
Pro cesses and Signals

Marek Kozłowski

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

1 Pro cesses

2 Signals

3 Pro cess Tracing

Outline of the lecture

1 Pro cesses

2 Signals

3 Pro cess Tracing

Pro cesses and Programs

A process is an execution environment that consists of
instruction, user-data and system-data segments as well as
resources acquired at runtime.

A program is an executable (x p ermission) regular file containing
instructions and data which is used to initialize pro cesses.

Pro cess Creation – fork

If a program calls the system function fork() the kernel creates
a new pro cess (child) on b ehalf of the calling pro cess (parent).

The instruction, user-data and system-data blo cks of the child
are copied from the parent and only a few attributes change, so
the child pro cess is almost an exact copy of its parent.

fork() returns child ID in the parent and 0 in the child (and -1
on error). Based on this value separate co de blo cks can b e
executed in the parent and the child pro cesses:

switch (id = fork ()) {
case 0: child_work (); exit (EXIT_SUCCESS);
case -1: error_occured (); exit (EXIT_FAILURE);

}
parent_work (id);

Pro cess Creation (2) – exec

exec() system calls reinitialize the calling pro cess from a
designated program file.

As a result of calling exec() the program changes while the
pro cess remains.

fork() and exec() are typically used together to start a new
program.

Pro cess Creation – Example

The ls command is invoked from bash:

init – First Pro cess

init is the first pro cess started after initializing the kernel.

Its process ID (PID) is equal to 1.

If a parent pro cess terminates but its children are still running
they are adopted by the init pro cess.

Note: under systemd Linux distros the init pro cess is called
systemd !

Zombies and Orphans

Each pro cess can get its ID and parent’s ID by system calls
(getpid() and getppid() resp ectively) while the only way to
access children’s ID is to rememb er values returned by fork() .

When a pro cess ends the SIGCHLD signal (see next section) is sent
to its parent. The parent pro cess should then call the wait() (or
waitpid()) system call to obtain child’s exit status . If it do esn’t
the child is not executing but still exists in the pro cess table. It is
called a zombie pro cess.

init immediately waits all adopted zombies.

Pro cess Groups

Pro cesses started by a single command (for example: pro cesses in
a pip eline) are organized into a process group or job .

Generally pro cesses are free to migrate to other groups or start
new ones (setpgid() or setpgrp() – dep ending on the system).

Pro cess groups are used to control the distribution of signals. For
example: termination signals generated by Ctrl-C in terminal are
delivered to all pro cesses within a foreground (see the next slide)
group.

Sessions

One or more pro cess groups can form a session .

Normally Unix shells create one session p er login (except GUI
logins); login shell pro cess b ecomes a session leader .

Pro cesses cannot migrate to other existing sessions although they
can start new ones – setsid(), setsid .

A session can b e assigned a control ling terminal (op en by the
leader which b ecomes a control ling process). Granting terminal
access to distinct pro cess groups (moving them to the
foreground / background) is referred as job control .

If no precautions are taken then terminating a controlling pro cess
or hanging up a controlling terminal terminates all pro cesses in
the foreground pro cess group.

Pro cess Attributes – Summary

Pro cess attributes (stored in system-data) include:
process ID (PID),
parent process ID (PPID) (for orphans: PID of the init, 1),
real user ID and real group ID ,
effective user ID and effective group ID – different to the ab ove
if the setuid or setgid bits are set,
process group ID (PGID),
session leader ID ,
terminal .

Pro cess Tree – pstree

The command pstree shows running pro cesses as a tree.

The -p option includes PIDs in parentheses after each pro cess
name.

All orphaned pro cessed are shown as children of the init pro cess.

Note that names in curly braces are threads not pro cesses
(identified by thread IDs)!

Information on Running Pro cesses – ps

ps prints statistics on running pro cesses. Numerous display
options are defined; typically the ps -ef (full listing on every
pro cess) is used.

BSD systems use different ps options and different syntax (no
dash precedes options). Under BSD the ps aux command is
commonly used for full listing.

What is the parent (PPID) of this bash instance?

$ ps -f

Information on Running Pro cesses – pgrep

pgrep combines ps and grep .

It takes a program name as an argument and prints PID(s) of
pro cess(es) executing it on stdout.

pgrep in command substitution mo de is commonly used when
some other command requires a PID rather than a program
name.

The command kil l (see next session) requires a PID:

$ kill process ID
$ kill `pgrep program name`

Information on Running Pro cesses – top

top displays dynamic, real-time information on running pro cesses
including CPU (default sorting key) and memory utilization they
generate.

< and > keys change sorting criteria; q – quits.

Note that top causes relatively high CPU utilization itself.

top – Screenshot

Other top-like utilities

htop is an improved alternative task manager to top.

Other system statistics can b e acquired by:
iotop – I/O (disk) utilization,
iftop – network connections,
ntop – network status.

All ab ove utilities are not standardized, platform-dep endent and
usually offered as optional software.

/proc File System Revised

Any information on given pro cess can b e accessed via pro cfs file
system – in a form of files in the /proc/<PID>/ directory. The
files are system-sp ecific, see man 5 proc of your system for
details.

Under Linux the following files may b e available:
/proc/<PID>/cmdline – full command which started the pro cess,
/proc/<PID>/cwd – symlink to the working directory,
/proc/<PID>/environ – environment variables for the pro cess,
/proc/<PID>/exe – symlink to the executable file,
/proc/<PID>/fd and /proc/<PID>/fdinfo – file descriptors;
p ositions and flags,
/proc/<PID>/status – pro cess statistics.

Later during this presentation we’ll show that the utilities like
pgrep, ps, pstree or top just parse ab ove files.

Outline of the lecture

1 Pro cesses

2 Signals

3 Pro cess Tracing

Signals

The simplest interpro cess communication metho d. No data
except signal typ e is delivered to a pro cess.

Notify ab out system event (for example: dividing by 0 generates
a SIGFPE) or can b e generated by a pro cess.

Kernel and ro ot pro cesses can send signals to all pro cesses.

Non-ro ot pro cesses can send signals to pro cesses running on
b ehalf of the same user.

Sequence of the same signals can b e reduced to a single one.

Signals (2)

Most Unix systems define approx. 28 signals.

Only two signals: SIGUSR1 and SIGUSR2 are left for user-defined
purp oses.

Additional user-defined signals (SIGRTMIN to SIGRTMAX) are
intro duced by the Real Time Signals POSIX extension. RTS
signals are discussed during Operating Systems and Unix
Programming however are b eyond the scop e of this course.

Signal Handling

All signals except SIGKILL and SIGSTOP can b e blocked , ignored
or intercepted and handled by a receiving pro cess.

Blo cked signals are p ostp oned (not delivered to the pro cess until
unblo cked).

Ignored signals are not delivered to the pro cess.

Signals which are not blo cked nor ignored immediately interrupt
current pro cess or function execution.

A signal hand ler is a short function invoked when receiving a
signal.

If no handler is defined then the default action is invoked (for
ma jority of signals: a pro cess termination).

Signal Classification

By origin:
natural – generated by some event,
synthetic – by calling a system call (usually: kill()).

All natural signals can b e generated synthetically; SIGUSR1 and
SIGUSR2 signals can b e generated synthetically only.

By default action:
terminate (and optional core dump),
stop/continue,
ignore – SIGCHLD to parent on child termination.

By related information:
error notification,
user / application generated,
process state change / job control,
timer.

Error Signals

SIGFPE – arithmetic op eration exception,

SIGILL – illegal instruction,

SIGPIPE – writing to a pip e with no readers,

SIGSEGV – memory segmentation error.

Termination Request Signals

SIGTERM – default signal, p olite request to terminate; sent to all
pro cesses on system shutdown,

SIGKILL – unconditional, immediate pro cess termination request;
can result in data lost or corruption,

SIGINT – generated by Ctrl-C in terminal,

SIGQUIT – generated by Ctrl-\ in terminal; same as SIGINT
except it creates a core dump ,

SIGHUP – sent on terminal hang-up; commonly used for reloading
daemons.

Sending Signals with kil l

kil l syntax:

$ kill [-SIGTYPE] <PID>

The command kill wraps the kill() which is the basic system call
for sending signals.

Any signal (even SIGCHLD or SIGFPE) can b e send with kill. The
default one is SIGTERM.

Signals can b e sp ecified by name (-SIGKILL) or numb er (-9) .

kill sp ecifies pro cess by its PID. Other utilities that allow reference
pro cesses by names may b e available. Dep ending on the system
killall and pkill may b e used.

Signals and Terminal Control Sequences

Many signals can b e send by terminal control sequences to
pro cess in foreground pro cess groups.

Note that control sequences may b e remapp ed by programs,
esp ecially those which use advanced terminal functions. For
example: nano uses Ctrl sequences for internal commands.

The most common control sequences are:
Ctrl-C – SIGINT, terminate,
Ctrl-\ – SIGQUIT, terminate with a core dump,
Ctrl-Z – SIGSTOP, stop (can b e resumed, it do esn’t terminate nor
release resources),
Ctrl-D – sends end-of-file (EOF), do esn’t generate any signal.

Terminating vs. Stopping a Pro cess

Terminating a pro cess results in calling exit() – ab orting
pro cess execution, releasing system resources and changing
pro cess state to dead.

Stopping a pro cess means freezing it. The pro cess execution is
susp ended but it remains alive and still o ccupies all allo cated
resources. Stopp ed pro cess can b e resumed.

When discussing daemons (the next labs) the term stop is used
as a synonym of terminate. Yes, it IS confusing.

Han Solo Receives a SIGSTOP Signal

Background Pro cesses

jobs displays status of all jobs in the current session.

Running a command with command-name & (following it by an
amp ersand) starts it in the background.

Alternatively, if a pro cess is running in the foreground it can b e
stopp ed by <Ctrl-Z> and then resumed in the background with
the bg command.

fg places a job in the foreground.

If there are multiple jobs in the current session then bg and fg
require a job numb er as an argument – for a list of job numb ers
run jobs .

Outline of the lecture

1 Pro cesses

2 Signals

3 Pro cess Tracing

Pro cess Tracing

Most Unix systems provide to ols for tracing and displaying all
system calls made by a pro cess.

Pro cess tracing may b e esp ecially useful for:
determining causes of freezes or crashes,
checking which configuration files and in which order are read by
a pro cess,
identifying resource files utilized by a pro cess,
reverse engineering (determining how it works).

Linux provides strace, other systems include ktrace (BSD) or
truss (AIX, Solaris)

Pro cess Tracing in Linux – strace

Tracing a pro cess – typical usage:

$ strace [-f|-ff] [-o logfile] [-e what] [command|-p <pid>]

The options are as follows:

-f and -ff – include children pro cesses (if any) for tracing,
-o logfile – log output to a file; if -ff is set then each child’s
system calls are logged to a separate logfile.<pid> file,
-e allows sp ecifying which events to trace and how to trace them,
-p – attach to and trace a currently running pro cess (by PID).
Regular users cannot trace pro cesses of other users.

With strace it’s trivial to show that ps, pstree and top get pro cess
information from pro cfs (/proc/<PID>/) files.

	Processes
	Signals
	Process Tracing

