Vi IMproved Basics

Marek Kozlowski

‘@)

N\

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

Vi IMproved

m Vim (Vi Improved) is a vi clone with numerous extensions
including:

portability to almost all platforms,

GUI interface using GTK+ library (guvim),
multi-language support,

smart syntax highlighting and spell checking,
support for extended regular expressions,
almost unlimited undo (up to 1000 commands),
mouse support (with and without GUI),
support for compressed files,

high extensibility via plug-ins,

and many others.

Vim Operating Modes

m Vim modes of operation include:
m command mode (default, can be accessed by pressing <Esc>
anytime):
m buffer edition commands,
m file management and configuration commands (start with :),
m shell commands (start with :!),
m insert mode (editing a text),
m nsert (paste) mode (for copying a pre-formatted text from
external sources),
m wvisual mode (selecting characters),
m visual line mode (selecting lines).

m By default vim is started in command mode.
m Pressing the <Esc> key always switches to the command mode.

m Commands that start with : are so-called ez commands; they
are usually used for file management, changing v2m settings or
displaying help.

m After typing : the up and down keys can be used for history.

m , in ez commands denotes currently edited (this) file name.

m Most ez commands are full words. If there is no ambiguity they
can be abbreviated. For example: the command :q is a shortcut
for :quit.

File Menu Commands

m Square brackets below denote optional parts (full command
name).

m For practical reasons short forms are typically used.

:qluit] — quit (close current window)
twlritel — save

:wlrite] file_name — save as

1wq — save and quit

:q! — don’t save and quit
re[dit] file_name —edit

ce[dit] % — reload the file

Getting Help

m For better clarity we use the long form on this slide.
m Getting help:

:h[elp] — display help

:help command — help on a v¢ém command

= Examples:

:help :q — help on :q command

:help i — help on i command

:help :set — help on :set command

:help number - help on number setting (see the next slide)

m For closing a help window press :q

Configuring Vim

m We mix both short and long settings’ names here (as most vimn
users do).

:set
:set
:set
:set
:set
:set
:set

:set
:set
:set

spell
nospell
spelllang=pl
nu [mber]
nonu [mber]
enc=encoding

fenc=encoding
ts=n
sw=n

— display all settings

— enable spell checking

— disable spell checking

— change spell checker language (to Polish);
— enable line numbering

— disable line numbering

— encoding for viewing; requires file relo-
ading to take effect

— encoding for file saving (fileencoding)
— tab size (tabsize)

— indent size (shiftwidth)

Executing Shell Commands

m Commands that start with :! are executed by a shell.

m Examples:

:ldate — what time is it?
/% — run this script from the working directory
tlgee % — compile thzs file using GNU C compiler

:Iman 3 printf - display man page on printf

Entering the Insert (Edition) Mode

m Any of the following commands switches to the insert mode:

— insert before the cursor

— insert at the beginning of the line

— append after the cursor

— appending at the end of the current line

— append (open) a new line below the current line
— append (open) a new line above the current line

O o0 = P H

m For returning to the command mode press <Esc>.

Basic Editing Commands

X — delete a character
r — replace a character

— repeat the latest command
u — undo

Ctrl-r -redo

m Numerous commands can be preceded by a number n to be
executed n times. For example: 4x (delete 4 characters), 2u
(undo twice).

Search Commands

m Whenever possible vim reuses commands form other utilities.
Searching works exactly the same way is in less:

/pattern — search forward for pattern
?pattern — search backward for pattern
n — next occurrence

N — previous occurrence

m Regular expressions can be used to specify search patterns.

m Special characters in search patterns must be escaped with \ to
protect their literal meaning.

m After / or ? up and down cursor keys can be used for history.

m Found items are highlighted. Turn off highlighting by :nohl.

Basic Go To Commands

1G — first line (see: less)

G —last line (see: less)

nG — line number n (see: less)

0 - beginning of the line

~ - first non-blank in the line (see: regezp)
$ - end of the line (see: regexp)

% — matching parenthesis

m Instead of the cursor arrows the keys: h, j, k and 1 can be used.
Those as well as navigation keys can be preceded by a number.

Other Go To Commands

m Some other useful go to commands include:

— beginning of the current word

— beginning of the current word with punctuation

— end of the current word

— end of the current word with punctuation

— beginning of the next word

— beginning of the next word with punctuation

fn - next occurrence of the character n

tn - 1 char before next occurrence of the character n
Fn - previous occurrence of the character n

Tn — 1 char after previous occurrence of the character n

= £ @ o W o

Operations on Blocks

d - delete (cut) block

dd - delete (cut) current line

y —copy (yank) block
)

yy —copy (vank
p — paste block (after the cursor)

current line

m The commands d and y must be followed by some go to marker,
for example: d$, 4G , d% etc.

® dd and yy may be preceded by numbers.

m Note that vim’s clipboards (registers) are independent of
desktop environments’ clipboard! Use toolbar buttons for
exchange with your desktop.

Operations on Blocks — Examples

da$ — delete form the cursor to the end of line

d/sometext — delete to the next occurrence of sometext

d’ — delete text between this and matching pa-
renthesis/brackets

dG — delete all lines from the current one to the
end of file

ddp — swap lines

yy1l0p — duplicate the current line 10 times

dBd4w — delete four words (including the current one)

Visual and Visual Line Modes

m Blocks can be also selected by using visual and visual line modes:
m v — start highlighting characters (enter visual mode),
m V — start highlighting lines (enter visual line mode).
m Text for highlighting is selected by pressing navigation keys
and/or ‘go to’ commands.

Text can be highlighted by keeping the left mouse button pressed.

In guim double click allows normal/visual mode switching.

If some block is highlighted then d and y operate on this block.

Operations on Blocks (2)

~ —change case
> —shift (indent) shiftwidth right
< —shift (indent) shiftwidth left

m By default shiftwidth is equal to tab size, that is: 8.

m If shiftwidth is a multiple of tabs size then only tabs are
inserted. Otherwise tabs are complemented with spaces.

String Substitution

:ranges/textl /text2/options
— substitute tezt! with tezt2 in the range according to options

m The range may be specified as:

m empty — current line only,
® line number,
m /, — whole file.

m Allowed options (can be combined) are:

m g — replace all occurrences (default: only the first one),
m c — confirm each substitution,
®m i — ignore case for search pattern.

Notes on Copy&Paste

m Before copying a formatted text from an external source (using
terminal’s paste) switch to the so-called insert paste mode:
:set paste
i
m Default configuration in our labs disables the copy menu option
in terminal for highlighted text in vim. You may change this
behavior by executing:
:set mouse-=

Other Vim Features

Recording macros.

Custom markers.

Using programming tags.
Working with multiple files.
Defining custom commands.

Defining default actions.

Working with numerous clipboards (registers).

Spreadsheet mode.

...and many many others.

Vim as an IDE

/% — execute the script being editing
:lgcc -Wall -pedantic % — compile the C source being edited
:lpdflatex % — compile the BTEX source being edited

m taglist (http://vim-taglist.sourceforge.net) plug-in
implements source code browser for vim

http://vim-taglist.sourceforge.net

