
Users and Groups

Marek Kozłowski

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

1 Users and Groups Database

2 File System Rights

3 Access Control Lists

Outline of the lecture

1 Users and Groups Database

2 File System Rights

3 Access Control Lists

Lo cal Users Database

For most systems user identity database consists of the following
three files:
/etc/passwd – provides user account information,
/etc/shadow – stores encrypted passwords and aging limits (some
BSD systems use /etc/master.passwd for this purp ose),
/etc/group – sp ecifies system groups.

All those are ASCI I files in which each line defines a separate
entry; fields are colon-separated.

Account Information – /etc/passwd

/etc/passwd line format

username:password:uid:gid:gecos:directory:shell

The field descriptions are:

username – account name,
password – a password placeholder (usually ‘x’) for backward
compatibility,
uid – user’s ID – a unique numerical identifier,
gid – numerical ID of the user’s primary group,
gecos – comment / real name,
directory – user’s home directory,
shel l – the program to run at login – the default shell (for Linux
it is usually /bin/bash).

Sample /etc/passwd entry

smithj:x:1001:100:John Smith:/home/smithj:/bin/bash

Username vs. UID

Records stored in /etc/passwd, /etc/shadow and /etc/group
are identified and linked to each other by names.

During login users are prompted for names.

For all other purp oses, that is for storing file and pro cess
ownership information and for resource access control IDs are
used, although most utilities display names assigned to them.

Note that IDs stored in memory or file systems don’t require
corresp onding entries in user identity databases. In such case
numerical values are displayed by utilities.

Two users with the same UID are undistinguishable for the
system.

Account Typ es

Three kinds of accounts can b e distinguished:
root (UID: 0, GID: 0) – a sup eruser with unlimited privileges,
regular users,
system accounts .

Each pro cess runs on b ehalf of some user and with their
privileges. It is extremely unsafe to run services like: web server,
SQL server, mail server, print server etc. which require limited
access to resources with ro ot privileges. For each such service a
separate account (system account) is created. Fake login shells
and invalid passwords prevent normal login as such users.

It’s a safe practice to leave UIDs up to 1000 for system accounts
and GIDs up to 100 for pre-defined groups added automagically
during software installation.

Login Shells – /etc/shel ls

/etc/shells stores all valid login shells.

Users that have their login shells (set in /etc/passwd) not listed
here are unable to login (start a tty session).

Typically shells are automagically added here during their
installation.

For shells that have symlinks or hardlinks all names must b e
listed here.

Accounts – Example

Sample /etc/passwd

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/false
daemon:x:2:2:daemon:/sbin:/bin/false
adm:x:3:4:adm:/var/adm:/bin/false
lp:x:4:7:lp:/var/spool/lpd:/bin/false
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/bin/false
news:x:9:13:news:/usr/lib/news:/bin/false
uucp:x:10:14:uucp:/var/spool/uucppublic:/bin/false
operator:x:11:0:operator:/root:/bin/bash
man:x:13:15:man:/usr/share/man:/bin/false
postmaster:x:14:12:postmaster:/var/spool/mail:/bin/false
nobody:x:65534:65534:nobody:/:/bin/false
smithj:x:1001:100:John Smith:/home/smithj:bin/bash

Encrypted Passwords – /etc/shadow

All users are able to read the files /etc/passwd and /etc/group .

For security purp oses encrypted passwords have b een moved to a
separate file which is not readable by regular users. For most
Unix systems this file name is: /etc/shadow .

First three fields contain a username, encrypted password and
the date of last password change (0 forces the user to change it
up on the next login). Next fields contain aging information and
are often empty.

All dates are expressed as the numb er of days since Jan 1, 1970
(Unix epoch).

Unix Passwords

Algorithms for password encryption can differ (man 3 crypt).

Encryption is unidirectional (encrypted passwords cannot b e
decrypted).

If some users have the same plain passwords then their encrypted
passwords usually differ.

Valid encrypted passwords cannot start with some characters (for
example: !, *); this allows temp orary lo cking some accounts.

Publicly readable encrypted passwords allow brute force attacks
(guessing).

Alerts can b e activated in case of to o many unsuccessful
authorization attempts for a single tty or IP address (see:
https://www.fail2ban.org).

https://www.fail2ban.org

Changing Password

root do esn’t know user passwords but can change them.

Regular users can change their own passwords.

Password related commands include:
passwd [username] – interactive password change,
pwgen – random, secure password generator,
chpasswd – batch-mo de utility that pro cesses a list of user:pass
pairs (intended for root) from the standard input stream.

Groups – /etc/group

Each user is assigned a primary group (GID in /etc/passwd) .

Users can b elong to other (secondary) groups: privileges or
restrictions set for a group apply to all group memb ers.

Group definitions and memb ership information are stored in the
file /etc/group .

/etc/group line format

groupname:password:gid:users

The field descriptions are:

groupname – group name, for example: users,
password – a password placeholder (x) for backward
compatibility,
gid – group’s ID – a unique numerical identifier,
users – comma-separated list of group memb ers.

Unix Groups

File p ermissions can b e set for group memb ers.

Additional privileges to hardware management can b e granted to
group memb ers (audio, camera, disk, optical, power, storage,
tty, video, etc).

Important! Mo dern desktop-oriented systems and Linux distros may
grant extended hardware privileges to all users logged in via display
managers to desktop environments (via so-called consolekits ,
policykits , etc).

Some actions may b e restricted to memb ers of the wheel group.

Memb ers of the wireshark group can set network cards to
so-called promiscuous mode (raw frames analysis).

Using some features or software (scheduler, databases, etc) may
require memb ership in resp ective groups.

Pluggable Authentication (PAM)

Unix authentication is p erformed by invoking a sequence of
pro cedures (PAM mo dules).

Authentication against /etc/passwd and /etc/shadow is just
one of available PAM mo dules.

Other mo dules may allow using other identity sources
(databases, LDAP-compliant Directories, etc.) in addition to or
instead of standard ones.

Additional actions (creating directories, attaching file systems,
setting limits, dynamic group memb ership granting, etc) may b e
invoked up on successful authentication.

Configuring PAM

Configuration file /etc/pam.conf may b e split into several files
in /etc/pam.d directory (they usually include each other).

Mo dules can b e added for 4 tasks (see: man 8 pam):
authentication management,
account management,
password management,
session management.

The following sp ecifiers define actions on mo dule exit status:
sufficient – on success don’t execute subsequent mo dules for
this task and return task success,
optional – exit status is irrelevant, execute next mo dules,
required – on failure don’t execute subsequent mo dules for this
task and return task failure.

Querying Other Databases – NSS

NSS Name Service Switch allows querying additional sources
defined in /etc/nsswitch.conf for users and groups.

Sample nsswitch.conf entries

passwd: files ldap
shadow: files ldap
group: files ldap

A command line interface for NSS is getent:

NSS queries (for lo cal and LDAP entries)

$ getent passwd
$ getent group

PAM vs. NSS

PAM mo dules are intended only for authentication tasks.

File/task ownerships and p ermissions are stored in the form of
UIDs and GIDs.

Obtaining names for UIDs/GIDs is p erformed by NSS libraries.

Displaying additional information via id, finger, etc. involves
NSS.

Running Commands as Other User (su)

$ su [-] [username]

su starts a shell of other user.

If no username is sp ecified it defaults to root.

The dash symb ol applies new user’s login shell environment.

Regular users are prompted for passwords. root can use it with no
password.

For security reasons numerous administrator disable ssh for root. For
remote access one has to authenticate as a wheel group memb er then
invoke su - .

User Management Utilities

User and group management can b e p erformed manually by
editing resp ective files.

Most systems provide to ols for user and group management.
Under Linux the following commands may b e available: useradd,
userdel, usermod, newgrp, groupadd, groupdel and groupmod.
Under FreeBSD run adduser, etc.

Linux useradd – Example

Linux useradd

useradd -u 1001 -g users -c "John Smith" -m -s /bin/bash smithj
passwd smithj

The options are:

-u – UID (by default: the smallest available one greater than 999),
-g – GID (default b ehaviour can vary),
-c – GECOS (a real name),
-m – create a home directory with the same name as the username
in default lo cation (usually /home) and copy /etc/skel/* to it,
-s – default shell.

/etc/default/useradd stores defaults for useradd .

New accounts have invalid passwords by default.

/etc/skel/ directory contains files that are supp osed to b e copied to
home directories of regular users on automated account creation (for
example: .bash logout, .bash profile and .bashrc).

Outline of the lecture

1 Users and Groups Database

2 File System Rights

3 Access Control Lists

File Owners and Groups

Each file or directory is assigned a pair: an owner and a group
(see ls -l output). Those are normally UID and GID of its
creator.

File owners:
can manage file p ermissions,
can change file group (see the next slide),
may have defined limits on total size of owned files (quota).

File group memb ers other than the file owner have dedicated file
access p ermissions defined.

File Owners and Groups – chown, chgrp

Only root is able to change file ownership.

File owners are able to change file group to other group they
b elong to.

The commands chown and chgrp allow ownership/group change.
The option -R forces recursion on directories.

chown and chgrp syntax

chown [-R] user[:group] file
$ chgrp [-R] group file

File Permissions

Unix systems define three file access rights (denoted as rwx):
r (Read) allows viewing the content and prop erties,
w (Write) allows mo difying the content,
x (eXecute) for files allows executing as a program.

There are separate file p ermissions for the file owner (u), file
group memb ers (g) and other users (o):
u (User) rights apply to the file owner,
g (Group) rights apply to file group memb ers other than the file
owner,
o (Others) rights apply to users other than the owner which
don’t b elong to the file group.

ugo rights are denoted in sequence in the form: rwxrwxrwx (see
ls -l output).

File Permissions – Examples

rwxr-xr-x (recommended for a program) the owner is granted all
rights, other users can read and execute it,

rw-r--r-- (recommended for public data) all users can read it, the
owner can mo dify it,

rw------- (recommended for private data) only the owner can read
and mo dify it,

rw----r-- all users except file group memb ers can read the content.

Directory Permissions

Permissions for directories work the same but their meaning is
slightly different:
r allows listing names in a directory,
w is necessary for changing content names (stored in directories),
x allows finding files/directories if their names are known.

Full read access requires r-x p ermissions.

Setting directory p ermissions to --x disables directory listing.
However it allows access to files/directories in it providing their
names are known and p ermissions to them are granted.

Mo difying File Permissions – chmod

The command chmod mo difies file p ermissions. The syntax is
similar to the one of chown :

chmod syntax

$ chmod [-R] permissions file

Permissions can b e defined in:

symb olic mo de,
numeric mo de.

chmod (Symb olic Mo de)

Symb olic string is a list of comma-separated triplets: a class:
u – file owner,
g – file group
o – others,
a or none – all users (ugo),

an operator:
= – set,
+ – add
- – revoke,

and permissions sp ecified using the rwx notation.

Permissions for unreferenced classes are left untouched.

chmod (Symb olic Mo de) – examples

chmod examples

$ chmod u=rw,g=r,o=r somefile # sets rw-r--r--
$ chmod u=rw,go=r somefile # the same as above
$ chmod go-rwx somesecretfile # sets ???------
$ chmod +x someprogram # sets ??x??x??x

Note that no blanks are allowed in symb olic strings:

chmod examples

$ chmod u=rw,g=r,o=r somefile # sets rw-r--r--
$ chmod u=rw, g=r, o=r somefile # an error!

chmod (Numeric Mo de)

The numb ers: 4, 2 and 1 denote resp ectively r, w and x
p ermissions.

Permissions for each class (u, g and o) are expressed by a single
numb er – a sum of file p ermissions for that class, that is: rwx is
represented by 7, rw – 6, rx – 5 and wx – 3.

On the contrary to the symb olic mo de chmod in the numerical
mo de mo difies all p ermissions (none are left untouched).

chmod examples

$ chmod 755 someprogram # sets rwxr-xr-x
$ chmod 700 somesecretfile # sets rwx------
$ chmod 644 somefile # sets rw-r--r--

Sp ecial File Permissions/Flags

In addition to rwx rights for ugo file additional three
p ermissions/flags are defined:

setuid ,
setgid ,
sticky bit .

Pro cesses – analogously to files – have their owners and groups.
Normally those are UID and GID of the user who started them.
Setuid (s) and setgid (s) flags on an executable file make the
program started with effective UID and effective GID equal to
the file owner and/or file group resp ectively.

Exemplary use: /usr/bin/passwd program used for password
change has the setuid flag set in order to b e run by regular users.

Sticky bit (t) on directories prevents unprivileged users from
removing or renaming a file in the directory unless they own the
file or the directory.

Exemplary use: /tmp directory has the sticky bit flag set.

Sp ecial File Permissions/Flags (2)

Sp ecial flags are represented as file p ermissions, for example:
setuid – rwsr-xr-x,
setgid – rwxr-sr-x,
sticky bit – rwxrwxrwt.

In symb olic mo de those are set as any other rights.

Setting sp ecial p ermissions by symb ols

$ chmod +x,u+s someprogram
$ chmod +x,g+s someprogram
$ chmod o+t somedirectory

In numerical mo de an extra (preceding) numb er is used.

Setting sp ecial p ermissions by numb ers

$ chmod 4755 someprogram
$ chmod 2755 someprogram
$ chmod 1777 somedirectory

Notes on setuid and setgid

Effective for binary executable files.

Ignored for scripts due to security reasons.

Revoked on file contents mo dification.

May intro duce critical system vulnerabilities! Use if really
necessary and only for small, extremely safe programs.

Default File Permissions

Each program is free to set some default p ermissions on newly
created files/directories. For example compilers add the x while
text editors do not.

Right sp ecified by umask are then extracted from those
p ermissions. Typically the umask value is equal to 0022 which
revokes the w p ermissions for users other than the file owner.

Users are able to check/change their current umask with the
command umask .

✍ touch sets 0666 for new ly created files:

Umask and file p ermissions

$ umask 0000; touch a
$ umask 0777; touch b
$ ls -l
-rw-rw-rw- 1 aki users 0 Apr 1 8:00 a
---------- 1 aki users 0 Apr 1 8:00 b

Outline of the lecture

1 Users and Groups Database

2 File System Rights

3 Access Control Lists

Access Control Lists

Serious limitation of standard file p ermissions mo del is that
rights to a file can b e granted to only one, pre-defined (defined
by root) group.

Most mo dern Unix systems are able to implement Access
Control Lists (ACLs) which overcome this limitation. Beside
standard p ermissions any of rwx rights for other users and groups
can b e granted as well.

A plus symb ol following file rights (for example: rwxr-xr-x+)
indicates that additional p ermissions are granted using ACLs.

There are two commands that allow setting and viewing ACLs:
setfacl and getfacl.

Access Control Lists (2)

Some file systems (for example: NFS4) don’t supp ort ACLs.
Some require enabling it explicitly.

In addition to normal ACLs directories may have so-called
default ACLs defined. They apply to directory content that will
b e created in the future.

Setting normal and default ACLs for a directory are two
separate/indep endent tasks.

setfacl by Examples

✍ Set (modify: -m) ACL on a directory and its contents
(recursively: -R)

Mo difying ACL entries

$ setfacl -Rm u:smithj:rwx,u:jonesj:rx somedir

✍ Set (modify: -m) default (-d) ACL on a directory and
its contents (recursively: -R)

Mo difying ACL entries

$ setfacl -Rdm u:smithj:rwx,u:jonesj:rx somedir

✍ Remove (-x) ACL entry for a file

Mo difying ACL entries

$ setfacl -x u:smithj,g:users somefile

	Users and Groups Database
	File System Rights
	Access Control Lists

