
Streams and Pip elines

Marek Kozłowski

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

1 Streams

2 Pip eline Filters

3 POSIX Regular Expressions

Outline of the lecture

1 Streams

2 Pip eline Filters

3 POSIX Regular Expressions

Streams

Stream is a unidirectional communication channel for
transferring ordered bytes.

Streams are used for:
reading from and writing to files (fopen() creates a stream and
asso ciates it with a file),
interacting with a user via a keyb oard and display (a tty),
inter-pro cess communication (so-called pipelining),

A pro cess is unaware if the other end of a stream is asso ciated
with:

a file,
an I/O device,
other pro cess.

Standard Streams

For each pro cess three standard streams are pre-defined. Those
are:
stdin (0) – standard input,
stdout (1) – standard output,
stderr (2) – standard error.

Pro cesses usually don’t read from a keyb oard directly. Instead
they read from stdin, by default asso ciated with a keyb oard.

Pro cesses usually don’t write on display directly. Instead they
use stdout and stderr, by default asso ciated with a display.

Standard Output and Standard Error Streams

stdout is used for normal output.

Error messages should b e sent to stderr.

Since b oth are asso ciated with a display they can b e easily
confused by inexp erienced users.

✍ It’s easy to confuse stdout and stderr messages:

Normal output and error messages

$ date # outputs to stdout
$ cd non-exeisting # print error message on stderr

Stream Redirection

Standard streams my b e redirected to files with the >, >> and <
op erators.

Stream redirection

$ ls > somefile # overwrite somefile with output
$ ls >> somefile # append output to somefile
$ somesetup < somefile # get input from somefile
$ ls >& somefile # redirect output and errors to somefile
$ ls &> somefile # same as above
$ ls &>> somefile # append output and errors to somefile

Stream Redirection in Bash

Bash as well as other sh-compliant shells is able to use numb ers
as stream identifiers. 2> can b e used for standard error
redirection, 2>&1 – for merging standard output and standard
error. The latter one is commonly used in bash scripts.

✍ The fol lowing commands are equivalent:

Stdout and stderr redirection

$ ls >& file
$ ls > file 2>&1

Redirecting to /dev/nul l

/dev/null is a sp ecial file that acts as a black hole.

Stream content may b e ignored by redirecting it to /dev/null.

This technique is commonly used in bash scripts for silent mo de
effect.

✍ Command is silent mode:

Ignoring output and error streams

$ date >/dev/null # ignore stdout
$ cd non-existing 2>/dev/null # ignore stderr
$ date >/dev/null 2>&1 # ignore both

Stream Redirection Examples

Clear a history file:

$ echo -n > ~/.bash history

Change history settings:

$ echo "HISTSIZE=4096" >> ~/.bashrc
$ echo "HISTFILESIZE=4096" >> ~/.bashrc

Disable writes:

$ echo "mesg n" >> ~/.bashrc

Prepare a patch file:

$ diff file1 file2 > patchfile

Ignore Permission denied messages:

$ find /etc -mtime -30 2>/dev/null

Filters

Numerous commands pro cess files and require file names as
arguments.

Op ening a file is p erformed by creating a stream asso ciated with
it.

Such stream op erates the same way as stdin.

If no file name is sp ecified then stdin stream may b e used
instead.

Commands that pro cess stdin if there are no file names given
are referred as filters .

Pip elines

stdout of a command may b e redirected to stdin of another
command by using the pip e (|) symb ol.

If the second command is a filter it pro cesses stdout of the
preceding command.

Such technique is referred as pipelining .

Pip elining allows advanced data pro cessing by connecting
relatively simple ”building blo cks”.

One may connect stdout and stderr to stdin of other command
by the |&. This syntax is very rarely used.

✍ Environment variables are unsorted by default; wc -l
prints the number of lines in a file/stream:

Pip elines

$ env | sort
$ ls | wc -l

Command Substitution

Commands quoted in ` (on the tilde key) are replaced with their
stdout content with all newlines deleted.

✍ The date command displays (by default: current)
date. touch creates an empty file of a given name if it
doesn’t exist. Note that double quotes are necessary in the
first example to protect blanks:

Command substitution

$ date
Fri Feb 25 8:09:10 CET 2011
$ touch "`date`"
$ date +%d.%m.%Y
25.02.2011
$ touch `date +%d.%m.%Y`

Command Substitution Examples

Calculate numb er of environment variables:

$ echo "Number of variables: `env | wc -l`"

Find Linux kernel mo dules:

$ find /lib/modules/`uname -r`/kernel -name "*.ko.zst"

In case you’ve forgotten:

$ echo "My name is: `whoami`"

Some dynamic lo op:

$ for i in `ls`; do ...

Outline of the lecture

1 Streams

2 Pip eline Filters

3 POSIX Regular Expressions

File Viewers

All file viewers: more, less, head and tail may b e used as
pip eline filters.

✍ Note that not al l ttys al low scrol ling up:

Listing shell variables

$ set | less

✍ Display yhe 7th line of a file:

The last one of the first seven lines

$ head -n7 /etc/passwd | tail -n1

cat can act as a filter to o but since it just copies stdin to
stdout with no pro cessing it makes no sense.

Word Count (wc)

Command syntax

$ wc [-l|-w|-c] file

Prints numb er of lines (EOLs), words (blank separated strings) and
characters in a file as well as the file name.

Note that pip eline filters see no file names.

Output can b e limited to lines (-l), words (-w) or characters only (-c).

Numerous commands put each output record on a separate line so the
wc -l filter is esp ecially useful for calculating them.

Word Count (wc) Examples

A trick to skip a file name:

$ wc -l /etc/passwd
$ echo "Number of /etc/passwd lines: `cat /etc/passwd | wc -l`"

Calculating the numb er of ...:

$ set | wc -l # variables
$ env | wc -l # environment variables
$ ls -A | wc -l # files
$ pacman -Q | wc -l # packages installed in Arch Linux
$ getent passwd | wc -l # local and remote users

Line Sorting (sort)

Sorts lines of a file or a stream.

All options for sorting files can b e used for streams to o.

✍ env doesn’t sort environment variables by default:

Environment variables sorted

$ env | sort

Filtering ASCI I Strings (strings)

Displays printable (lower ASCI I) character sequences (strings)
from a file / stream.

Allows displaying string literals from a binary file (a program).

For text files it do es no harm and acts the same as cat.

Generic Regular Expression Parser (grep)

Command syntax

$ grep [options] pattern file

grep displays only those lines which contain strings that match the
pattern. The most common options include:

-i – ignore case,
-r (or -R) – scan a directory content recursively,
-v – invert selection (show only non-matching lines).

zgrep allows grepping over compressed files.

grep Examples

Searching for some pattern in binary file:

$ strings /bin/bash | grep License

Searching for configuration all files containing some IP address fragment:

$ grep -R 194.29.178 /etc 2>/dev/null

Outline of the lecture

1 Streams

2 Pip eline Filters

3 POSIX Regular Expressions

POSIX Regular Expressions

Templates/patterns for any set of strings.

Key concept of automata theory.

Heart of numerous programming languages, esp ecially:
awk,
p erl,
ruby.

Used for searches in less (man), vim, etc.

Syntax standardized by POSIX (BRE/ERE) although some
extensions do exist (for example: PCRE).

Regular Expression Syntax

Regular expression syntax:
(<r>) – regular expression (group ed),
c – ‘c’ character,
\c – sp ecial character or meta-character (for example: \t),
^ – b eginning of the string,
$ – end of the string,
. – any single character,
[ab. . .] – any single character – a, b etc.,
[a-z] – any character from the range a - z,
[^ab. . .] – any character except . . . ,
<r>* – expression <r> rep eated 0 or more times,
<r>+ – expression <r> rep eated 1 or more times,
<r>? – expression <r> 0 or 1 times,
<r>{n,m} – expression <r> n to m times,
<r1>|<r2> – alternative: <r1> or <r2>.

Notes on Regular Expression Syntax

[0-9]+ do esn’t denote the same digit one or more times. It
means: any non-empty sequence of digits.

Several ranges or sets can b e defined inside single square
brackets, for example: [A-Za-zĄĆĘŁÓŻŹąćęłóżź].

A dot can b e denoted in two ways: as \. or [.].

Regular Expressions – Examples

ali(baba|gator) – alibaba or aligator,

[A-Z][a-z]*ski$ – full name that ends with ski,

(ba|c|k|tc|z)?sh – any shell,

[\t]+ – one or more blanks,

[+-]?[0-9]+[.]?[0-9]* – signed decimal.

grep and Regular Expressions

grep -E is able to use regular expressions as patterns.

Due to some sp ecification differences some grep implementations
don’t recognize \t as tab in ERE regular expressions. Use grep -P
(p erl regular expressions, PCRE) if you exp erience this issue.

In b oth cases regular expressions have to b e placed in single
quotes to prevent interpreting sp ecial characters by the shell.

	Streams
	Pipeline Filters
	POSIX Regular Expressions

