Unix Fundamentals — Processes and Signals

Marek Koztowski

Faculty of Mathematics and Information Sciences

Warsaw University of Technology

Never use copy&paste for the following exercises. Retype all commands manually!
Don’t just read those exercises and examples. Do them, please!

1. Processes

(a)

(b)

Read about the ‘fork()’ system call:

$ man 3p fork

Remember: Reading POSIX man pages (3P) is a good practice for system calls!

How many processes are created by calling:

for (i=0; i<4; i++) fork();

No, ‘4’ is certainly the wrong answer!

Let’s check your answer for the previous question. Open geany and enter the following
code:

#include<unistd.h>
#include<stdio.h>
int main()

{
for (int i=0; i<4; i++) fork();
printf ("!");
return O;

}

Save this code as a C file. Built it by clicking the brick and run by clicking the gears
(or from a terminal). Was you answer correct? If not — try to analyze the code again.
Note that in fact there is no such system call as ‘exec()’:

$ man 3p exec

However all those do the same work. The difference is in formal parameters.

Compile the following code:

#include<unistd.h>

int main()

{
execl("/usr/bin/1s", "1ls", "/etc", (charx)0);
return 1;

}

What is the exit status? Let’s check:

$./program_name && echo success

Yes, it is success (0). Why? Because the ‘exec()’ system call overwrites the whole
process image.

Display the whole process tree:

$ pstree -p

Remember that names in curly braces are threads, no processes!

List all processes of the current session:

$ ps -f

What is the parent process ID for this bash instance?

(h)

(i)

List all processes:

$ ps -ef

Names in square brackets are mostly kernel threads.
The same using BSD syntax:

$ ps aux

Don’t place a dash before options!

Students’ login shell are set to mini. On lab workstations it is a symlink pointing to the
bash executable. The process stores only one name — the one specified when executing it
— which is in our case mini.

What processes execute ‘bash’?

$ pgrep mini

The same as above with ‘ps’ and ‘grep’:

$ ps -ef | grep mini

Oups! A small correction is required:

$ ps -ef | grep mini | grep -v grep

Start ‘top’. By pressing ‘<’ and ‘>’ sort processes by CPU utilization.

Take a look at procfs file system definition. Read:
$ man 5 proc
Check files representing one of your processes.

2. Signals

()

Start with:

$ man 7 signal

What are default actions?

What signals are defined by POSIX.1-19907

What is the most common action?

What is the only signal with the default action ignore?

What signal is sent on incorrect memory reference? What happens if you divide by 07
What number is assigned to ‘SIGKILL’? Memorize that number.

What signals cannot be blocked, ignored nor caught?

Start ‘top’. Terminate it by pressing ‘Ctrl-C’. Yes, you've just sent the ‘SIGINT’ signal
to it.

Start ‘top’ again. Open another terminal emulator and run:
$ kill -SIGINT “pgrep ’“top$’"
Yes, ‘SIGINT’ may be sent that way too.

Start ‘top’ again. In another terminal emulator run:

$ kill -SIGFPE “pgrep ’“top$’"

Well, honestly, this signal is not intended for such use but you may generate any signal
synthetically with ‘kill’.

Start ‘vim’ in your current terminal emulator window. Open another terminal and exe-
cute:

$ kill “pgrep vim’

Repeat the same experiment but this time use ‘SIGKILL’ instead of ‘SIGTERM:

$ kill -SIGKILL “pgrep vim"

or just (you remember the number, don’t you?):

$ kill -9 “pgrep vim®

Unfortunately, due to some terminal emulator program bugs scrolling a mouse wheel
over the window in which vim was used may generate some garbage. It’s a bug; it has
nothing to do with signals.

On systemd Linux workstations (we have in labs) the next point may lead to breaking
a d-bus instance (whatever it is) which may result in making the system unstable. Ask
the teacher before proceeding.

(f) If your GUI session freezes you may terminate it by switching to some tty (for tty2
press ‘Ctrl-Alt-F2’) and execute in it:
$ killall -u “whoami~
or — if really necessary:
$ killall -9 -u “whoami’
Note that terminating processes with ‘SIGKILL’ is always risky. It may result in data
loss or/and configuration improperly saved!

(g) Let ‘cat’ reads from stdin:
$ cat
Type in some text and press ‘[Enter]’. Repeat this step several times. Then press
‘Ctrl-D’. It’s not a signal. It just places an EOF character in the input stream.

(h) Start thunderbird from your terminal emulator:
$ thunderbird
and kill it by pressing ‘Ctrl-C’.
Now start thunderbird from your terminal emulator as a background process:
$ thunderbird &
The sequence ‘Ctrl-C’ doesn’t work for background processes. However we can use
‘kill’:
$ kill -SIGINT “pgrep thunderbird"
(i) Once again start thunderbird from your terminal emulator:
$ thunderbird
and stop it (more precisely: freeze) by pressing ‘Ctrl-Z’.
Now resume it as a background process in the current session:
$ bg
display its job number
$ jobs
move it to the foreground
$ fg
and kill it by pressing ‘Ctrl-C’.

3. Process tracing

(a) Start and trace ‘gvim’:
$ strace gvim
Unfortunately it traces only a main process (which ends immediately after initialization
is complete) not its children.
Trace the main process as well as its forks:
$ strace -f gvim
If you can’t read fast enough save the output to a file:
$ strace -f -o gvim.log gvim
Can you see that there is a process group?
After you exit check how many system calls were used:
$ wc -1 gvim.log
Check what files from ‘/etc’ and in what order were opened by ‘gvim’:
$ grep open gvim.log | grep /etc
and what icons were used:
$ grep open gvim.log | grep png
Finally trace each process to a separate file:
$ strace -ff -o gvim.log gvim
$ 1s gvim.log*

