System Daemons

Marek Koztowski

@

N

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Outline of the Lecture

Daemons
System V
BSD Unix
Systemd
Cron

@A Syslog

Other Useful Commands

Outline of the lecture

Daemons

Daemons

m Disk And Ezecution M ONitors, informally called services or
servers: ssh, name, web, mail, database servers, etc.

m The suffix ‘d": sshd, named, httpd, smtpd, mysqld, etc. may
denote a daemon.
m Background processes (no controlling terminal).

m Typically event-driven or client-driven; most of the time they
idle waiting for events (for example: ACPI) or client requests.

m Write control messages to their own logs or send them to a
syslog.

Daemons (2)

m Only one instance should execute at a time.
m Usually (adopted) children of the init process.
m Run on behalf of system users (system accounts).

m For security reasons daemons that require limited file access often
started in chroot jail environments.

m May rely on other daemons.

m For the reasons listed above it should not be started ‘by hand’.
Dedicated controlling scripts are provided for this purpose.

Controlling script

m Written in shell (usually sh) or some shell extension.
m Explicit, transparent, human readable and customizable.

m Its structure reflects system/distro design principles (short and
simple for KISS systems, comprehensive for enterprise ones).

m If some variables should be set up those are not defined directly
in a script but in an additional configuration file for that script.

Daemon-Related Directories

® /usr/sbin/ — daemon programs.
m /etc/ — service configuration files or directories.
m /etc/init.d/ or /etc/rc.d/ — controlling scripts.

m /etc/conf.d/ or /etc/sysconfig/ — configuration files for
controlling scripts.

m /var/run/*.pid - files that store PIDs of running daemons;
created by start-up scripts.

m Some slight differences between systems may exist.

Daemon-Related Files — Example

m Under Gentoo Linux the following files are related to the SSH
service:

B /usr/sbin/sshd — daemon program file,
/etc/ssh/sshd_config — SSH configuration,
/etc/init.d/sshd — controlling script,
/etc/conf.d/sshd — controlling script configuration file,
/var/run/sshd.pid — PID of the running sshd process.

Running Daemons

m Controlling scripts usually accept the following commands as
parameters (none displays all supported commands):

® start,
m stop,
® restart — on upgrade or configuration change,
m reload — (optional) on configuration change,
m status — (optional) display status.
m Other commands may be defined depending on the system and
the daemon.

m Additional messages like: [ok] or [fail] are displayed on
command success/failure in numerous systems.

Starting the SSH daemon in Gentoo

/etc/init.d/sshd start

Outline of the lecture

System V

m SysV distinguishes the following system operational modes:

single-user (maintenance and repair),
multi-user with no network,

multi-user (server default),

multi-user with GUI (workstation default),
system shutdown,

system reboot.

m For each of those sysv defines a separate so-called runlevel.

Runlevels (2)

m Most Unices define seven runleves identified by numbers (0-6).
m Mode to number assignments may differ between systems.

m Some runlevels may be not implemented (reserved for future use)
or merged (undistinguishable).

m Runlevels are fully separable and independent of each other.

m Runlevels are not executed sequentially, for example: it is

possible to switch from 3 to 0 or 6 directly without entering
intermediate ones.

m For each runlevel a separate set of processes to be launched by
the init process is defined.

Standard Runlevels

m Most SysV systems agree on the following runlevel assignment:
m 0 — system shutdown,
m 1 or S - single-user (in some systems those are two distinct
runlevels that slightly differ),
m 3 — multi-user, default,
m 6 — system reboot.
m Numerous systems don’t use other runlevels, i.e. the runlevels: 2,
3, 4 and 5 are undistinguishable.
m Many systems define:
®m 2 — multiuser with no network,
m 5 — multiuser with GUIL
The runlevel 4 is almost never implemented.

m A common practice is defining alias names for runlevels.

Changing Runlevels

m For changing current runlevel root should use the init command:

SysV shutdown

init O

SysV reboot

init 6

Defining Runlevels — /etc/inittab

m Available runlevels, the default runlevel and system behaviour
for each runlevel are defined in the file /etc/inittab .

/etc/inittadb entry syntax

id:runlevel:action:process

m The fields are as follows:

1d — entry identifier (1-4 characters),

runlevel — runlevel number,

action — pre-defined (see man 5 inittab) action, for example:
respawn — start-up and keep running, wait — start and wait for
its termination,

process — command to be executed.

m getty or agetty (Linux) opens ttys, prompts for password and
starts user’s login shell.

m The following fragment of /etc/inittab starts agettys for ttyl
in single user mode and for ttyl-tty6 on multi-user runlevels:

c1:12345:respawn:/sbin/agetty 38400 ttyl linux
c2:2345:respawn:/sbin/agetty 38400 tty2 linux
c3:2345: respawn:/sbin/agetty 38400 tty3 linux
c4:2345:respawn:/sbin/agetty 38400 tty4 linux
c5:2345: respawn:/sbin/agetty 38400 tty5 linux
c6:2345: respawn:/sbin/agetty 38400 tty6 linux

Pure System V (Sysvinit)

m This solution is commonly implemented on enterprise-class
systems.

m For each runlevel there is a directory: /etc/rc0.d/,
/etc/rcl.d/, ..., /etc/rc6.4d/ .

m Each of those directories contains symlinks to all daemon control
scripts.

m Symlink names start with K or S followed by some two-digit
number and a script name, for example: K36mysqld or S55sshd .

m Symlinked scripts are run sequentially in lexicographical order. If
a name starts with K the script is executed with stop command.
For S — start .

m Additional tools are required for daemon management.

Runlevel Management in /etc/inittab — Sysvinit

id:3:initdefault:

Boot-time system configuration/initialization script.
si::sysinit:/etc/init.d/rcS

/etc/init.d executes the S and K scripts upon change

of runlevel.

Runlevel 0 ts halt. Runlevel 6 1is reboot.

Runlevel 1 is single-user. Runlevels 2-5 are multi-user.
10:0:wait:/etc/init.d/rc 0O

11:1:wait:/etc/init.d/rc
12:2:wait:/etc/init.d/rc
13:3:wait:/etc/init.d/rc

15:5:wait:/etc/init.d/rc
16:6:wait:/etc/init.d/rc

o O WN -

1

2

3
14:4:wait:/etc/init.d/rc

5

6

What to do at the "3 finger salute”.
a::ctrlaltdel:/sbin/shutdown -t1 -h now

Simplified SysV-based Subsystems

m Flexible general-purpose sysv-based Linux systems may use
simplified solutions:
m multi-user runlevels are merged,
m only scripts that should be started are specified/symlinked,
m scripts are started in order based on other factors,
m utilities for daemon management are optional.

m OpenRC has been initially developed for Gentoo Linux:
m symlinks in /etc/runlevels/ subdirectories: boot/, default/,
single/ and nonetwork/ are created for daemon startup scripts,
m the startup order is random; dependencies may be encoded inside

scripts,
m the names of scripts and symlinks are the same.
m The symlinks can be managed by the commands: rc-status and
rc-update .
#) The following two commands are equivalent:

Assigning SSH daemon to the default runlevel in Gentoo

1n -s /etc/init.d/sshd /etc/runlevels/default/sshd
rc-update add sshd default

Runlevel Management in /etc/inittab — OpenRC

id:3:initdefault:

System initialization, mount local filesystems, etc.
si::sysinit:/sbin/openrc sysinit

Further system initialization, brings up the boot runlevel.
rc::bootwait:/sbin/openrc boot

10:0:wait:/sbin/openrc shutdown
11:1:wait:/sbin/openrc single
12:2:wait:/sbin/openrc nonetwork
13:3:wait:/sbin/openrc default
14:4:wait:/sbin/openrc default
156:5:wait:/sbin/openrc default
16:6:wait:/sbin/openrc reboot

What to do at the "3 finger salute”.
a::ctrlaltdel:/sbin/shutdown -t1 -h now

Outline of the lecture

BSD Unix

/etc/rc.conf

m In BSD systems the idea of runlevels has been discarded.

m Most of the system start-up configuration is specified by the file
/etc/rc.conf .

m A special variable or a set of variables control daemons to be
started at boot-up.

Example — Starting Daemons in FreeBSD

‘/etc/rc.conf’ extract

sshd_enable=yes
moused_enable=yes
ntpd_enable=yes
powerd_enable=yes

BSD Unices and /usr/local

m Contrary to Linux, BSD Unices strongly separate a system and
software running on it.

m Software which is non-critical to the system itself is installed
under the /usr/local :

/usr/local/etc/ — configuration files,

/usr/local/etc/rc.d/ — daemon controlling scripts,

/usr/local/sbin/ — daemons,

etc.

Outline of the lecture

Systemd

Systemd

m Windows-inspired (svchost.eze) sysv/bsd replacement for
desktop-oriented Linux systems.

m Binary, complex, monolithic, tightly integrated solution which
eliminates daemon controlling scripts.

m [t tries to automagically do everything between a kernel and
userland GUI applications.

m [t automates managing some desktop-related services by some
kind of plug-and-play.

m Limited documentation, complexity, frequent critical changes,
binary files, lack of modularity, automation and aggressive
parallelization make controlling/tracing/debugging systemd very
questionable.

Systemd: a Case Study

SYSTEMD-

BEGA“SE W[cn“

Init-free Linux Distributions

® Main distributions not implementing systemd include:
m Devuan,
m Gentoo,
m Slackware.
m Popular Arch Linux clones which are init-free:
m Artix,
m Hyperbola,
m Parabola.
® A more comprehensive list and some arguments against using
systemd can be found on: https://nosystemd.org/ ,
https://suckless.org/sucks/systemd/ and others.

https://nosystemd.org/
https://suckless.org/sucks/systemd/

Systemd Services

m Under systemd daemons are called services.

m Services are defined by /usr/lib/systemd/system/*.service
files similar to Windows *.ins files.

m There are also *.mount, *.socket and a few other file types for
analogous purposes. All those are called unaits.

m Default configuration can be overwritten by placing unit files in
/etc/systemd/system/. Major changes to default configuration
are generally not recommended.

m Units can be run automagically if systemd finds it desirable.

Systemd Targets

m Target is a set of services, mounts, sockets, etc. So-called wants
are used to include them.

m Target may include other targets by wants.
m Typically there are approx. 50-100 targets.

m The default target (multi-user) directly and indirectly includes
all units to be executed at boot time.

Systemd systemctl

m systemctl is a general-purpose management utility for systemd.

m With this command users are able to check systemd status, ask
systemd for starting/stopping services or enabling/disabling
them from the default target.

® Administrators should be aware that systemd may start a service
automatically even if instructed not to do it.

m Increasing number of *ctl utilities which act as interfaces to
systemd are provided with newer versions.

Systemd and Unix Daemons

m Most Unix daemons can be started as systemd services.

m For some daemons systemd introduces alternative, tightly
integrated (and quite often: poorly designed) services that are
obligatory. An example is journald — a systemd binary
replacement for standard Unix syslog daemon.

m Some standard daemons can still be installed and double such
services.

Outline of the lecture

Cron

Cron — Key Concepts

m Cron is a standard Unix daemon for executing commands
periodically on certain times and dates.

m Once a minute cron checks crontab files and executes all
commands that are scheduled to run at this time.

m A system crontab as well as users’ crontabs can exist. The system
crontab name is usually one of the followings:

m /etc/crontab ,
m /var/spool/cron/root ,
while users’ crontabs are located in /var/spool/cron/ and
named with user names, for example: /var/spool/cron/smithj .
m Cron doesn’t need to be restarted nor reloaded on crontab
changes.

Cron Implementations

m Popular cron implementations include:
W vwzie-cron,
m dcron,
m cronie,
B anacron.

m The main differences include:

m crontab file location and slight syntax differences,
m ways of specifying which users can access the cron,
m some extensions.

System Crontab File — /etc/crontab

Crontab file syntax

min hour dmonth month dweek user command

m The fields are as follows:

man — minutes (0-59),

hour — hour (0-23),

dmonth — day of month (1-31),

month — month (1-12)

dweek — day of week (0 and 7 denote Sunday),

user — this field exists only in the main crontab file of certain
cron implementations,

m command — command to execute; specifying full paths is highly
recommended.

m Numerous special characters can be used for the first 5 fields:

* matches any value,

, allows specifying lists,

- allows specifying ranges,

/ specifies increment value, for example: */2 — every even value.

Crontab — Examples

Power off the computer every day at 11:15 p.m.

15 23 * * x root init O

Make a backup copy every business day at 10 p.m.

0 22 * * 1-56 root /root/make backup

Prepare on Friday 13%

1013 * 5 root /root/enhanced_fault_tolerance

(Optional) Split Crontab

m Crontab entries are preceded by some small set of variables
(HOME, PATH, SHELL).

m Crontab entries my require different variable settings.
m File management is easier than file content management.

m For those purposes some implementations allow splitting a
crontab into several separate files placed in the /etc/cron.d
directory.

(Optional) Crontab Directories — /etc/cron.*/

m Some cron implementations check the following directories:

m /etc/cron.hourly/
® /etc/cron.daily/

m /etc/cron.weekly/
® /etc/cron.monthly/

and execute all programs (usually scripts) placed in them with
respective frequency.

Users’ Crontabs

m Users are able to define their own crontabs. Those are stored in
/var/spool/cron/* files named the same as their owners (for
example: /var/spool/cron/smithj).

m Usually the crontab command is intended for crontab
management.

m Some systems allow all users to use cron, while other may grant
this access:

m only to members of the cron group,
m only to users listed in /etc/cron.allow ,
m based on other factors.

Outline of the lecture

A Syslog

Event Logging — Key Concepts

m Kernel and daemons send messages to a syslog daemon.

m Each syslog message contains date and time, sending host,
sending facility or program (service, kernel or daemon name),
level (warning, error etc) and detailed information.

m Syslog messages are then redirected to a terminal (for example:
tty12), log files (/var/log/*) or to a remote syslog instance.

m Some daemons don’t use a syslog but manage their own log file
hierarchy.

m It is possible to interact with syslog via the command line utility:
logger .

Syslog and Syslog-ng

m Syslog is a protocol (IETF RFC 5424) while syslog-ng is an
implementation.

m Syslog-ng extends the original syslogd model with rich
content-based filtering capabilities, flexible configuration options
and adds important features like remote logging (over TCP/IP).

m Syslong-ng is installed as a default syslog for Linux, however it’s
been ported to FreeBSD, AIX, HP-UX, Solaris, Tru64 etc.

m For most systems the syslog-ng is a requisite dependency.

Syslog-ng Configuration

m The syslog-ng configuration is typically stored in the file
/etc/syslog-ng.conf .
m It defines:
m sources — it’s safe to leave it untouched,
® destinations — where to redirect messages,
m filters — filtering criteria,
m logs — bind sources and destinations based on filters.
m Many administrators log messages from main daemons (DNS,
mail, ssh) to separate files. In addition all messages are displayed
on the tty12 .

m For security reasons it is safe to additionally redirect all syslog
messages to a remote host.

Destinations and Filters — Examples

® program is a daemon name while facility is a type of service —
any daemon that provides this kind of service.

Sample filters

filter fmail { facility(mail); };
filter f_named { program("sshd"); };
filter f_err { level(err); };

m Note that TCPconnections to the port 524 are used for remote logging.

Sample destinations

destination dmail { file("/var/log/mail.log"); };
destination d_sshd { file("/var/log/sshd.log"); };
destination d_remote host { tcp("194.29.178.3" port(524)); };
destination d-messages { file("/var/log/messages"); };
destination d_console_all { file("/dev/tty12"); };

Logs — Examples

m flags(final) indicates final destination, i.e. it prevents storing
the same entry in several log files.

Sample logs

log { source(src); destination(d-merckx); };

log { source(src); destination(d_console_all); };

log { source(src); filter(fmail); destination(dmail); flags(final); };
log { source(src); filter(f_sshd); destination(d_sshd); flags(final); };
log { source(src); destination(d messages); };

Log Analyzing

m less is a recommended command for manual log reading cause it
doesn’t cache the whole file. Never open files of the size several
gigabytes with editors!

m Pipeline filters, especially grep are very useful for manual log
reading if all messages are stored in a single file.

m Most systems offer tools for automated log analyzing. They are
usually perl rexexp parsers run once a day (by cron) and send
daily reports to an administrator’s e-mail address.

Log Administration — Logrotate

m Logrotate is another useful tool for log management which is
initiated once a day by cron.

m Logrotate periodically (for example: once a week) cuts off log files
and compresses them.

m Very old log archives (for example: older than a month) are
automatically deleted.

m Logrotate can operate on syslog files as well as other log files
stored in /var/log/*.

Log-rotated log files

1s /var/log/ | grep messages
messages

messages-20110331.gz
messages—-20110407.gz
messages-20110414.gz
messages-20110421.gz

Outline of the lecture

Other Useful Commands

Standard Commands — dmesg

m dmesg is used to examine or control the kernel ring buffer. The
program helps users to print out their bootup messages.

m Always use dmesg in a pipeline with filters (typically grep or
more).

m Syslog daemon is usually started when entering the multi-user
runlevel. dmesg logs all messages since loading a kernel so it is
extremely useful for identifying hardware detection problems and
improper driver initialization.

Modular Kernels (Linux)

m Linux kernels can be monolithic, modular or mixed.

m Some Linux distros (for example: Gentoo) allow building a
custom kernel.

m Most distributions with pre-build kernels use modular ones.

m Kernel modules typically are placed in the /1ib/modules/
subdirectory (named based on the kernel version).
m Module management utilities include:
m 1lsmod - list loaded modules,
® modinfo — get module information,
B modprobe — load a module (options can be specified),
® rmmod — unload a module.
m Note that some modules are automatically loaded as
dependencies and cannot be unloaded before their dependants.

Modular vs Monolithic Kernels (Linux)

m Monolithic kernels are smaller and faster.
m Modular kernels ore more flexible:

m modules can be unloaded then loaded with different parameter
sets,
m can handle runtime hardware changes.

m Desktop oriented distros prefer modular kernels.

Module Autoloading (Linux)

m Most modules are loaded at boot time based on the hardware
auto-detection.

m Some are loaded automagically shall the need arise.

m Other modules have to be explicit specified. Unfortunately there
is no standard solution for Linux systems. Consult your system’s
manual for details.

m Module loading options are usually specified in the file
/etc/modprobe.conf or the /etc/modules-load.d directory.

	Daemons
	System V
	BSD Unix
	Systemd
	Cron
	Syslog
	Other Useful Commands

