
Unix Fundamentals – Filters and Regular Expressions

Marek Kozłowski
Faculty of Mathematics and Information Sciences

Warsaw University of Technology

Never use copy&paste for the following exercises. Retype all commands manually!
Don’t just read those exercises and examples. Do them, please!

1. Stream redirection

(a) In this example ‘cat’ reads from the keyboard (stdin) and writes to a file (stdout):
$ cat > file1a
Finish by pressing ‘Ctrl d’ (generates the end-of-file character) or ‘Ctrl c’ (sends
a SIGINT termination signal to a foreground process group). Check the result:
$ cat file1a

(b) Remove a file contents (not a file! just its contents!) by overwriting it with an empty
string:
$ echo -n > file1a
$ cat file1a
As you remember we used this syntax for removing bash history two labs ago.

(c) Appending vs. overwriting example:
$ date > file1c; date > file1c; date > file1c
$ cat file1c
$ date > file1c; date >> file1c; date >> file1c
$ cat file1c

(d) Keeping a log file permanently open for writing is a bad practice. A smarter way of
appending control messages is illustrated by the following example:
$ echo "First message" >> file1d
$ echo "Second message" >> file1d
$ echo "Third message" >> file1d
$ cat file1d

(e) ‘tail’ can handle appended lines. Create a file and open it with ‘tail -f’:
$ touch file1e; tail -f file1e
Open another terminal and append a few lines to this file by executing the following
command repeatedly:
$ date >> file1e
End ‘tail’ by pressing ‘Ctrl c’.

(f) The files from previous exercises won’t be necessary anymore. Keep your home tidy:
$ rm file1?
(we used this wildcard so many times is doesn’t need explanation, does it?)

(g) Practice appending settings to a configuration file. This example shows how you can
disable receiving writes:
$ echo "mesg n" >> ∼/.bashrc

(h) Learn ignoring output, ignoring errors and ignoring both:
$ date
$ date > /dev/null
$ date invalid-argument
$ date invalid-argument 2>/dev/null
$ date >/dev/null 2>&1

1

(i) File finding revised. During the previous labs we used the following search:
$ find /etc -name "*.conf" -mtime +60 2>/dev/null
It eliminates Permission denied messages by ignoring the stderr stream.

2. Command substitution

(a) Create a file which name is its exact creation date and time:
$ touch "`date`"; ls
Note that double quotes are necessary because the ‘date’ output stream contains spaces.
We’d like them to be a part of the name rather than ‘touch’ argument separators. If in
doubt – compare the result of:
$ touch `date`; ls
The cleanup must be done manually.

(b) Listing all Linux kernel modules:
$ find /lib/modules/`uname -r`/kernel -name "*.ko.zst"

(c) In case you’ve forgotten:
$ echo My name is: `whoami`

3. Filters

(a) Any file viewer discussed the last week can be used as a pipeline filter:
$ set | more
$ set | less
$ set | head
$ set | tail

(b) All filters can be used as standalone commands. For unknown reason most students use:
$ cat /etc/services | more
instead of just:
$ more /etc/services

(c) We can also mix both forms. The seventh line of a file is the last one of the first seven
lines:
$ head -n7 /etc/passwd | tail -n1

(d) In Arch Linux the package manages is called ‘pacman’ (no, it’s not a game). Let’s browse
all installed packages:
$ pacman -Q | less

(e) Word count counts lines, words and characters:
$ wc /etc/passwd
With the ‘-l’ (‘--lines’) option – only lines (precisely: EOL characters).
Let’s check the examples from the slide #18 and count shell variables:
$ set | wc -l
environment variables:
$ env | wc -l
entries in the working directory:
$ ls -A | wc -l
packages installed in Arch Linux:
$ pacman -Q | wc -l
local and remote users:
getent passwd | wc -l

(f) ‘wc’ as a regular command prints a file name. In a pipeline there is no file name, this
may be convenient in some cases. Let’s compare:
$ echo "Number of /etc/passwd lines: `cat /etc/passwd | wc -l`"
$ echo "Number of /etc/passwd lines: `wc -l /etc/passwd`"

(g) By default environment variables are not sorted:
$ env
but it is not a problem:

2

$ env | sort
We can also easily sort variables by values:
$ set | sort -t= -k2
(fields separated by ‘=’, sorting by the second field)

(h) Reading a random byte generator is not a good idea:
$ cat /dev/urandom
(stop by pressing ‘Ctrl c’)
Moreover some non-printable characters can change our terminal settings. Close your
terminal emulator window and open another one. Then run this command correctly:
$ cat /dev/urandom | strings

4. grep – basics

(a) What syntax for ‘sort’ did we use?
$ history | grep sort

(b) On which TCP port does IMAP4 over SSL (secure mailbox access protocol) operate?
$ grep tcp /etc/services | grep imaps

(c) Why storing secrets as string literals in code may be a bad idea?
$ strings /bin/bash | grep License

(d) IP addresses for our servers start with ‘194.29.178’. Some services have been configured
use them. What services? – oh, we did it such a long time ago. . . (unsure about the
galaxy). But with grep sclerosis is not a problem anymore:
$ grep -R "194.29.178" /etc
It complains that we don’t have permissions to access some configuration files. Let’s
ignore those messages as we’ve learned:
$ grep -R "194.29.178" /etc 2>/dev/null

(e) ‘zgrep’ can operate on compressed files:
$ cp /etc/passwd .
$ gzip passwd
$ zgrep uszatekm passwd.gz

(f) Are there utilities similar to ‘zgrep’ for other archive formats?
$ ls /usr/bin | grep grep

(g) Let’s print all lines containing the letters ‘a’ and ‘c’ and not containing ‘u’:
$ grep a /etc/passwd | grep c | grep -v u

5. grep with POSIX regular expressions
Before you start this exercise make sure you’ve read the slides about regular expressions and
you understand the syntax!

(a) Let’s display a sample configuration file:
$ cat /etc/ssh/sshd config
(the ‘d’ suffix indicates it is an SSH server configuration)
It is a typical configuration files. Most lines are commented out. Some are empty. Can
we display only meaningful lines? At first we omit lines that start with a comment:
$ grep -vP ’^#’ /etc/ssh/sshd config
But wait! If some blanks precede ‘#’ it is still a commented out line:
$ grep -vP ’^[\t]*#’ /etc/ssh/sshd config
OK, now let’s learn eliminating empty lines. An empty line contains at most some
blanks:
$ grep -vP ’^[\t]*$’ /etc/ssh/sshd config
Let’s combine it together:
$ grep -vP ’^[\t]*(#|$)’ /etc/ssh/sshd config

(b) Display environment variables’ names (‘-o’ prints only matching strings):
$ env | grep -oE ’^[^=]*’ | sort
or the values:
$ env | grep -oE ’[^=]*$’ | sort

3

(c) All program files are placed in the ‘/usr/bin/’ directory. Do any program names both
start and end with vowels?
$ ls /usr/bin | grep -P ’^[aeiouy].*[aeiouy]$’
But wait! What if a program name is one character long? Some small correction is
desired:
$ ls /usr/bin | grep -P ’^[aeiouy](.*[aeiouy])?$’
or
$ ls /usr/bin | grep -P ’^([aeiouy].*)?[aeiouy]$’

(d) The 4th field of the ‘/etc/passwd’ file contains a number called a GID. Are there any
users with GIDs containing only odd numbers? First let’s take a look (again?) at the
file contents:
$ cat /etc/passwd
We need to skip first 3 fields. A field can be described by the following regexp:

[^:]*:
(any sequence of characters other than colons followed by a colon)
OK, we’ve got all we need:
$ grep -P ’^([^:]*:){3}[13579]*:’ /etc/passwd

(e) Are then any users with GIDs form the range 900 – 1000? Remember: regexps describe
strings not numbers!
$ grep -P ’^([^:]*:){3}9..:’ /etc/passwd
or more elegantly:
$ grep -P ’^([^:]*:){3}9[0-9]{2}:’ /etc/passwd

(f) Try to build a regular expression that matches any valid IPv4 address. Check if it works:
$ grep -RP ’your regexp here ’ /etc 2>/dev/null
and apply corrections if necessary. Honestly, it’s not easy :-(

(g) Continue with your own experiments.

4

