
System Daemons

Marek Kozłowski

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

1 Daemons

2 System V

3 BSD Unix

4 Systemd

5 Cron

6 Syslog

7 Other Useful Commands

Outline of the lecture

1 Daemons

2 System V

3 BSD Unix

4 Systemd

5 Cron

6 Syslog

7 Other Useful Commands

Daemons

Disk And Execution MONitors, informally called services or
servers: ssh, name, web, mail, database servers, etc.

The suffix ‘d’: sshd, named, httpd, smtpd, mysqld, etc. may
denote a daemon.

Background pro cesses (no controlling terminal).

Typically event-driven or client-driven; most of the time they
idle waiting for events (for example: ACPI) or client requests.

Write control messages to their own logs or send them to a
syslog .

Daemons (2)

Only one instance should execute at a time.

Usually (adopted) children of the init pro cess.

Run on b ehalf of system users (system accounts).

For security reasons daemons that require limited file access often
started in chroot jail environments.

May rely on other daemons.

For the reasons listed ab ove it should not b e started ‘by hand’.
Dedicated controlling scripts are provided for this purp ose.

Controlling script

Written in shell (usually sh) or some shell extension.

Explicit, transparent, human readable and customizable.

Its structure reflects system/distro design principles (short and
simple for KISS systems, comprehensive for enterprise ones).

If some variables should b e set up those are not defined directly
in a script but in an additional configuration file for that script.

Daemon-Related Directories

/usr/sbin/ – daemon programs.

/etc/ – service configuration files or directories.

/etc/init.d/ or /etc/rc.d/ – controlling scripts.

/etc/conf.d/ or /etc/sysconfig/ – configuration files for
controlling scripts.

/var/run/*.pid – files that store PIDs of running daemons;
created by start-up scripts.

Some slight differences b etween systems may exist.

Daemon-Related Files – Example

Under Gento o Linux the following files are related to the SSH
service:
/usr/sbin/sshd – daemon program file,
/etc/ssh/sshd config – SSH configuration,
/etc/init.d/sshd – controlling script,
/etc/conf.d/sshd – controlling script configuration file,
/var/run/sshd.pid – PID of the running sshd pro cess.

Running Daemons

Controlling scripts usually accept the following commands as
parameters (none displays all supp orted commands):
start ,
stop ,
restart – on upgrade or configuration change,
reload – (optional) on configuration change,
status – (optional) display status.

Other commands may b e defined dep ending on the system and
the daemon.

Additional messages like: [ok] or [fail] are displayed on
command success/failure in numerous systems.

Starting the SSH daemon in Gento o

/etc/init.d/sshd start

Outline of the lecture

1 Daemons

2 System V

3 BSD Unix

4 Systemd

5 Cron

6 Syslog

7 Other Useful Commands

Runlevels

SysV distinguishes the following system op erational mo des:
single-user (maintenance and repair),
multi-user with no network,
multi-user (server default),
multi-user with GUI (workstation default),
system shutdown,
system reb o ot.

For each of those sysv defines a separate so-called runlevel .

Runlevels (2)

Most Unices define seven runleves identified by numb ers (0-6).

Mo de to numb er assignments may differ b etween systems.

Some runlevels may b e not implemented (reserved for future use)
or merged (undistinguishable).

Runlevels are fully separable and indep endent of each other.

Runlevels are not executed sequentially, for example: it is
p ossible to switch from 3 to 0 or 6 directly without entering
intermediate ones.

For each runlevel a separate set of pro cesses to b e launched by
the init pro cess is defined.

Standard Runlevels

Most SysV systems agree on the following runlevel assignment:
0 – system shutdown,
1 or S – single-user (in some systems those are two distinct
runlevels that slightly differ),
3 – multi-user, default,
6 – system reb o ot.

Numerous systems don’t use other runlevels, i.e. the runlevels: 2,
3, 4 and 5 are undistinguishable.

Many systems define:
2 – multiuser with no network,
5 – multiuser with GUI.

The runlevel 4 is almost never implemented.

A common practice is defining alias names for runlevels.

Changing Runlevels

For changing current runlevel ro ot should use the init command:

SysV shutdown

init 0

SysV reb o ot

init 6

Defining Runlevels – /etc/inittab

Available runlevels, the default runlevel and system b ehaviour
for each runlevel are defined in the file /etc/inittab .

/etc/inittab entry syntax

id:runlevel:action:process

The fields are as follows:

id – entry identifier (1-4 characters),
runlevel – runlevel numb er,
action – pre-defined (see man 5 inittab) action, for example:
respawn – start-up and keep running, wait – start and wait for
its termination,
process – command to b e executed.

getty

getty or agetty (Linux) op ens ttys, prompts for password and
starts user’s login shell.

The following fragment of /etc/inittab starts agettys for tty1
in single user mo de and for tty1–tty6 on multi-user runlevels:

c1 :12345: respawn :/sbin/agetty 38400 tty1 linux
c2 :2345: respawn :/sbin/agetty 38400 tty2 linux
c3 :2345: respawn :/sbin/agetty 38400 tty3 linux
c4 :2345: respawn :/sbin/agetty 38400 tty4 linux
c5 :2345: respawn :/sbin/agetty 38400 tty5 linux
c6 :2345: respawn :/sbin/agetty 38400 tty6 linux

Pure System V (Sysvinit)

This solution is commonly implemented on enterprise-class
systems.

For each runlevel there is a directory: /etc/rc0.d/,
/etc/rc1.d/, . . . , /etc/rc6.d/ .

Each of those directories contains symlinks to all daemon control
scripts.

Symlink names start with K or S followed by some two-digit
numb er and a script name, for example: K36mysqld or S55sshd .

Symlinked scripts are run sequentially in lexicographical order. If
a name starts with K the script is executed with stop command.
For S – start .

Additional to ols are required for daemon management.

Runlevel Management in /etc/inittab – Sysvinit

id:3: initdefault:

Boot -time system configuration / initialization script.
si:: sysinit :/etc/init.d/rcS

/etc/init.d executes the S and K scripts upon change
of runlevel.
Runlevel 0 is halt. Runlevel 6 is reboot.
Runlevel 1 is single -user. Runlevels 2-5 are multi -user.
l0:0: wait:/etc/init.d/rc 0
l1:1: wait:/etc/init.d/rc 1
l2:2: wait:/etc/init.d/rc 2
l3:3: wait:/etc/init.d/rc 3
l4:4: wait:/etc/init.d/rc 4
l5:5: wait:/etc/init.d/rc 5
l6:6: wait:/etc/init.d/rc 6

What to do at the "3 finger salute ".
ca:: ctrlaltdel :/sbin/shutdown -t1 -h now

Simplified SysV-based Subsystems

Flexible general-purp ose sysv-based Linux systems may use
simplified solutions:

multi-user runlevels are merged,
only scripts that should b e started are sp ecified/symlinked,
scripts are started in order based on other factors,
utilities for daemon management are optional.

Op enRC

Op enRC has b een initially develop ed for Gento o Linux:
symlinks in /etc/runlevels/ sub directories: boot/, default/,
single/ and nonetwork/ are created for daemon startup scripts,
the startup order is random; dep endencies may b e enco ded inside
scripts,
the names of scripts and symlinks are the same.

The symlinks can b e managed by the commands: rc-status and
rc-update .

✍ The fol lowing two commands are equivalent:

Assigning SSH daemon to the default runlevel in Gento o

ln -s /etc/init.d/sshd /etc/runlevels/default/sshd
rc-update add sshd default

Runlevel Management in /etc/inittab – Op enRC

id:3: initdefault:

System initialization , mount local filesystems , etc.
si:: sysinit :/sbin/openrc sysinit

Further system initialization , brings up the boot runlevel.
rc:: bootwait :/sbin/openrc boot

l0:0: wait:/sbin/openrc shutdown
l1:1: wait:/sbin/openrc single
l2:2: wait:/sbin/openrc nonetwork
l3:3: wait:/sbin/openrc default
l4:4: wait:/sbin/openrc default
l5:5: wait:/sbin/openrc default
l6:6: wait:/sbin/openrc reboot

What to do at the "3 finger salute ".
ca:: ctrlaltdel :/sbin/shutdown -t1 -h now

Outline of the lecture

1 Daemons

2 System V

3 BSD Unix

4 Systemd

5 Cron

6 Syslog

7 Other Useful Commands

/etc/rc.conf

In BSD systems the idea of runlevels has b een discarded.

Most of the system start-up configuration is sp ecified by the file
/etc/rc.conf .

A sp ecial variable or a set of variables control daemons to b e
started at b o ot-up.

Example – Starting Daemons in FreeBSD

‘/etc/rc.conf ’ extract

...
sshd enable=yes
moused enable=yes
ntpd enable=yes
powerd enable=yes
...

BSD Unices and /usr/local

Contrary to Linux, BSD Unices strongly separate a system and
software running on it.

Software which is non-critical to the system itself is installed
under the /usr/local :
/usr/local/etc/ – configuration files,
/usr/local/etc/rc.d/ – daemon controlling scripts,
/usr/local/sbin/ – daemons,
etc.

Outline of the lecture

1 Daemons

2 System V

3 BSD Unix

4 Systemd

5 Cron

6 Syslog

7 Other Useful Commands

Systemd

Windows-inspired (svchost.exe) sysv/bsd replacement for
desktop-oriented Linux systems.

Binary, complex, monolithic, tightly integrated solution which
eliminates daemon controlling scripts.

It tries to automagically do everything b etween a kernel and
userland GUI applications.

It automates managing some desktop-related services by some
kind of plug-and-play.

Limited do cumentation, complexity, frequent critical changes,
binary files, lack of mo dularity, automation and aggressive
paral lelization make controlling/tracing/debugging systemd very
questionable.

Systemd: a Case Study

Init-free Linux Distributions

Main distributions not implementing systemd include:
Devuan,
Gento o,
Slackware.

Popular Arch Linux clones which are init-free:
Artix,
Hyp erb ola,
Parab ola.

A more comprehensive list and some arguments against using
systemd can b e found on: https://nosystemd.org/ ,
https://suckless.org/sucks/systemd/ and others.

https://nosystemd.org/
https://suckless.org/sucks/systemd/

Systemd Services

Under systemd daemons are called services .

Services are defined by /usr/lib/systemd/system/*.service
files similar to Windows *.ini files.

There are also *.mount, *.socket and a few other file typ es for
analogous purp oses. All those are called units .

Default configuration can b e overwritten by placing unit files in
/etc/systemd/system/. Ma jor changes to default configuration
are generally not recommended.

Units can b e run automagically if systemd finds it desirable.

Systemd Targets

Target is a set of services, mounts, so ckets, etc. So-called wants
are used to include them.

Target may include other targets by wants .

Typically there are approx. 50-100 targets.

The default target (multi-user) directly and indirectly includes
all units to b e executed at b o ot time.

Systemd systemctl

systemctl is a general-purp ose management utility for systemd.

With this command users are able to check systemd status, ask
systemd for starting/stopping services or enabling/disabling
them from the default target.

Administrators should b e aware that systemd may start a service
automatically even if instructed not to do it.

Increasing numb er of *ctl utilities which act as interfaces to
systemd are provided with newer versions.

Systemd and Unix Daemons

Most Unix daemons can b e started as systemd services.

For some daemons systemd intro duces alternative, tightly
integrated (and quite often: p o orly designed) services that are
obligatory. An example is journald – a systemd binary
replacement for standard Unix syslog daemon.

Some standard daemons can still b e installed and double such
services.

Outline of the lecture

1 Daemons

2 System V

3 BSD Unix

4 Systemd

5 Cron

6 Syslog

7 Other Useful Commands

Cron – Key Concepts

Cron is a standard Unix daemon for executing commands
p erio dically on certain times and dates.

Once a minute cron checks crontab files and executes all
commands that are scheduled to run at this time.

A system crontab as well as users’ crontabs can exist. The system
crontab name is usually one of the followings:
/etc/crontab ,
/var/spool/cron/root ,

while users’ crontabs are lo cated in /var/spool/cron/ and
named with user names, for example: /var/spool/cron/smithj .

Cron do esn’t need to b e restarted nor reloaded on crontab
changes.

Cron Implementations

Popular cron implementations include:
vixie-cron ,
dcron ,
cronie ,
anacron .

The main differences include:
crontab file lo cation and slight syntax differences,
ways of sp ecifying which users can access the cron,
some extensions.

System Crontab File – /etc/crontab

Crontab file syntax

min hour dmonth month dweek user command

The fields are as follows:

min – minutes (0-59),
hour – hour (0-23),
dmonth – day of month (1-31),
month – month (1-12)
dweek – day of week (0 and 7 denote Sunday),
user – this field exists only in the main crontab file of certain
cron implementations,
command – command to execute; sp ecifying full paths is highly
recommended.

Numerous sp ecial characters can b e used for the first 5 fields:

* matches any value,
, allows sp ecifying lists,
- allows sp ecifying ranges,
/ sp ecifies increment value, for example: */2 – every even value.

Crontab – Examples

Power off the computer every day at 11:15 p.m.

15 23 * * * root init 0

Make a backup copy every business day at 10 p.m.

0 22 * * 1-5 root /root/make backup

Prepare on Friday 13th

1 0 13 * 5 root /root/enhanced fault tolerance

(Optional) Split Crontab

Crontab entries are preceded by some small set of variables
(HOME, PATH, SHELL).

Crontab entries my require different variable settings.

File management is easier than file content management.

For those purp oses some implementations allow splitting a
crontab into several separate files placed in the /etc/cron.d
directory.

(Optional) Crontab Directories – /etc/cron.*/

Some cron implementations check the following directories:
/etc/cron.hourly/
/etc/cron.daily/
/etc/cron.weekly/
/etc/cron.monthly/

and execute all programs (usually scripts) placed in them with
resp ective frequency.

Users’ Crontabs

Users are able to define their own crontabs. Those are stored in
/var/spool/cron/* files named the same as their owners (for
example: /var/spool/cron/smithj).

Usually the crontab command is intended for crontab
management.

Some systems allow all users to use cron, while other may grant
this access:

only to memb ers of the cron group,
only to users listed in /etc/cron.allow ,
based on other factors.

Outline of the lecture

1 Daemons

2 System V

3 BSD Unix

4 Systemd

5 Cron

6 Syslog

7 Other Useful Commands

Event Logging – Key Concepts

Kernel and daemons send messages to a syslog daemon.

Each syslog message contains date and time, sending host,
sending facility or program (service, kernel or daemon name),
level (warning, error etc) and detailed information.

Syslog messages are then redirected to a terminal (for example:
tty12), log files (/var/log/*) or to a remote syslog instance.

Some daemons don’t use a syslog but manage their own log file
hierarchy.

It is p ossible to interact with syslog via the command line utility:
logger .

Syslog and Syslog-ng

Syslog is a proto col (IETF RFC 5424) while syslog-ng is an
implementation.

Syslog-ng extends the original syslogd mo del with rich
content-based filtering capabilities, flexible configuration options
and adds imp ortant features like remote logging (over TCP/IP).

Syslong-ng is installed as a default syslog for Linux, however it’s
b een p orted to FreeBSD, AIX, HP-UX, Solaris, Tru64 etc.

For most systems the syslog-ng is a requisite dep endency.

Syslog-ng Configuration

The syslog-ng configuration is typically stored in the file
/etc/syslog-ng.conf .

It defines:
sources – it’s safe to leave it untouched,
destinations – where to redirect messages,
filters – filtering criteria,
logs – bind sources and destinations based on filters.

Many administrators log messages from main daemons (DNS,
mail, ssh) to separate files. In addition all messages are displayed
on the tty12 .

For security reasons it is safe to additionally redirect all syslog
messages to a remote host.

Destinations and Filters – Examples

program is a daemon name while facility is a typ e of service –
any daemon that provides this kind of service.

Sample filters

filter f mail { facility(mail); };
filter f named { program("sshd"); };
filter f err { level(err); };

Note that TCPconnections to the p ort 524 are used for remote logging.

Sample destinations

destination d mail { file("/var/log/mail.log"); };
destination d sshd { file("/var/log/sshd.log"); };
destination d remote host { tcp("194.29.178.3" port(524)); };
destination d messages { file("/var/log/messages"); };
destination d console all { file("/dev/tty12"); };

Logs – Examples

flags(final) indicates final destination, i.e. it prevents storing
the same entry in several log files.

Sample logs

log { source(src); destination(d merckx); };
log { source(src); destination(d console all); };
log { source(src); filter(f mail); destination(d mail); flags(final); };
log { source(src); filter(f sshd); destination(d sshd); flags(final); };
log { source(src); destination(d messages); };

Log Analyzing

less is a recommended command for manual log reading cause it
do esn’t cache the whole file. Never op en files of the size several
gigabytes with editors!

Pip eline filters, esp ecially grep are very useful for manual log
reading if all messages are stored in a single file.

Most systems offer to ols for automated log analyzing. They are
usually p erl rexexp parsers run once a day (by cron) and send
daily rep orts to an administrator’s e-mail address.

Log Administration – Logrotate

Logrotate is another useful to ol for log management which is
initiated once a day by cron.

Logrotate p erio dically (for example: once a week) cuts off log files
and compresses them.

Very old log archives (for example: older than a month) are
automatically deleted.

Logrotate can op erate on syslog files as well as other log files
stored in /var/log/*.

Log-rotated log files

ls /var/log/ | grep messages
messages
messages-20110331.gz
messages-20110407.gz
messages-20110414.gz
messages-20110421.gz

Outline of the lecture

1 Daemons

2 System V

3 BSD Unix

4 Systemd

5 Cron

6 Syslog

7 Other Useful Commands

Standard Commands – dmesg

dmesg is used to examine or control the kernel ring buffer. The
program helps users to print out their b o otup messages.

Always use dmesg in a pip eline with filters (typically grep or
more).

Syslog daemon is usually started when entering the multi-user
runlevel. dmesg logs all messages since loading a kernel so it is
extremely useful for identifying hardware detection problems and
improp er driver initialization.

Mo dular Kernels (Linux)

Linux kernels can b e monolithic, mo dular or mixed.

Some Linux distros (for example: Gento o) allow building a
custom kernel.

Most distributions with pre-build kernels use mo dular ones.

Kernel mo dules typically are placed in the /lib/modules/
sub directory (named based on the kernel version).

Mo dule management utilities include:
lsmod – list loaded mo dules,
modinfo – get mo dule information,
modprobe – load a mo dule (options can b e sp ecified),
rmmod – unload a mo dule.

Note that some mo dules are automatically loaded as
dep endencies and cannot b e unloaded b efore their dep endants.

Mo dular vs Monolithic Kernels (Linux)

Monolithic kernels are smaller and faster.

Mo dular kernels ore more flexible:
mo dules can b e unloaded then loaded with different parameter
sets,
can handle runtime hardware changes.

Desktop oriented distros prefer mo dular kernels.

Mo dule Autoloading (Linux)

Most mo dules are loaded at b o ot time based on the hardware
auto-detection.

Some are loaded automagically shall the need arise.

Other mo dules have to b e explicit sp ecified. Unfortunately there
is no standard solution for Linux systems. Consult your system’s
manual for details.

Mo dule loading options are usually sp ecified in the file
/etc/modprobe.conf or the /etc/modules-load.d directory.

	Daemons
	System V
	BSD Unix
	Systemd
	Cron
	Syslog
	Other Useful Commands

