

File Management

Directory Navigation (1) — pwd, s

m pwd (Path to Working Directory) displays working (current)
directory.

m 1s lists directory contents sorted by names. A file name instead
of directory name can be given. If no name is specified it lists
current directory. The most common options include:

-a — include entries which names start with ‘.’ (hidden files),
-A — same as -a except . and .. directories,
-1 — long listing (rights, owners, size, modification date etc.),
-R — recursive listing,
sorting options:

m -r — reverse order,

B -S — by size,

B -t — by modification time,

m -X — by extension.

Directory Navigation (2) — cd

m cd — changes working directory. Relative names are allowed. If no
directory name is specified it changes to the directory stored in
$HOME. We can change to the most recent directory by cd - .

#1 Let’s assume that our home is /home/smi thj and we

Just switched working directory to the /etc. The following
commands are equivalent:

Changing working directory

$ cd /home/smithj

$ cd

$ cd $HOME

$ cd ~

$ cd ../home/smithj
$ cd -

Creating New Files and Directories: touch, mkdir

m touch updates file timestamps (access and last modification
times). If the file doesn’t exist a new empty one is created.

m mkdir creates directories. mkdir -p creates a multi-level
structure if necessary.

#1 Note than mkdir -p doesn’t return error on directory
presence:

Creating a multi-level directory structure

$ mkdir subl/sub2/sub3
mkdir error: No such file or directory!
$ mkdir -p subl/sub2/dub3
$ mkdir subl/sub2/sub3
mkdir error: File exists!
$ mkdir -p subl/sub2/dub3

Copying, Moving and Renaming — cp, mv

m cp copies files, mv — moves/renames:

cp and mv syntax

$ cp source destination
$ mv source destination

m For copying directories with their contents the -r or -R (recursive)
option must be present.

m The destination may indicate a new name or a new location.

&1 In the first ezample somefile2 denotes a new name.
In the second one — somedir s a new location:

Copying a file

$ cp somefile somefile2
$ cp somefile somedir

Symbolic Links and Hard Links — In

m Two kinds of file links do exist:

m Two or more file system names that refer to the same file are
called hard links.

m A file reference by its name, similar to Windows shortcut, is
called a symbolic link (or: symlink).

Symlinks are not automagically updated on file name change.

Hard links must exist within a single file system, while symlinks
can refer to files in other file systems.

m Under normal circumstances only symlinks should be used.

® 1n creates hard links; 1n -s creates symlinks. The syntax is as
follows:

$ 1n [-s] target link-name(s)

Removing Files and Directories — rm

m rm removes files or directories.

m If there are hard-linked names then rm removes single name
entries not the files they refer to.

m For removing directories the -r or -R (recursive) option must be
present (obsoleted rmdir command can remove only empty
directories).

m Other useful options include:

m -i — prompt before deleting,
m -f — never prompt, assume yes.

Synchronization — rsync

m rsync synchronizes destination directory to source directory. All
files in the source directory are left untouched.

m rsync is able to synchronize directories between different hosts.

Typical rsync usage

$ rsync -avz --delete ~/sourcedir me@otherhost:/home/me/destdir

m Options explanation:

m -a — preserve standard file attributes,

m -v — be verbose,

m -z — compress during the transfer,

m —-delete — delete extraneous files from destdir.

m The -n (or --dry-run) option starts rsync in pretend mode.

File Comparison — diff

m diff compares files line by line. diff -y (console or maximized
terminal window is recommended) displays results side by side
(in two columns). The symbols <, > and | denote respectively:
the lines missing in the first file, the second one and the lines
that differ.

m diff (with no options) output shows modifications that turn the
first file into the second one. This output can be saved as a patch
file for the patch command (see the next slide).

file.patch stores information on how file.old
should be changed to be identical with file.new

Generating a patch file

$ diff file.old file.new > file.patch

Applying diff Changes — patch

m patch allows applying changes as described in a patch file:

Applying a patch

$ patch file.old file.patch

Reversing applied changes

$ patch -R file.old file.patch

Outline of the lecture

@ Dealing with Archives

Compression: gzip and bzip2

Compression

$ gzip somefilel
$ bzip2 somefile2
$ xz somefile3

® gzip, bzip2 and xz compress files and add .gz, .bz2 or .xz extensions.

m More than one file can be specified as an argument. In such case each
file is compressed separately.

Decompression

$ gunzip somefilel.gz
$ bunzip2 somefile2.bz2
$ unxz somefile3.xz

® gunzip, bunzip2 and unxz decompress files and remove extensions
(.gz, .bz2 pr xz).

tar — Tape ARchiver

m tar creates a single file (a tarball) being a concatenation of files given
as arguments:

Tarball creation

$ tar -cvf tarball.tar somefilel somefile2 ...

Tarball extraction

$ tar -xvf tarball.tar

m The options:

-c — create,

-x — extract,

-v — verbose mode,

m -f — specifies tarball name (usage: -f tarball.tar).

m Note that tar:

m leaves source file(s) untouched,
m doesn’t automagically add the extension: .tar while creating a
tarball.

Compressed Tarballs

m For multi-file archives we can first use tar then compress it with gzip,
bzip2 or xz:

Tarball compression with gzip

$ tar -cvf tarball.tar somefilel somefile2 ...
$ gzip tarball.tar

m Alternatively -z (for gzip), -j (for bzip2) or -J (for xz) options can
be used:

Creating compressed tarball

$ tar -czvf tarball.tar.gz somefilel somefile2 ...
$ tar -cjvf tarball.tar.bz2 somefilel somefile2 ...
$ tar -cJvf tarball.tar.xz somefilel somefile2 ...
$ tar -xzvf tarball.tar.gz
$ tar -xjvf tarball.tar.bz2
$ tar -xJvf tarball.tar.xz

Compressed Tarballs Under Windows

m Most Windows archive utilities are able to deal with compressed
tarballs.
m Windows utilities better deal with single extensions, so the
following ones may be more safe:
m .tgz - for gzipped tarballs,
® .tb2 - for bzipped tarballs,
m .txz - for xzipped tarballs.

Outline of the lecture

File Finding

File Finding — find

find syntax:

$ find [path] [tests] [actions]

m The parameters:

® path — in which directory search for files (empty: the current one),
m tests — search conditions; may be combined using logical
operators: ! , -a (and; default), -o (or) and parenthesis: () ,

m actions — actions to perform on files that meet the tests (empty:
print file names).

find — Tests and Actions

m Common tests:

-name — search by name (wildcards allowed)

-user , group — by owner and group (numeric values allowed),
-type — by type (f ,d,1,c,b,...),

-perm — by permissions (symbolic or numerical),

-mtime — by modification time (+n — more than n days, -n — less
than n days, n — exactly n days).

m Common actions:

® -print — print file names; the default one,

m -delete — delete files,

m -exec command ; — execute a command on files; for example:
-exec rm {} \; does the same as -delete (backslash protects
semicolon to be not interpreted by the shell).

find — Examples

Search for relatively new configuration files.

$ find /etc -mtime -30

Move old backups to backup directory

$ find thisdir -mtime +365 -name "*.bak" -exec mv {} backdir/ \;

Delete some trash interactively

$ find thisdir -name ".*”" -exec rm -i {} \;

	Manual
	Session Utilities
	Gathering User and System Information
	File Viewing and Editing
	File Management
	Dealing with Archives
	File Finding

