Processes and Signals

Marek Kozlowski

‘@)

N\

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

Processes
Signals

Process Tracing

Outline of the lecture

Processes

Processes and Programs

m A process is an execution environment that consists of
instruction, user-data and system-data segments as well as
resources acquired at runtime.

m A program is an executable (x permission) regular file containing
instructions and data which is used to initialize processes.

Process Creation — fork

m If a program calls the system function fork() the kernel creates
a new process (chuld) on behalf of the calling process (parent).

m The instruction, user-data and system-data blocks of the child
are copied from the parent and only a few attributes change, so
the child process is almost an exact copy of its parent.

m fork() returns child ID in the parent and O in the child (and -1

on error). Based on this value separate code blocks can be
executed in the parent and the child processes:

switch (id = fork ()) {
case 0: child_work (); exit (EXIT_SUCCESS);
case -1: error_occured (); exit (EXIT_FAILURE);
¥

parent_work (id);

Process Creation (2) — ezec

m exec() system calls reinitialize the calling process from a
designated program file.

m As a result of calling exec() the program changes while the
process remains.

m fork() and exec() are typically used together to start a new
program.

Process Creation — Example

m The 1s command is invoked from bash:

bash fork()

bash exec() Is

2nit — First Process

® init is the first process started after initializing the kernel.
m Its process ID (PID) is equal to 1.

m If a parent process terminates but its children are still running
they are adopted by the init process.

m Note: under systemd Linux distros the init process is called
systemd !

Zombies and Orphans

m Each process can get its ID and parent’s ID by system calls
(getpid () and getppid() respectively) while the only way to
access children’s ID is to remember values returned by fork() .

m When a process ends the SIGCHLD signal (see next section) is sent
to its parent. The parent process should then call the wait () (or
waitpid()) system call to obtain child’s exit status. If it doesn’t
the child is not executing but still exists in the process table. It is
called a zombie process.

® init immediately waits all adopted zombies.

Process Groups

m Processes started by a single command (for example: processes in
a pipeline) are organized into a process group or job.

m Generally processes are free to migrate to other groups or start
new ones (setpgid() or setpgrp() — depending on the system).

m Process groups are used to control the distribution of signals. For
example: termination signals generated by Ctrl-C in terminal are
delivered to all processes within a foreground (see the next slide)
group.

Sessions

m One or more process groups can form a session.

m Normally Unix shells create one session per login (except GUI
logins); login shell process becomes a session leader.

m Processes cannot migrate to other existing sessions although they
can start new ones — setsid(), setsid .

m A session can be assigned a controlling terminal (open by the
leader which becomes a controlling process). Granting terminal
access to distinct process groups (moving them to the
foreground [background) is referred as job control.

m If no precautions are taken then terminating a controlling process
or hanging up a controlling terminal terminates all processes in
the foreground process group.

Process Attributes — Summary

m Process attributes (stored in system-data) include:

m process ID (PID),

m parent process ID (PPID) (for orphans: PID of the init, 1),

m real user ID and real group ID,

m effectwe user ID and effective group ID — different to the above
if the setuid or setgid bits are set,

process group ID (PGID),

session leader ID,

m terminal.

Process Tree — pstree

m The command pstree shows running processes as a tree.

m The -p option includes PIDs in parentheses after each process
name.

m All orphaned processed are shown as children of the init process.

m Note that names in curly braces are threads not processes
(identified by thread IDs)!

Information on Running Processes — ps

® ps prints statistics on running processes. Numerous display
options are defined; typically the ps -ef (full listing on every
process) is used.

m BSD systems use different ps options and different syntax (no
dash precedes options). Under BSD the ps aux command is
commonly used for full listing.

What is the parent (PPID) of this bash instance?

$ ps -f

Information on Running Processes — pgrep

m pgrep combines ps and grep .
m It takes a program name as an argument and prints PID(s) of
process(es) executing it on stdout.

m pgrep in command substitution mode is commonly used when
some other command requires a PID rather than a program
name.

The command kill (see next session) requires a PID:

$ kill process_ID
$ kill “pgrep program_name’

Information on Running Processes — top

® top displays dynamic, real-time information on running processes
including CPU (default sorting key) and memory utilization they
generate.

m < and > keys change sorting criteria; q — quits.

m Note that top causes relatively high CPU utilization itself.

top — Screenshot

last pid: 86494: load awverages: ©.83, @.65, B8.689 up B7+22:48:43 14:44. 15
227 processes: 1 running, 224 sleeping., 2 zombie
CPU: 28.2% user, B.8% nice., 6.5% system, 8.2% interrupt, 73.1% idle
1657M Active, 1868M Inact, 2¥3M Lired, 198M Cache, 112M Buf, 11M Free
45686M Total, 2491 Used, 4251M Free, 5% Inuse

USERMAME THR PRI WICE SIZE RES STHTE
] 1 4 A 156M 38284k accept
156M 29912k accept
3491 99M shwait
1561 35284k accept

WCPU COMMAND

18% php-caoi

98% php-caoi

96% postgres
57% php-caoi

18% php-caoi

59% php-caoi

59% php-caoi

20% postgres
37% postgres
37% postgres
39% postgres
20% postgres
17% php-caoi

17% postares
BHEY postgres
BB nfsd

L BEL HKufb

Ll
pgsql
il
il
Ll
Ll
pgsgl
pgsql
pgsgl
pg=gl
pgsgl
Ll
pgsgl
pgsql
root
root

2]

2]

4]

4] 1451 4@868K sbwait
2] 1511 48B44K shwait
A 156M 41584k accept
B 951M 128M sbwait
B 949M 161M sbwait
B 949M shwait
8 956M shwait
B 956M shwait
2] 1521 shwait
B 95EM shwait
B 26820K select
B 316HK -

B 19786k 13666K select

P R S R S e e e
In
BTN N N N N N N N N N N LN N N
ORI 0P b D B 0 (3 D 00) = s D
DEEEEE RS EE—
Loy R il S e o o N O Ny AN R e

I

Other top-like utilities

m htop is an improved alternative task manager to top.
m Other system statistics can be acquired by:
m iotop — I/O (disk) utilization,
m iftop — network connections,
® ntop — network status.
m All above utilities are not standardized, platform-dependent and
usually offered as optional software.

/proc File System Revised

® Any information on given process can be accessed via procfs file
system — in a form of files in the /proc/<PID>/ directory. The
files are system-specific, see man 5 proc of your system for
details.

m Under Linux the following files may be available:

/proc/<PID>/cmdline — full command which started the process,
/proc/<PID>/cwd — symlink to the working directory,
/proc/<PID>/environ — environment variables for the process,
/proc/<PID>/exe — symlink to the executable file,
/proc/<PID>/fd and /proc/<PID>/fdinfo — file descriptors;
positions and flags,

m /proc/<PID>/status — process statistics.

m Later during this presentation we’ll show that the utilities like
pgrep, ps, pstree or top just parse above files.

Outline of the lecture

Signals

The simplest interprocess communication method. No data
except signal type is delivered to a process.

m Notify about system event (for example: dividing by O generates
a SIGFPE) or can be generated by a process.

m Kernel and root processes can send signals to all processes.

Non-root processes can send signals to processes running on
behalf of the same user.

Sequence of the same signals can be reduced to a single one.

Signals (2)

m Most Unix systems define approx. 28 signals.

m Only two signals: SIGUSR1 and SIGUSR2 are left for user-defined
purposes.

m Additional user-defined signals (SIGRTMIN to SIGRTMAX) are
introduced by the Real Time Signals POSIX extension. RTS
signals are discussed during Operating Systems and Uniz
Programmang however are beyond the scope of this course.

Signal Handling

m All signals except SIGKILL and SIGSTOP can be blocked, 1gnored
or intercepted and handled by a receiving process.

m Blocked signals are postponed (not delivered to the process until
unblocked).

m Ignored signals are not delivered to the process.

m Signals which are not blocked nor ignored immediately interrupt
current process or function execution.

B A signal handler is a short function invoked when receiving a
signal.

m If no handler is defined then the default action is invoked (for
majority of signals: a process termination).

Signal Classification

m By origin:
m natural — generated by some event,
m synthetic — by calling a system call (usually: ki11()).
All natural signals can be generated synthetically; SIGUSR1 and
SIGUSR2 signals can be generated synthetically only.

m By default action:

m terminate (and optional core dump),
m stop/continue,
m ignore — SIGCHLD to parent on child termination.

m By related information:

m error notification,

m user / application generated,

m process state change / job control,
m timer.

Error Signals

m SIGFPE — arithmetic operation exception,
m SIGILL — illegal instruction,
m SIGPIPE — writing to a pipe with no readers,

m SIGSEGV — memory segmentation error.

Termination Request Signals

m SIGTERM — default signal, polite request to terminate; sent to all
processes on system shutdown,

m SIGKILL — unconditional, immediate process termination request;
can result in data lost or corruption,

m SIGINT — generated by Ctrl-C in terminal,

m SIGQUIT — generated by Ctrl-\ in terminal; same as SIGINT
except it creates a core dump,

m SIGHUP — sent on terminal hang-up; commonly used for reloading
daemons.

Sending Signals with kzll

kall syntax:

$ kill [-SIGTYPE] <PID>

® The command kill wraps the kill() which is the basic system call
for sending signals.

m Any signal (even SIGCHLD or SIGFPE) can be send with kill. The
default one is SIGTERM.

m Signals can be specified by name (-SIGKILL) or number (-9) .

® kill specifies process by its PID. Other utilities that allow reference
processes by names may be available. Depending on the system
killall and pkill may be used.

Signals and Terminal Control Sequences

m Many signals can be send by terminal control sequences to
process in foreground process groups.

m Note that control sequences may be remapped by programs,
especially those which use advanced terminal functions. For
example: nano uses Ctrl sequences for internal commands.

m The most common control sequences are:

m Ctrl-C — SIGINT, terminate,

m Ctrl-\ — SIGQUIT, terminate with a core dump,

m Ctrl-Z — SIGSTOP, stop (can be resumed, it doesn’t terminate nor
release resources),

m Ctrl-D — sends end-of-file (EOF), doesn’t generate any signal.

Terminating vs. Stopping a Process

m Terminating a process results in calling exit () — aborting
process execution, releasing system resources and changing
process state to dead.

m Stopping a process means freezing it. The process execution is

suspended but it remains alive and still occupies all allocated
resources. Stopped process can be resumed.

m When discussing daemons (the next labs) the term stop is used
as a synonym of terminate. Yes, it IS confusing.

Han Solo Receives a SIGSTOP Signal

Background Processes

m jobs displays status of all jobs in the current session.
® Running a command with command-name & (following it by an
ampersand) starts it in the background.

m Alternatively, if a process is running in the foreground it can be
stopped by <Ctrl-Z> and then resumed in the background with
the bg command.

m fg places a job in the foreground.

m If there are multiple jobs in the current session then bg and fg
require a job number as an argument — for a list of job numbers
run jobs .

Outline of the lecture

Process Tracing

Process Tracing

m Most Unix systems provide tools for tracing and displaying all
system calls made by a process.
m Process tracing may be especially useful for:

m determining causes of freezes or crashes,

m checking which configuration files and in which order are read by
a process,

m identifying resource files utilized by a process,

m reverse engineering (determining how it works).

m Linux provides strace, other systems include ktrace (BSD) or
truss (AIX, Solaris)

Process Tracing in Linux — strace

Tracing a process — typical usage:

$ strace [-f|-ff] [-o logfile] [-e what] [command|-p <pid>]

m The options are as follows:

m -f and -ff — include children processes (if any) for tracing,

m -0 logfile — log output to a file; if -ff is set then each child’s
system calls are logged to a separate logfile.<pid> file,

m -e allows specifying which events to trace and how to trace them,

m -p — attach to and trace a currently running process (by PID).
Regular users cannot trace processes of other users.

m With strace it’s trivial to show that ps, pstree and top get process
information from procfs (/proc/<PID>/) files.

	Processes
	Signals
	Process Tracing

