Users and Groups

Marek Kozlowski

‘@)

N\

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

Users and Groups Database
File System Rights

Access Control Lists

Outline of the lecture

Users and Groups Database

Local Users Database

m For most systems user identity database consists of the following
three files:
m /etc/passwd — provides user account information,
m /etc/shadow — stores encrypted passwords and aging limits (some
BSD systems use /etc/master.passwd for this purpose),
m /etc/group — specifies system groups.

m All those are ASCII files in which each line defines a separate
entry; fields are colon-separated.

Account Information — /etc/passwd

/etc/passwd line format

username:password:uid:gid:gecos:directory:shell

m The field descriptions are:

® username — account name,

password — a password placeholder (usually ‘x’) for backward
compatibility,

urd — user’s ID — a unique numerical identifier,

g2d — numerical ID of the user’s primary group,

gecos — comment / real name,

directory — user’s home directory,

shell — the program to run at login — the default shell (for Linux
it is usually /bin/bash).

Sample /etc/passwd entry

smithj:x:1001:100:John Smith:/home/smithj:/bin/bash

Username vs. UID

m Records stored in /etc/passwd, /etc/shadow and /etc/group
are identified and linked to each other by names.

m During login users are prompted for names.

m For all other purposes, that is for storing file and process
ownership information and for resource access control IDs are
used, although most utilities display names assigned to them.

m Note that IDs stored in memory or file systems don’t require
corresponding entries in user identity databases. In such case
numerical values are displayed by utilities.

m Two users with the same UID are undistinguishable for the
system.

Account Types

m Three kinds of accounts can be distinguished:

m root (UID: 0, GID: 0) — a superuser with unlimited privileges,
m regular users,
m system accounts.

m Each process runs on behalf of some user and with their
privileges. It is extremely unsafe to run services like: web server,
SQL server, mail server, print server etc. which require limited
access to resources with root privileges. For each such service a
separate account (system account) is created. Fake login shells
and invalid passwords prevent normal login as such users.

m [t’s a safe practice to leave UIDs up to 1000 for system accounts
and GIDs up to 100 for pre-defined groups added automagically
during software installation.

Login Shells — /etc/shells

m /etc/shells stores all valid login shells.

m Users that have their login shells (set in /etc/passwd) not listed
here are unable to login (start a tty session).

m Typically shells are automagically added here during their
installation.

m For shells that have symlinks or hardlinks all names must be
listed here.

Accounts — Example

Sample /etc/passwd

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/false
daemon:x:2:2:daemon:/sbin:/bin/false
adm:x:3:4:adm:/var/adm: /bin/false
lp:x:4:7:1p:/var/spool/lpd:/bin/false
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/bin/false
news:x:9:13:news:/usr/lib/news:/bin/false
uucp:x:10:14:uucp:/var/spool/uucppublic:/bin/false
operator:x:11:0:operator:/root:/bin/bash
man:x:13:15:man:/usr/share/man:/bin/false
postmaster:x:14:12:postmaster:/var/spool/mail:/bin/false
nobody :x:65534:65534 :nobody:/:/bin/false
smithj:x:1001:100:John Smith:/home/smithj:bin/bash

Encrypted Passwords — /etc/shadow

All users are able to read the files /etc/passwd and /etc/group .

For security purposes encrypted passwords have been moved to a
separate file which is not readable by regular users. For most
Unix systems this file name is: /etc/shadow .

First three fields contain a username, encrypted password and
the date of last password change (0 forces the user to change it
upon the next login). Next fields contain aging information and
are often empty.

All dates are expressed as the number of days since Jan 1, 1970
(Uniz epoch).

Unix Passwords

m Algorithms for password encryption can differ (man 3 crypt).

m Encryption is unidirectional (encrypted passwords cannot be
decrypted).

m If some users have the same plain passwords then their encrypted
passwords usually differ.

m Valid encrypted passwords cannot start with some characters (for
example: !, *); this allows temporary locking some accounts.

m Publicly readable encrypted passwords allow brute force attacks
(guessing).

m Alerts can be activated in case of too many unsuccessful

authorization attempts for a single tty or IP address (see:
https://wuw.fail2ban.org).

https://www.fail2ban.org

Changing Password

m root doesn’t know user passwords but can change them.

m Regular users can change their own passwords.
m Password related commands include:
m passwd [username] — interactive password change,
® pwgen — random, secure password generator,
m chpasswd — batch-mode utility that processes a list of user:pass
pairs (intended for root) from the standard input stream.

Groups — /etc/group

m Each user is assigned a primary group (GID in /etc/passwd) .

m Users can belong to other (secondary) groups: privileges or
restrictions set for a group apply to all group members.

m Group definitions and membership information are stored in the
file /etc/group .

/etc/group line format

groupname : password:gid:users

m The field descriptions are:

m groupname — group name, for example: users,

m password — a password placeholder (x) for backward
compatibility,

m gid — group’s ID — a unique numerical identifier,

m users — comma-separated list of group members.

m File permissions can be set for group members.

m Additional privileges to hardware management can be granted to
group members (audio, camera, disk, optical, power, storage,
tty, video, etc).

IMPORTANT! Modern desktop-oriented systems and Linux distros may
grant extended hardware privileges to all users logged in via display
managers to desktop environments (via so-called consolekits,
policykits, etc).

m Some actions may be restricted to members of the wheel group.

m Members of the wireshark group can set network cards to
so-called promiscuous mode (raw frames analysis).

m Using some features or software (scheduler, databases, etc) may
require membership in respective groups.

Pluggable Authentication (PAM)

m Unix authentication is performed by invoking a sequence of
procedures (PAM modules).

m Authentication against /etc/passwd and /etc/shadow is just
one of available PAM modules.

m Other modules may allow using other identity sources
(databases, LDAP-compliant Directories, etc.) in addition to or
instead of standard ones.

m Additional actions (creating directories, attaching file systems,
setting limits, dynamic group membership granting, etc) may be
invoked upon successful authentication.

Configuring P

m Configuration file /etc/pam.conf may be split into several files
in /etc/pam.d directory (they usually include each other).

m Modules can be added for 4 tasks (see: man 8 pam):

®m authentication management,
B account management,

m password management,

®m session management.

m The following specifiers define actions on module exit status:

m sufficient — on success don’t execute subsequent modules for
this task and return task success,

® optional — exit status is irrelevant, execute next modules,

® required — on failure don’t execute subsequent modules for this
task and return task failure.

Querying Other Databases — NSS

m NSS Name Service Switch allows querying additional sources
defined in /etc/nsswitch.conf for users and groups.

Sample nsswitch.conf entries

passwd: files ldap
shadow: files ldap
group: files ldap

®m A command line interface for NSS is getent:

NSS queries (for local and LDAP entries)

$ getent passwd
$ getent group

PAM vs. NSS

m PAM modules are intended only for authentication tasks.

m File/task ownerships and permissions are stored in the form of
UIDs and GIDs.

m Obtaining names for UIDs/GIDs is performed by NSS libraries.

m Displaying additional information via id, finger, etc. involves
NSS.

Running Commands as Other User (suw)

1
$ su [-] [username]

m su starts a shell of other user.
m If no username is specified it defaults to root.
m The dash symbol applies new user’s login shell environment.

m Regular users are prompted for passwords. root can use it with no
password.

m For security reasons numerous administrator disable ssh for root. For
remote access one has to authenticate as a wheel group member then
invoke su - .

User Management Utilities

m User and group management can be performed manually by
editing respective files.

m Most systems provide tools for user and group management.
Under Linux the following commands may be available: useradd,
userdel, usermod, newgrp, groupadd, groupdel and groupmod.
Under FreeBSD run adduser, etc.

Linux useradd — Example

Linux useradd

useradd -u 1001 -g users -c "John Smith" -m -s /bin/bash smithj
passwd smithj

m The options are:
m -u— UID (by default: the smallest available one greater than 999),
m -g — GID (default behaviour can vary),
m -c — GECOS (a real name),
m -m — create a home directory with the same name as the username
in default location (usually /home) and copy /etc/skel/* to it,
m -s — default shell.

m /etc/default/useradd stores defaults for useradd .
m New accounts have invalid passwords by default.

m /etc/skel/ directory contains files that are supposed to be copied to
home directories of regular users on automated account creation (for
example: .bash_logout, .bash profile and .bashrc).

Outline of the lecture

File System Rights

File Owners and Groups

m Each file or directory is assigned a pair: an owner and a group
(see 1s -1 output). Those are normally UID and GID of its
creator.

m File owners:

® can manage file permissions,
m can change file group (see the next slide),
m may have defined limits on total size of owned files (quota).

m File group members other than the file owner have dedicated file
access permissions defined.

File Owners and Groups — chown, chgrp

m Only root is able to change file ownership.

m File owners are able to change file group to other group they
belong to.

m The commands chown and chgrp allow ownership/group change.
The option -R forces recursion on directories.

chown and chgrp syntax

chown [-R] user[:group] file
$ chgrp [-R] group file

File Permissions

m Unix systems define three file access rights (denoted as rwx):
m r (Read) allows viewing the content and properties,
m w (Write) allows modifying the content,
m x (eXecute) for files allows executing as a program.
m There are separate file permissions for the file owner (u), file
group members (g) and other users (o):
m u (User) rights apply to the file owner,
m g (Group) rights apply to file group members other than the file
owner,
m o (Others) rights apply to users other than the owner which
don’t belong to the file group.

m ugo rights are denoted in sequence in the form: ruxrwxrwx (see
1s -1 output).

File Permissions — Examples

rwxr-xr-x (recommended for a program) the owner is granted all
rights, other users can read and execute it,

rw-r--r-- (recommended for public data) all users can read it, the
owner can modify it,

Ty--——=--- (recommended for private data) only the owner can read
and modify it,

ru----r-- all users except file group members can read the content.

Directory Permissions

m Permissions for directories work the same but their meaning is
slightly different:

m r allows listing names in a directory,
m w is necessary for changing content names (stored in directories),
m x allows finding files/directories if their names are known.

m Full read access requires r-x permissions.

m Setting directory permissions to —-x disables directory listing.
However it allows access to files/directories in it providing their
names are known and permissions to them are granted.

Modifying File Permissions — chmod

® The command chmod modifies file permissions. The syntax is
similar to the one of chown :

chmod syntax

$ chmod [-R] permissions file

m Permissions can be defined in:

® symbolic mode,
® numeric mode.

chmod (Symbolic Mode)

m Symbolic string is a list of comma-separated triplets: a class:

m u — file owner,
m g — file group
® o — others,

=

a or none — all users (ugo),
an operator:

m = — set,
m +—add
m - — revoke,

and permasstons specified using the rwx notation.

m Permissions for unreferenced classes are left untouched.

chmod (Symbolic Mode) — examples

chmod examples

$ chmod u=rw,g=r,o=r somefile # sets rw-r-—-r--

$ chmod u=rw,go=r somefile # the same as above
$ chmod go-rwx somesecretfile # sets 777-—--——-
$ chmod +x someprogram # sets 77x77x77?x

m Note that no blanks are allowed in symbolic strings:

chmod examples

$ chmod u=rw,g=r,o=r somefile # sets rw-r—-r--
$ chmod u=rw, g=r, o=r somefile # an error!

chmod (Numeric Mode)

® The numbers: 4, 2 and 1 denote respectively r, w and x
permissions.

m Permissions for each class (u, g and o) are expressed by a single
number — a sum of file permissions for that class, that is: rwx is
represented by 7, rw — 6, rx — 5 and wx — 3.

m On the contrary to the symbolic mode chmod in the numerical
mode modifies all permissions (none are left untouched).

chmod examples

$ chmod 755 someprogram # sets rwxr-xr-x
$ chmod 700 somesecretfile # sets rwx—---———-
$ chmod 644 somefile # sets rw-r—-r--

Special File Permissions/Flags

m In addition to rwx rights for ugo file additional three
permissions/flags are defined:

m setuid,
m setgid,
m sticky bit.

m Processes — analogously to files — have their owners and groups.
Normally those are UID and GID of the user who started them.
Setuid (s) and setgid (s) flags on an executable file make the
program started with effective UID and effective GID equal to
the file owner and/or file group respectively.

m Exemplary use: /usr/bin/passwd program used for password
change has the setuid flag set in order to be run by regular users.

m Sticky bit (t) on directories prevents unprivileged users from
removing or renaming a file in the directory unless they own the
file or the directory.

= Exemplary use: /tmp directory has the sticky bit flag set.

Special File Permissions/Flags (2)

m Special flags are represented as file permissions, for example:
B setuld — TWST-Xr-X,
B setgid — ruxr-sr-x,
m sticky bit — rwxrwxrwt.

m In symbolic mode those are set as any other rights.

Setting special permissions by symbols
$ chmod +x,u+s someprogram
$ chmod +x,g+s someprogram
$ chmod o+t somedirectory

m In numerical mode an extra (preceding) number is used.

Setting special permissions by numbers

$ chmod 4755 someprogram
$ chmod 2755 someprogram
$ chmod 1777 somedirectory

Notes on setuid and setgid

m Effective for binary executable files.
m Ignored for scripts due to security reasons.
m Revoked on file contents modification.

m May introduce critical system vulnerabilities! Use if really
necessary and only for small, extremely safe programs.

Default File Permissions

m Each program is free to set some default permissions on newly
created files/directories. For example compilers add the x while
text editors do not.

m Right specified by umask are then extracted from those
permissions. Typically the umask value is equal to 0022 which
revokes the w permissions for users other than the file owner.

m Users are able to check/change their current umask with the
command umask .
#1 touch sets 0666 for newly created files:

Umask and file permissions

$ umask 0000; touch a

$ umask 0777; touch b

$ 1s -1
-rw-rw-rw—- 1 aki wusers 0 Apr 1 8:00 a
—————————— 1 aki wusers 0O Apr 1 8:00 b

Outline of the lecture

Access Control Lists

Access Control Lists

m Serious limitation of standard file permissions model is that
rights to a file can be granted to only one, pre-defined (defined
by root) group.

m Most modern Unix systems are able to implement Access
Control Lists (ACLs) which overcome this limitation. Beside
standard permissions any of rwx rights for other users and groups
can be granted as well.

m A plus symbol following file rights (for example: rwxr-xr-x+)
indicates that additional permissions are granted using ACLs.

m There are two commands that allow setting and viewing ACLs:
setfacl and getfacl.

Access Control Lists (2)

m Some file systems (for example: NFS4) don’t support ACLs.
Some require enabling it explicitly.

m In addition to normal ACLs directories may have so-called
default ACLs defined. They apply to directory content that will
be created in the future.

m Setting normal and default ACLs for a directory are two
separate/independent tasks.

setfacl by Examples

#1 Set (modify: -m) ACL on a directory and its contents
(recursively: -R)

Modifying ACL entries

$ setfacl -Rm u:smithj:rwx,u:jonesj:rx somedir

#0 Set (modify: -m) default (-d) ACL on a directory and
its contents (recursively: -R)

Modifying ACL entries

$ setfacl -Rdm u:smithj:rwx,u:jonesj:rx somedir

#1 Remove (-z) ACL entry for a file

Modifying ACL entries

$ setfacl -x u:smithj,g:users somefile

	Users and Groups Database
	File System Rights
	Access Control Lists

