Streams and Pipelines

Marek Kozlowski

‘@)

N\

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

Streams
Pipeline Filters

POSIX Regular Expressions

Outline of the lecture

Streams

m Stream is a unidirectional communication channel for
transferring ordered bytes.
m Streams are used for:
m reading from and writing to files (fopen() creates a stream and
associates it with a file),
m interacting with a user via a keyboard and display (a tty),
m inter-process communication (so-called pipelining),
m A process is unaware if the other end of a stream is associated
with:
m a file,
m an I/O device,
m other process.

Standard Streams

m For each process three standard streams are pre-defined. Those
are:

m stdin (0) — standard input,
m stdout (1) — standard output,
m stderr (2) - standard error.

m Processes usually don’t read from a keyboard directly. Instead
they read from stdin, by default associated with a keyboard.

m Processes usually don’t write on display directly. Instead they
use stdout and stderr, by default associated with a display.

Standard Output and Standard Error Streams

® stdout is used for normal output.
m Error messages should be sent to stderr.
m Since both are associated with a display they can be easily
confused by inexperienced users.
& 1t's easy to confuse stdout and stderr messages:

Normal output and error messages

$ date # outputs to stdout
$ cd non-exeisting # print error message on stderr

Stream Redirection

m Standard streams my be redirected to files with the >, >> and <
operators.

Stream redirection

1s > somefile # overwrite somefile with output

1s >> somefile # append output to somefile

somesetup < somefile # get input from somefile

1ls >& somefile # redirect output and errors to somefile
1s &> somefile # same as above

€ hH hH P B P

1s &>> somefile # append output and errors to somefile

Stream Redirection in Bash

m Bash as well as other sh-compliant shells is able to use numbers
as stream identifiers. 2> can be used for standard error
redirection, 2>&1 — for merging standard output and standard
error. The latter one is commonly used in bash scripts.

The following commands are equivalent:

Stdout and stderr redirection

$ 1s >& file
$ 1s > file 2>&1

Redirecting to /dev/null

m /dev/null is a special file that acts as a black hole.
m Stream content may be ignored by redirecting it to /dev/null.

m This technique is commonly used in bash scripts for silent mode
effect.

#1 Command is silent mode:

Ignoring output and error streams

$ date >/dev/null # ignore stdout
$ cd non-existing 2>/dev/null # ignore stderr
$ date >/dev/null 2>&1 # ignore both

Stream Redirection Examples

Clear a history file:

$ echo -n > ~/.bash history

Change history settings:

$ echo "HISTSIZE=4096" >> ~/.bashrc
$ echo "HISTFILESIZE=4096" >> ~/.bashrc

Disable writes:

$ echo "mesg n" >> ~/.bashrc

Prepare a patch file:

$ diff filel file2 > patchfile

Ignore Permaission denied messages:

$ find /etc -mtime -30 2>/dev/null

m Numerous commands process files and require file names as
arguments.

m Opening a file is performed by creating a stream associated with
it.
m Such stream operates the same way as stdin.

m If no file name is specified then stdin stream may be used
instead.

m Commands that process stdin if there are no file names given
are referred as filters.

® stdout of a command may be redirected to stdin of another
command by using the pipe (|) symbol.

m If the second command is a filter it processes stdout of the
preceding command.

m Such technique is referred as pipelining.

m Pipelining allows advanced data processing by connecting
relatively simple ”building blocks”.

®m One may connect stdout and stderr to stdin of other command
by the |&. This syntax is very rarely used.

#1 Bnvironment variables are unsorted by default; we -1
prints the number of lines in a file/stream:

Pipelines

$ env | sort
$ 1s | we -1

Command Substitution

m Commands quoted in ~ (on the tilde key) are replaced with their
stdout content with all newlines deleted.
#) The date command displays (by default: current)
date. touch creates an empty file of a given name if it
doesn’t exist. Note that double quotes are necessary in the
first example to protect blanks:

Command substitution

$ date
Fri Feb 25 8:09:10 CET 2011
$ touch "“date™"
$ date +/d.%m.%Y
25.02.2011
$ touch “date +%d.%m.%Y"

Command Substitution Examples

Calculate number of environment variables:

$ echo "Number of variables: “env | wc -1°"

Find Linux kernel modules:

$ find /lib/modules/ uname -r” /kernel -name "*.ko.zst"

In case you've forgotten:

$ echo "My name is: “whoami™"

Some dynamic loop:

$ for i in “1s”; do ...

Outline of the lecture

Pipeline Filters

File Viewers

m All file viewers: more, less, head and tail may be used as
pipeline filters.

#1 Note that not all ttys allow scrolling up:

Listing shell variables

$ set | less

Display yhe T line of a file:
The last one of the first seven lines

$ head -n7 /etc/passwd | tail -ni

B cat can act as a filter too but since it just copies stdin to
stdout with no processing it makes no sense.

Word Count (w

Command syntax

$ we [-1|-wl-c] file

® Prints number of lines (EOLs), words (blank separated strings) and
characters in a file as well as the file name.

m Note that pipeline filters see no file names.
m Output can be limited to lines (-1), words (-w) or characters only (-c).

® Numerous commands put each output record on a separate line so the
wc -1 filter is especially useful for calculating them.

Word Count (wc) Examples

A trick to skip a file name:

$ wc -1 /etc/passwd
$ echo "Number of /etc/passwd lines: “cat /etc/passwd | wc -17"

Calculating the number of ...:

$ set | wc -1 # variables

$ env | wc -1 # environment variables

$ 1s -A | wec -1 # files

$ pacman -Q | wc -1 # packages installed in Arch Linux
$ getent passwd | wc -1 # local and remote users

Line Sorting (sort)

m Sorts lines of a file or a stream.
m All options for sorting files can be used for streams too.
#9 env doesn’t sort environment variables by default:

Environment variables sorted

$ env | sort

Filtering ASCII Strings (strings)

m Displays printable (lower ASCII) character sequences (strings)
from a file / stream.

m Allows displaying string literals from a binary file (a program).

m For text files it does no harm and acts the same as cat.

Generic Regular Expression Parser (grep)

Command syntax

$ grep [options] pattern file

m grep displays only those lines which contain strings that match the
pattern. The most common options include:
® -i — ignore case,
m -1 (or -R) — scan a directory content recursively,
m -v — invert selection (show only non-matching lines).

m zgrep allows grepping over compressed files.

grep Examples

Searching for some pattern in binary file:

$ strings /bin/bash | grep License

Searching for configuration all files containing some IP address fragment:

$ grep -R 194.29.178 /etc 2>/dev/null

Outline of the lecture

POSIX Regular Expressions

POSIX Regular Expressions

Templates/patterns for any set of strings.

Key concept of automata theory.

Heart of numerous programming languages, especially:
m awk,
m perl,
m ruby.

Used for searches in less (man), vim, etc.

Syntax standardized by POSIX (BRE/ERE) although some
extensions do exist (for example: PCRE).

Regular Expression Syntax

m Regular expression syntax:

(<r>) — regular expression (grouped),

c — ‘¢’ character,

\c — special character or meta-character (for example: \t),
~ — beginning of the string,

$ — end of the string,

. — any single character,

[ab...] — any single character — a, b etc.,

[a-z] — any character from the range a - z,
[~ab...] — any character except ...,

<r>* — expression <r> repeated O or more times,
<r>+ — expression <r> repeated 1 or more times,
<r>7?7 — expression <r> 0 or 1 times,

<r>{n,m} — expression <r> n to m times,
<rl>|<r2> — alternative: <rl> or <r2>.

Notes on Regular Expression Syntax

m [0-9]+ doesn’t denote the same digit one or more times. It
means: any non-empty sequence of digits.

m Several ranges or sets can be defined inside single square
brackets, for example: [A-Za-zACEE0ZZacet622].

m A dot can be denoted in two ways: as \. or [.].

Regular Expressions — Examples

ali(babalgator) — altbaba or aligator,

[A-Z] [a-z] *ski$ — full name that ends with skz,
(balclkltclz)?sh — any shell,

[\t]l+ — one or more blanks,
[+-17[0-9]+[.17[0-9]* — signed decimal.

grep and Regular Expressions

m grep -E is able to use regular expressions as patterns.

m Due to some specification differences some grep implementations
don't recognize \t as tab in ERE regular expressions. Use grep -P
(perl regular expressions, PCRE) if you experience this issue.

m In both cases regular expressions have to be placed in single
quotes to prevent interpreting special characters by the shell.

	Streams
	Pipeline Filters
	POSIX Regular Expressions

