AWK

Marek Koztowski

@D

7

Faculty of Mathematics and Information Sciences
Warsaw University of Technology

In short: AWK = C for dummies + regular expressions

Analyzes text files (or text streams when used in pipelines).

Text files are seen as databases. Records are identified with lines
and fields — with blank separated words. Default record and field
separators can be redefined (RS and FS variables).

Number of words (fields) in lines (records) can be variable (NF
variable).

Files are processed line by line (record by record).

Running AWK Scripts

1. AWK script inline:

$ awk ’script._here’ file.txt

2. AWK script body moved to a separate file:

$ awk -f script.awk file.txt

3. Standalone AWK script:

$ head -nl1 script.awk
#!/usr/bin/avk -f

$ chmod +x script.awk

$./script.awk file.txt

AWK Script Structure

#!/usr/bin/awk -f

BEGIN {instructions_B}
condition_1 {instructions_1}
condition_2 {instructions_2}
condition_3 {instructions_3}

condition_n {instructions_n}
END {instructions_E}

m BEGIN and END sections are optional.
m Empty condition is substituted with true.

m Omitted instruction block is substituted with {print current
line on stdout}.

AWK Script Processing

if (present (BEGIN)) {instructions_B}

while (read(line))
for (i=1; i<=n; i++)
if (condition_i(line))
instructions_i(line)

if (present(END)) {instructions_E}

Special Variables

m For simplification we use the terms word and line instead of
more general field and record.

® $1,$2, ..., $(NF-1), $NF — 1%, 274 last word on the current
line.

m $0 — the current line,
®m NF — number of words on the current line,
® NR — number of lines processed till now,

m FS, OFS — input/output field separators (by default: any sequence
of blanks),

m RS, ORS — input/output record separators (by default EOL),
®m ARGC, ARGV — same as in C.

Instructions and Operators

AWK instructions are the same as C ones and share the same
syntax. The only C instruction not implemented in AWK is the
switch/case one.

AWK implements all C logical, arithmetical and comparison
operators (including ?7:).

Most C basic arithmetic functions are available and work the
same way in AWK.

AWK implements printf () which uses C syntax and format
modifiers.

AWK offers a slightly different set of (easy) string processing
functions.

m If there is no ambiguity parenthesis can be safely omitted.

m Semicolons are optional, required only for separating instructions
in the same line.

m Variables are not declared/defined before the first use.

m Type casting is performed automagically based on a use context.
m There are no pointers.

m Empty operator concatenates strings.

m Strings can be compared using arithmetic operators (==, !=, <,
<=, > and >=).

m If there is no need for special formatting then print — a simple
alternative to printf can be used.

m Tables are associative; they act as dictionaries.

m Shell-like comment (#) can be used.

Regular Expression Matching Operator

Variable contains a substring described by a regexp

some_variable ~ /some_regexp/

Example: the following conditions are equivalent (thanks to automagical

casting):

somevar>=1000 && somevar<2000
somevar ~ /~1[0-9]1{3}$/

Example: looks strange but it’s perfectly OK

i=32; j=1 # numbers; we don’t declare variables
k=i j # 321 (string operator automagically casts to strings)
kx=2 # 642 (numeric operator casts again to a numeric value)

k ~ /[246]1{3}/

Examples: AWK vs Shell Commands

cat somefile

$ awk ’1’ somefile

head somefile

$ awk ’NR<=10’ somefile

wc -1 somefile
$ awk ’END {print NR}’ somefile

wc -w somefile
$ awk ’BEGIN {i=0} {i+=NF} END {print i}’ somefile

grep -E 'somepattern’ somefile

$ awk ’$0~/somepattern/’ somefile

Example: Associative Tables

sort

#!/usr/bin/awk -f
{tab[NR-1]=$0}

END {
for (i=0;i<NR;i++) # bubble sort
for (j=0;j<NR;j++)
if (tab[j+1]<tabl[jl)
{temp=tab[j]; tab[jl=tab[j+1]; tab[j+1]=temp}
for (i=0;i<NR;i++) print tab[il}

Example: Advanced Field Management

m Field separators can be redefined in the BEGIN section.
m Records can be modified in-place.

Modify /etc/passwd: if a UID contains only odd
numbers then increase GID by 1000

$./script.awk /etc/passwd > newpasswd

#!/usr/bin/avk -f
BEGIN {FS=":"; OFS=":"}

$3~/"[13579]+$/ {$4+=1000} # modify record in-place
1

Reading Script Parameters

$./script.awk somefile.txt one two three ...

#!/usr/bin/awvk -f

BEGIN block that parses parameters given to the script
and removes them from the command line.
BEGIN {
for (i=2; i<ARGC; i++)
params[i-2] = ARGV[il]
par_nr=ARGC-2
ARGC=2}

