
Vi IMproved Basics

Marek Kozłowski

Faculty of Mathematics and Information Sciences
Warsaw University of Technology



Vi IMproved

Vim (Vi Improved) is a vi clone with numerous extensions
including:

p ortability to almost all platforms,
GUI interface using GTK+ library (gvim ),
multi-language supp ort,
smart syntax highlighting and sp ell checking,
supp ort for extended regular expressions,
almost unlimited undo (up to 1000 commands),
mouse supp ort (with and without GUI),
supp ort for compressed files,
high extensibility via plug-ins,

and many others.



Vim Op erating Mo des

Vim mo des of op eration include:
command mode (default, can b e accessed by pressing <Esc>
anytime):

buffer edition commands,
file management and configuration commands (start with :),
shell commands (start with :!),

insert mode (editing a text),
insert (paste) mode (for copying a pre-formatted text from
external sources),
visual mode (selecting characters),
visual line mode (selecting lines).



Ex Commands

By default vim is started in command mo de.

Pressing the <Esc> key always switches to the command mo de.

Commands that start with : are so-called ex commands; they
are usually used for file management, changing vim settings or
displaying help.

After typing : the up and down keys can b e used for history.

% in ex commands denotes currently edited (this) file name.

Most ex commands are full words. If there is no ambiguity they
can b e abbreviated. For example: the command :q is a shortcut
for :quit.



File Menu Commands

Square brackets b elow denote optional parts (full command
name).

For practical reasons short forms are typically used.

:q[uit] – quit (close current window)
:w[rite] – save
:w[rite] file name – save as
:wq – save and quit
:q! – don’t save and quit
:e[dit] file name – edit
:e[dit] % – reload the file



Getting Help

For b etter clarity we use the long form on this slide.

Getting help:

:h[elp] – display help
:help command – help on a vim command

Examples:

:help :q – help on :q command
:help i – help on i command
:help :set – help on :set command
:help number – help on number setting (see the next slide)

For closing a help window press :q



Configuring Vim

We mix b oth short and long settings’ names here (as most vim
users do).

:set – display all settings
:set spell – enable sp ell checking
:set nospell – disable sp ell checking
:set spelllang=pl – change sp ell checker language (to Polish);
:set nu[mber] – enable line numb ering
:set nonu[mber] – disable line numb ering
:set enc=encoding – enco ding for viewing; requires file relo-

ading to take effect
:set fenc=encoding – enco ding for file saving (fileencoding)
:set ts=n – tab size (tabsize)
:set sw=n – indent size (shiftwidth)



Executing Shell Commands

Commands that start with :! are executed by a shell.

Examples:

:!date – what time is it?
:!./% – run this script from the working directory
:!gcc % – compile this file using GNU C compiler
:!man 3 printf – display man page on printf



Entering the Insert (Edition) Mo de

Any of the following commands switches to the insert mo de:

i – insert b efore the cursor
I – insert at the b eginning of the line
a – app end after the cursor
A – app ending at the end of the current line
o – app end (op en) a new line b elow the current line
O – app end (op en) a new line ab ove the current line

For returning to the command mo de press <Esc>.



Basic Editing Commands

x – delete a character
r – replace a character
. – rep eat the latest command
u – undo
Ctrl-r – redo

Numerous commands can b e preceded by a numb er n to b e
executed n times. For example: 4x (delete 4 characters), 2u
(undo twice).



Search Commands

Whenever p ossible vim reuses commands form other utilities.
Searching works exactly the same way is in less:

/pattern – search forward for pattern
?pattern – search backward for pattern
n – next o ccurrence
N – previous o ccurrence

Regular expressions can b e used to sp ecify search patterns.

Sp ecial characters in search patterns must b e escap ed with \ to
protect their literal meaning.

After / or ? up and down cursor keys can b e used for history.

Found items are highlighted. Turn off highlighting by :nohl.



Basic Go To Commands

1G – first line (see: less)
G – last line (see: less)
nG – line numb er n (see: less)
0 – b eginning of the line
^ – first non-blank in the line (see: regexp )
$ – end of the line (see: regexp )
% – matching parenthesis

Instead of the cursor arrows the keys: h, j, k and l can b e used.
Those as well as navigation keys can b e preceded by a numb er.



Other Go To Commands

Some other useful go to commands include:

b – b eginning of the current word
B – b eginning of the current word with punctuation
e – end of the current word
E – end of the current word with punctuation
w – b eginning of the next word
W – b eginning of the next word with punctuation
fn – next o ccurrence of the character n
tn – 1 char b efore next o ccurrence of the character n
Fn – previous o ccurrence of the character n
Tn – 1 char after previous o ccurrence of the character n



Op erations on Blo cks

d – delete (cut) blo ck
dd – delete (cut) current line
y – copy (yank) blo ck
yy – copy (yank) current line
p – paste blo ck (after the cursor)

The commands d and y must b e followed by some go to marker,
for example: d$ , dG , d% etc.

dd and yy may b e preceded by numb ers.

Note that vim ’s clipb oards (registers) are indep endent of
desktop environments’ clipb oard! Use to olbar buttons for
exchange with your desktop.



Op erations on Blo cks – Examples

d$ – delete form the cursor to the end of line
d/sometext – delete to the next o ccurrence of sometext
d% – delete text b etween this and matching pa-

renthesis/brackets
dG – delete all lines from the current one to the

end of file
ddp – swap lines
yy10p – duplicate the current line 10 times
dBd4W – delete four words (including the current one)



Visual and Visual Line Mo des

Blo cks can b e also selected by using visual and visual line mo des:
v – start highlighting characters (enter visual mo de),
V – start highlighting lines (enter visual line mo de).

Text for highlighting is selected by pressing navigation keys
and/or ‘go to’ commands.

Text can b e highlighted by keeping the left mouse button pressed.

In gvim double click allows normal/visual mo de switching.

If some blo ck is highlighted then d and y op erate on this blo ck.



Op erations on Blo cks (2)

∼ – change case
> – shift (indent) shiftwidth right
< – shift (indent) shiftwidth left

By default shiftwidth is equal to tab size, that is: 8.

If shiftwidth is a multiple of tabs size then only tabs are
inserted. Otherwise tabs are complemented with spaces.



String Substitution

:ranges/text1/text2/options
– substitute text1 with text2 in the range according to options

The range may b e sp ecified as:
empty – current line only,
line numb er,
% – whole file.

Allowed options (can b e combined) are:
g – replace all o ccurrences (default: only the first one),
c – confirm each substitution,
i – ignore case for search pattern.



Notes on Copy&Paste

Before copying a formatted text from an external source (using
terminal’s paste) switch to the so-called insert paste mo de:
:set paste
i

Default configuration in our labs disables the copy menu option
in terminal for highlighted text in vim. You may change this
b ehavior by executing:
:set mouse-=a



Other Vim Features

Recording macros.

Custom markers.

Using programming tags.

Working with multiple files.

Defining custom commands.

Defining default actions.

Working with numerous clipb oards (registers).

Spreadsheet mo de.

...and many many others.



Vim as an IDE

:!./% – execute the script b eing editing
:!gcc -Wall -pedantic % – compile the C source b eing edited
:!pdflatex % – compile the LATEX source b eing edited

taglist (http://vim-taglist.sourceforge.net) plug-in
implements source co de browser for vim

http://vim-taglist.sourceforge.net

