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Streszczenie

W ponizszej rozprawie doktorskiej zostata przedstawiona problematyka ztej specyfikacji
modelu regresji binarnej. Prace mozemy podzieli¢ zasadniczo na 4 czesci. W pierwszej
czesei, ktora stanowi Rozdzial [1) zostal zawarty ogdlny opis tego problemu oraz przyktady
sytuacji, w ktorych zta specyfikacja moze wystapic.

W drugiej cze$ci omowiono wlasnosci wektora wspotezynnikow teoretycznych B* w
dopasowanym modelu - wyniki zawarte w tej cze$ci stanowia uogélnienie wynikow zawartych
w pracach Kubkowski, Mielniczuk (2017) (Rozdzial [2)) oraz Kubkowski, Mielniczuk (2018)
(Rozdzial |3)) do przypadku wypuktej funkcji straty. W Rozdziale [2| zbadano wlasnosci
nosnika s* wektora wspotczynnikéw teoretycznych w dopasowanym modelu w przypadku
spelnienia warunku liniowych regresji i w przypadku niespelnienia tego warunku. W
Rozdziale |3| jest rozwazany ponadto addytywny model binarny.

Trzecia czes¢, skladajaca si¢ z Rozdzialéw [4] i[5 skupia si¢ na estymacji wektora 8*
oraz zbioru s* dla losowych predyktoréw subgaussowskich (takze w przypadku, gdy liczba
predyktoréw jest wieksza od liczby obserwacji). W Rozdziale |4] pokazano wyniki dotyczace
metody Lasso oparte o idee zawarte w pracach Fan i in. (2014a) oraz Bithlmann, van de Geer
(2011). W Rozdziale [5| oméwiono minimalizacje Uogdlnionego Kryterium Informacyjnego
(GIC) w pewnej rodzinie M, do ktorej nalezy s*. W Rozdziale [5| przedstawiono takze
procedure dwustopniowa SS (Screening - Selection) stuzaca do znajdowania estymatora
s*, ktéra opiera sie w swoim dziataniu o metode Lasso (pierwszy etap) i minimalizacje
GIC (drugi etap). W Rozdziale [5| zaprezentowano takze rezultaty teoretyczne dotyczace
jej dziatania.

Czwarta czesé (Rozdziat @ zawiera opisy i analize eksperymentow numerycznych, w
ktorych zbadano procedury bedace modyfikacjami procedury SS dla préby losowej oraz
zaprezentowano procedure numerycznego przyblizenia 8% i sprawdzono numerycznie jej

dzialanie.

Stowa kluczowe: zla specyfikacja, binarny model regresyjny, regresja logistyczna, Lasso,
Uogdlnione Kryterium Informacyjne, zbiory aktywnych predyktoréw, selekcja zmiennych,

regresja wysoko-wymiarowa.






Abstract

In this doctoral dissertation problem of misspecification of binary regression model is
discussed. This dissertation consists of four parts. In the first part, consisting of Chapter
1, general description of this problem and examples of situations, where misspecification
occurs, are given.

In the second part, we discuss properties of vector of theoretical coefficients 8% in
fitted model. Results presented in this part generalize results contained in Kubkowski,
Mielniczuk (2017) (Chapter [2) and Kubkowski, Mielniczuk (2018) (Chapter |3)) to the case
of convex loss function. In Chapter [2| we study properties of support s* of 8% in fitted
model in the case when linear regressions condition is satisfied and in the case when this
condition is not satisfied. We consider additionally additive binary model in Chapter

In third part, consisting of Chapters [4 and [, we focus on estimation of vector 8* and
set s* for random subgaussian predictors (also in the case when number of predictors is
greater than number of observations). In Chapter [4] several novel results concerning Lasso
are shown. The results are based on ideas contained in papers of Fan et al (2014a) and
Bithlmann, van de Geer (2011). In Chapter [5| minimization of Generalized Information
Criterion over family M (to which s* belongs) is discussed. In Chapter |5 two-stage SS
(Screening - Selection) procedure of finding estimator of s* is presented and its selection
consistency is discussed. The procedure consists of screening based on Lasso in the
first stage and GIC minimization in the second stage. In Chapter [5| theoretical results
concerning SS procedure are presented.

Fourth part (Chapter @ contains description and analysis of numerical experiments,
in which we study properties of procedures which are modifications of SS procedure. We
also present in this chapter procedure approximating 8* numerically and we check its

performance.

Key words: misspecification, binary regression model, logistic regression, Lasso,
Generalized Information Criterion, sets of active predictors, variable selection,

high-dimensional regression.
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Notation and conventions

Random variables are denoted by big letters, e.g. X1, X5, Y, Z, ...,

vectors are additionally denoted in bold font, e.g. X;,X5,Y,Z, ...,

observations of random variables are denoted in small font, e.g. xy,29,y, 2, .. .,
observations of random vectors are additionally denoted in bold font, e.g. x1,X5,y, 2, . ..
0, - p x 1 vector of zeros,

O,xm - p X m matrix of zeros,

N - set of natural numbers (including 0), N; = N\ {0},

Df - gradient 2of function f,

O(z) = j e\;;zﬂ dzx for z € R - cdf of N(0,1) distribution,

2

o(x) = e\;;zﬂ for x € R - pdf of (0, 1) distribution,

B - vector of true values of parameters,

* . .
B* - projection vector,

B, - Lasso estimator of 8%,

»»

(w) - ML estimator calculated on model w C {1,...,p},

v - vector v with omitted first coordinate,

Ve = (vj,,...,0;)7 -subvector of v € RP and 7 = {jy,...,jx} C{1,...,p}, (vg =0),
X, = XUi-dk) - submatrix of X € R™P with columns indexed by elements of 7 =
{1k € {1 ph (X = 0,),

s - set of true active predictors,

s* - set of active predictors corresponding to 8%,

q,¢™ -response function,

qr(r) = (1 + exp(—2z))~!, z € R - logistic function,

I(A) - characteristic function of set A,

ar =al(a>0)and a_ =al(a <0) for a € R,

|w| - cardinality of set w.
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Chapter 1

Introduction

Letn € Ny p, e N (X)Y), (X, Y1),...,(X,,Y,) ~P =P, beii.d. random variables,
(X,Y) € Rt x {0,1}. We consider a general binary model such that a conditional
distribution of Y given X is given by

P(Y = 1|X =x) = ¢"(x), (1.1)
where X = (Xg, X1, ..., X,,)7 is a column vector of predictors, Xo = 1 and ¢/™: R —
[0,1] is a certain unknown response function. Note that variable X is associated with

intercept in the regression model.

Let © be a set of possible parameter values,
I: xR x {0,1} - R
be a loss function with R : © — R associated risk function given by
R(b) =Ei(b,X,Y). (1.2)
Object of main interest here is the minimizer of the risk:
B* = B, = argmin R(b). (1.3)
beO
Consider set of active predictors corresponding to B

s'={ie{l,...,p.}: Ixe R 2i e Ry e {0,1}: (8", x,y) #1(B", x(;),y)}, (1.4)

T is vector x with

where x = (1,21,...,24,...,2,,)" and xzi) = (Lzy,...,2},...,2p,)
replaced (i + 1)-th coordinate corresponding to z; by «. To discuss the properties of s*
we have to assume that 8" exists and is uniquely defined. Conditions for this are given in
Appendix for losses of the form I(b,x,7) = p(b'x, y).

Analogously, we define the following set of true active predictors:
s={ic{l,....,po}: xR 2/ cR: ¢™(x) # q(”)(x/(i))}. (1.5)
We now discuss the most important case of the above situation, when the loss function
is associated with a fitted model. Namely, assume that we want to find the projection of

the model on the family of parametric models {m(x,b): b € O} (in this case 8" is a

parameter corresponding to the projection) characterized by equation:

P(Y =1|X =x) = 7(x,b),
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where 7: RP"T! x © — [0, 1]. We note that the last equality can be written as:
P(Y = y|X = x) = 7(x,b)¥(1 — n(x,b)) .
If for some B € O 7(x, 8) = ¢™(x) Px - a.e. and associated loss function is given as
—log L(b,x,y) = —InPu(Y =y|X =x) = —yIn(n(x,b)) — (1 —y) In(1 — 7(x, b))

then the model is well specified. More specifically, we have:

Definition 1.1. We call binary model with loss function | well specified (in a general
sense) with respect to the family of parametric binary models {Py(Y = 1| X = x) = 7(x, b) },

where 7: RP» T x © — [0,1] if it satisfies the following two conditions:

1. Forallz e R b e O,y € {0,1} we have:

2. There exists vector B € © that for all x € RP1: ¢ (z) = (=, B).

We say that binary model with loss function [ is misspecified (in a general sense) with
respect to the family of parametric binary models {P,(Y = 1|X = x) = w(x, b)}, if it is
not well specified with respect to this family.

We note in particular that if ¢(x) is itself a member of parametric family {7 (x,b) :
b € 0}, ie. ¢(x) = 7(x,B) for some B € © and equality I(b,x,y) = —log L(b,x,y)
does not hold for all b € ©, then binary model is misspecified (in a general sense) with
respect to parametric family {7 (x,b) : b € ©}. In this case we simply call binary model
misspecified. Thus the model corresponding to data generating mechanism is misspecified
or well specified. We note that in Kubkowski and Mielniczuk! (2017) different terminology
was used. We give examples of misspecified models in Section [1.2

In addition to the general model in ([I.1)) we consider two specific setups in this

dissertation:

e semiparametric setup (8 = (8o, B1, - - -, Bp,)T € RPTL ¢ R — R) - see Chapter
P(Y = 1|X = x) = ¢ (x7B), (1.6)
(abusing notation slightly we will denote by ¢™ a function satisfying or )
e generalized semiparametric setup (k € N, B,...,8, € R+ ¢ RF 5 R) - see
Chapter [3}
P(Y = 1|X =x) = ¢"(78,,...,x'8,). (1.7)

We note that semiparametric setup is equivalent in the binary case to the model often
considered in literature (see e.g. [Li and Duan| (1989)): Y = g(87 X, ¢) for some function g
and ¢ independent of X, what is shown in the Remark [2.8] We note that the construction
discussed in the proof can be easily generalized to the case of generalized semiparametric

setup.



In this thesis we consider regression type loss of the form I(b,x,y) = p(b’x, %), where
be©® =R p: R x{0,1} — R. In case of such loss we observe that

s*={ie{l,....,pn}: B #0}
(when p is not degenerate in the sense that p(c,y) Z p(y)).

For semiparametric and generalized semiparametric setup we note also that we have:
s={ie{L,....p}: B #0},
s={ie{l,....p,}: g€ {1,....k}: Bj #0},
respectively (assuming ¢{™ is nondegenerate function in similar sense as p).

Remark 1.2. In this dissertation we consider also model without intercept, when © =

RP2HL In this case we define:

B* = argmin R((0, b")T). (1.8)

beRPn
Proofs of all theorems will be given for the model with intercept (where B* is given by

Equation ) unless it is specified differently.

One of the main problems considered in this work is the interplay between sets s and
s*. We show that set s* is a subset of set s (or even equal to it) in the semiparametric
setup under linear regressions condition (see Chapter . Moreover, we provide examples
that when linear regressions assumption is violated, the relation between sets s and s*
can be arbitrary. The results for these relations given here are mainly for semiparametric
setup.

Next important problem considered here is the relation between vectors 8* and 8 in
semiparametric setup (or between 8" and B, ..., B, in generalized semiparametric setup).
Under linear regressions condition it turns out that 8* is proportional to 8 (or a linear
combination of 3, ..., B;) - see Chapter . The last question, which we will try to answer
is how to select the set which approximates s* when we are given i.i.d. random sample
(X1, Y1),...,(X,,Y,) specified above. We introduce an appropriate procedure, establish
its properties for subgaussian predictors and perform numerical experiments to check its
effectiveness - see Chapters . Moreover, we show in numerical experiments (Chapter
@ that when the linear regressions condition is satisfied, set s* can be selected correctly
with high probability even for loss functions which are not associated with any particular
model (for example Huber loss).

Properties of inferential procedures under misspecification when family of logistic
models {gz(x’b)} for b € RP™ is fitted (qr(z) = (1 +e7%)~! for z € R), serves as a main

example in the dissertation.
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1.1. Basic loss functions

In this chapter we give definitions of several loss functions, which are usually considered

in binary misspecification problem.

Logistic loss is the main loss function of our interest corresponding to logistic regression

fit:

where pjoq(b,y) = —yb + ln(l - eb>. This loss equals —log P(Y = y|X = x) in the logistic

regression model. We note that py,(-,y) is non-negative, differentiable, strictly convex

liog(b,x,y) = —yx'b + ln(l + exp(be>) = plog(be,y),

function for all y.

pprob(b1Y)

4.__
3. __________
2 ______________________________________________________________
l.___
0% | ;

-4 -2 0 2 4

b
- y= 0 - y= 1
Figure 1.1: Function p for logistic loss
L e e =
7ottt e s =
R S R N S S
o] SR - A0 SRR I (2 S R
o0t ek e SR
-4 -2 0 2 4
b

= y:o = y:l

Figure 1.2: Function p for probit loss
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Probit loss is a loss related to probit regression:
lprob(ba X, y) =Y 1n<(I)(XTb)) - (1 - y) hl(l - (I)(XTb)) = pprob(XTba y)> (110)

where pprop(b,y) = —yIn(®(b)) — (1 — y) In(1 — (b)) and:
b 2

@(b)::(/‘i/;%dx.

We note that p,.(+,y) is non-negative, differentiable, strictly convex function for all y
(for the proof of strict convexity see Remark [A.14)).

Quadratic (or squared) loss is a loss related to the linear regression:

1
llin(bax7 y) = §<y - XTb)Q = plin(XTbay)v (]‘]‘1)

where
1 2
m&@w=§@—®-

It turns out that for quadratic loss we can give explicit formula for 8* (see (2.16)). We

also note that py,(+,y) is non-negative, differentiable, strictly convex function for all y.

Piin(b,y)

- y:O = y:]_

Figure 1.3: Function p for quadratic loss

Huber loss is a loss related to Huber regression:

(y*XTb)2 —XTb < 5
Bbxy) =] 7 Jy =Bl <

= pu(x'b,y), (1.12)
ly —xTb| — %5 ly —xTb| > §

where § > 0 and
o ly—bl <o
ly—bl— 26 [y—bl>5

We note that p3 (-, y) is differentiable, Lipschitz, convex (but not strictly convex) function

for all y.
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Quantile loss is related to quantile regression:
T T T T (]
l7(b,x,y) = (y —x"b)(r = I(y —x b <0)) = pr(x' b,y), (1.13)
where 7 € (0,1) and
pg(b,y) = (y = b)(7 — I(y — b <0)).
Note that for 7 = 1/2 we have [7(b,x,y) = |y — x"b|/2. We observe that p(-,y) is

Lipschitz, convex function for all y. However, p7(-,y) is not differentiable.

T T T T T T
d = A====== t=-————— t=-=——— fF=-—-—-—--- r=--
I‘\' 1 1 1 1 1 1 1 1
1 . 1 1 1 1 1 1 1 1
-_-I----\*\- il B L b B b B T==-==="= T==—==-=-- re=—-=-=-=-- r=-=
1 | 1 1 1 1 1 1
s ™ | | | | | | 4
3+--m=m---- (it el am----- A------ T------ T------ T--—--~-r--
1 AN 1 o 1 1 1 1 1 1 P 1
1 | S 1 1 1 1 [P 1
g i S e " Sty Bt Bty B ATTTTTTETT
- 1 1 1 1
1 1 1 z
O 2+-----= B e e TR EEY sy T Py
[ o _I 1 1
_______ O N s JEpp > g S,
Q -l . 5
1 1
M et S demmeemd e o b m— - = b - -L -
. o Lo
. T b e ol T - ,_D..-_'_E'v___,g.:_ﬁ'.__
' 1 1 g '
1 1 4 1 1
O--——I ------- 1 P R S, Fo——— == --
' L L L 1 L L L '

- y=0tau=05 - y=0tau=0.2 == y=0tau=0.8
< y=1ltau=05 -~ y=1tau=0.2 == y=1tau=0.8

Figure 1.5: Function p for quantile loss

1.2. Examples of misspecified models

In this section we provide examples of well specified and misspecified models in order

to provide better understanding of the problem presented in this dissertation.
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1.2. EXAMPLES OF MISSPECIFIED MODELS

Example 1.3. Let X ~ N(0,1), © = R?,

T 2
e 2

:_OO \ 2T

Observe that conditional distribution of Y given X corresponds to the probit model. Now we

P(Y =1|X =z) = ®(x) dt.

consider the logistic loss function. Then the model is misspecified, as for all b= (by, b))" €
© as we have ®(x) # qr(bo + biz).

Example 1.4. Let X1, Xy be independent random variables, where X, ~ N(0,1), Xy ~
Bern(0.5) and let

1
P(Y =1|X) = 21, Xo = x9) = qu(x1,22) =

1+ e 2122’
We consider logistic loss function. Then the model with predictors X, and X5 is well

specified, as for
b= (bo,b1,b2)" = (0,1,1)"

we have

q1(x1,22) = qr(bo + bixy + bazs).

However, when we omit variable X5, then we obtain:
]P)(Y = 1|X1 = iL'l) = P(Y = 1’X1 = xl,X2 = 1)]P)<X2 = 1‘X1 = .1'1)
—f-]P)(Y = 1|X1 = Zlfl,Xg = _]_)]P)<X2 = —1|X1 = Il)
1 1 1 1
=S T el TS T e
2 14em 2 14emfl
This means that model with only predictor X, is misspecified, as for all b= (by,b;)T € R?
we have g2(1) # qr(bo + bi71).
Note that this example is a special case of Example[1.6 below.

= CI2($1)-

Example 1.5. Let X1, Xy be independent non-degenerate random variables and assume
X1 <0,
P(X, = 1) = B(X; = 1) = .
2
We consider logistic loss function. Then model containing X, and X5 as predictors is

P(Y =1|1X) =21, Xo = x2) = q(x1,22) = I(xe =1).

misspecified whereas model with only Xy as predictor will be well specified as we have:
P(Y =1|X; =x1) =P(Y = 1|X; = 21, Xo = 1)P(Xe = 1| X = 29)
1
Example 1.6. Let T € {1,...,k} and X € R? be independent random variables and let
forie{l,....k} and B, € RP:

+]P)(Y = 1|X1 = xl,Xg = —1)]P)(X2 = —1’X1 = .ﬁC‘l) =
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where Y% p; = 1. We consider the following additive model:

k
PY =1|X=2) =Y P(Y = 1|[X=a,T = i)P(T = i| X = 2)
=1

= Zk: Qi(ﬁa)w)P(T =1i) = zk:pi%(ﬁz)@-

We consider logistic loss function. l_I/%/e show for specific k:,lq_,-,lﬁ(i) and p; that the introduced
model is misspecified, if there exists zy € R such that BT @y > 0 and supp X D {cxy €
RP: ceR}. Leteg k=2, pr=1-p, po=p,p€(0,1)\{0.5}, By =B, Bp =0,
B €RP g =qs=qp. Then:

P(Y =1|X=x) = (1 — p)qr.(B ) + pqr(—B ). (1.14)
We have additionally

PY=1X=2T=1)=q¢(f 2, PY=1X=zT=2)=q(-8"2).

This means that when T = 2 then the mislabelling of Y class (from 0 to 1 and vice versa)
occurs. The probability of this event is P(T = 2) = p. Now, we observe that in view of

assumed condition:

lim (pqL(,BT(:Boc)) +(1-— p)QL(_,BT(iBOC)>) =p¢ {07 ;7 1} :

c——400

However, we have for any v € RP:
1, ifyTxy >0
lim qr(v" (zoc)) =

c—4-00 %’ Zf ’YTwO =0-
0, ify'm<0

Therefore we have shown that the model with logistic loss is misspecified.



Chapter 2

Properties of the projection in the

semiparametric model

In this chapter we consider semiparametric binary model:

B(Y = 1|X = x) = ¢ (x" B). (2.1)
where x, 8 € © = RP»*1. To simplify the considerations, we assume that ¢ = ¢: R —
0,1], p, = p € N, © = RPL. Because our focus will be on non-constant predictors and not
on the intercept, we introduce the following notation: X = (X, XT)T, X =(Xy,..., X)7,
Xo=1,b=(b,....,0)", b = (bo,f)T)T (and we define B analogously as b). If the
appropriate moments of X are finite, we will write EX = u, VarX = X.

One of the most important assumptions considered in this chapter is linear regressions

condition:

(LRC(b)) 3hy = ho(b) € R*,h; = h;(b) e R?: E(X[b’ X) =hy +hb X,

Condition m(b) is satisfied for every b € RP*! with b # 0, by elliptically contoured
distributions of X having finite second moment (see Section in Appendix). Moreover, if
the condition M(b) is satisfied for every b € RP*!| then X follows elliptically contoured
distribution (see Theorem in Appendix). Note that normal distribution belongs to
the family of elliptically contoured distributions (see Remark in Appendix).

We will show in the Theorem [2.6] that the condition [LRC|(8) is essential in the proof of
equality B~ = nf for some 1 € R. Condition mw*) in the case of logistic (or quadratic)
loss below allows us to represent 8* as some function of 8 even in the situation when some
relevant predictors are omitted in the fitted logistic (or linear) model - see Sections
and 2.3

According to a discussion in Chapter [1| model is misspecified when associated loss
function is not equal to minus log-likelihood of this model. Such a case will be investigated
in Chapter 2| for a general loss defined in as well as for specific cases when [ is logistic,
probit and quadratic loss.

In this chapter we assume throughout that loss function is of the form:

I(b,x,y) = p(b"x,y), (2.2)
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where p: R x {0,1} — R is some function, b,x € RP*! y € {0,1}. In almost all theorems
below (except Theorem we assume that p(-,y) is convex (or strictly convex) function
for all y. Differentiability of p(-,y) for all y along with is used in Sections 2.4
to show the form of 8 in the fitted model or to show interplay between 3;,, obtained as
minimizer of logistic risk and fj;, obtained as minimizer of quadratic risk. If p(-,y) is
differentiable for all y, we will denote partial derivative of p with respect to first argument
by %.

Another important assumption related to uniqueness of 8* is linear non-degenerability
of X:

(LND) P(b"X = 0) < 1 for all b € RP*'\ {0,,1}.

It follows from the Lemma [A.44] that if is satisfied and ¢ is strictly increasing
then we obtain Cov(87X,Y) > 0.

Observe that if 8" exists in , then uniqueness of B* follows easily from strict
convexity of p(-,y) for all y, and condition that for all b € R?*: E|p(b"X,Y)| < oo
because risk function R defined in is then strictly convex and thus it has unique
minimum (see Remark in Appendix). Note that when assumption is not satisfied
for a certain v € RP™ and B* is a minimizer of risk function R, then 8* + av is also
minimizer of R for a € R as R(b + av) = R(b) for every b € RF*!. Corollary in the

Appendix gives sufficient conditions for existence of 8*, however it only works for loss

functions of a special form (like logistic and quadratic loss - see Remarks |A.12 and |A.13)).

Conditions for existence of 8* for e.g. Huber loss and quantile loss remain unknown. Thus

existence of 8" will be assumed in this chapter in Sections 2.3] and [2.5]
Condition P(Y = 1|X = x) € (0,1) Px a.e. (assumed in Remark |A.12)) is crucial for

the existence of 8* for logistic loss as it is shown in Example [2.40]

Definition 2.1. We define the following sets of active predictors:
s={ie{l,....,p}: B # 0} =suppB, (2.3)
s*={ie{l,...,p}: B #0} =suppB . (2.4)
Note that intercept is not included in s and s*.

Below we give a few results which also follow from the theorems for the generalized

semiparametric setup (see Chapter |3)).

10
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2.1. General loss

The following theorem is a generalization of Theorem 3.1 in Kubkowski and Mielniczuk
(2017) which was proved there for logistic loss only. Theorem states that when inactive
predictors X, in binary model are such that X, and X, — AX; are independent, where
X are remaining predictors and A is a linear transform, then minimizer 8* of the risk in
the model containing X; and X, is obtained from the minimizer (5, B:T) of the risk in
the model containing only X; by appending zeroes to the latter. It is easily seen that the
result fails if X; and X, are dependent (see Example . Example m shows possible
application of Theorem

Theorem 2.2. Let X be a random vector such that E||X]||, < co and assume that
E|p(b" X,Y)| < oo for all b € RP*L. Let X = (X,,X,)T, where X; = (X1,...,X;)7,
X, = (X1, Xp)T, B = (BF{,B;F)T, where B, € RI, B, € RP~I. Assume that B, = 0,_;
and that X, and Xy — AX, are independent for a certain A € RW=D%i_ [f there exists
(Bs, B:T)T such that:

(Bs, BiT)T = argmin Ep(by + blTXh Y), (2.5)

(bo,bT)TeRI+1

then B* defined in Equation exists and:
* « AT
B = (507131 70;—]‘)T-
Moreover, if we assume and strict convezity of p(-,y) for all y, then B* is unique.
Proof. Let h(by,bT,bl) = R(b) = Ep(by + bTX; + bI'X,,Y).
Note that h is well specified as E|p(b?X,Y)| < oo for all b € RP*!. Equation (2.5)) is

equivalent to h(bo, b{,0_) > h(f;, BTT, 07_,) for all (by, by )" € RI*!. Now, by condition-

ing on X, simple algebraic transformations, conditioning on X, — AX; and independence

of X; and X, — AX, (last equality) we obtain:
h(by, bT, bL) = Ep(by + bTX; + bl X,, V) = E(E(p(by + b X, 4+ blX,, YV)|X))
= Ep(by +b?' X, +biX,, 1)¢(87X)
+ Ep(by + bTX; + bIX,,0)(1 — ¢(87X))
= E(p((bo + bY (X5 — AX))) + (by + ATby) Xy, 1)g(50 + B, X1))
+E(p((bo + bj (Xa — AXy)) + (b + ATbo) "Xy, 0)(1 = q(By + B, X1))
_ E(E(p((bo +bI(Xy — AX))) + (by + ATby)7X,, 1)

X ql+ BIX) Xz - AX))
+ E(E(p((bo + bl (X, — AX,)) + (by + ATby)"X,0)

< (1= ql + B/ X)) Xz — AKy) )

11
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= Eh(by + b] (X, — AX,),b] +bIA 07 ) > h(5;, By .00 ,). (2.6)
This means that point 8* = (5, BIT, ngj) is a global minimum of h. From this the first
part of the theorem follows. To prove the second part, we use Lemma to see that h is

strictly convex. This means that 8" is unique in view of strict convexity of h. O

Remark 2.3. If we fit the model without intercept (see Definition @ in the Theorem
we need additionally to assume EX = 0, and the proof will be analogous (in the last
step before inequality in (@ we apply Jensen’s inequality):

» ¥p—y
Z h<ng(X2 - AX1)7 b’{ + bgAv Og‘—j) = h(07 b? + bgAa 0;1;—]') Z h<0a BiTv OZ‘—j)'

Remark 2.4. Note that Theorem holds in particular when X, and X, are independent.

Corollary 2.5. If we additionally assume that 3; # 0 for all i € {1,...,j}, that is
s=A{1,...,j} then s* C s follows from Theorem . Moreover, we have () # s* C s, if
we assume additionally that g(x) € (0,1) for z € R (see Remark[2.18).

The following theorem states that under M(,B) direction of a B  is the same as
direction of B. This allows us to recover set s from the set s*. This property was observed
for the first time in Brillinger (1982), where X follows normal distribution and 8* is a
minimizer of quadratic risk and for loss of the form —yIn7(x,b) — (1 —y)In(1 — 7(x, b)),
where 7(x,b) € (0,1) in [Ruud| (1983). The result below is a generalisation of reasoning
shown in Section 3 in Ruud (1983)), where the assumptions were not given explicitely. For
review of similar results we refer to Kubkowski and Mielniczuk (2017). Another proof
for Y = g(B8"X, ¢), where € and X are independent, can be found in [Li and Duan| (1989)
(see also Remark . Remark shows that semiparametric setup is equivalent to
Y = g(B"X, ¢) considered in |Li and Duan| (1989) and thus our proof can be considered as
certain modification of the proof in [Li and Duan| (1989)). In our version, we do not need to

el ~T'G
use £ when conditioning expected loss on 8~ X.

Theorem 2.6. Let X be a random vector such that E||X]|y < oo, p(-,y) is convex and
differentiable function for all y. Assume (,3) and that for all b € RP™ we have
E|p(b" X,Y)| < co. If exist Bi,n € R such that:

(8,m) = argmin Ep(by + B8’ X,Y), (2.7)
(bo,c)€ERXR

then B* defined in exists and:
* * T
B = (6077]18 )T'
Moreover, if we assume and strict convezity of p(-,y) for all y, then B* is unique.
Proof. Let r € R? ¢ € R and b = 8- ¢+ r. Then loss [ can be written as:

I(b,X,Y) = p(bo + cB' X +17X,Y) =: h(bo, c, ).

12
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We define function J(by, ¢, r) = Eh(by, ¢, r). J is well defined in view of moment assumptions
about p. We observe that (2.7) is equivalent to: J(55,1,0,) < J(by, ¢, 0,) for every by € R
and ¢ € R. For the first part of the theorem, we need only to show that

(B5,m,0,) = argmin  J(by,c,r). (2.8)
(bo,c,r) ERXRXRP

Now, by conditioning on X and then on BTX, from [LRC|(3), Jensen’s inequality and 1)

we obtain:

J(bg,c,r) =Ep(by + CBTX +1r'X,Y)

= E(E(p(by + cB' X +r'X,Y)|X))

= Ep(by + B’ X + 17X, 1)q(8"X)
+Ep(by + B X +17X,0)(1 — ¢(87X))

= E(E(p(by + cB' X +17X,1)|B" X)q(87X))
+E(E(p(bo + B X + 17X, 0)[3"X)(1 - ¢(87X)))

> Ep(E(by + B X +1"X|B' X), 1)q(87X)
+Ep(E(by + ¢B' X +17X|B" X),0)(1 - ¢(87X))

= Ep(E(by + cB' X +r'X|B" X),Y)

= Ep(b + cB' X + 17 (ho + h, B X),Y)

= J(bp +r"hg,c+hlr,0,) > J(35,1,0,).

This means that point (55,7, 0,) is a global minimum of J. Hence is satisfied, B*

exists and equals (g, nBT)T. Uniqueness of 8* is obtained by using similar reasoning as
in the proof of the Theorem [2.2] O

Remark 2.7. Let Y = g(87 X, €), where ¢ and X are independent and g is some function.
Original proof of Theorem 2.1 Li and Duan (1989) is the following (we use Jensen’s

inequality and[LR(B)):
~T ~ ~T ~
Ep(h + b X, V) = E(E(p(bn + b X, g(B7 X, ¢)|87 X, ))
> Ep(by + E(b' X|87X,e),Y) =Ep(by + b ho + b" B’ X,Y).
Remark 2.8. Let Y € {0,1}, X € RP*L. Then the following conditions are equivalent:

1. There exists ¢ : R — [0,1] - such that P(Y = 1|X = x) = ¢(B" ).

2. There exist g: R* — {0,1} and random variable € € R independent of X such that

y £ g(ﬁTX, £).

Proof. Part [1] follows from part [2| as we have from independence of X and ¢ for x € RP+!L:
P(Y = 1|X =x) = P(9(B7X,¢) = 1|X = x) = Eg(8"x, ).

13
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This means that ¢(87x) := Eg(8”x, ) satisfies part .
Part [2] is implied by part [1} because we take ¢ ~ U[0,1] independent of X, i.e.
P(e <t) =t for t € [0,1] and then we have for x € RPH!:

P(I(q(B"X) > ¢) = 1|X =x) =P(¢(8"x) > &) = ¢(B'x) =P(Y = 1|X = x).
Hence we obtain Y < I(q(BTX) > ) =: g(BTX, ¢). O

Corollaries [2.92.11] allow us to recover set s from s* for logistic, quadratic and probit
loss granted that 7 introduced in Theorem [2.6] is nonzero.

Corollary 2.9. If | is logistic loss, E||X]]s < oo, ¢(B7X) € (0,1) Px a.e., and
(,8) holds then B* = (85, nB")T for some 35, n € R. Moreover s* = s or s* = ).

Proof. From Remark we obtain that solution of ([2.7)) exists and moment assumptions
of Theorem [2.6] are satisfied. Thus the conclusion follows from Theorem 2.6l O

Analogously, for quadratic and probit losses we obtain in view of Theorem [2.6| (and a
note above that theorem) and Remarks A 14

Corollary 2.10. If [ is quadratic loss, E||X||2 < oo, & > 0 and (B) holds then
B* = (Bg,nB")T for some B35,n € R. Moreover s* = s or s* = ().

Corollary 2.11. If [ is probit loss, IEHXH% <00, 2>0, q(B'X) €(0,1) Px a.e. and
(,B) holds then B* = (85, 1B")T for some 3%, n € R. Moreover s* = s or s* = .

In the case of the model without intercept, Theorem has the following form (with

additional assumption EX = 0,) and the proof is analogous:

Theorem 2.12. Let X be a random vector such that E||X]||, < oo, EX = 0,, p(-,y) is
convex and differentiable function for all y. Assume (B} and that for all b € RPTL we
have E|p(b" X,Y)| < co. If there exists 1 € R such that:
7 = arg min ]Ep(cBTX, Y),
then B* defined in @ exrists and: -
B*=np.
Moreover, if we assume and strict convezity of p(-,y) for all y, then B* is unique.

Theorem below states conditions under which operations of taking derivative and

expectation can be interchanged in
D(ER(b))p=p- = 0.
Theorem 2.13. Assume that p(-,y) is differentiable for all y,

Vb e RFL: Elp(b" X,Y)| < oo,

< h(XY)

2

Jh: RPT x {0,1} — R Vb € RPT!: ||(;Z(bTX, Y)X

14
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where Eh(X,Y) < oo and B* exists. Then B* is solution to normal equations:

E <g’;(bTX, Y)X> =0. (2.9)

Furthermore, if p(-,y) is convex function for all y and is satisfied for b = 8%, then

B* is a minimizer of risk function R.

In the case of logistic loss, equality (2.9) reduces further to normal equations for fitting

logistic regression:

E(qz(B7X) —Y)X =0. (2.10)
By conditioning on X in , we obtain:
E(q1(8°7X) — g(87X))X = 0. (2.11)
In the model with intercept we obtain additionally (EY = Eq. (8" X)):
Cov(X,Y) = Cov(X, ¢(BTX)) = Cov(X, q1(87X)). (2.12)

In the case of probit loss, expression ([2.9)) reduces to:
¢(8"7X)

(‘b(ﬂ*TX)(l - ®(87X))
By conditioning on X in (2.13)), we obtain:

¢(8X) T T _

For quadratic loss we do not need to assume existence of 8% - we can replace this
assumption by E||X]|3 < oo and ¥ > 0. For this loss reduces to:
E(X'B;, — V)X =0. (2.15)
This means that (after noting that from E||X]||3 < oo and ¥ > 0 it follows that EXX”
exists and is invertible as a positive definite matrix):

Bi, = (EXX")'EY X = (EXX")'Eq(87X)X. (2.16)

(®(BX) — Y)X) =0. (2.13)

Normal equations for Huber loss have more complicated form:

SE(XXT 85— YX)I(Y ~ XT3 <)

—EXsgn(Y — XTBi)I(|Y — XTB%4| >0)=0. (2.17)

Lemma 2.14. Let X be random wvector such that E||X||3 < oo with EX = p and
Var X = X > 0. If X satisfies (,8) with hy and hy and B # 0, then we have:

3B
h = —— 2.18
1 BTEB ( )
- 268"
(I —hBYu=|1— . 2.19
ho = (I, — B )p (p BTEB)M (2.19)
Proof. Observe that

Cov(X, 8" X) = Cov(E(X|B' X),E(8' X|B' X)) + ECov(X, B X|B'X)  (2.20)
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= Cov(E(X|B"X), B X) +0, = Cov(hy + 3" X, 3" X).  (2.21)

As hy and h; are deterministic, we have

Cov(hy + h,8' X, 8" X) = hy Var(8' X) = h; 3’ 3. (2.22)
Because Cov(X, BTX) = ¥4, it follows from and 1' that
$B=hp =B
and thus h; = 28 (BTEB)_I. Formula for hg follows after taking expected values of both
sides of [LRC|8) and using formula for h;. O

Remark 2.15. Note that B by = 1 and B hy = 0.

2.2. Logistic loss

In this section we assume that function p defined in is given by the formula:
p(b,y) = —by + In(1 + exp(b)). (2.23)
Here we give another proof of Theorem for logistic loss based on normal equations
(2.10). The following theorem gives sufficient condition for the proportionality constant
to be nonzero. Method of the proof is based on Brillinger| (1982) where the proportionality
constant was obtained for linear model. This method allows us to represent 8* as a

function of B even in the situation when some predictors are omitted what is shown in
Proposition [2.25]

Theorem 2.16. Let X be random vector such that E||X||3 < oo and £ > 0. Let B # 0,.
If X satisfies[LRC(B) and[LRC(B*) then we have

B ag- = Bag, (2.24)
where

~T ~ 1 ~T ~
as = (Var(B" X)) Cov(B" X, )

for B # 0, and ag+ is defined analogously. Moreover if COV(,BTX, Y) #0, then ag, ag # 0.
Proof. Using covariance decomposition with conditioning vector BTX and Lemma m

we obtain
~ ~ ~ T ~ ~ ~T ~
Cov(X, ¢(8"X)) = Cov(E(X|B" X),q(8"X)) + E Cov(X, q(8"X)|8 X) =
= Cov(hy + hiB' X, ¢(87X)) =
~ ~T ~._ ~T ~ ~

=XB(B 2B) " Cov(B X, (B X)) = Zpag, (2.25)
as Cov(X, ¢(B7X)| BTX) = 0, and the last equality follows from the definition of ag.
Analogously, using linear regressions condition for B" and Lemma for B* we obtain
the equality:

Cov(X, (85 + X' B)) = BB ap-. (2.26)
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From the normal equations (2.12]) we have:
~ % ~ T ~ %k ~
Cov(X, qr (85 + X B7)) = Cov(X, ¢(8" X)).
Thus from ([2.25) and (2.26) it follows:
EB*CLQ* = Z,Baﬁ.

From the invertibility of the matrix X the first part of the theorem follows. To prove the

second part, we observe that:

0# Cov(BTX,Y) = COV(BTX, ¢(BTX)) = BTZBaB.
This means that ag # 0 (as X > 0 and BTEB = ||E%B||g) From the first part of the
theorem it follows that ag« # 0. []

Remark 2.17. If all of the assumptions imposed in the Theorem[2.10 are satisfied and
Cov(BTX,Y) # 0, then we have ag= > 0. Namely, it follows from M that B" # 0, and
in view of Theorem we have

ag

n=——=#0.
a/;*

From and Lemma we obtain
~xT = * s ~ % ~xT ~ % 1 =%
0<Cov(B” X.qu(B; + X B) =B BB ap = |58 |Bag-.

Thus ag« > 0 as ag # 0 and we obtain s* = s.

Remarks [2.18 and below show that under some conditions s* = () is equivalent to
s = (. These results are generalization of Theorem 4 in [Mielniczuk and Teisseyre (2016)
where assumption about absolute continuity of distribution of X was imposed. Moreover,

in Proposition 1 in Mielniczuk and Teisseyre| (2016) it was shown that s* = () is equivalent
to E(X|Y = 1) = E(X[|Y = 0), if E[|X]]5 < co.
Remark 2.18. If X is a random vector satz’sfymg E||X]|y < oo, q(2) € (0,1) for
z€R and B = 0,, then B* = 0,.
To prove this, we observe that normal equations imply that:

Cov(X, ¢.(B" X)) = Cov(X, q(fo)) = 0p.
This means that Cov(B* X, q1 (B X)) = 0. In view of Lemma we have P(B*T X =
c) =1 for some c € R. This equality and together imply that B* = 0,.

Remark 2.19. If X is a random vector satz’sfymg E||X]]> < o0, q(2) € (0,1) for
z € R, q is strictly monotone and B* = 0,, then B = 0,.
Proof of this fact is analogous to proof of Remark|[2.18

Remark 2.20. Theorem holds also for the model without intercept. We have in this
case:

ag = (Var(B' X)) 'EB’ Xy

17
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and
ag = (Var(B" X)) 'EB” X

Lemma 2.21. Assume that EX = 0,, E||X]||, < 0o, X satisﬁes PY=1X=2a ¢

(0,1) Px a.e. If B*,B", denote respectively argmins of risk function R in models with

intercept and without intercept, s*, s* are sets of active predictors corresponding to them,

then s* = 0 if and only if s*, = 0.

Proof. If s* = (), then in view of normal equations for the model with intercept we have:
EYX = Eq(35)X = 0,.

Now, in view of normal equations for the model without intercept and from above equation

we obtain:
Eq. (87 X)X =EYX = 0,.
This implies:
Eqr(BX)B5X = 0.
Using Lemma yields IP’(,B*_Y(;X = ¢) = 1 for some ¢ € R. From the equality above it

follows that:
c=EB*TX =0.
From condition we obtain 8%, = 0,. Hence s*, = 0.

Proof of implication s*, = ) = s* = () is analogous. O

From the above lemma, Corollary 2.9 and Theorems [2.6] and follows the following
remark which states that active sets of predictors for logistic models with intercept and

without intercept are always the same under appropriate assumptions.
Remark 2.22. [f assumptions of Lemma are satisfied and X satisfies (B), then
s*=s"y=sors" =s,=0.
If X follows normal distribution, formulas for ag and ag+ can be simplified.
Lemma 2.23. If q is differentiable, X follows normal distribution with ¥ > 0, B # 0,,
E|¢ (BT X)| < oo, then ag = Eq'(B" X) and ag- = Eq, (8" X) € (0,1/4).
Proof. From Lemma we obtain
Var(8"X)as = Cov(B' X, Y) = Cov(B" X, (B"X)) = Cov(8"X, q(8"X))
= Var(B8"X)E¢' (8" X).

Proof for ag- is analogous (we use there additionally normal equations for logistic loss

(2.12)). Moreover, ag- € (0,1/4) follows from
6.7:

q(v) = A+e) =qr(x)(1 —qr(x)) € (0,1/4) for x # 0. ]

18
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Remark 2.24. If all of assumptions of Lemma |2.25 are satisfied then

Eq (8" X)
= W A 2.27
Eq, (37 X) (227)
and
In| > 4|Eq'(B" X)|. (2.28)

Proposition 2.25. Let X = (XO,X{,X';)T, B = (50,Bf,[3§)T and B, X, € R™,
By, Xy € RP™, COV(XZ',X]') = 3%, for 1,7 = 1,2. Suppose that logistic model Y ~
by + X{Bl with omitted X, is fitted and (85, BT is the corresponding projection. If
E||X|]2 < 00, £y > 0, [LRAB) and[LRA(B;, B")T) hold and Cov(BTX,Y) # 0, then

we have

B1 =n(B, + X1 S1,), (2.29)

where 1 = ;% £ 0 and
1

Cov(V. X, B;) _ Coviau(5;+ X, B)), X, BY)

T Na(XBY) Var(X, B7) (230
Proof. Analogously as in Theorem we obtain the equations:
Cov(X1,q(Bo + B?XI + B;XQ)) = ag Cov(Xy, Bfo + Bszz),
Cov(Xy, qu(B; + B, X1)) = ag; Cov(Xy, By Xy).
Hence from normal equations we obtain
ag: Cov(Xy, 8;X1) = ag Cov(Xy, B?Xl + B;FXQ),
what can be simplified to
ag:E01B, = ag(T11 8y + T128,). (2.31)

As Xy, is invertible, we conclude that ag: is non-zero similarly as in Theorem m
Multiplying both sides of Equation (2.31)) by (ag:X11)™", we obtain the conclusion. [

Remark 2.26. If in Proposition we assume additionally that 319 = Opyx(p—m), then

B: = 77,@1. For independent X, and Xy we thus obtain a complementary conclusion to that

of Theorem 2.3,

2.3. Quadratic loss

In this section we assume that function p defined in is given by the formula:
p(b,) = 5y~ b)" (232
Here we give another proof of Theorem for quadratic loss based on normal equations
(2.15)). The following theorem gives sufficient condition for the proportionality constant n
being nonzero and provides explicit formula for 8*. The proof is similar to that of Theorem
2.16l This method allows us to represent 8* as a function of B8 even in the situation when

some predictors are omitted what is shown in Proposition [2.32]
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Theorem 2.27. Let X be random vector with E||X|[3 < oo and 3 > 0. If(,@) is
satisfied then

B = Bag, (2.33)

By = Eq(B" X) — u" Bag, (2.34)
where ag s defined similarly as in the Theorem . Moreover if Cov(BTX,Y) # 0, then
B*a ag 7é 0.
Proof. From (2.15)) we obtain:

EXX?B* = EXY.

This means that we obtain system of linear equations:

B+ EX'B" = Eq(BTX),

~ e R (2.35)
EX3; + EXX' B = EXq(B"X).

Hence, using (12.25)), we have:

¥B = VarXg = Cov(X,q(BX)) = EBag.
Matrix X is invertible as it is positive definite and we obtain:

B* = Ba,@>

Thus, after substituting 8 into (2.35)), we have:

. ST % -

B; = Eq(8"X) —EX'B" = Eq(87X) — u” Bas.

Second part of the proof is identical as in proof of the Theorem [2.16 O

Remark 2.28. Theorem [2.27] holds also for the model without intercept. We have in this
case (see Remark [2.20):
ag = (Var(BTX))_lEBTXY.
The following lemma is a version of Lemma [2.2]] for quadratic loss.

Lemma 2.29. Assume that EX = 0,, E||X||2 < oo and ¥ = Var(X) > 0. If 8,87,
denote respectively argmins of risk function R in models with intercept and without intercept,
s*, s*, are corresponding to them sets of active predictors, then s* = 0 if and only if
sty = 0.

Proof. 1f s* = (), then in view of normal equations for the model with intercept we have:

EYX =EX =0,.

Now, in view of normal equations for the model without intercept and from above equation
we obtain:

EB*IXX =EYX =0,.

This means that:
E(8°6X) - (B87X) =0.
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Using Lemma yields P(8"5X = ¢) = 1 for some ¢ € R. We observe that:

c=EBLTX =0.
From condition we obtain 8*, = 0,. Hence s*, = 0.
Proof of implication s*, = () = s* = () is analogous. H

From the above lemma, Corollary and Theorems and follows the following
remark which states that active sets of predictors for logistic models with intercept and

without intercept are always the same under appropriate assumptions.

Remark 2.30. If assumptions of Lemma are satisfied and X satisfies (B), then
s*=s"y=sors =s,=0.

Lemma 2.31. If q is differentiable, X follows normal distribution, E||X||3 < co, £ > 0
and El¢'(B" X)| < oo, then ag = E¢'(B" X).

Proof. Proof is analogous to that of Lemma [2.23] n
Proposition 2.32. Let X = (X,, X{, X‘;F)T, B = (50,,@?,[:1;)7’ and By, X, € R™,
BQ,.~X2 e Rp—™ COV(Xi,Xj) = 3 fori,7 = 1,2. Suppose that logistic model Y ~
by + XlTi)l with omitted X, is fitted and (Bg, BT s the corresponding projection. Under
assumptions of Theorem for X and q =B, B;k and provided that Cov(Y, ,BTX) #0

we have
Bl = as(B, + B S128,), (2.36)
where ag # 0.

Proof. Proof is similar to the proof of Proposition [2.25] m

2.4. Quadratic loss vs logistic loss

In this section we compare vectors

~ T ~ T T .
/Bikog = <ﬁg,log7 /Bl,logv /82,log> = arg min Ellog (b7 X7 Y>7
b=(bo,bT bI)T:by=0
~xT ~xT T .
Biin = (Bg,zma 51,zm7 lem) = arg min Elin(b, X, Y)

b=(by,b? ,bZ)T:by=0
and sets of active predictors corresponding to them:
Sfog = Supp B;oga
S?in = Supp B;fm
It turns out that BI,ZOg and B’{lm will have the same direction under linear regressions

conditions. Proposition [2.33] shows that result holds even when in the fitted logistic model

we omit predictors X, from the vector X = (X, XlT, XQT)T
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Proposition 2.33. Let X be a random vector such that E|| X]|; < oo and is satisfied
for Xy and Bilog. We assume that || X1||3 < oo and Var X; = Xy > 0. If Blog erists
then:
/Bl,lin = aﬂilogﬁl,log‘ (237)
Proof. Observe that:
S % ~*T g S S % ~xT g ~ %
Cov(Xy, qL(ﬁO,log + ﬁ1,logX1)) = Cov(X;,Y) = Cov(Xy, 5o,lm + ﬁl,zmxl) = Enﬁum-
Moreover, reasoning as in proof of Theorem we have:
~ % ~*xT =k
Cov(Xy, QL<5O,log + :31,logX1)) =gy, 211,51,10g-

Thus from two last equalities we obtain matrix equation

Ellﬂl,lin = aﬁilogzllﬁLlog?
which is equivalent to ([2.37)). O

Remark 2.34. In particular the result hold for X; = X when all regressors are fitted and
for X, =X ; when the univariate regressor X is fitted. In the latter case linear regression
condition for X; and Bilog is always satisfied. Note also that when model is correctly
specified as logistic model and X, =X, it follows that B;km is proportional to B. Thus in
this case an important problem of ranking unknown coefficients of logistic model can be

based on a fit of a linear model which is much easier computationally than a logistic fit.

Remark 2.35. If X ~ N, »(, X) then from Lemma we obtain:

Bllog 7EqL(/6]_log ) E (O, 1/4)
In view of Proposition it follows that corresponding coefficients of vectors B,
and B:lzn have identical signs and ‘Bilmz‘ < %‘Bi,log,i" As ags ., =~ 0, we obtain equality
ST = Sizog, where Silog = supp Bizog and 5% Jin = SUPD Bilm In particular, when Xl - X

we have sj, = Sjy-

2.5. Sets of active predictors when LRC is not imposed

In this section we consider various sets of predictors in the regression problem for
Z = (1,Z")T e R+ and V € {0, 1} satisfying relation
P(V =1|Z) = q(8"(Z)Z)
for fixed vector
B(Z) = (5(2), B(Z)")" e R
We write 8 = B(Z) to underline the fact that regression parameter B is considered in a

model with predictors Z. We will denote by
B'(Z) = (65(2),B°(Z)")" = argminEp(b"Z, V)

beRpP+1
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coefficients of a fitted model with predictors Z and by
s*(Z) = supp B'(2),
s(Z) = supp B(Z).
In this section we assume that function p defined in is given by the formula:
p(b,y) = —by + In(1 + exp(b)). (2.38)

Lemma 2.36. Let ¢: R — (0,1) be uniformly continuous function, Z,, = (1, ZT)T,

N p o2
VAN (th SR Zmp)T ~ Zpl-/\/;)(ml) 711))7
=1 m
p
wherel=1,....p, >0, X pp=1,5,€RP, 0 >0. Let P(Z=ax) =p;, L =1,...,p and
=1
assume that P(b" Z=0) < 1 for all b€ RPT'. If s*(Z) = {1,...,p}, then s*(Z,,) = s*(Z)

for sufficiently large m and uniformly continuous function q.

Proof. Firstly, it should be noted that 8*(Z,,) and 8*(Z) exist and are unique (see Remark
A 19).

By Theorem we have B8°(Z,,) — B*(Z) and moreover we know that s*(Z) =
{1,...,p}. Thus for all i = 1,...,p we have 87(Z) # 0, and hence for sufficiently large m
we have [ (Z,) # 0. O

Lemma 2.37. If pe N,p>2 ke {l,....,p—1} and q: R — (0,1) is continuous
response function such that model is misspecified with respect to logistic loss (i.e. for all
a,b € R there ezists x € R: q(x) # qr(ax + b)), then there exists random vector Z such
that s*(Z) = {1,...,p}, s(Z) ={1,...,k} and P(b" Z=0) < 1 for all b € RPt".

Proof. Let us define f(z) = ¢;'(¢(x)) which by assumption about misspecification of
logistic model is a nonlinear function. Our goal is to define linearly non-degenerate random
vector Z = (1,7y,...,Z,)T such that:
v+ +Zy=f(Z1+ ...+ Zy), (2.39)
that is
wZi+ ... +2,)=q(Z1+ ...+ Zy).

Then it is obvious that with ;(Z) = I(i < k), this implies 57(Z) =1fori=1,...,p
and thus s(Z) = {1,...,k} and s*(Z) = {1,...,p}. To thisend let Q = {1,...,p+ 1} and
P({j})=1/(p+1)forall j=1,....p+ 1.
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For uq,us € R specified later define matrix:

11 - 0 0 - 0 f(1)—1]
10 -+ 1 0 - 0 f(1)—1
1 0 --- 0 1 - 0 0)—1
A =i i)1<iin<pr1 = | . . 4 ).
10 -~ 0 0 - 1 f0)-1
_1 U 0 I f(UQ)_UQ_

and Z;(i) = a; ;41 fori=1,...,p+1and j =0,1,...,p. Then Z = (Zy, Z1,...,Z,)"
satisfies . Now we will choose w1, us such that Z is linearly non-degenerate. From the
definition of Z this condition is equivalent to existence of b € RP*1\ {0,,;} that system
of linear equations Ab = 0,1; has nonzero solution.

We observe that |det A| = |(1 — u2)(f(u1) —ur f(1)) — (1 — up)(f(ug) — uaf(1))]. We
will prove that we can choose uq, us that this determinant is nonzero and the theorem
will follow. From nonlinearity of f there exists uy such that f(us) # usf(1). Obviously,

ug # 1. Determinant det A is 0 if and only if for all u; € R:
— f(1 1) —
= L) = F) | wf (1)~ f)

Ug — 1 U — 1
From nonlinearity of f again the equality above does not hold for a certain u; & {1, us},

=:auq + 7.

otherwise we would have det A = 0. This ends the proof. m

Theorem 2.38. For any uniformly continuous response function q: R — (0,1) such that
binary model is misspecified with respect to logistic loss (i.e. for all a,b € R there exists
reR: q(x) # qr(ax + b)) there exists RP™ -valued random variable X = (1, XT)T, for

which X is supported on the set of non-zero Lebesque measure and s(X) N s*(X) = 0.

Proof. In order to prove the theorem we apply Lemma to a discrete variable Z
constructed as in Lemma 2.37 and 3;(Z) = 5;(Zy,) = B; =1(i < k), i=1,...,p. Let Z,,
from Lemma [2.36] for sufficiently large m be such that s*(Z,,) = {1,...,p}. From the
construction s( m) ={1,...,k}. Let X; = Z,,; for i <k, where Z,,; is defined in Lemma
2.30, Xpy1 = Z B (Z )Zmi7 Xir14i = Biy11i(Zm) Zm 14 for every p — 1 —k >4 > 0.
Then we show that s(X)={1,...,k}, s*(X) ={k+1,...,p}, that is s(X) N s*(X) = 0.

Indeed, normal equations for the vector Z,, have the form

Eqr (8 (Zm)Zm)Zm = Eq(B" Z,,)Z,, = Eq (; )

By rewriting them for vector X, we obtain:

E L(i Xi>X_Eq<§;ﬁiXi>X

i=k+1
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We can easily see that s(X) = {1,...,k}. In turn from the uniqueness of projection
we obtain s*(X) ={k+1,...,p}. O

2.6. Sets of active predictors - examples

In this section we assume that function p defined in (2.2)) is given by the formula:
p(b,y) = —by + In(1 + exp(b)). (2.40)

Example 2.39. Let X; = Z a; X_; + & with a; € Rt € Z be a causal autoregressive
AR(p) process where (&) is a Slequence of i.i.d. random variables with finite second moment
(Brockwell and Davis, 1991, Chapter 3). Let X, = (X, .-, X1)T and X, = X1 and

—(1,X{,X§)T forn >p. Let P(Y = 1| X = (1,2, 22)7) —qﬁo—l—,@l:l:l) for some
(50,,31T)T € R"™. We take A = (ay,...,a,, O} ) Then from Theorem (2.4 we obtain

B* = (55, BTT, 0)L, as X, and X, — AX, are independent.

Example 2.40. Let p =1, b= (by,b)T € R?,
PX;=1)=P(X; =-1) = ;

and let (BT x) = I(xy = 1). Then the risk function has the form:

R(b) = El(b, X,Y) = —EY (bo + b1 X1) + ]Eln(l + ebO+b1X1)
1 1 bo-+b1 1 _—
—§(b0+bl)+§1n(1+e° )+§ln<1+60 )

1
=3 I ((1+ e PP (14m)).
We observe that bian2 R(b) =0 (we take b, = (0,n)T for n € N), however R does not have
e

global minimum. Thus B* does not exist in this case. Moreover, assumption of Remark
that P(Y = 1| X = x) € (0,1) Px a.e. is not satisfied.

Example 2.41. Let X ~ N,(0,, %) with £ > 0 and X = (1, XT)T Consider a probit
model for which q(z) = ®(z) and B = (0, BT)T. To vector (X,Y') we fit logistic model. We
have from symmetry of X, q and qr:

1~ Eq(8" X) = Eq(~B" X) = Eq(8" X) = Eq. (5 + B~ X)

= Eq.(5; B X) =1 - Equ(—5; + B X),
which implies:
Eq(8"X) = Equ(5; + 8" X) = Equ(~5; + B~ X).

Hence B = 0 from uniqueness of B*. Let U = BTX and 0* = VarU = BTZB. Thus
U ~ N(0,0%). Then

2

Eq (87 X) = / T e d L
—dr = —————.
2 \/27m V2m(o?2 +1)2
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This means that n in Theorem [2.6 satisfies the following inequality in view of Remark[2.2:

4
> .
= V2r(BTEB + 1)

We consider the previous example for general X.

(2.41)

Example 2.42. Let X = (1, XT)T e R be a random vector with || X||, < oo satisfying
LRC(B) for B = (O,BT)T # 0,01, X L _X,|LND and q(z) = ®(x). Firstly, we observe
that 85 = 0 as in Ezample|2.41 where only symmetry of X was used. Let U = BTX Left

inequality in Theorem 4.1 in|Alzen (2010) can be rewritten as:

O(z) > qr (\/Ex)
d(z) < qr (\/ix)

for x < 0. This means that for x # 0 we have:

O(z)x > qr (\/ix) x.

Let f(z) = Eqr(zU)U for x > 0. Function f is strictly increasing as q;(x) > 0 for x € R
and we have f'(x) = Eq) (zU)U? > 0. In view of normal equations we have:

f(n) =Eqr(nU)U =EQ(U)U > Eq, (\/EU) U=f (\/E) :
n > \/E (2.42)

This lower bound is tighter than , as we have:

for x >0 and

Hence

R
T \2r(BTE8 + 1)

and in contrast to does not depend on B or X.

Example below shows that we are able in case of some discrete distributions to give
explicit formulas for A" and moreover, that without sets s and s* can be disjoint (see
also Examples 4.1 and 4.2 in [Kubkowski and Mielniczuk| (2017)) for cases when s* C s and

s C s* respectively).
Example 2.43. Let vector X = (X1, X5) have the distribution:
PXi=Xo=0)=PX1 =X =1)=P(X; =7,Xp=5) = :_15,
and
qr(x) if v <1,

qr(3z+3)  otherwise.
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Let By =0, p1 =1, Py =0. The normal equations are:
Eqr(8y + 81 X1 + B3 X2) = Eq(Xy),
Eqr (85 + 81 X1 + B3 X2) X1 = Eq(X1) X1,
Eqr(B5 + i X1 + 53X2) Xy = Eq(X1) X,
which simplify to the form:
qr(B5) + au(B5 + P + B2) + qu(By + 761 + 553)
qr(Bs + B1 + B3) + Tqr (B + 781 + 553)
qL(Bg + B1 + B3) + 5aw(By + 767 + 553)

Hence after simple transformations we obtain:

q(0) +q(1) + q(7),
q(1) + 7q(7),
q(1) + 5¢(7).

qr(5y) = ¢(0),
qL(B5 + 751 +563) = a(7),
qr(Bo + 61 + 63) = a(1).
Similarly as before we have:
B =0,

By +TP1 +56; =5,
Bo+ 01 +5; =1
Hence 05 = 1,5f = B§ = 0. This means that sets s* = {2} and s = {1} are disjoint:
s*Ns=1.
We show now an example of s N s* = () for continuous X.

Example 2.44. Let q(x) = q(—x), X1,¢ are independent and U[—1, 1] distributed, Xy =

k(X + le)? for some arbitrary non-zero constants k, 1. If 31 = 1, By = By = 0, then

from symmetry of distribution and q it follows that 57 = 0. Moreover, if Cov(Y, X3) =
d [ —Xi

Cov(q(X1), X2) # 0, then we have 5 # 0.
d d —Xi I !
k‘(—Xl + l€)2 k(—Xl — 15)2 XQ .

Firstly, let us observe that:

X1 X1

lxj a [k(Xl +le)?
Let B = (B3, 85, B3)T be corresponding projection of By =1, o = o = 0 in fitted logistic
model and B = (Bo, Br, B2)T be projection for f; = —1, By = By = 0. Since distributions of
(X1, X5) and (—X1, X3) coincide it easily follows from normal equations that By = 35, B1 =
— B, By = Bi. On the other hand, symmetry of q implies that q(X,) = q(—X1), hence we

have B* = B from uniqueness of projection. This means that B = 0.

Suppose now that B3 = 0. Normal equations take the form:
Eq(X1) = q1.(65),
Eq(X1) X1 = qr(8y)EXq,
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Eq(X1) X2 = q(8)EX>.

Note that the second equation is always satisfied, because from symmetry of distribution X,
and function q¢ we obtain EX; = 0 and Eq(X1)X; = Eq(—X;)(—X1) = Eq(X1)(—X;) = 0.
By replacing qr(55) in the third equation above with Eq(X), we obtain:

Eq(X1)Xs = q1.(8))EX> = Eq(X1)EX>.
This means that Cov(q(X1), X2) = 0, contradicting the assumptions, thus 3 # 0.
Figure shows direction of ML estimate from logistic model when k = 2,1 = 0.25 and
q(t) =0.75— 0.5 - t* for t € [-1,1].

30 fr g P e e o
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Figure 2.1: Scatter plot pertaining to the distribution in Example m Triangles and
circles correspond to Y = 0 and Y = 1, respectively. Solid line shows the direction of

estimator B based on fitted logistic model. The form of ¢ is depicted in the lower plot.

Example 2.45. Let ¢(z) = qr(z?), (1, XT , where X = (X1,...,X,)T ~ N, (0,, %)
and ¥ = [pl=9],<; i<, Let P(Y = 1|X) = q(X1 + X2) = o (X1 + X2)?). This model is
misspecified and vector X satisfies linear regressions condition. Hence from the Theorem

it follows that B~ =nB = (n,n, o))"
We see that s = {1,2}. Now we will prove that n > 0 and s* = s. To see this observe that
function q is strictly increasing. From Lemma we have that:

0 < Cov(B' X,q(8"X)) = B' £Bag = || B][2as.
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Hence ag > 0, moreover from Remark|2.17 we obtain ag~ > 0. Thus n = a‘% > 0 and

S =S.

Example 2.46. Let q(z) = qr(2%), Z = (1, ZT)T, where Z = (Zy,..., Z,)" ~ Ny(0,,%)
and B = [pl ) 1<ijep. Let X = (1,Xy,..., X,)T, where X1 = Z1, Xy = Zy, X3 = 7}, X, =
73, X5 =727y, Xeg = 2173, Xeo =73, Xg = Z3, Xg = Z1 Zy and X7 = Z; fori=3,...,p.
Let
P(Y = 1|X) = ¢(X; + X5) = qu((X1 + X2)°) = qu(Xs + Xu + 3X;5 + 3X5).

This model is clearly well specified. This means that s* = {3,4,5,6}. Analogously, as in the
Example we obtain s = {1,2}. This means that s N s* = 0. Note that vector X does
not satisfy linear regressions condition in this example. The above model (with different

ordering of predictors) will be considered in numerical experiments.
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Chapter 3

Properties of the projection in the

generalized semiparametric model

In this chapter we consider generalized semiparametric binary model:

PY =1|X =x) =q(x"B,,...,x ;) = ¢(BTX), (3.1)
where k € N, x,8, € © = RP»*! for i = 1,...,k. Analogously to the Chapter , we
assume that ¢ = ¢ : RF — [0,1], p, = p € N. We additionally assume that k& < p and
B =[8,,...,8,] € RPtUxk Because our focus will be on non-constant predictors and not
on the intercept, we introduce the following notation: X = (X, XT)T, X = (Xq,..., X))
Xo=1,b=(by,....b)", b= (by,b ). B=[By,....,B). B=[By..... 8, = [B,B'|7,
where B, = (Bio, BZT)T and By = [B10, . . ., Bro]. If the appropriate moments of X are finite,
we write EX = p, VarX = 3.

Our main aim in this chapter is to show how to extend results from the Chapter [2] to

Y

the case of generalized semiparametric binary model with the focus on results related to
logistic loss (see Sections . Moreover, in Section we consider additive binary
model, which is a special case of the model considered in this chapter. Section presents
a result interesting in its own right, which shows that direction obtained by LDA method
is the same as direction of B* under linear regressions condition (see Theorem .
Linear regressions condition has more general form in this chapter than in Chapter

(matrix C has analogous structure to matrix B):
(LRC(C)) Jhy = hy(C) € R?, H = H(C) € R*** ; E(X|C'X) =h, + HC' X,

Condition M(C) is satisfied for every C € RP+D** with rank C = k, where X has
elliptically contoured distributions with finite second moment (see Section . Moreover,
if £ < p and the condition M(C) is satisfied for every C € RP*TD** with rank C = k,
then X has elliptically contoured distribution (see Theorem . Note that normal
distribution belongs to the family of elliptically contoured distributions (see Remark .
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We will show in the Theorem that the condition [LRC|(B) is essential in the proof
of equality 8~ = Bn for some 1 € R*. Condition (,8*) allow us to represent 3% as
some function of B even in the situation when some predictors are omitted in the fitted
model - in the case of logistic loss see Section [3.2]

In this chapter we assume that loss function is of the form:

[(b,x,y) = p(b"x,y), (32)
where p: R x {0,1} — R is some function, b,x € RP*! y € {0,1}. In almost all theorems
(except Theorem [3.1)) we assume that p(-,y) is convex (or strictly convex) function for all
y. Differentiability of p(-,y) for all y along with is used in Sections [3.1] and
to show the form of 8% in the fitted model.

We will also consider condition introduced in Chapter 2] We note that discussion
before Section [2.1| remains valid for generalized semiparametric model.

The results discussed below are slight modifications of [Kubkowski and Mielniczuk
(2018).

3.1. General loss

The following theorem is a generalization of Theorem [2.2] It states that when inactive
predictors X, in binary model are such that X; and X, — AX; are independent, where
X, are remaining predictors and A is a linear transform, then minimizer 8* of the risk in
the model containing X; and X, is obtained from the minimizer (5, BTT) of the risk in
the model containing only X; by appending zeroes to the latter. It is easily seen that the
result fails if X; and X, are dependent (see Example .

Theorem 3.1. Let X be a random vector such that E||X||; < oo and assume that
E|p(b"X,Y)| < oo for all b € Rt Let X = (XIT,XQT)T, where X{ = (Xy,..., X)T,

J
Xg = (Xj41,...,X,)T, B= (B?,BQT)T, where By € RI** B, € ROk Assume that
Bg = Op—j)xk s matriz with elements equal 0 and that Xl and XQ — AXl are independent

or a certain A € RP=9)%3_ [f there exists (5%, B*T T such that:
01”1
« 7T . 3
(607 /61 )T = argmin Ep(bo + b{Xh Y)7 (33)

(bo,b] ) TeRIH1

then B defined in exrists and:
B = (6.8 a )"
Moreover, if we assume and strict convezity of p(-,y) for all y, then B* is unique.
Proof. Let (analogously as in the Theorem :
h(bo, bT, b)) = Ep(by + bTX; + bl X,,Y).
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The proof is now identical to the Theorem (we need only to replace [y, ,31 by By, B,
respectively). O

Remark 3.2. If we fit the model without intercept (see Definition @ in the Theorem
we need additionally to assume EX = 0, for Theorem to remain valid and the

proof is analogous as in the case of semiparametric setup.
Remark 3.3. Note that Theorem holds in particular when X, and X, are independent.

The following theorem is a generalization of Theorem 1 in |Kubkowski and Mielniczuk
(2018) to the case of any convex loss. Moreover, it can be also viewed as generalization of

Theorem [2.6] to the case of generalized semiparametric model, as the proof is similar.

Theorem 3.4. Let X be a random vector such that E|| X]||y < oo, p(-,y) is convex function
for all y, condition
Vb e RPTL: Ep(b" X, Y)| < oo,
is satisfied and assume (B) If there exists 3; € R,n € R¥ such that:
(B5.n™)T = argmin  Ep(b + ¢’ B' X), (3.4)

(bo,cT)TeRXRE
then B* defined in exists and is a linear combination of Bl, e ,Bk :
k
i=1
Moreover, if we assume and strict convezity of p(-,y) for all y, then B* is unique.

Proof. Let r € R? ¢ € R* and b = Bc + r. Then loss [ can be written as:
I(b,X,Y) = p(bo + c"B' X + rTX,Y) =: h(by, c,T).
We define function J(bg, ¢, r) = Eh(bo, c,r). J is well defined in view of moment assumptions

about p. We observe that (3.4)) is equivalent to: J(55,n,0,) < J(bo,c,0,) for every by € R
and ¢ € R*. For the first part of the theorem, we need only to show that

(587 n, Op) = arg min ‘](b()a C, I‘). (36)

(bo,c,r) ERxRF xRP
Now, by conditioning on X and then on BTX, from M(B), Jensen’s inequality and (/3.4])

we obtain:

J(bo,c,r) =Ep(by + "B X + r'X,Y)
= E(E(p(by + "B’ X + X, Y)|X))
— Ep(by + "B’ X + 17X, 1)¢(B"X)
+Ep(by + "B X + X, 0)(1 — ¢(B"X))
= E(E(p(by + ¢"B' X + 17X, 1) B X)¢(B"X))
+ E(E(p(bo + "B’ X + 17X, 0)[B' X)(1 — ¢(BTX)))
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> Ep(E(by + ¢"B' X + r"X|B"X), 1)¢(B"X)
+Ep(E(by + <"B' X + 1"X|B" X),0)(1 — ¢(B"X))
— Ep(E(by + ¢"B' X + r"X|B"X),Y)
= Ep(by + "B X + 17 (hy + HB'X),Y)
= J(bp +r"hg,c +H"r,0,) > J(3;,7,0,).
This means that point (55, n,0,) is a global minimum of J. Hence is satisfied and

B* = (55, BTn)T exists. Uniqueness of 8" is obtained by using similar reasoning as in the

proof of the Theorem [2.2] ]

Corollary 3.5. If | is logistic loss, E||X]||s < oo, ¢(B"X) € (0,1) Px a.e., and
LRC(B) hold then B* = (8:,n"B")T for some 5 € R,n € R~

Proof. From Remark we obtain that solution of (3.4]) exists and moment assumptions
of Theorem are satisfied. This ends the proof. O

Analogously, for quadratic and probit losses we obtain in view of Theorem [3.4], note
above Theorem 2.6l and Remarks [A.T3HA T4t

Corollary 3.6. If | is quadratic loss, E||X||3 < oo, & > 0 and (B) holds then
B* = (55, nTBT)T for some 3; € R,n € RF.

Corollary 3.7. If | is probit loss, E||X||? < oo, & > 0, ¢(B"X) € (0,1) Px a.e. and
LRO(B) holds then B* = (3, nTBT)T for some 35 € R,n € RF.

In the case of the model without intercept, Theorem has the following form (with

additional assumption EX = 0,) and the proof is analogous:

Theorem 3.8. Let X be a random vector such that E||X||; < oo, EX = 0,, p(-,y) is

convex function for all y, condition

Vb e RPTL: E|p(b" X, Y)| < oo,

is satisfied and assume (B) If there exists 1 € R¥ such that:
7 = arg min Ep(cTBTX, Y),
ceERF
then B* defined in exrists and:
B* = Bn.
Moreover, if we assume and strict convezity of p(-,y) for all y, then B* is unique.
Remark 3.9. Note that when p(-,y) is differentiable for all y,
Vb e RFF . Elp(b" X,Y)| < oo,

< h(X)Y)

2

3h : RPY x {0,1} — R Vb € RPH . Hgg(bTX, Y)X
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where Eh(X,Y') < 0o and B* exists, then B* is solution to normal equations (the same as
in the semiparametric setup - see )

E (g’g(bTX, Y)X) =0. (3.7)

Furthermore, if p(-,y) is convex function for all y and is satisfied for b = 8%, then

B* is a minimizer of risk function R.

In the case of logistic loss, expression (3.7]) reduces further to normal equations for

logistic regression which are the same as in the semiparametric setup (compare with (2.10)):

E(Y — ¢.(B7X))X = 0. (3.8)
By conditioning the above expectation on X, we obtain analogous equations as in semi-
parametric setup:
E(¢(B"X) — q1(87X))X =0, (3.9)
In the model with intercept we obtain additionally (EY = Eq. (8" X)):
Cov(X,Y) = Cov(X, ¢(BTX)) = Cov(X, q(8* X)). (3.10)
Similar equations can be written down in the case of probit, quadratic and Huber

losses analogously to (2.13))-(2.17) with B instead of 8.
The following lemma is a generalization of Lemma [2.14] which was proved in the case

of the semiparametric setup.

Lemma 3.10. Let X be random vector such that E||X|]3 < oo with EX = p and
Var X = X > 0. If X satisfies (B), where rank B = k then we have:

H=xB[B'sB)", (3.11)
ho = (I, — HB' )u =(I, - SB(B'SB)'B ). (3.12)

Proof. Observe that

Cov(X,B'X) = Cov(E(X|B'X),EB'XB'X)) + ECov(X,B'X|B'X)  (3.13)
—Cov(E(XB'X),B'X) +0, = Cov(hg + HB'X,B'X).  (3.14)
As hy and H are deterministic, we have

Cov(hy + HB' X, B'X) = HVar(B' X) = HB' =B. (3.15)

Because Cov(X, BTX) — ¥B it follows from Equations and that

B - HB' =B

and thus H = EB(BTEB)_l. Formula for hy follows after taking expected values of both
sides of [LRC(B) and using formula for H. O

Remark 3.11. Note that as B' H = L, it follows from Lemma|3.10| that B, is perpendicular
to HY Jor i # j. Moreover, we have that hy is perpendicular to all B, as B'hy =
(B" — B"HB")u = 0.
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3.2. Logistic loss

In this section we assume that function p defined in is given by the formula:
p(b,y) = —by + In(1 + exp(b)). (3.16)
Here we give another proof of Theorem [3.4] for logistic loss based on normal equations .
The following theorem gives sufficient condition when the vector 1 is nonzero. Method of
the proof is based on Brillinger| (1982)) where the proportionality constant was obtained
for linear model. This method allows us to represent 8% as a function of B even in the

situation where some predictors are omitted what is shown in Proposition [3.17 We define:

ap = (Var(B' X)) Cov(B'X,Y) € R*. (3.17)

Theorem 3.12. Let X be random vector such that E|| X||2 < oo and ¥ > 0. If rank B = k,
X satisfies[LR((B) and[LR((B*) then we have
B ag- = Bap, (3.18)
where
~xT = —1 ~xT =~
ag- = (Var(f X)) Cov(B X,Y).
Moreover if Cov(B" X,Y) # 0O, then ap,ag- and B" are nonzero.

Proof. Using covariance decomposition with conditioning vector B?X and Theorem m,

we obtain
Cov(X, ¢(BTX)) = Cov(E(X|B"X), ¢(B"X)) + E Cov(X, ¢(BTX)|B" X) =
— Cov(hy + HB' X, ¢(BTX)) =
= BB 'IB) ! Cov(B' X, ¢(B"X)) = SBag, (3.19)
as Cov(X, q(BTX)|]~3T)~() = 0, and the last equality follows from the definition of ag.
Analogously, using linear regressions condition for B* and Theorem for k =1 and B*

we obtain the equality:
Cov(X, g5 + X' B7) = B8y (3.20)
From the normal equations (3.10)) we have:
Cov(X, g (55 + X' B7)) = Cov(X, ¢(BTX)).
Thus from (3.19) and (3.20) it follows:
EB*GB* = ¥Basg.

From the invertibility of the matrix 3 the first part of the Theorem follows. To prove the

second part, we observe that:

0, # Cov(BX,Y) = Cov(B' X, ¢(B"X)) = B’ Bag.
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Because ¥ > 0 and rank B = k, hence B'SB > 0. This means that ag # 0. From the
first part of the Theorem and again from assumption rank B = k we have Bag # 0, and
B*a@* # 0,. Thus ag~ # 0 and B+ 0,. O

Remark 3.13. If all of the assumptions imposed in the Theorem[3.13 are satisfied and
Cov(B'X,Y) # 04 then we have ag- > 0. We observe that B # 0, and in view of

Theorem [3.19 we get:
a
n=—+#0.
ag+
From and from Lemma we obtain
~ T = % =~ ~ T =% 1 ~%
0< Cov(B" X,qu(f5 + X B7) = B" 2B ag = |28 Jas-.

Thus ag~ > 0 as ag- # 0 and we obtain s* # .

Remark 3.14. Theorem holds also for the model without intercept. We have in this
case:

ap = (Var(B' X)) 'EB' XY

and

ag = (Var(8" X)) 'EB" XY

Lemma 3.15. If ¢ is differentiable, X follow normal distribution with ¥ > 0, rank B = k,
E||Dg(B" X)||; < 0o, then ag = EDg(B" X) and ag- = Eq; (8" X) € (0,1/4).

Proof. Proof is similar to the proof of Lemma (we replace B by B and use Lemma
instead of Lemma [A.45]). O

Remark 3.16. If all of assumptions of Lemma are satisfied then
_ EDq(B"X)

= 3.21
! EG(BTX) 2

and each coordinate of m satisfies:

mi| > 4|[ED;q(B" X)) (3.22)

Proposition 3.17. Let X = (Xo, X, , X, )", B= (By, B,, B,)" and B, € R"™** X, ¢
R™, B, € R-mxk X, ¢ RP—™ Cov(Xi,Xj) = 3%,; fori,j = 1,2. Suppose that logistic
model Y ~ 5 + X{B: with omitted X, variables is fitted and (85, Bi7)T is the corre-
sponding projection. If E||X||3 < oo, $1; > 0, |LRC(B) and LRC((BS,BIT)T) hold and
Cov(B"X,Y) # 0y, then we have

B = (B, + X' Z,B,)n, (3.23)

where N = ;73* # 0 and
1

oo Cov(Y. X, BY) _ Covlau (B + X, B1). X, B1)
T V(XA Var(X] ;)

(3.24)
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Proof. Analogously as in Theorem we obtain the equations:
Cov(X1,q(Bo + fol + BQTX2)) = Cov(Xy, B1TX1 + BQTXQ)@&
- . T o oxT g
Cov(X1,qr(By + B, X1)) = Cov(Xy, B; Xi)ag:.

Hence from normal equations we have
Cov(f(l, Bif(l)ags{ = Cov(f(l, Bleil + ]~32T)~(2)a3,
what can be simplified to
Elléiaﬂ{ = (1B + Z12By)ag. (3.25)

As X4, is invertible, we conclude that ag: iS NON-zero similarly as in Theorem m
Multiplying both sides of Equation (3.25) by (ag:X11)™", we obtain the conclusion. [

Remark 3.18. If in Proposition we assume additionally that 315 = Oy (p—m), then
Bi — Bin. For independent X, and X, we thus obtain a complementary conclusion to

that of Theorem[3.1]

3.3. 3" as first canonical vector

Lemma 3.19. If X is a random vector such that E||X]|y < co, EX = p and (B) is
satisfied, then for Z = X — p we have:

E(ZB'Z) = HB Z
Proof. Using Lemma [3.10] we have:
E(ZB Z=d) =EX-puB X=B p+d) =hy+HB p+d) - u
—hy—p+HB p+Hd =1, -HB )p — p+ HB p + Hd = Hd.
0
It turns out that when [LRC|B) and [LRC|(8") are satisfied, then the direction of the
first canonical vector defined in (3.26)) is the same as direction of B" in the case of logistic

loss, what follows from the theorem below. This sheds a new light on known effectiveness

of canonical analysis in classification problems.

Theorem 3.20. Let X be a random vector such that E|| X]|3 < oo, rank B = k, (B)
is satisfied and

w v'Tw

= arg max ———,

ve%@?\{o} v 3o

where T = Var(E(X|Y)). If Cov(X,Y) # 0, and ¢(B*X) € (0,1) Px a.e., then w =
d - Bag for some d # 0, where ap is defined in .

(3.26)
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Proof. Let Z = X —EX and p; = E(Z|Y = i) for i = 0, 1.
Then it is easy to check:
_ EZ¢(B"X) _ —EZ¢(B"X)
M= g,m™x) " "7 1 EBTX)
As Y is binary, we have:
VarY = EY? — (EY)? = EY — (EY)? = Eq(B"X)(1 — Eq(B"X)).
Moreover we obtain:
1 — po = EZg(B'X) (
Hence:
T = Var(E(Z|Y)) = Var(pg + (1 — 1)) = (17 — pro) Var Y (p; — )"
~ EZ¢(B"X) - (EZ¢(B"X))"
- Eg(B"X)(1 - E¢(B'X))
Now observe that from [LRC|B), Theorem and Lemma it follows that
EZq(B'X) = E(E(Z¢(B'X)|B'Z)) = HEB' Z¢(BX)
— BB 'EB)'EB'X - EB'X)¢(B"X) = ZBas.

1 —Eq(B"X) + Eq(BTX)> B EZq(B”"X)
Eq(B"X)(1 - Eq(B'X)) ) Eq(B'X)(1 - Eg(B'X))’

Thus we have:
1 ~ ~ T
r— YBagaiB X,
Eq(BTX)(1 — Eq(BTX))  >'B

therefore
1

T = T Ea X)) DR
Let a = Bag, b = Xa. Clearly a, b are vectors and ¥ 7'T" has the form :
>7IT = cab?,
where ¢ = (Eq(BTX)(1 — Eq(B7X)))™'. Hence we obtain

Y 'T'a = ca’ba

and ca”b = ca3BXBag > 0 (BEB is positive definite, as rank B = k and ¥ > 0). This
means that a is the eigenvector of the matrix ¥ 7'T" corresponding to the largest eigenvalue

as matrix ab” has rank 1 and remaining eigenvalues are equal to 0. Hence w = da for
d # 0. m

3.4. Logistic loss - additive binary model

In this section we will consider properties of projections for a special case of (3.1)),
namely

¢(B'X) = Mar(B1X) + - + A (B X), (3.27)
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where X ¢ R?, B=[B,,...,8,] e R>** \;>0,i=1,...,k, X Ny =1land ¢: R —
(0,1) are differentiable. Moreover, we will assume that ¢; are strictly increasing. Such
model will be called an additive binary model. We assume that 3, do not contain intercept,
as in the opposite case we may define ¢; as ¢;(x) = ¢;(Bi0 + ) instead of ¢;. Note that a
simple example of such model is a logistic mixture, where ¢;(s) = qr(s) foralli =1,... n.

Model has the following natural interpretation. Namely, assume that in addition
to X a discrete random variable [ is observed which is independent of X, P(I = i) =
Ai, t=1,...,k and given X = x and [ = ¢ we have

PY =1X =x,1 =1) = ¢(B] x), (3.28)
for i =1,..., k. Thus averaging over I we obtain that P(Y = 1|X = x) is given by .

We will consider normal predictors X ~ N,(0,, X), where ¥ > 0. Note that in this
case is satisfied for every B € RP** with rank B = k and k < p. We consider the case
when logistic model without intercept P(Y = 1|X) = ¢ (8 X) is fitted. This corresponds
to the situation when ¢ in is calibrated in such a way that ¢(0,...,0) = 0.5. We note
that assertions of the previous sections in this chapter hold also in this case and vector 3*
is a linear combination of 3;s.

When the logistic model with the intercept is fitted, Theorem [3.21 will hold and validity
of the remaining results is still an open question. The proof of Lemma [3.22| uses the
implicit function theorem and the derivation there relies crucially on the lack of intercept
in B*.

For the additive binary model we prove that the coefficients n; of the combination
in are non-negative and establish upper bounds for them (cf. Theorem . In
particular, when predictors are normal and BiTX have the same variances, in the case of
logistic mixture the bounds imply that n; < \;. Moreover, we prove that the variance of
B*TX is not larger than maximal variance of the projected linear combinations for the
corresponding univariate problems.

Let

U= (U,,....U0)" = (BTX,..., B[ X)".

We define D; as the unique solutions of equations:

Eq;(U;)
D= —"—"— 3.29
Eq; (D:U;) (3.29)
where i = 1,...,k and ¢y, is logistic function. Observe that existence and uniqueness of

D; follows from the following reasoning. Consider binary model P(Y = 1|X) = ¢,(87 X) =
¢;(U;) and its projection on logistic model with pertaining vector 87. Then unique B}
exists in view of Remark as X > 0 and ¢;(z) € (0,1) for z € R. This means, that in

view of Lemma [2.23| and (2.27) 8; = nB, and:
Eq;(Ui)
= —= 3.30
"7 Eq,(n0) (330
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Hence n = D; from uniqueness of n. Thus vectors 8; and B; are proportional and D, are

the constants of proportionality in the univariate projection problem. We first prove

Theorem 3.21. Let X ~ N,(0,,X) with ¥ > 0, rank B=Fk and Y given X follows the
conditional distribution defined in , where q; are strictly increasing and differentiable
such that E||¢; (B X) X||s < oo, E¢)(BT X) < co. If B* = mBy + ... + mB,, then
Eq;(Us)
ni =\ ’ ) 3.31
B, (7 U) 330
and n; > 0.

Proof. Normal equations (3.9) for 71,...,m in view of 87X = Y% 7,87 X have the

form:

k
EQL(mBlTX T+ nkaX)X = Z )\iEQi(BzTX)X'

i=1

After multiplying these equations by matrix B” and using the definition of U, we obtain:

k
Eq:(n"U)U =Y \Eq(U;)U. (3.32)
i=1
It follows from Stein’s Lemma applied componentwise that (3.32)) is equivalent to
unEqy(n'U) = Zuw,
where Xy = VarU = B'EB and w = (MEq(U)),. .., MEq,(Up))T. Since Xy > 0

equality (3.31)) follows.

From the equation above we observe that 7; > 0 and 7; = 0 only when \; = 0. Hence
when \; = 1 for some 4, then 7; = 0 for j # 7 and from uniqueness of n we have 7, = D;,
where D; is the constant defined in the equation ([3.29)). m

We state now the crucial lemma from which upper bounds on the coefficients n; follow.

Lemma 3.22. Assume that conditions of Theorem [3.21] are satisfied. Then

zk: T < max ( D: ) = max <1> : (3.33)
= Eqi(U;) ~ i=t..k \ Eq;(Us) i=1,..k \ Eq},(D;Uj;)
Proof. Since it follows from that 7 = (n1,...,m)7 exists and is unique for each
A1, ...y Ak, We can consider n as a function of Ay,..., A\ as Ay =1 — Zf;ll Ai. We will

use the implicit function theorem to prove the lemma.
Let us observe that the theorem is true for ky = 1. Now assume that it holds for

ko =k —1 > 1 and we proceed by induction. Let
k—1
By ={(A,..., 1) eRFLVE: A >0, N < 1)
i=1
Consider the following function F': Bj, x R¥ — R¥, where

k—1 k—1
FA, s N, My ey ) = EQL(WTU)U - Z AilEqi(U;)U — Eqp(Ux)U <1 - Z >\i> .
i=1

i=1
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Function F' = (Fy,..., F}) equals the difference of both sides of (3.9) after substituting

1-— Zf;ll A for A\p. We have form=1,...,k:
0F,,
J
We rewrite the above equations in matrix form:

D,F =Eq;(n"U)UU", D, F =Eq(Uy)U — Eq;(U;)U.
As EUUT > 0, we observe that DyF > 0. This means that we can use the implicit

oF,,
on;

= Eq; (" U)U,,U;.

function theorem to obtain:
DT,F : D)\j’r[ = —D)\jF. (334)
_1
Let V = ¥° U, where Xy = B $B is the covariance matrix of U. The above substitution

and Lemma gives:
D, F = B, (" U)UUT = SR, (Shm)TV)VVTS}

1 1 1 1 1 1
= 24 (B (S5 V)L + B (Shn) VISim(Son)”) S (339)
It follows from the structure of matrix D, F in (3.35) that it has the following eigenvalues:
ay = ... = ap_1 = Eq}(n"U),a; = Eq},(n?U) + Eq}/(n"U)||Xgn||?, which are positive
by positive definiteness of matrix D, F. Moreover, using formula
A
I+ xx)t=T—- —— _xxT,
( ) 1+ |x[[2A
we have:
1
_ pIMEY Eq¢/ (nTU 1 1 1
(D,,F) 1:WUTU)‘ (Ik_ ) L(; ) » 3¢ )(EIQJTI)T 3y
i Eqr,(n"U) + [|[Zgn[*Eq; (n"U)
1 Ed" TU
= e (z{f - (AURS) -nnT> . (3.36)
7.(n"V) Eqy (n"U) + ||Sgm|[*Eqy (n"U)

From the Stein’s Lemma [A-45 we obtain:
Dy, F = —Eq(U1)U + Eq(U,)U = —Eq; (Uy) Cov(U, Uy) + Eq,.(Ux) Cov(U, Uy)
= —Eqi(Ul)EUel + ]quc(Uk)EUek = ZU(—Eqi(Ul)el + Eq;(Uk)ek),

h

where e; is i"" vector of the standard basis in R* for i = 1,. .., k. Hence:

Dyn=—(D,F)™"- Dy F

1 Eq7'(n"U) T
- W Ik B ! T % 2 "1 EU
L Eq;(n"U) + |[Zgn|PEqf (n"U)
- (Eqy (Ur)er — Eq;.(Uk)ey). (3.37)

Let:

T
1 1 1
v—( - = R > € R
EQ1(U1) EQ2(U2) EQk(Uk)
Then we obtain:

k 1 On 1 / /
3 i yTp [ VT(Bq,(U))er — Eq.(Up)er)
=1

Eq(U)on 1T Eg(n™U)

0
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E " TU
— o (n ) (VTn)-nTﬁu(Eqi(Uﬁel—Eq;(Uk)ek))
Eq),(nTU) + || S| [2Eq! (07 U)

_ ~Eq/(n"U) L (Zk: i >><
- B0 By (7U) + [ Shn)Egy (7U) \S D)
>0 (Lemma [A.51))

>0 >0

x (0" Su(Ed;(Uh)er — Egy(Ur)ey)) -
From the above equation and in view of Lemma we observe that the sign of its left
hand side is the same as the sign of the expression n Xy (Eq|(U;)e; — Eq},(Uy)ey). Let
Yy = [0ij]ij=1.. k- Then from equalities - A =1— Zf:_ll A; and from symmetry of

,,,,,

Yy we obtain the following:

MCy + C
TSy (Eq, — Eq, 222 = :
n U( Q1(U1)e1 qk(Uk)ek) Eq&('f]TU)’ (3 38)
where
Ci = (Eqi(Uh))*on1 — 2Eqy (U)Eq, (U)o + (Eq;,(Ux)) 0w

and

k—1

Ca = 3 (Eq)(U)Eg; (U)o — Eq/(U)Ed, (U)o — Egi (U2)Edi (Ur)ow
=2

+ (Eq(Un) 0w ) + Eq (U, (U)o — (Eqi (U)o,
From inequality 2 + y* > 2zy and positive definiteness of Xy we have:

(Eqy (Uh))?on1 + (Bqi,(Ur)*ou = 2Eq; (U1)Eqy,(Ur) /oo, > 2Eq; (V1) Eq, (Ur) o
Thus C; > 0. Hence we obtain that n? Xy (Eq;(U;)e; — Eq,(Uy)er) > 0 if and only if
k
A1 > h, where h = —C,Cy ™", Therefore Y- (Eqj(U;))"' 9# > 0 if and only if Ay > h. Thus
=1

function Z (Eq,(U;))'n; is increasing function of A\; for A; > h and decreasing for \; < h.
Because (/\1, ooy Ak—1) € By, we have A; € [0,1 — Ay — ... — A\;_1]. This means that:

k i E Us
(Z qu<U)> (A, Az, ooy Adp1) < max { (; W) (0, Agy .oy Apm1),

But the right hand side of the above inequality by induction step is bounded from above

by:
D D, \\ D
PV EG ) ) =i \Eq(0n) ) f T 1 \Bel(0)
and we have finally proved inequality (3.33]). O

Theorem 3.23. Assume that conditions of Theorem are satisfied,
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and D; are defined in . Then is equivalent to:

ni < MDEq.(U;) for alli € {1,... k} (3.40)
and to
Var(n® U) < max, Var(D;U;). (3.41)
Proof. (3.33)) implies (3.40), as from Lemma [3.22} (3.31) and 3-F , A\; = 1 we have :
k k

=1k (EQ‘(U¢)> - ;EQQ(UJ ;EQIL<77TU) Eq,.(n"U)
Thus again from equality (3.31)) and the above inequality we obtain:
Eq;(U;
N = )\i#
Eq;,(n"U)

Conversely, (3.40]) implies (3.33) as

k n; k
! < XD =D.
Z qu(Ui) N Z

i=1 i=1
Moreover, (3.33)) is equivalent to (3.41)) as in view of (3.29), (3.31)) and (3.12) inequality

(3-33) is equivalent to the following inequality:
1 1

- <« S
Eqy (n"U) ~ itk By (D,U;)
Function h(c) = Eq}(0Z) is decreasing if ¢ > 0 and Z ~ N (0, 1) in view of Lemma [A.51]
statement 4| as h'(0) = Eq/(0Z)Z < 0. Thus the last inequality implies (3.41)). O

Observe that Var(n?U) = Var(8*'X) and Var(D;U;) = Var(8;"X), where B} are
defined below ([3.29)). Thus (3.41)) can be stated as

,,,,,

Thus the variance of 87X is not larger than the maximal variance of the projected linear
combinations in the corresponding univariate problems. Another way of interpreting
is to say that contribution to 8* of i*" component B3, is bounded by the term proportional
to C;\;, where )\; is the probability with which i*" model is chosen and C; = Eq}(U;)
depends only on the i*" model (cf. the discussion of the additive model below ((3.27)).
Also note that Eq} (D;U;) is an averaged variance of the response in the univariate logistic

model with parameter 3;. Thus D~! equals to the minimal averaged variability for such

models.
Corollary 3.24. If the assumptions of Lemma[3.29 hold and ¢1 = ... = qx = qu, then for
any i €{1,...,k}
Eq;, (Ui
i < Ai—— il ,) :
min Eq; (U;)
Jj=1,...k

Proof. Observe that D; defined in (3.29) are equal to 1. This means that D in Theorem
[3.23] satisfies:

Ly
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and the theorem follows. O]

Definition 3.25. We say that vector X = (Xy,...,X,,)T is balanced, if

Var X; = ... = VarX,, = 0% < o0.
Corollary 3.26. If the assumptions of Lemma[3.29 hold, ¢1 = ... = qx and the vector U

is balanced, then for anyi € {1,...,k}
n; < AiDs.

FEquality in these inequalities holds if and only if \; = 1 for some i € {1,... k}:

Proof. From the fact that U is normally distributed and balanced it follows that U 4
LU, and as ¢, = ... = gy we have Eqi(Uy) = ... =Eq,.(Uy) . From the uniqueness of
D;, which satisfies the equation (3.31)), we have D; = ... = D} and D in Theorem m
satisfies:

. Dl

B Eq (U1)

Hence from Theorem [3.23| we obtain n; < \;D;. The last statement of the theorem follows
from the proof of Lemma [3.22] namely inequality (3.39)) is strict when the inequality

k—1
0 <A <1- > A;holds. ]
=2
We call (3.27) a balanced additive logistic model when ¢; = ... = gx = ¢, and vector

U is balanced.

Corollary 3.27. If the assumptions of Lemma hold and is a balanced additive
logistic model then

FEquality in these inequalities holds if and only if for some i € {1,...,k} \; = 1.

Proof. From Corollary we obtain:
Vi € {1,,]{5} i §D1>\i,

where the equality holds if and only if if for some ¢ € {1,...,k} A\; = 1. However, as in
proof of Theorem [3.24] we obtain D; = 1. O

Finally, we give examples of the situations when using the proved results it is possible
to bound the norm of the vector 8" or its coefficients. The bounds on ||8%||2 may be useful
when calculating its maximum likelihood estimator. Then optimisation of the likelihood

may be restricted to the ball B(0,c), where ¢ is specified below.

Corollary 3.28. Let p = k, X ~ N,(0,,0*I), \; > 0 fori =1,...,p, P\ =1,
G = ... =qp, q1 is differentiable, increasing, such that qi(z) < cq(cx) for every x € R,
B = I, thus

Q(/Bripxy e ,,BZX) =M@ (X1) + ..+ 0 (Xp)
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and assumptions of Lemma[3.23 are fulfilled. Then D; < ¢ and ||B*||2 < c.

Proof. Suppose that D; > c¢. Then we would have from equation ([3.29)) and Lemma |[A.51]
statement [G

Thus D; < ¢ and from the Theorem [3.23] we obtain:

.....

]
Corollary 3.29. Under assumptions of the Corollary|[3.27 we have fori=1,...,p:
8] < max [Bj. (3.42)
Jj=1,...,k
Proof.
k k k
1871 = |22 B < D2 InllBjil < N85l < max |B5].
i=1 i=1 i=1 I
]

Inequality (3.42)) means that in this case coefficients of 8" are shrunk in the sense
specified above (and for £ = 1 in the usual sense). Similar property for binary predictor
was established in Gail et al.| (1988).
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Chapter 4

Properties of Lasso estimator in misspecified

binary model

In this chapter we consider properties of Lasso estimator for a misspecified binary
model. Study of properties of inferential procedures under misspecification goes back to
White| (1982) who considered consistency and asymptotic normality of ML estimators in
such a case (see also [Vuong (1989)). The subject resurfaced recently in the setting of
high-dimensional regression models. Buhlmann et al.| (2015 studied properties of debiased
Lasso for misspecified linear model, see also |Lu et al. (2012). Properties of Lasso estimator,
in particular important separation property will be used in Chapter |5 to prove consistency
of two-step selection procedure. We stress that some of the properties considered here, in
particular separation property are known for deterministic predictors (see eg. Fan et al.
(2014a))). Their modified versions proved here for random regressors required substantially
different approaches and proofs.

We consider an i.i.d. random sample (X{, v;™) .. (X ym) L (X" ym) ¢
R 5 {0, 1}, where X ~ Px and we analyse general binary model:

P(Y™ =1]X" = x) = ¢ (x), (4.1)
where x € RP**!. We adopt triangular scenario: X\™ = (X", X, ... ,XZ-(;T?)T, XM =1.
Frequently considered scenario is the sequential one. In this case, when sample size n

increases we observe values of new predictors additionally to the ones observed earlier.

This is a special case of the above scheme as then X" = (X" X, 10 X, )T
To simplify the notation, we will further write ¢ = ¢, X,En) =X; = (1, XiT)T, Y;(") =Y.
We assume that coordinates X;; of X; for¢=1,...,nand j =1,...,p, are subgaussian

t20'2.
in

Subg(o3,) with subgaussianity parameter oj, > 0 i.e. it holds that Ee'*% < e™=" for all

t € R. For future reference let s2 = max o7 and we assume throughout that

]:17"'7pn ]n

: 2
lim sup s;, < 00.
n
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In the sequential scenario this is equivalent to the assumption that all subgaussianity
parameters are bounded from above. We assume existence and uniqueness of 8% which
was defined in ([1.8]). Case of models with intercept (only for logistic loss) and without
intercept are treated separately, as the assumptions needed differ significantly. We note
that for distributions of X satisfying [LRC|, fitted model without intercept and model with

intercept both yield the same active set of predictors for logistic and quadratic loss (see

Remarks , .

Now let X = (X, ...,X,)? denote matrix of experiment of dimension n x (p, + 1)
and let X = (Xl, e ,XH)T. In this chapter we assume throughout that loss function is of
the form:

[(b,x,y) = p(b"x,y), (4.2)

where p: R x {0,1} — R is some function, b,x € R y € {0,1}. Further, we define

empirical risk as:

1 n
— Z (b"X,,Y5). (4.3)
n :
We will denote by:
P,(b) = R,(b) + \||b]|, (4.4)

I, penalized empirical risk, where b = (by, b )T In this chapter we will be interested in

properties of minimizer B ; of P, in the fitted model with intercept:

BL = arg min P,(b) (4.5)

beRpn+1
and in the model without intercept:
T

B1,-o = argmin P,((0,b")"). (4.6)
’ beRrn

In all of the theorems we assume that p(-,y) is convex function for all y and is bounded
from below by m € R. These two properties assure that B ; exists in view of Lemma
If 8 ;, exists and p(-,y) is convex and differentiable function for all y, then B ; satisfies

Karush-Kuhn-Tucker conditions (in subgradient form):

"0
O S ab (ﬁL) { ! Z ag(BLXuY;)XU + )‘S](ﬁL)} fOIj € {17 s 7pn}7 (47)

and for j = 0:
1 &0
e ann(Bn) = {13 FiEx. 0}, (49

where ,%L = (Br1,...,Prp,)" is a subvector of B, and s;(B,) € 0bj||,2‘3L||1 is a j-th
coefficient of a subgradient of the I; norm evaluated at 3, i.e.:
2 {sgn BL,j} if BL,j 70
si(BL) € .

For B 1.—o KKT conditions 1' have the same form.

(4.9)
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If we denote by:
T

ap , » ap - T
v(BLX) =~ [a’gwfxl,m, - p(ﬂfxn,m] ,

S(BL) = [Sl(BL)a coesSpa (BT
then (4.7) can be rewritten as:
AT (B) = VT (B X)X, (4.10)
We note that if there exist two solutions of , namely B(Ll) and Bf) with XB(LU #*
X,C:I(LQ) and p(+,y) is strictly convex, then we would have for a € (0,1) from strict convexity
of p:

P + (1 —a)B) < aP(B)) + (1 — a)P.(BY) = P.(BY),

A (1

what contradicts optimality property of ,B(L) (proof of strict convexity of P, is conducted in
the same way as in Lemma [A.24)). Therefore XB(Ll) = XB(LZ). This means that Rn(B(Ll)) =
Rn(B(LQ)), what gives ||B(Ll)||1 = ||B(L2)||1, if A > 0. Moreover, we obtain s(,B(Ll)) = S(B(f)) in

A1) A (2
view of (4.10]). This implies weak sign consistency for every two Lasso solutions: 6,(—41; B(L)] >

0forj=1,...,p,, because if Bfg > 0, then from equality s; (B(LZ)) =5 (B(Ll)) = 1 it follows
that B(LQi > 0 (we perform analogous reasoning when BAS; < 0). Note also that the above
reasoning shows that if there are two different Lasso solutions, there are uncountably many
of them.

Now we will address the question when B ; is unique. Before we do this, let us introduce

the following definition:

Definition 4.1. We say that A € R"™™ has columns in general position, if for every
k < min{n,m} no k-dimensional subspace L C R™ contains at least k + 2 points of
{iA(l)7 e :i:A(m)}, excluding antipodal pairs.

From geometric point of view, when & = 1, no 3 columns of A (considered as points
in R™) multiplied by +1, say +AUD) +A02) £ AU can lie on the same line excluding
antipodal pairs (i.e. +AY) and —A(j)), that is if a line contains points =AY and +A )
then it may only contain points FAYY and FAU2) among +AY) for j =1,...,m.
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Sufficient and necessary conditions for uniqueness of B ;, are known for quadratic loss
(see Schneider and Ewald| (2017)). Proof of uniqueness provided columns of X (or X
for the model without intercept) are in general position for quadratic loss can be found
in (Tibshirani (2013). Moreover, it is noted in [Tibshirani and Wasserman| (2015)), that
general position assumption is also sufficient in the case of strictly convex differentiable
functions p(-,y) provided that B ; exists. In the case of p, + 1 < n we give sufficient
conditions for uniqueness of B . (see Lemma involving strict convexity of p(-,y) for
all y and a condition on X. In the case of general loss in high-dimensional setup we give
sufficient conditions for uniqueness analogous to [Rosset et al.| (2004) (see also Theorem
A.29] which ensures additionally sparsity of Lasso solutions). If Pk is absolutely continuous
distribution with nondegenerate support contained in RP in the sense that Lebesgue’s
measure /i, (Supp X) > 0, p(-,y) is strictly convex and differentiable, then B ;, is unique
with probability one (see Theorem . Note that we do not need to impose assumption
about distribution of X to ensure uniqueness of B ; in any of the proofs in this chapter.

In this chapter we consider cones of the form:

Cld,w) ={A: [[Auells < d]|Ay][1}, (4.11)
where d > 0, A € R and w C {0,1,...,p,}, w¢ = {1,...,p,} \w and A, =
(Ayys -y Ay, ) for w = {wy,...,wg}. Cones C(d,w) are of special importance, because

we prove that [‘3 . — B € C in the Theorem for the logistic model with intercept,
where

C=0C(3,s0), (4.12)

s =s"U{0} and s* = {i € {1,...,p,} : 57 # 0} was defined in (1.4). For the model
without intercept the cone is defined analogously but with A € RP» and w C {1,...,p,}.
In the cone C(d,w) we define a quantity x which can be regarded as generalized minimal
eigenvalue of a matrix in high-dimensional setup. For the logistic model with intercept we

are interested in:

T *

k = inf A H;'B )A, (4.13)
AcC AT A
T *

Kp = in AHHT&, (4.14)
AcC AT A

where C was defined in , H(b) = D?R(b) = E(XX"¢,(XTb)) is expected value
of Hessian. Moreover, empirical Hessian based on all predictors is H,(b) = D*R,,(b) =
w, with II(b) = diag(¢}(XTb),...,q,(XIb)). For the model without intercept we
define for ¢ > 0:
ku(e) = inf ATiHA
acc. ATA
where H € RP»*P» ig non-negative definite matrix and

C. =C(3+¢,5%).

(4.15)
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Moreover, throughout this chapter we introduce a following notation:

Bi(r) = {A: [|A]L <1}, (4.16)
W(b) = R(b) — R(8"), (4.17)
Wa(b) = Ra(b) — Ru(B") (4.18)
SU)= s W) = W) (4.19)
B = min |5, (4.20)

We will need the following margin condition for model without intercept in Lemma
4.13] and Theorem |4.15]

(MC) There exist J,e,0 > 0 and non-negative definite matrix H € RP»*P~ such that for
all b € © with b — 8* € C. N By (8) we have

R(b) ~ R(8") > (b~ §") H(b — 8°).

The above condition can be viewed as a weaker version of strong convexity of function R in
the restricted neighbourhood of B* (namely in the intersection of ball B (8) and cone C.).
We stress the fact that H does not need to be positive definite, as in the Section [4.2| we
use together with stronger conditions than kg (g) > 0 - in this situation right hand
side of inequality in is positive. We also do not require here twice-differentiability
of R and we note in particular that condition is satisfied in the case of logistic
loss, X being bounded random variable and H = D2R(B*) - see Lemma [A.54 From
the Lemma it also follows that is satisfied for quadratic loss, X satisfying
E||X||3 < oo and H = D?*R(B*). Similar condition to (called Restricted Strict
Convexity) was considered in Negahban et al. (2012) for empirical risk R,, in the context

of I} regularization:
Ro(B"+ A) = Ra(B") = DR,(B")" A + kl|A[]* = 7(87)
for all A € C(3,s*) and some k1 > 0 and tolerance function 7.

Another important assumption, used in the Theorem and Lemma is the
Lipschitz property of p :

(LL) 3L > 0Vby,by € Ryy € {0,1}: [plby,y) — plba, )] < L|by — bol.
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4.1. Logistic loss - model with intercept

The main theorem in this section is Theorem which is a probabilistic version of
Theorem 5 in Fan et al| (2014a) and is also a generalization of this theorem to the case
of the model with intercept. Main assumptions of Theorem 5 in |[Fan et al. (2014a)) for
the case of deterministic X are ||[DR,,(8%)||cc < A/2 and max | X;;| < k,/(20A]s*|). Here
we will show that these conditions hold with sufficiently high probability, and thus the
consistency result for Lasso holds with probability tending to 1 in appropriate setup (see
Remark . We stress that assumption about logistic loss cannot be omitted in Theorem
as it is essential in the proof of Lemma In this section we will denote sf = s* U {0}

and we assume that unique 8" exists.

Lemma 4.2. (Corollary 8.2 invan de Geer (2016)) Let Z, . .., Z, be independent random

variables such that for some constant Ly they satisfy

C3 = _max Eexp(|Z |/Lo) <

-----

n 1/2
(iz (Zi — BZ;) > 2L, (CO (Qt) + t>> <e
=1

Then

n

First we prove

Lemma 4.3. Assume that X1;, Lo, Co > 0 are such that for alln

X2
2,
Then for any t > 0 and n > t/(2CZ) we have with probability at least 1 — 2(p, + 1)%e™" for
any A € Rpnt1;

1

2t\ 2
(ATH,(B)A — ATH(B")A| < 4| A|2LoCy (n> . (4.22)
Proof. Note that
* 1 - *

|ATH,(B")A — ATH(B ﬁz (XTA)q, (X7 B) — E(XTA)?q, (X 87)

pn

< D AGA] ZXZJszQL<XT/B) EX1; X1kq;, (X B)
7,k=0 i=1

Z Xingr (X] %) — EX1;Xuqr (X1 8)| .
It follows from Lemma applied with Z; = Xiniqu(Xi B*) that for any j, k we have

, \ ot t -
( ZX’L]XZk’qL(XTB ) EXl]Xlqu(X{IB ) > 2LO (CO <n> + n)) <e !

i=1
since we have (|q7(s)| < 1/4):

| X1, X1xq), (XT BY)] | X1, X X5+ X3
E <E PO R < | LY
P ( Lo R Y Rt WY

< HAHl . r_nax

=U,...,
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4.1. LOGISTIC LOSS - MODEL WITH INTERCEPT

1 X2 X2 1
<-|E —L | +E k) < Z(C2 40 = C2
< 2( exp <4L0>+ exp <4L0 < 2(00 + Cy) = G

If n > t/(2C%), then it follows that:
2\7 _ t
C() () ’ > —.
n n

Now union inequality is used to obtain the result. Note that the set having probability at
least 1 — 2(p, + 1)%¢™" on which (4.22) holds can be chosen independently of A. O

Corollary 4.4. If assumptions of Lemma are satisfied, then for t € (0,8CZLy) we

have:

A"(H,(8) — H(8")A| £2n
P[3A € R FL. ’ t] <2 1)? - ]. (42
( - AT Zt) =y exp( 32L303> 429
We define
K
Av={rn =2 1/2}, A?{f&laxn Xw'ﬁm*}? Ay = {|IDRA(8")|le < A/2}.
RPN 0

Lemma 4.5. If assumptions of Lemma[{.5 are satisfied, kK < M for some M > 0, then

we have: )

P(Ay) > 1—2(pn+1)%exp [ ——— 4.24
() 2 1= 200+ P esp () (1.21)
where Cy = 32°L3C2 and C? = max (CZ, M/(256Ly)).
Proof. Firstly, we observe that if A € C, then:
JAIR _ @A) _ 16511443
17N 1 1VAN 1 R IAN{F
Now, if for some ¢ > 0 and all A € RP»*! we have

[ATH,(B)A - ATH(BY)A| < t]|Alf,

< 16]sg|.

then we obtain:

o [ATHABYA ATH(B)A| A} ATH,(8)A - ATH(BY)A
Ae| ATA ATA | a|Al INE
|ATH,(B)A — ATH(B)A
< 16|s5]| sup 5 < 16]|s5]t.
Acc A

On the other hand, observe that for all A € C we have:

ATH(BHYA  ATH,(B)A
< < + 5. 4.25
- ATA T ATA (4.25)
Taking infimum of right-hand side yields k < k,, + S. This means that if S < 5, then

K

Kn > 5. Finally, in view of above inequalities and Corollary [.4] we get:

A 2
P(4) 2 P(S<5)>P (VA e R |ATH,(B)A — ATH(8)A| < K3H2|3U|1>
0

) K*n
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The last inequality in the above chain of inequalities holds, if

K
< 8C?L,.
320sy] = 00

If this condition is not satisfied, then we note that it is sufficient to replace Cy in Lemma
by a larger constant, therefore the Lemma holds for:

~ M
Cg = max (Cg7 256_[/0> y

as we have:
K

32|sp]

<

Bl=

< 8C2Ly.

Remark 4.6. If X;; ~ Subg(c3,) then is satisfied with Ly = s2 and Cy =

V2, what follows from part @ in Lemma . Hence s satisfied with C; =
3235t max{/2, M/(256s2)}.

Lemma 4.7. If X;; ~ Subg(c?,), k < M for some M >0 and x > 40|s§|\, then:

P(A; NAy) >1—2(p, +1)%e Gl 2np,, e v
— 2(pn Xpl——=——5 | — nexXp | ————5 1|,
b= P P\ s P P T e 2512

where Cy = 3200s% and C, was defined in Remark .
Proof. As X;; ~ Subg(c?,), we have in view of union inequality, part (3| in Lemma

and inequality s; > o7, for t > 1

Pl max |Xj[>t]|=P U {1X;;] >t} ] < Z P(|Xi;| > 1)

=0,1,..pn P i
t2
< 2np,e -
! Xp( 2)
Thus, we obtain from the above inequality (note that x/(40A|s|) > 1):
P(A NAS) =P | k> 2 A X, > | <P X, > ——
=Pk, > - A max gl > —=——1 < max il > ———
b 27 =Ll TN 200 s =L T 40N s
7=0,1,....pn 7=0,1,....pn
<2 i
npnexp | ——————— 1.
= PSP T3000N2]sp 252

The theorem follows from the union inequality: P((A; N Ay)¢) < P(AS) + P(A; N AS). O

Lemma 4.8. If X;; ~ Subg(c?,), then we have

2 2
P(A3) > 1 —2p, exp (— An > — 2exp (—/\n> ;

87252 8

where T = e3i 4/@ < 3.02.

54



4.1. LOGISTIC LOSS - MODEL WITH INTERCEPT

Proof. Let Z; = Y; — q.(X7 8%). Then we have | Z;| < 1 and EX;;Z; =0 in view of normal
equations fori=1,...,nand j=0,1,...,p,. Hence, using Lemmas [A.38 and [A.33]
yields respectively X;;Z; ~ Subg(T O'jn) for j=1,...,p, and X;;Z; ~ Subg(1) for j = 0.
As observations (X;,Y;) are independent, we have in view of Lemma

Subg(n), if j =0,

> XijZi ~
i=1 Subg(n7‘202 ), ifj=1,...pu.

Thus from the union inequality and part [3]in Lemma we obtain

P(45) = P (HDRn(ﬁ*)Hoo > ;) (H {Z "A})

Pn " n n\? n\?
<SPS X072 > <2exp [ =22 ) +2p, _ A
<Sr(Sxn ) <zen () v ()
Il

Theorem 4.9. If X;; ~ Subg(c3,) for j = 1,...,pn, & < M for some M > 0 and
K > 40X|sy|, then

) 10y/]s5/A K2n K?
P — By > ) < 2(p, +1)2 — 2npy T A2 2
(HﬁL B8 HQ - ) = (p + ) eXp( Cl|56|2> + 2np eXP( O2>\2|86|2>

Lo n\? Lo ni?
exp | —— n€Xp | — ,
PL77s PSP Tgr2g2

where T = e21 - 4//27 < 3.02, Cy = 32%s* max{\/2, M/(25652)} and Cy = 3200s2.

Proof. On the set A; N A3 assumptions of Theorem are satisfied and we have:
1B, = B7l> < 5ls5]"*An, !
Thus, on the set A; N Ay N A3 K, > k/2 and we obtain:
1B, = B*ll2 < 10[s5*As~".
This means that:
P([B, = B7Il2 > 10]s5|*As™") < P((A1 N Az N A3)%) = P((Ar N Az)° U AS)
< P((A; N A2)°) + P(AS).
This completes the proof in view of Lemmas [4.7] and [4.§] O

Corollary 4.10. If X;; ~ Subg(a?n), 0<0j, <sp,m< k<M for somem,M > 0,
limsup,, s, < 00, |s§|? log p, = o(n), \?|s§|*log(np,) = o(1) and log p,, = o(nA\?), then:

. i} 104/]s§|A
P13, - Al < 2UTR)

If additionally 5.k > 204/[s§|A (or \/|s§|A = o(BLin) ), then we have:

P (maXWLZ] < mm]ﬁLlD — 1.

1€
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CHAPTER 4. PROPERTIES OF LASSO ESTIMATOR IN MISSPECIFIED BINARY MODEL

Proof. First part is proved in Theorem [4.9] For the second part, we observe that:

2 - A . 10y/]s5lA gz
1B. Bl < 18, — 8l < L < P

and for the remaining part of proof see proof of Corollary [4.16] as it is almost identical

(we replace 3 norm there with l5). O

Remark 4.11. (Separation property)

Conclusion of Corollary holds in high-dimensional setup when p, = O(e™"), |si| =
O(nf) and \ = Cy,y/log(p,)/n for some ¢ > 0, v € (0,0.5), £ € (0,0.5 —~) and for
some sequence C,, tending to oo sufficiently slowly, satisfying C,, = O(n"), where u €
(0,0.5 —~v—=¢).

4.2. General loss - model without intercept

The main Theorem in this section is Theorem Idea of the proof is based on
fact that if S(r) defined in is sufficiently small, then B, lies in a ball {A €
RPr: ||A = B%||1 < r} (see Lemma[4.13). In Lemma we prove a tail inequality for
S(r), what finally gives us Theorem [4.15|

In this section 3, stands for /3 1o defined in . Quantities W (v), W,,(v) and S(r)
are defined in - respectively.

Lemma 4.12. (Basic inequality). Let p(-,y) be convex function for all y. If

r ~
= ~ ) = +1_ *7
Y Bl TPt wR

then:
W(v) + A||v— B*||1 < S(r) + 2\||vs — B

s*

1-

Proof. Firstly, observe that from convexity of p function R, is convex. Moreover, from

the definition of B 1 we get the inequality:

Wa(BL) = Ru(BL) = Ra(B7) < A(I1B7[l1 = [1B1I1)- (4.26)
We note that v — 8* € By(r), as we have:
v =Bl = 16y —F1h_ (4.27)

- o
r+ 18— Bl
By definition of W,,, convexity of R,,, (4.27) and definition of S we have:

W(v) = W(v) = Wa(v) + Bu(v) = Ru(87)
< W(v) = Wa(v) + u(Ro(B) = Ra(B7) < S(r) + uW(B). (4.28)
From the convexity of /; norm, (4.28), ([4.26), ||8*|: = ||8%-

follows that:
W(v) + AVl € W) + M| Bl + A1 — )87

1 and triangle inequality it
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4.2. GENERAL LOSS - MODEL WITHOUT INTERCEPT

(r) + uWa(By) + uA(IBLl = 187]11) + AlIB"Ih
(r) + AlB7|[ < S(r) + AIB™ = Ve |l + Allvee] 1. (4.29)

<

<

Hence:
W () +Allv = B7[1 = (W(v) + Al[vl[1) + A(llv = B%[[1 = [[v[1)
< S(r) + A" = v 1+ AV = B[ = lIvll1) = S(r) + 2X|[8" = v,

1 +)\HVS*

1-

]

Lemma 4.13. Let p(-,y) be convex function for all y. Assume that A\ > 0. Moreover,
assume margin condz’tz’on with constants ¥,¢,6 > 0 and some non-negative definite
matriz H € RP*Pn If for some 1 € (0,0] we have S(r) < CAr and 2|s*|\ < kg(e)dCr,
where C' = ¢/(8 4 2¢) and C = 2/(4 + €), then

1B, — B[l <.
Proof. Let u and v be defined as in Lemma [4.12] Observe that ||v — 8*||; < r/2 is
equivalent to ||8;, — B*||1 <, as the function f(z) = rz/(z + r) is increasing, f(r) = r/2
and f(||8, — B*|1) = ||v — B*||:. Let C = 1/(4+ ¢). We consider two cases:
(1) ||ver — Bis|1 < Cr:
From the basic inequality (Lemma we have:

v =Bl AW (V) + Allv = B7111) < AS(r) +2||ve — BL
(i) [|ve — B
Firstly, we observe, that ||vgsc
which contradicts (4.27]).

Now, we observe that v — 8* € C., as we have from definition of C' and assumption of this

1§C’7’—|—20r:g.

1> Cr:

1 < (1 = C)r, otherwise we would have |[v — 8%||; > r

case:

L <(1-C)r=B+e)Cr < (B+e)|lve — B

§*

|[Vgee 1-

By inequality between [; and [y norm, definition of kg (e), inequality ca?/4 + b*/c > ab
and margin condition (which holds because v — 8% € By(r) C By(0) from (4.27)) it
may be concluded that:

1S¢Ewwy—ﬂ;zs¢EMW—ﬁﬂhsv@wJ“ i

()
_I=BHE =) D W) s

[V — :8:*

. 4.30
- 4\ Uku(e) = 2A Vku(e) (430)
Hence from the basic inequality (Lemma [4.12]) and above inequality it follows that:
2|s*| A2
W)+ A|v =81 <Sr) +2\||ves — Bicl 1 < S(r) + W(v) + 15°) .
19/11-1(6)

Substracting W (v) from both sides of above inequality, using assumption about S, in-

equality about |s*| and definition of C' yields:

2|s*| A _
[5°] < Cr+

2|s*|\ < (A1
Vku(e) — Vku(e) —

C+C)r=

. S(r) r
_ < —.
[[v =81 < ot 5
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CHAPTER 4. PROPERTIES OF LASSO ESTIMATOR IN MISSPECIFIED BINARY MODEL

]

Lemma 4.14. Let p(-,y) be convex function for all y and satisfy Lipschitz condition|(LL)
for all by, by, y. Assume that X;; for j > 1 are subgaussian Subg(c n) where 0, < S,.

Then for r;t > 0:
14Lrs,y/log(p, V 2)

t/n
Proof. From the Chebyshev inequality (first inequality), symmetrization inequality (Theo-
rem [A.40) and Talagrand - Ledoux inequality (Theorem [A.41)) we have for ¢ > 0 (where

(€i)i=1,..n are Rademacher variables independent of X):

P(S(r) > t) <

ES p 1 &
s> < oD < 2p oy LS e (po(XTh, V) — p(XTE, V)
t berrn:b-p* eBl() ni4
AL AL
<=E  sup ZeZXTb B < =LE max Zgz g
' berenb—preBi(r) |1 i t je{lpa}|n

In view of Lemma [A.39 we obtain &;X;; ~ Subg(o7 ) From 1ndependence of (51
and Lemma |A.34) we have that * Z £iXij ~ Subg( 7”) Thus + Z £ Xij ~ Subg(

In view of Lemma [A.36] we obtaln

log(pn V 2)
—

E max 251 il < =
]6{1 ~~~~~ pn}

This ends the proof. O

n

Theorem 4.15. Let p(-,y) be convex function for all y and satisfy Lipschitz condition
(LL). Assume that X;; ~ Subg(c3,) with 0, < sy, B* defined in exists and is unique,
margin condition is satisfied for €,9,9 > 0, non-negative definite matric H € RP»*Pn

and let
2|s*|\

S ﬁ;iun
<
Irale) = len{ 5 },

where C' = 2/(4 +¢). Then:
14(8 + 2¢) Ls,y/log(ps V 2)

(18, - gl < ) > 1 - L

m = min g
2
Lemmas and [4.14] imply that:
o ﬁmzn z * ~
TP’(IIﬂL Bl > i) < (1B, - 811 > m) <P (S (m) > Cam)
14(8 4 2¢) Lsy,4/log(p, V 2)
< .
- e/

Proof. Let:
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4.2. GENERAL LOSS - MODEL WITHOUT INTERCEPT

Corollary 4.16. (Separation property) If assumptions of Theorem are satisfied,
log p, = 0o(\*n) and kg(e) > d for some d,e > 0 for large n, |s*|\ = o(min{f%,,,1}), then

b (1, - 51 < ) 1

Moreover

P (%?X|BL1’ < min |BL’L|> — 1.
Proof. First part of the corollary follows directly from Theorem [£.15] Now we prove that
condition ||, — B*||1 < B%,,,/2 implies separation property max | ,@LZ| < Ilgn | BL,|

Observe that for all j € {1,...,p,} we have:

%m > 1B, — Bl = |8y — Bl (4.31)

If 7 € s*, then using triangle inequality yields:
1Br.j — Bil 2 1851 = |Brsl = Brin — 1814l
Hence from the above inequality and (4.31)) we obtain for j € s*:

o ﬁ;kmn
|BL.jl > 5
If j € 57, then 87 = 0 and (4.31)) takes the form:
18] < %
This ends the proof. m
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Chapter 5

GIC minimization

such that s* € M, Vw € M : |w| <k, a.e. and k, € N, is some sequence. We define

Generalized Information Criterion (GIC) as:
GIC(w) = nR,(B(w)) + an|w|, (5.1)

where
B(w) = argmin R, (b)

beRPn: byc =0|yc|

and a, > 0 is some penalty. Typical examples of a,, include:

e AIC (Akaike Information Criterion): a, = 2,
e BIC (Bayesian Information Criterion): a,, = logn,
e EBIC(d) (Extended BIC): a,, = logn + 2dlog p,,, where d > 0.

In this chapter we consider only the model without intercept as the results for GIC
minimization generalise easily to the case of the model with intercept. Moreover, throughout

the chapter we introduce a following notation:

By(r) = {A e RP: [[A]l; <7}, (5.2)
Di={beRP: Jwe M: |w <k,ANs" CwAsuppb Cw}, (5.3)
S)= s ((Ra(b) = Baf87) = (RB) - REDL (59

Dy ={b eRP: suppb C s*}, (5.5)
Sa(r) = sup |(Bn(b) — Rn(8")) — (R(b) — R(8"))]. (5.6)

bGDQIb—/B*EBQ('f')
We note that such definitions of D; for i = 1,2 guarantee that if b € D;, then |supp(b —

B*)| < k,, what we exploit in Lemma [5.1]

We assume that X;; are subgaussian: X;; ~ Subg(c?,), where: ¢, > 0 and moreover
lim sup s,, = v < oo, where s,, = maxojy,.

nl\/[oreover, in Section we con]sider the following condition for e > 0, w C {1,...,p,}

and some 6 > 0:
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CHAPTER 5. GIC MINIMIZATION

C.(w): R(b) — R(B*) > 0||b — B*||5 for all b € RP» such that suppb C w and b — 8" €
BQ(E).

We note in particular that in view of Lemma the above condition is satisfied for
logistic loss, X € RP* being bounded, sufficiently small ¢ > 0 and when the following

condition is fulfilled:
.. .. ATD?R(BHA
liminf inf 7
n AcRrn AT A
Moreover, is satisfied for quadratic loss and X € RP» satisfying E||X][2 < oo and
(5.7) in view of Lemma [A.55 Condition ([5.7)) in the proofs can be replaced also by the
following weaker one to guarantee that |[C(w)|is fulfilled:
ATD*R(B")A
lim inf inf ]j('@ )
no AeRPn: |[Allo<kn A°A
We observe also that the conditions [(MC)| and [C.(w)| are not equivalent, as they hold
for v = b— B* belonging to different sets: By (r)NC. and By(e)N{A € RP»: supp A C w}

respectively. We note that if the following condition is satisfied for matrix H in condition

(MC);

> 0. (5.7)

> 0. (5.8)

A"HA
m AT A )\mzn > O,
AeRrn - A" A
and holds for b — B* € By(r) (instead of for b — 8* € C. N By(r)) then we have for
b — B € By(r/\/Pn) € Bi(r):

R(b) — R(8") > Drmin

2

N

(b—p")"H(b—p") > b= B"[l2.

Furthermore, if
ATHA
acim ATA
and holds for all v =b — 8" € By(r) without restriction on supp b, then we have
for b — B* € By(r) C Bay(r):

= /\maxa

R(b) — R(B*) > 0||b - 7|5 > (b— 8" H(b - 8").
Similar condition to for empirical risk R, ?xjgs considered in (Kim and Jeon), [2016),
(2.1)) in the context of GIC minimization.

It turns out that condition together with p(-,y) being convex for all y and
satisfying Lipschitz condition are sufficient to establish bounds which ensure GIC
consistency for k, Inp, = o(n) and k, Inp, = o(a,) (see Corollaries and .

Theorems and state probability inequalities related to GIC consistency respec-
tively on supersets of s* and on subsets of s*. Corollaries [5.3] and present asymptotic
conditions for GIC consistency in the aforementioned situations. Corollaries and
gather conclusions of Corollaries [4.10] [£.16], [5.3]and [5.5| to show consistency of SS procedure

(see [Pokarowski and Mielniczuk! (2015)) in case of subgaussian variables.
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5.1. GIC CONSISTENCY

5.1. GIC consistency

Lemma is similar to Lemma [4.14] However, we bound S;(r) and Sy(r) on ball
Bs(r) instead of Bj(r), which was considered in Lemma [4.14]

Lemma 5.1. If X;; ~ Subg(03,), p(-,y) is Lipschitz with constant L > 0 for ally, r,t > 0,
then:

1. P(Si(r) 2 t) < JEVEnsuy/In(pa V 2),
2. P(Sa(r) >t) < f/%’; |5*| .-

Proof. Using respectively: Markov’s inequality, Lemmas [A.41] Schwarz’s inequality,
inequality ||v]la < /[|V]|o]|V||s, inequality ||vi|leo < [|V]|eo for @ C {1,...,p,} and
Lemma [A.30] yields:

ES 2 n
P =0 < B0 < 2p S XY - KT 0)
t nt beDy: b—B*€Ba(r) |i=1
4L n 4L n
< —E sup Y X (b—pBY)| < Bl ) max > eXin
nt beD1: b—B*€By(r) |im1 nt  wC{l,....pn}|7|<kn i1 9
4] 4L \/
S J max 4,7 = - Z 52
nt  wC{l,...pu}In|<kn ’

14Lr \an /7% V2

Similarly for Sy(r), using inequality ||v,||2 < ||V ||2 which is vahd for m C s*, definition
of I norm, inequality E|Z| < VEZ? and Lemma | we obtain:

ES 2
P(Sy(r) > t) < 2(r) < E sup Zel (X, Y;) - (X{g*,}g))’
t Nt beDy: b—pg* €Ba(r) |5
4L 4L "
< —E sup ZeZXT b— 8| < R max > eXin
nt beDy: b—B*€B2(r) |i=1 nt TSt i=1 2

Zgz 1,8%

4Lr\l
=

_ 4Ly Sk (Zé‘z ”>2

2 JES*
A4Lr
< ﬁ\/ |5*[sn
Il

EE Z 67;XZ
i=1

Theorem below provides conditions for GIC consistency on supersets of s* in Corollary
5.3l We note that bound in (5.9) is optimized for
4a,
on

however this requires assumption a, = o(n), as r < € and consistency on supersets of s*

is obtained when k, Inp, = o(a,). Corollary gives weaker assumptions for a special

choice of r =1, — 0.
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CHAPTER 5. GIC MINIMIZATION

Theorem 5.2. Assume that p(-,y) is convex, Lipschitz function with constant L > 0,
Xij ~ Subg(0%,), condition Cc(w) holds for some €,0 > 0 and for every w € {1,...,pn}
such that |w| < k,,. Then for any r < € we have:
14 Lk sp0/In(p,, V 2 4
P( min GIC(w) < GIC(s") < TV Fasny/In®. v'2) (m 4 ) (5.9
weM:s*Cw \/ﬁ an Or
Proof. If s* C w € M and B(w) — B* € By(r) then in view of inequalities R, (8(s*)) <
R,.(B") and R(B*) < R(b) we observe that:

A

R,(B(s")) — Ra(B(w)) < sup (Ra(B") — Ra(b))

beD1: b—B*€Ba(r)

< sup ((R.(B87) — R(B")) — (Bn(b) — R(b)))

beD;: b*ﬁ*€B2(7’)

< sup | Rn(b) — R(b) — (R.(B") — R(B"))| = Si(r).
beD;1: b—B*€Ba(r)
Moreover, we observe that: a,(Jw| — |s*|) > a,. Hence, if we have for some w D s*:

A A

GIC(w) < GIC(s*) then we obtain nR,(B(s*)) — nR,(B(w))) > an(|w| — |s*|) and from
the above inequality we have S1(r) > . Furthermore, if B(w) — B* € By(r)¢ and r < e,
then we take:

v=uf(w)+ (1 —u)p",
where u = 7/(r + ||B(w) — B*||2). This means that:
e B =Bl 7
IV = B7[l2 = ul|B(w) = B7]]2 =7 o Bw) - B 2

as function x/(z + r) is increasing with respect to x for x > 0. Moreover, we have

>

[|lv — B"||l2 < r < e. Hence, in view of C.(w) condition we get:
Or?

R(v) = R(8") 2 0llv = 8|3 =

From convexity of R,, we have:

Ry(v) < u(Rp(B(w)) = Ra(B")) + Ra(B") < Ra(B").

We observe that suppv C supp 3 (w) Usupp B* C w, hence v € D;. Finally, we have:
* * * 0T2
$1(r) 2 Ru(B") ~ R(B") — (Ru(v) — R(V)) = R(v) — R(8) > "

Hence we obtain the following sequence of inequalities:

P(_min_ GIC(w) < GIC(s")) < P(Si(r) = %”,vw e M: B(w)— B € Bo(r))
2

+PEweM:s*Cw /\B(w) — B* € By(r)°) < P(Si(r) > %) + P(Sy(r) > 0;:)

< 14Lrﬁ\/asm/ln(pn V2)+ eififﬁ\/asn\/ln(pn vV 2).

a

]
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5.1. GIC CONSISTENCY

Corollary 5.3. Assume that p(-,y) is convez, Lipschitz function with constant L > 0,
Xij ~ Subg(0%,), condition Cc(w) holds for some €,0 > 0 and for every w € {1,...,pn}
such that |w| < ky, k,In(p, V 2) = o(n) and k, In(p, V 2) = o(a,). Then we have

P( min GIC(w) < GIC(s")) — 0.

wEM:s* Cw

Proof. We take: r, = C, M, where C,, = 4 m min{1, /%= }. We observe

that C,, — +o00, r, < WW — 0 and

k, In(p, V 2) < (lfnln(pnv2)>Z 0

Ch

an, - Ay,
In view of Theorem [5.2] we have for sufficiently large n such that r,, < e holds:

14L\/k, s,/ In(p, V 2)rpn/n 56 LAk s,4/In(p, V 2
P( min  GIC(w) < GIC(s")) < VI V2rayn VIn(p. v 2)
WEM:s* Cw Qy, \/ﬁern
14LCLkps, In(p, V2)  56Ls,
+ —
an, 0C,

]

The most restrictive condition of Corollary [5.3|is &, In(p, V 2) = o(a,). We note that
in the case when p, > n and k,, = d, EBIC penalty defined above corresponds to the

borderline of this condition.

Theorem 5.4. Assume that p(-,y) is convex, Lipschitz function with constant L > 0,
Xij ~ Subg(c3,), condition Ce(s*) holds for some €, >0 and 8a,|s*| < Onmin{e*, 332 }.

Then we have:

P( min  GIC(w) < GIC(s)) < —225n il
(weﬁ:l}l}Cs* (w) - (S )) - eﬁmln{eaﬂ;‘mn}

Proof. Suppose that for some w C s* we have GIC(w) < GIC(s*). This inequality is
equivalent to:
R (B(s")) = nRa(B(w)) = an(|w| = |s*]).
In view of inequalities R,(B(s*)) < Ry (B*) and a,(|w| — |s*|) > —ay,|s*| we obtain:
Ry (B) = nRu(B(w)) = —ay|s"].
Let:
v=uf(w) + (1 - u)f"

for some u € [0, 1] specified later. From convexity of p we have:

nR,(B*) — nRy(v) > nu(Rn(8*) — Ru(B(w))) > —uay|s*| > —an|s*|- (5.10)
We have two cases:
1) B > €.
First we observe that exists some hg € (0,1) such that
0( ho \°,
n|s" < 5 , 5.11
wll <5 (G0) e (.11
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CHAPTER 5. GIC MINIMIZATION

what follows from our assumption. Let h € [ho, 1), 7 = he, u = r/(r + ||B(w) — B*||2) and
v =uB(w)+ (1 —u)B". (5.12)

Note that ||B(w) — B[], > 185 wllz2 = Bin- Then, as function d(z) = z/(z + ) is
increasing and bounded from above by 1 for x,c > 0, we obtain:

hellBle) — Bl b, _ b b
he + ||B(w) — B*||s ~ he+ Bin — (h+1)e  h+1
Hence, in view of C.(s*) condition we have:

B2
—~R(BH >0 —-| &
R - i 2o ()
Using ((5.10)-(5.12)) and above inequality yields:
ho)? . o( h \°
So(r) > R,(B") — R(B*) — (R, (V) — R(v)) > 6 (h) e — % s > = () €.

+1

r=he> v - Bl = (5.13)

Thus, in view of Lemma we obtain:

0/ n \2 8L\/>sn h+1)2
: < * v 2
P(we/\rﬁlg@* GIC(w) <GIC(s*) <P (SQ(T) > 5 < ) € ) < Jbhe

Taking h — 1~ leads to inequality:
32L1/ *|sp,
P( min GIC(w) < GIC(s%)) < . (5.14)
weM:wCs* \/_(96
In this case we take u = 3%, /(8% +||8(w) — B*||2) and define v as in (5.12). Analogously

as in (5.13)), we have:

B

2”1 < ||V_B ||2 = mzn

Hence, in view of C,(s*) condition we have:

6*2'
R(v) ~ B(B") > 972,
Using ((5.10) and above inequality yields:
*2
S2(Bmin) = Bn(B7) = R(B") — (Bn(v) — R(v)) = Hﬁzm B *\ |2 2 Bmin:

Thus, in view of Lemma we obtain:
32L+/|s*|sn
B, i, GIC() < GIC() < B (83 2 §50) < i ™. (515)
By combining ([5.14]) and ([5.15)) the theorem follows. ]

Corollary 5.5. Assume that loss p(-,y) is convez, Lipschitz function with constant L > 0,
Xij ~ Subg(c3,), condition C(s*) holds for some €,0 > 0 and a,|s*| = o(nmin{1, 8;,;,}°),
then

P( min GIC(w) < GIC(s")) — 0.

weEM:wCs*
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Proof. First we observe that if a,|s*| = o(nmin{1, 8%, }?) and |s*| = o(n min{1, 3% }?),
then in view of Theorem [5.4] we have

P( min GIC(w) < GIC(s")) — 0.

weEM:wCs*
Condition |s*| = o(nmin{1, 3%, }?) can be omitted as a, — +o0o and is implied by
an|s*| = o(nmin{1, 57, }%). O

5.2. Selection consistency of SS procedure

SS (Screening and Selection) procedure for the model without intercept is the following:

1. Take some A > 0.
2. Find BL7_0 = argmin R, ((0,b")7) 4+ \||b|[;.

beRPn
3. Find 5p = supp B, _¢ = {j1,-..,Jr} such that |3z o | > ... > |fr.—04,| > 0 and
jl""?jk€{17"'7pn}'
4. Define MSS’ = {®7 {jl}7 {jl?jZ}a . '7{j1aj27 s 7jk}}-

5. Find § = argmin GIC(w).

wWEMgg

SS procedure is a modification of SS procedure in |Pokarowski et al.| (2018).

In the model with intercept we modify SS procedure as follows:

1. Take some A > 0.
2. Find B, = argmin R, (b) + A||b]|;.

beRpn+1
3. Find 3, = supp B, \ {0} = {j1,...,Jk} such that |5, ;| > ... > |Br | > 0 and
jla"‘?jke {177pn}
4. MSS = {wa{j1}7{j17j2}7 .- '7{j17j27' e ajk}}

5. Find § = argmin GIC(w U {0}).

wEMgg

Corollaries [5.6] [5.7] and Remark [5.8] describe the situations when SS procedure works.

Corollary 5.6. (model without intercept) Assume that p(-,y) is convex, Lipschitz function
with constant L > 0, X;; ~ Subg(c3,) and B* exists and is unique. If k, € Ny is some
sequence, margin conditz’on is satisfied for some ¥,0,e > 0, condition C.(w) holds
for some €,0 > 0 and for every w C {1,...,p,} such that |w| < k,, Mgg is hierarchical
family constructed in the step 4 of SS procedure and the following conditions are fulfilled:

° ]P’(Vw € Mggs : \w\ < kn) — 1,
o [s*] <Ky,
e lim inf ku(e) > 0 for some € > 0, where H is non-negative definite matriz and kg(c)

s defined in ,
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e log(ps) = o(n)?),

o kA =o(min{f},;,,1}),
e k,logp, =o(n),

o k,logp, =o(an),

e a,k, =o(nmin{3’,,,, 1}2),

then for SS procedure for the model without intercept we have

P(s=s") — 1.

Proof. In view of Corollary from separation property (4.31]) we obtain P(s* € Mgg) —
1. Let:

A =1 min GIC(w) < GIC(s")},

weEMgg:wDs*,|w|<kn

Ay =1 min GIC(w) < GIC(s™)},

wEMgs:wDs*,|w|>kn
B = {Vw € Mgg : |w| < k,}.

Then we have again from union inequality:

P( min GIC(w) < GIC(s")) =P(A; UAy)

WEMgg:wDs*
=P(AiNB)U(A NB)U(A2NB)U (AN B°)) <P(A; N B) +P(A; N B°)
+P(A; N B) + P(A; N BY).
Firstly we observe that P(As N B) = 0. In view of Corollary [5.3| and monotonicity of

probability we obtain:

Similarly, we obtain:
0,

P(A, N BY) < P(B°)
P(B° 0.

_>
P(A, N B°) < P(B°) —

Hence:

P( min GIC(w) <GIC(s")) — 0. (5.16)

WEMgg:wDs*

In the analogous way, using |s*| < k, and Corollary [5.5| yields:
P( min GIC(w) <GIC(s")) — 0. (5.17)

WEMgg:wCs*
Now, observe that in view of definition of § and union inequality:

P(s=s")=P( min GIC(w)>GIC(s"))

WEMgg:wH#Ss*

>1—P( min GIC(w)<GIC(s*))—P( min GIC(w) < GIC(s")).

wEMgg:wCs* WEMgg:wDs*
Thus P(8 = s*) — 1 in view of above inequality, (5.16) and (5.17). O
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Corollary 5.7. (logistic model with intercept) Assume that p is logistic loss, X;; ~
Subg(a]?n) and B* exists and is unique. If k, € N is some sequence, condition C.(w) holds
for some €,0 > 0 and for every w C {1,...,p,} such that |wo| < ky,, where wy = w U {0},
Mg is hierarchical family constructed in the step 4 of SS procedure and the following

conditions are fulfilled:

m <k <M (k defined in {§.13)) for some m, M > 0,
55| < Kn,

o P(Vw € Mgg: |wo| <k,) —1,

e k2logp, = o(n),

o N’k log(npn) = o(1),

e logp, = o(n)\?),

o kN2 =o0(B2),

min

L4 kn logpn = 0(an>;

d ankn = 0(” mln{ﬁzmmv 1}2)

then for SS procedure for the logistic model with intercept we have:

P(s=s") — 1.

Proof. Proof of this Corollary is analogous to the proof of Corollary and it follows
from Corollaries [4.10] and [5.5] We note that condition k2 log p, = o(n) from Corollary
implies &, log p, = o(n) (as k, > 1), what is one of assumptions in Corollary 5.3 O

Remark 5.8. If p, = O(e") for some ¢ > 0, v € (0,1/2), £ € (0,05 —7), u €
(0,0.5—7—&), kn = O(nf), A = Cpy/log(pn)/n, C,, = O(n"), C,, = +00, n"2 = O(B%,,),
a, = dn%_“, then assumptions about asymptotic behaviour of parameters in Corollary

are satisfied.

Remark 5.9. We note that in order to apply Corollary[5.7 to two-step procedure based on
Lasso it is required that |s§| < k, and that the support of Lasso estimator with probability
tending to 1 contains no more than k, elements. Some results bounding | supp BL| are
available for deterministic X (see Huang et al. (2008)) and for random X (see Theorems
, but they are too weak to be useful in our context, therefore we use stronger
assumptions. The other possibility to prove consistency of two-step procedure is to modify
it in the first step by using thresholded Lasso (see|Zhou (2010)) corresponding to k!, largest
Lasso coefficients where k], € N is such that k,, = o(k}).
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Chapter 6

Numerical experiments

6.1. Logistic loss - calculation of 8"

Note that finding explicit form of projections B* is rarely possible in continuous case.
Nevertheless, our objective here will be to show that for a given distribution of r.v. X and
function ¢ computation of projection 8* is numerically feasible for logistic loss. Reasoning

presented here can be easily generalized to other loss functions.

6.1.1. General assumptions

To compute B* in general case, we define: F(b) = Eqz(b?X)X — EYX. In view of
normal equations (2.10): F(8*) = 0,. Now we compute matrix of the first derivatives
of F: Jr(b) = Eq,(b"X)XX". If X satisfies and E||X|]? < oo, then Jg(b) is
well defined positive definite matrix, as we have for every b € RFt! v € RPN {0,441}
T Jp(b)y = E¢, (b X)||y"X||? > 0. The iteration of Newton-Raphson method is thus
given by:

Bri1 = B — Jr(B) " F(By).

6.1.2. Generalized semiparametric model - linear regressions condition

If X satisfies linear regressions condition and

P(Y = 1|X = x) = ¢(B"X), (6.1)
then we know that 8° = B, hence g* = (B3, nTBT)T and we need to estimate only 3§
and 7, what is much easier task than under general assumptions. In this case we define
Eq(z +y"B' X) - Eg(BTX)
Eqp(z + yTBTX)BTX — Eq(B"X)

Matrix of the first derivatives of F' has the form:
Eq) (z + ny’)TX
Eq¢,(z+y"B' X)B

F(z,y) = T

we]

JF($>Y) =




CHAPTER 6. NUMERICAL EXPERIMENTS

Similarly as in general case, Jr(x,y) > 0 and we can use Newton—Raphson iterations:

{/ﬁanﬂ] B [ﬁéﬁn] TG (B ).
Mn+1 M

In order to choose a starting point of Newton—Raphson procedure in case of X ~

N (0,%), the following approximations can be used
> T v * D T v *
Eq(8o + B X) = Eqr(8; + "ITB X) ~ qr(6)
and using Remark (we use normality of X here):
_ EDq(f+B'X) _ EDq(f +BX)
Eq7 (85 + nTBTX) q1.(55) .

Hence we can take:
* — SRy,
50,0 = qu(Eq(ﬁo +B X)),
p — EDald + B'X) Eq/(fo +B'X)
0 4 (Bs o) Eq(Bo + B X)(1 — Eq(By + B' X))

~ T ~ ~ T ~
as q1.(85,0) = ar(650) (1 — qr(B5,)) = Eq(fo + B X)(1 — Eq(fo + B X)).
We note that the above procedure is similar to procedure for semiparametric model -

we replace B by 8 and 1 by n. Moreover, if X does not follow normal distribution with

zero mean, we choose starting point equal zero instead of the one given above.

6.2. Simulation I - calculation of 8" in semiparametric model

We assume that X = (1,XT)T, where X ~ N,(0,,1,) and p = 15. Conditional

distribution Y|X is given by semiparametric model:
B(Y = 11X = x) = g(87x,).
The following coefficients have been considered (they are the same as in the numerical

experiments in Mielniczuk and Teisseyre| (2016)):

(M1) s = {10}, B, =0.2,

(M2) s={2,4,5}, B, = (1, 1,1)7,

(M3) s = {1,2}, B, = (0.5,0.7)7,

(M4) s = {1,2}, B, = (0.3,0.5)",

(M5) s={1,...,8}, B, = (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)".

Let ®(-) denote distribution function of standard normal distribution and Fequchy(uv)(*)
distribution function of Cauchy distribution with location u and scale v. In the case of

incorrect model specification, the following response functions are considered:

qi(s) = ®(s),
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6.2. SIMULATION I - CALCULATION OF 8* IN SEMIPARAMETRIC MODEL

P(s) for P(s) € (0.1,0.8)
g2(s) =40.1  for ®(s) <0.1
0.8  for ®(s) > 0.8,

P(s) for d(s) € (0.2,0.7)
g3(s) = 0.2 for ®(s) < 0.2

0.7  for ®(s) > 0.7,

D(s) for |s| > 1
qa(s) =

0.5+ 0.5 cos[dms|P(s) for |s] <1,
%(S) = FCauchy(O,l)(S)a
QG(S) = FCauchy(0,2)(S)-

In Mielniczuk and Teisseyre (2016) values of 1 were calculated using Monte Carlo
experiments and are given in Table 1 there. In Tables values of 3; and 7 for models
M1-M5, functions q; — q¢ and ¢, are given. Integrals were computed using Gauss-Hermite
quadrature with 1000 nodes. No more than 7 iterations of the procedure were needed for
convergence. Comparing these results with simulated values in Mielniczuk and Teisseyre
(2016)), we observe that for all functions except gy (non-monotonic case) the results of
both calculations are very close, what suggest that the above Newton-Raphson procedure
performs well for monotone g. Note that Monte-Carlo calculation of 7 performed in |Miels
niczuk and Teisseyre| (2016) was based on n = 10° observations drawn from distribution of
(X,Y) whereas here we use a single run of the iterative procedure for its evaluation. We

also note that values of n (and 7)) for ¢; are greater but close to /8/7, what is consistent

with ([2.42)).

Table 6.1: Values of n for models M1-M5 calculated by Newton-Raphson procedure.

qr a1 q2 as q4 ds ds
M1 1.0000 1.6041 1.6041 1.5977 -0.1814 1.2462 0.6330
M2 1.0000 1.7526 0.8655 0.5326 1.3211 0.8696 0.5244
M3 1.0000 1.6836 1.3488 0.9634 0.8832 1.0504 0.5893
M4 1.0000 1.6487 1.5300 1.2386 0.4861 1.1305 0.6107
M5 1.0000 1.7503 0.8841 0.5461 1.3263 0.8772 0.5275
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Table 6.2: Values of 3 for models M1-M5 calculated by Newton-Raphson procedure.

qr q1 q2 qs q4 ds de
M1 4.39E-16 4.32E-16 -6.04E-07 -3.78E-04 4.25E-02 -1.43E-17 -1.91E-18

M2 -2.08E-16 4.41E-18 -1.54E-01 -1.66E-01 -4.63E-02 -2.05E-16 -1.33E-16
M3 -1.20E-16 -2.06E-16 -5.85E-02 -9.95E-02 1.38E-02 3.90E-16 4.16E-16
M4 4.10E-16 -1.41E-16 -1.87E-02 -5.62E-02 3.33E-04 -8.56E-17 -2.84E-17
M5 -2.23E-16 4.43E-17 -1.51E-01 -1.64E-01 -6.16E-02 -1.94E-16 -1.30E-16

Table 6.3: Simulated values of #) for considered models reproduced from |[Mielniczuk and
Teisseyre| (2016) (first 5 rows) together with MSEs between simulated and numerically

calculated values given in the last row.

qr q1 q2 a3 q4 ds de

M1 0.988 1.642 1.591 1.591 0.788 1.241 0.651

M2 1.005 1.741 0.863 0.537 1.735 0.874 0.522

M3 0.993 1.681 1.352 0.968 1.524 1.045 0.580

M4 1.005 1.644 1.510 1.236 1.293 1.140 0.610

M5 1.013 1.779 0.897 0.552 1.724 0.879 0.532
MSEx10? 0.008 0.049 0.016 0.003 46.600 0.003 0.009

6.3. Simulation II - calculation of 8" in additive binary model

We consider X = (X7, X5)T ~ N3(0y, ), where

2 pr

pr 1] ’
r>1and p € (—1,1). We assume that:

PY = 11X =x) = aqr(z1) + (1 — @)qr(z2)
for x = (z1,79) € R?. This means that 8, = (0,1,0)7, 8, = (0,0,1)". We fit the model
with logistic loss without intercept. In view of Theorem [3.8}
B =Bn=mpB + b= (m,m)".

It follows from Lemma part [4| that function h(c) = Eq}(0Z) is decreasing for
Z ~ N(0,1) as its derivative EZ¢} (0 Z) is negative. This means that Eq¢} (X;) < Eq} (Xa),
because Var X; > Var X5. Thus Corollary gives us:

>

771 S «,
Eqr,(X2)

A sk
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6.3. SIMULATION II - CALCULATION OF g8* IN ADDITIVE BINARY MODEL

When r = 1, then X; and X5 have the same distribution and thus 7, < 1 — «. This

yields n1+1n2 < 1, when r = 1. For r = 2 lower panels of Figure [6.1 suggest that n;+n, < 1,

but it is still open problem to prove it for r # 1. Moreover, in the case p = 0.9 the

difference 1 — 1, — 1y is smaller than in the case p = 0.

=0.9

rho

rho=0

0.25

1.00 0.00

0.00

0.75

0.50

0.25

alpha

Figure 6.1: Values of 7; and 7, against a. Black solid line shows the values of 1, versus

Dark orange lines

a, black dashed line represents upper bound for 71 = a (see text).

correspond to 7y and upper bound for 7,. Dashed blue line represents sum of 7; and 7s.

contains graph computed values of n; and 7y as a functions of a for r = 1,2

Figure

Raphson method (see Section [6.1.1])
and expected values approximated by Gauss—Hermite quadrature with 50 nodes (using R

and p = 0,0.9. 7, and 7, were computed with Newton—
package fastGHQuad).
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6.4. Selection procedures

In performed simulations we have implemented modifications of SS procedure introduced
in Section [5.2] as the original procedure is defined for a single A only. In practice it is
generally easier to consider some sequence A\; > ... > \,, > 0 instead of A in the first
step, because we do not know how to choose the best A (see e.g. Remark . When we
consider the sequence Ay, ..., \,,, we can construct for corresponding families My, ..., M,
having the similar form to M in the step 4 of SS procedure. Hence we arrive here at the
following SSnet procedure, which is the modification of SOSnet procedure in Pokarowski
et al. (2018)):

1. Choose some \; > ... > A\, > 0.
2. Find B(LZ) — argmin R, (b) + \;||b||; fori =1,...,m

beRpn+1
3. Find §(Li) = supp B%) = {jfi), e ,j,?)} where jy), e ,j,(j,) are such that |3(Li)‘(i) >...>
i i J1
|6L o ., m.
4. Deﬁne M - {{jll } {jll 7j21)}7 {]1 7]2 PR 7]lgi)}} fOI' L= 17 cee, M
5. Define M = {0} U U M,.
6. Find § = = arg mm GIC(w U {0}), where GIC(w U {0}) = min _ nR,(b) +
beRPn+1:supp bCw
an(Jw| 4+ 1).

Instead of constructing families M, for each )\; in SSnet procedure, we can choose \;
by cross-validation using "one-standard error" rule (see Friedman et al.|(2010))) and then

proceed as in SS procedure. This gives the following SSCV procedure:

1. Take some Ay > ... > \,, > 0.

2. For each i = 1,...,m compute for Lasso model K-fold cross-validation error Ecy ()\;)
and a standard deviation of cross-validation error SDey (\;).

..... A BV (Ni).

4. Choose A = max{\;: Ecv(\) < Ecy(Amin) + SDev(Amin), i = 1,...,m}.

5. Find B, = argmlnR (b) + A|[b]]:.

beR Pn
6. Find 5, = suppBL = {j1,...,jr} such that |B.;] > ... > B .] > 0.

7. Define M = {@, {jl}, {j17j2}7 ceey {jl)j?a cee 7]k}}
8. Find § = argmin GIC(w U {0}), where GIC(w U {0}) = min nR,(b) +
weM

beRPn+1:supp bCw

3. Find A, = arg miny,

an(Jw| 4+ 1).
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The last procedure considered in this dissertation has been introduced in |Fan and
Tang) (2013)) and contains also a step for choosing A\. However, it is different from previous
procedures, as A is chosen by minimizing function similar to GIC', but computed for Lasso
estimator instead of MLE. Then § is equal to support of optimal Lasso estimator. We took

a, = log(logn) - log(p, + 1) as in |Fan and Tang| (2013). We will call this procedure LFT:

1. Take some Ay > ... > \,, > 0.
2. Find B(LZ) = argmin R, (b) + \;||b||, fori =1,...,m.

' beRpPn+1 '
3. Find §(LZ):{j€{O,1,...,pn}: 5977&0} fori=1,...,m.

4. Find 49 = argmin,_, . an(B(Ll)) + a,)8%|, where a, = log(logn) - log(p, + 1).
5. Find § = 3\ {0}.

We note that family M is defined for LET procedure (in order to compute performance

measures) as:
/\/l:{§g): i=1,...,m}.

We list below versions of the above procedures along with R packages, which were
used to choose sequence Aq, ..., A\, and computation of Lasso estimator. The following
packages were chosen based on selection performance after initial tests for each loss and

procedure:

e SSnet with logistic or quadratic loss: ncvreg,
e SSCV or LFT with logistic or quadratic loss: glmnet,
e SSnet, SSCV or LFT with Huber loss: hqreg.

We list below functions which were used to optimize R,, in GIC minimization step for

each loss:

e logistic loss: glm.fit (package stats),
e quadratic loss: .1m.fit (package stats),

e Huber loss: rlm (package rlm).

We did not perform simulations for probit loss and quantile loss due to time constraints
and lack of well implemented R packages to compute Lasso estimator and MLE estimator
for these loss functions.

Before applying each procedure, each column of matrix X was standardized, because
B 1, depends on scaling of predictors. We set length of \; sequence to m = 20. Moreover,
in all of the procedures we considered only A; for which ]§(Ll)| < n. It is due to the fact
that when |§S-j)\ > n Lasso solutions are not unique (see discussion in Section . For
Huber loss we set parameter 6 = 1/10 (see [Yi and Huang| (2017))). Number of folds in
SSCV was set to K = 10.

7



CHAPTER 6. NUMERICAL EXPERIMENTS

Each simulation consisted of L repetitions, during which samples X, = (ng), e Xg“))T

and Y, = (Yl(k), ., YUNT were generated for k= 1,..., L. For k-th sample (X, Y}) we

have computed §j - estimator of set of active predictors obtained by a given procedure,
A N ol 1 n
B(s) = (Bo(3),B(51)")" = argmin =37 p(b"X[Y, V)
bERp”+1:b(§kU{0})c:0 n i=1
is MLE estimator for k-th sample on set S.
M) ig the family M obtained by a given procedure for k-th sample.

In our numerical experiments we have computed the following measures of selection

performance:
L . . 5 838 (50)
e ANGLE = %k;l arccos | cos Z(3, B(8x))|, where cos Z(3, B(31)) = m and we
let cos Z(B, B(3+)) = 0, if [|B|121B(5)[]2 = 0,
L
o P,.= % > I(s* € MW,
k=1
L
L4 Pequal — % Z I(§k - 5*>7
k=1
L
b Psupset = %kz_:l [(‘ék 2 8*)

In our simulations we additionally computed time of 1st stage of each procedure, which
includes finding Lasso estimators and building family M (in case of SSnet and SSCV) and

time of 2nd stage which includes GIC minimization.

6.5. Simulation III - selection

6.5.1. Experimental setup - model M1

We generated n observations (X;,Y;) € RF x {0,1} for i = 1,...,n such that:
X = Zin, Xio = Zp, Xij = Z; j_7 for j =10,...,p,

Xis = X7, Xiu = X0y, Xis = X Xia, Xie = X7 Xin, Xig = X Xy, Xis = X}, Xio = X,
where Z; = (Ziy, ..., Zip)T ~ N,(0,, %), = = [pli=7l]; =, , and p € (—1,1). We consider
response function ¢(z) = qr(23) for z € R, s = {1,2} and B, = (1,1)7. This means that:

P(Y; = 11X; = xi) = q(Bixis) = (i1 + 2i2) = qu((za1 + 7:2)")
= qr(z3, + 23, + 337,240 + 3017%) = q1(3Ti6 + 3Ti7 + Tig + Tig).
We observe that the above binary model is well specified with respect to family of logistic
models. Hence sj,, = {6,7,8,9} and Bfog’s%g = (3,3,1,1)T are respectively set of active

predictors and non-zero coefficients of projection onto family of logistic models.
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We took the following parameters in the simulation: n = 500, p = 150, p € {—0.940.15-
k: k=0,1,...,12} and L = 500 - number of generated data sets for each combination of
parameters. We considered procedures SSnet, SSCV and LFT using logistic, quadratic
and Huber loss functions. For procedures SSnet and SSCV we used GIC penalties with:

e a, =logn (BIC),
e a, =logn+2logp, (EBICI).

6.5.2. Experimental setup - model M2

We generated n observations (X;,Y;) € RPF! x {0,1} for i = 1,...,n such that
X; = (X1, ., Xip)T ~ N, (0, %), = = [pl"71]; =1, and p € (—1,1). We took response

-----

function q(x) = qr(z3) for x € R, s = {1,2} and B, = (1,1)T. This means that:
P(Y; = 11X; = x;) = q(Bxis) = q(@in + 72) = qu((wi1 + 7:2)*)

This model in comparison to the one presented in Section does not contain monomials
of X;1 and X5 of degree higher than 1 in its set of predictors. We observe that this binary
model is missspecified with respect to family of logistic models, because q(x;; + x;2) #
qL(,BTxZ-) for any B € RP*!. However, in this case linear regressions condition is
satisfied for X, as it follows normal distribution. Hence in view of Remark we have
Stoe = 11,2} and 'szogvsfog =n(1,1)T for some n > 0.

We took the following parameters in the simulation: n = 500, p = 150, p € {—0.940.15-
k: k=0,1,...,12} and L = 500 - number of generated data sets for each combination of
parameters. We considered procedures SSnet, SSCV and LFT using logistic, quadratic
and Huber loss functions. For procedures SSnet and SSCV we used GIC penalties with:

e a, =logn (BIC),
e a, =logn+ 2logp, (EBICI).

6.5.3. Results for models M1 and M2

We observe that values of P, for SSCV and SSnet are close to 1 for low correlations
in M2 model for every tested loss (see Figure . In M1 model P;,. attains highest
values for SSnet procedure and logistic loss for low correlations - this is due to the fact
that in most cases corresponding family M is the largest among the families created in
considered procedures. Pj,. is close to 0 in model M1 for quadratic and Huber loss, what
affects other measures and could be caused by large correlations in the data, as we have
Cor(X;1, Xis) = 3/v/15 ~ 0.77. It is seen that in model M1 inclusion probability P, is
much lower than in model M2 (except for negative correlations). It it also seen that P,
for SSCV is larger than for LFT and LFT fails with respect to P;,. in M1.
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In the model M1 P.,,, attains highest values for SSnet with BIC penalty, then for
SSCV with EBIC1 penalty (see Figure . In the model M2 P4, attains values close
to 1 for SSnet and SSCV with EBICI penalty and was much larger than P, for the
corresponding versions using BIC penalty - moreover choice of loss was significant only for
larger correlations. These results confirm theoretical results of Theorem [2.6| We observe
also that although in the model M2 remaining procedures do not select s* with high
probability, they select w D s* with high probability, what is indicated by values of P,pset
(see [6.4)). This analysis is confirmed by an analysis of ANGLE measure (see [6.5)), which
attains values close to 0, when Pj,sc; is close to 1. Low values of ANGLE measure mean
that estimated vector é (8x)) is approximately proportional to B, what was the case for
M2 model, where we had normal predictors satisfying linear regressions condition. Note
that ,é (8k)) and B" are not approximately collinear in M1 despite the fact that M1 is well
specified. Also, for the best performing procedures, P.;,, was much larger in M2 than
in M1, despite the fact that the latter is correctly specified. However there are 4 active
variables in M1 compared to 2 in M2.

In model M1 procedures with BIC penalty performed better than those with EBIC1
penalty, however the gain for P,,,, was much smaller than the gain when using EBIC1
in M2. LFT procedure performed poorly in model M1 and reasonably well in model M2.
The overall winner in both model is SSnet. SSCV performs only slightly worse than SSnet
in M2 but it is significantly worse in M1.

Analysis of computing times of 1st and 2nd stage of each procedure shows that SSnet
procedure creates large families M, thus GIC minimization becomes computationally
intensive. We also observe that 1st stage for SSCV takes more time than for SSnet, what
is caused by multiple fitting of Lasso in cross-validation. However, SSCV is much quicker
than SSnet in 2nd stage. We do not compare times between M1 and M2 models, because

the results were calculated on 2 separate machines.
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6.5.4. Experimental setup - model M2a

To check robustness of procedures in this chapter, we considered also modification
p € (—1,1). Below we define the modification for model M2a and vector X.
Firstly, we observe that vector (Xi,...,X,)? having N,(0,, X) distribution and ¥ =

,,,,,

X1 =¢;

X;=pXj1+ 1 —p%;forj=2,...,p,
where £1,...,6, ~ N(0,1) are independent. We replace here N (0,1) distribution of
g; by 0.9N(0,1) + 0.05N(5,1) 4+ 0.05A (—5,1). Moreover, because we want X to be
(approximately) AR(1) process, we reject first k X; generated by the above procedure

(warm start). This means that the final algorithm for generating vector X is the following:

1. Generate e1,...,&p1 ~ 0.9N(0,1) + 0.05M(5,1) + 0.05N (=5, 1).
2. Let U1=51,Uj:pUj_1—}-v1—p28j fOl"jZQ,...,p—f—k?.
3. Let X; =Ujqpforj=1,...,p.

In model M2a we consider k& = 100.

6.5.5. Results for the model M2a

From the results it can be seen that Pj,. is close to 1 even for large correlations for
SSnet and SSCV (see Figure [6.8). LFT procedure performs poorly compared to SSnet
and SSCV, when P, is considered. Moreover, P4, attains highest values for SSnet
with EBIC1 penalty and SSCV with EBIC1 is only slightly worse. Feguq in almost all
situations (except |p| = 0.9) is close to 1 for SSnet and SSCV with EBIC1 penalty. P,qua
for SSnet and SSCV with BIC penalty is lower than for these procedures with EBIC1
penalty. Moreover, Py, for SSCV with BIC penalty is higher than for SSnet with
BIC penalty. P,quq attains similar values for LF'T and SSCV with BIC penalty for low
correlations. Py,pser attains high values (close to 1, especially for low correlations) for every
method, except LFT with p = —0.9. This means that supersets of s* are selected with
high probability. Similarly, ANGLE measure is lower than 20° for every method, except
LFT with p = —0.9. This means that fB (8x) is approximately proportional to B although
linear regressions condition does not hold in this case. The results for SSnet and SSCV
with EBIC1 are similar for logistic and quadratic loss. It is worth noting that SSnet and

SSCV procedures with quadratic loss are much faster than their versions with logistic loss

(see Figure [6.9).
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Figure 6.8: P.quat; Pine, Psupset and ANGLE for model M2a
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Also, results of Simulation I suggest that fitting logistic model to a binary model with
response function different from logistic may yield better results when the set of active
predictors is sparse than for correctly specified model with larger number of potential
predictors. Moreover, not much is lost in regard to probability of correct selection when

linear model is fitted in place of logistic one in case of low correlations between predictors.

logistic quadratic

10.0 1

1.01

me of 1st stage

0.19 =

100.0 1

10.0 1

1.01

0.1

time of 2nd stage

0.0

Method =<>- SSnetBIC -4 SSnetEBIC1 <> SSCVBIC -4 SSCVEBIC1l -e- LFT

Figure 6.9: Times of 1st and 2nd stage of selection procedures for model M2a

6.6. Simulation IV - selection

6.6.1. Experimental setup - models MF1-MF4
We generated n observations (X;,Y;) € RPF! x {0,1} for i = 1,...,n such that
X; = (Xit, -, Xip)T ~ Np(0,, %), B = [pli7l]; ;21 , and p € (—1,1). We took response
function ¢, s C {1,...,p,} and B, € Rl such that:
P(Y; = 11X, = x:) = q(By xi,).
Parameters n,p, s and B,, which we considered in the simulation are shown in the
Table Moreover, we took p € {—=0.9+0.15-k: k£ =0,1,...,12} and L = 500 - number

of generated data sets for each combination of parameters. We considered the following

response functions:
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* () = Foaueny(t) = 5 + + atanz.

This setup for logistic loss, ¢(z) = qr(z), p = 0 and parameter values specified in Table
6.4] was considered in [Fan and Tang (2013). Response functions given here were considered
in Mielniczuk and Teisseyre (2016]).

We considered procedures SSnet, SSCV and LFT using logistic loss function. For
procedures SSnet and SSCV we used GIC penalties with:

e a, =logn (BIC),
e a, =logn+ 2logp, (EBIC1).

Model n pls B,
MF1 | 100 | 168 | {1,2,5} 3.5,1.5,—2)T
MF2 | 180 | 692 | {1,2,5,6)} 3.5,1.5,—2,2)7

MF3 | 260 | 1993 | {1,2,5,6,7}
MF4 | 340 | 4680 | {1,2,5,6,7,8}

3.5,1.5,—2,2,—2)7

(—
(—
(—
(=3.5,1.5,-2,2,—2,2)T

Table 6.4: Values of parameters in the Simulation 2

In this simulation we compared only values of P.gya1, Pine and Pgypser due to limited

space.

6.6.2. Results for models MF1-MF4

P, achieves highest values for negative correlations, moreover it increases with n for

low correlations (see Figures[6.10}6.13] [6.16)). This affects P.guq, which achieves highest

values for low correlations and increases with the sample size - the only exception was LFT
procedure for which P, attained highest values for negative correlations (see Figures
6.11) [6.14] [6.17]). Pyypser attains significantly higher values than P,q,q only for SSCV with
BIC ponalty and LFT method (see Figures|6.12} |6.15] [6.18). From the results we observe

that the model with response ¢ = ® was the easiest when logistic response was fitted.

Moreover, the data with ¢ = Figycny represented the most difficult case.
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In this experiment it is seen that when P, is considered SSnet with EBICI is
the overall winner for sufficiently high p (p > —0.3 for ¢ = q1, p > —0.6 for ¢ = P,
p > 0 for ¢ = Feoaueny), and SSCV with EBIC1 performs only slightly worse. Moreover
P.qua increases with n for low correlations. However, for large negative correlations LET
performs better in terms of P, than other procedures. Penalty change from EBIC1
to BIC results in very significant deterioration of performance measured by P;,. of both
SSnet and SSCV. This means that the choice of penalty is crucial for performance of such
selection procedures. Surprisingly, selection procedures performed better in overall for the
probit i.e. misspecified binary model than for correctly specified logistic regression. We
conclude that in the considered experiments SSnet with EBIC1 penalty works the best
in most cases, however even for the winning procedure strong dependence of predictors
makes the problem considerably harder.

It is clear from our experiments that choice of GIC penalty is crucial for its performance.
Moreover, modification of SS procedure, which would perform satisfactorily for large

correlations is still an open problem.

n =100, p =158 n =180, p =692

Method =<~ SSnetBIC - SSnetEBIC1 <> SSCVBIC -4 SSCVEBICLl -eo- LFT

Figure 6.10: Pj,. for models MF1-MF4 with ¢ = ¢y,
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6.6. SIMULATION IV - SELECTION
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Appendix A

Auxiliary definitions and lemmas

A.1. Existence and uniqueness of 8* for binary response

In this section we present results about existence and uniqueness of 8* defined in
(1.3), when Y € {0,1}. The organization of this section is the following: Lemmas
present auxiliary facts used in later part of this section. Lemma is used in Corollaries
to show that risk function is strictly convex. Lemma [A.2]is used in the proof
of Remark and provides equivalent condition for positive-definiteness of covariance
matrix 3, which can be easier to check than the condition that vector X is linearly
nondegenerate. Lemma is a known fact in optimization (see Theorem 2.32 in |Beck
(2014))) which is crucial in the proof of Lemma and Theorem [A.6] Lemma is a
simple technical fact, which allows us to prove Theorem with the use of Lebesgue’s
monotone convergence theorem and without using Lebesgue’s dominated convergence
theorem. From Theorem follows existence and uniqueness of 3" also in the case of
quadratic loss (see Remark [A.13).

Theorems show that there exists minimum of risk function in any direction.
This conclusion together with strict convexity of risk function is used in Lemma to

prove that 8" exists (see Corollaries A.11). Then finally in Remarks we

find sufficient conditions for existence and uniqueness of 8*.

For original formulation of Theorem and see |Li and Duan| (1989). Note that
the proof of Theorem is different from the proof in |Li and Duan/ (1989), as we show
directly in the proof how to avoid use of Lebesgue’s dominated convergence theorem.
Moreover, our proof of Lemma [A.§|is different from the proof of Lemma 2.1 in [Li and
Duan| (1989)), because we show explicit way to construct a sequence described in Lemma
2.1 in |Li and Duan| (1989)) and our construction uses one ball instead of two balls in RP»*!

to prove the Lemma.
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Lemma A.1l. If function g: R — R is strictly conver, X € RP*! is a random vector,
for all b € RP1: Elg(b" X)| < oo and for all b € RPT\ {0,1}: P(b" X = 0) < 1, then
function f: RPYY — R, where f(b) = Eg(b" X) is strictly convex.
Proof. Let by, by € RPT by # by be some vectors and let o € [0,1], b = ab; + (1 — a)bs.
Let A= {bI'X =blX}. As b, # b,, we have
P(A) = P(bIX = bl X) = P((b; — by)"X =0) < 1.
On set A° we get from strict convexity of ¢:
9(b"X) < ag(bX) + (1 — a)g(by X).
We have, using convexity:
f(b) =Eg(b"X) = Eg(b" X)I(A) + Eg(b"X)I(A°)

— E(ag(bX) + (1 — a)g(b]X))I(4) + Eg(b7X)1(A)

< E(ag(bX) + (1 - a)g(b} X))I(A)
+ E(ag(bTX) + (1 — a)g(bIX))[(A%) = af(by) + (1 — ) f(bs)
as strict inequality follows from P(A¢) > 0. [

Lemma A.2. Let X = (1, XT)T e RP be a random vector satisfying E||X||? < co. Let
Var X = . Then X > 0 if and only if for every b€ R\ {0,,1}: P(b" X =0) < 1.

Proof. Condition 3 > 0 is equivalent to
Vb = (b, b )T € R B’ £0,: 0<b Bb = Var(b' X) = Var(b”X).
From this we obtain P(b”X = 0) < 1.
Now we need to prove that 3 > 0 is implied by P(b"X = 0) < 1 for all b € RP*!\ {0,,,}.

Firstly, we observe that

Vb e R?\ {0,}: P(b'X =Eb' X) = P((—Eb

Hence, we obtain:

b’ =b = Var(b' X) = E(b' X — Eb' X)2 = E(b
This means that X > 0. O

Lemma A.3 (Beck (2014, Theorem 2.32)). Let f: R™ — R be a continuous and coercive

function, i.e. | Hhm f(x) = +00. Let S CR™ be a nonempty closed set. Then f has a
Z||2— 400

global minimum in S.

Lemma A.4. Let d: R — R be function satisfying 1}r_r>1+inf d(t) > 0 and limsupd(t) <0

t——o0
Let R be continuous function such that for all s,t € R we have:

R(s) — R(t) > d(t)(s — t).
Then there exists

t* = argmin R(t).
teR
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A.1. EXISTENCE AND UNIQUENESS OF 8* FOR BINARY RESPONSE

Proof. Because I%Ln +inf d(t) > 0, then there exist ¢; € R,7; > 0 such that for all ¢ > ¢;
d(t) > n;. This means that for all ¢ > ¢;:

R(t) > R(ty) +d(t)(t — t1) > R(ty) + m(t — t1).
Hence tlgrn R(t) = 400. Analogously, from the fact that limsup d(t) < 0 it follows that

t——o0

tlim R(t) = +00. This means that R is continuous and coercive. By Lemma |[A.3] we
——00

obtain the conclusion of theorem. ]

Theorem A.5 (based on Li and Duan| (1989, Lemma 3.1 and Remark 3.2)). Let¢: R — R
and g: {0,1} — R be some functions. Define p: R x {0,1} — R as
p(b,y) = —yb+ o(b) + 9(y)
forallb e R and y € {0,1} be conver and differentiable function of b. Let E|| X]|s < o0,
for all b € RP*! Elp(b" X)| < oo and E||¢/(b" X)X||; < oo. Assume additionally that
E(Y|X) € (¢'(—o0), ¢'(+00)) Px a.e., where
#(+o0) = lim_¢/(t), ¢'(~o0) = lim &/(h)
Let for a given b € RPH1:
R(t) = R(tb) = Ep(tb" X,Y).
Then there exists t* € R such that:

t* = argmin R(t).
teR

Proof. Let I(t,z,y) = l(tb, x,y), where (b, x,y) = p(bTx,y) and d(t) = Eg—i(t,X, Y) =
—EYb"X + E¢/(tb?X)b?X. Function [ is convex and differentiable function of ¢, what
follows from convexity and differentiability of p. Hence we obtain for all s, € R (see
Theorem 25.1 in [Rockafellar (1970))):

I(s, X, V)= I(t,X,Y) > gi(t,X, Y)(s—1t).

Thus, after taking expectations, we get:

R(s) — R(t) > d(t)(s — t). (A1)
We observe that ¢ is convex and differentiable function, as we have from the definition
of p: ¢(b) = p(b,y) + yb — g(y). This means that ¢’ is nondecreasing function. Thus we
obtain for all t > s (ay = al(a > 0), a_ = al(a <0)):

EYb'X + d(t) = E¢'(tb" X)b" X = E¢/(tb” X)(b" X), + E¢'(tb” X)(b"X)_
> E¢'(sb” X)(b"X), + E¢'(sb” X)(b"X)_ = E¢/(sb” X)b" X = EYb" X + d(s).
In the above inequality we used the fact that if b” X < 0, then ¢/(tb” X) < ¢/(sb” X) and
thus
¢/ (tb"X)(b"X)_ > ¢/(sb"X)(b"X)_.
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Hence function d is nondecreasing. From the Lebesgue’s monotone convergence theorem
we have:
Jim d(t) + EYBTX = dim E¢' (tB"X)B"X = E dim ¢ (tBTX)BTX
= E¢/(+00)(8" X) 1 + E¢'(—00) (87 X) - = ¢/(+00)E(8" X) 1 + ¢(—00)E(BX)_,
Jimd(t) + EYB'X = im E¢' (tB"X)B'X =E i ¢ (tBTX)BTX
= E¢/(—00)(B"X); + E¢'(+00)(B"X) - = ¢/(—00)E(B"X) 4 + ¢/ (+00)E(8" X) .
Thus, we get (as E(Y|X) € (¢/(—00), ¢ (+00)) Px a.c.):
EY 87X = E(8"XE(Y|X)) = E((8"X), E(Y|X)) + E((8"X) _E(Y|X))
< ¢/ (+00)E(B" X)4 + ¢/(—00)E(B" X)- = lim d(t) + EYB'X.
This means that lim d(t) > 0. Analogously, we get lim d(t) < 0. Now, from the convexity

of [ we have that function R is convex. Because R is convex function in open domain, it is

continuous (see Roberts and Varberg (1973)), chapter IV.41). Hence arg min R(t) exists in
teR

view of Lemma [A.4] m

Theorem A.6. Let m: R — (0,1) be nondecreasing function such that Inmw(b) and
In(1 — w(b)) are concave functions of b,

bgznooﬂ(b) =0, bginoow(b) = 1.
Assume that X € RP*! is a random variable such that for all b € RPT1\ {0,,,} P(b" X =
0) < 1, E|In7(b" X)| < oo, E| ln<1 — ﬂ(bTX))l < oo and Y € {0,1} is a random variable
such that P(Y = 1| X = x) = q(z) € (0,1) Px a.e. Define:

p(b,y) = —ylnm(b) — (1 —y)In(1 —7(b)),

and let for a given b € RP!

R(t) = R(tb) = Ep(tb" X,Y)
fort € R. Then there exists t* € R such that:

t* = argmin R(t).
teR

Proof. For a given b # 0,4, we define set A = {b"X = 0}. From our assumption
P(A¢) > 0. Observe that:

0 b’X >0
Jim Inr(th’X)={ - b'X <0,
In7(0) b'X =0
—00 b’X >0
Jim_ In(1-7(tb"X)) = {0 b'X < 0.

In(1—7(0)) b'X =0
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Thus on set A°N {¢(X) € (0,1)} we have:
Jimg(X) lnr(th"X) + (1 - (X)) In(1 - 7(tb"X)) = —o0.
Moreover, by conditioning on X we obtain:
R(b) = —Eq(X) In7(b"X) — E(1 - ¢(X)) In(1 — 7(b"X)).
Hence from Lebesgue’s monotone convergence theorem we obtain (as 7 is nondecreasing):

Jim R(t) = Ep(0,Y)I(A)

— lim E<q(X) 7 (tb"X) + (1 — ¢(X)) In(1 - w(thX))>[(AC) = +00.

t—-+o0

Analogously we obtain tLiI}l R(t) = +o0. Thus R is coercive function. Moreover, R is

continuous, as it is convex function. Convexity of R is implied by convexity of p(-,¥) for

all y. This means that existence of t* = arg min ]?(t) follows directly from LemmalA.3, [
teR

Remark A.7. Conditions E|In7(b" X)| < oo, E| ln(l — W(bTX))\ < 00 in Theorem |A.6
for logistic regression are satisfied for all b € RP™ when E|| X]||s < co. See also Remark

[A.12
Lemma A.8 (based on |Li and Duan| (1989, Lemma 2.1)). Let R: R*™ — R forpe N

be strictly convex function satisfying the following property:

Vb € RP! 3t* = argmin R(tb).

teR

Then there exists

B* = argmin R(b).

beRp+1
Proof. Because R is convex function in open domain, it is continuous (see Roberts and
Varberg) (1973), Chapter IV.41). Suppose that 8* does not exist. From continuity of R we

can take a sequence (b,,) such that
R(b,) — bel]%pr R(b) and ||b,|]2 — oc.
Let b, = b,/||bal|l2. Then ||b,||ls = 1. Moreover, set S = {b € RP*!: |[b||, = 1} is

compact. This means that there exists subsequence (by, ) such that Bkn — by for some

by € S. From our assumption there exists

to = argmin R(tby).
teR

Since R is strictly convex, this minimum is unique. Now we take t; > ty. Then R(tlf)o) >
R(toby) and from continuity of R there exists € > 0 and 5 > 0 that for all b € B(t,by, ¢):
R(b) > R(toby) + 1.

Now let
t — 1o

bl =t
We observe that «,, — 0 as ||by,, ||2 — 0o and

Q, vV, = aybg, + (1 — an)tof)o.

8 t —t . .
lim vy, = lim onby, + lim (1 — an)toby = lim ———I[bx, [|2b%, + tobo

n=00 n=oo |[by, [|2 — to
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== (tl — to) nh_)n;lo f)kn + toBo — (tl — to)Bo + toBo == tlf)o.
This means that for large n we have v,, € B(t1byg, ) and R(v,,) > R(tebg) + 7. From strict

convexity for large n we have:
R(tobg) + 1 < R(vyn) < aR(by,) + (1 — ) R(teby).

Hence after simple transformations we obtain R(by,) > R(tobg) + oL, but from the

property
R(by,) — bel]llg;rl R(b)
we get a contradiction as a,, — 0. Hence 8" exists. O

Example A.9. Assumption of strict convexity of R in Lemma[A.§ cannot be omitted.
Let b = (z,y)" and consider the function R(b) = R(z,y) = max(z,y + z%). We define
Gy (t) = R(tx,ty). Function R is convex as a maximum of convex functions. We will
show that for all (x,y) € R? function g(,,) has a minimum. We consider 3 cases:
Case 1: (x,y) = (0,0).
In this case g4 (t) =0 for allt € R and thus it has a minimum.
Case 2: x # 0.
In this case iz (t) = t*2* + ty for [t| > (v —y)/x?, thus

Jim gy () = 400
This property and convezity of g(z,) tmply that gz, has a minimum (see Lemma .
Case 8: =0,y # 0.
In this case gy (t) = max(0,ty) > 0 = gz4)(0). Thus gy has a minimum.

Function R does not have a minimum, as we have R(x, —x® + ) = max(x,r) = .

Corollary A.10. Assume that assumptions of Theorem hold, p(-,y) is strictly convex
function for ally and for all b € RP*1\ {0,,,}: P(b" X = 0) < 1. Then there exists unique

B* = argmin R(b).

beRr+1

Proof. The proof follows directly from Theorem and Lemma after noting that for
all b € R?*1\ {0,,,} the function R(t) = El(tb,X,Y’) is strictly convex in view of strict
convexity of p and Lemma [A.]] O

Corollary A.11. Assume that assumptions of Theorem [A.6 hold and In7(b), In(1 — (b))

are strictly concave functions of b. Then there exists unique

B* = argmin R(b).

beRp+1
Proof. The proof follows directly from Theorem and Lemma after noting that for
all b € R?*1\ {0,,1} the function R(t) = El(tb,X,Y) is strictly convex in view of strict
convexity of p (what follows from strict concavity of In7(b) and In(1 — 7w(b))) and Lemma

Al O
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We prove the following remark using Corollary [A.10] but the same conclusions can be
obtained from Corollary [A.11]

Remark A.12. Unique B* exists for logistic loss:

I(b,z,y) = —yx' b+ ln(l + exp(a:Tb))
if the following conditions are satisfied: B|| X]||y < oo, for all b€ RP*1\ {0,,,}: P(b' X =
0)<1landP(Y =1|X=1z) € (0,1) Px a.e.

Proof. We have g(y) = 0, ¢(b) = ln<1 + eb), #'(b) = (1 + e*)~1. Function ¢ is strictly
convex, therefore [ is strictly convex with respect to b. Obviously, [ is continuously
differentiable.
Now we observe that |¢'(b)| < 1 thus ¢ is a Lipschitz function and we have:
E[¢(b"X)| < E|p(b"X) — ¢(0)] +[4(0)] < E[b"X| +1n2 < ||b|2E[[X|]> +In2 < oo,
E[|¢' (b X)X[|, = E|¢/(b" X)[[|Xo][> < E[|X]]> < oo

We see that ¢'(—o0) = 0, ¢/(+00) =1l and E(Y|X =x) =P(Y = 1|X = x) € (0,1). Hence
B* exists in view of Corollary |A.10} O

Remark A.13. Unique B* exists for quadratic loss:

I(b,z,y) = §(y —2'b)? = —ya2'b+ 5(me)2 n éyz

if E|| X]|3 < 0o and Var X = ¥ > 0.
Proof. We have g(y) = y*/2, ¢(b) = v?/2, ¢'(b) = b. Function ¢ is a strictly convex
function, therefore [ is strictly convex with respect to b. Obviously, [ is differentiable with

respect to b.

Condition E||X]|y < oo follows from E||X||3 < co. Then we check moment conditions:
Elo(b"X)| = LEb"XP? < 7 |[blE|X| < oc,
E[|¢'(b"X)X||; = E[b" X|[|X]]> < [[b|[,E[|X|[; < 0.
P(b"X = 0) < 1 follows from ¥ > 0 in view of Lemma .
Moreover, we have: E(Y|X =x)=P(Y =1|X =x) € [0,1] CR = (¢/(—0), ¢'(+0)).
Hence existence of B* follows from Corollary [A.10] O
Remark A.14. Unique B* exists for probit loss:
I(b,z,y) = —yln ®(z' b) — (1 —y) ln(l - q)(me)),
if the following conditions are satisfied: E||X]||3 < oo, Var X =X > 0 and P(Y = 1| X =
z) € (0,1) Px a.e.

Proof. Firstly, we observe that log ®(x) is strictly concave function, as we have:

< 0,
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where ¢(z) = ®’'(z) > 0 and z®(x) + ¢(z) > 0 what follows from Mill’s inequality (see

Gordon| (1941))):
x 1—®(x) 1
< < —.
2?2 +1 o(z) T
Analogously log(1 — ®(z)) = log ®(—=) is strictly concave function. m(s) = ®(s) is a cdf

of N(0,1) hence the assumptions of Theorem regarding monotonicity and limits in

+oo of ® are satisfied. From Birnbaum’s inequality (see Birnbaum| (1942)) valid for x > 0:
__ 2()
Vat+4d+x

and from inequality Va2 +4 <z + 2 for x > 0 we have:
E[In(1-@(b"X))| = ~Eln(1 - &(b"X)) = ~Eln(1 - &(b"X))I(b"X > 0)
~Eln(1 - ®(b"X))I(b"X <0)
< —Eln(26(b"X))I(b"X > 0)

1—®(x)

+ Eln( (b7X)? + 4+ bTX)I(bTX > 0)+P(b"X < 0)In2
1
< -P(b'X >0)In2+ 5IE,(bTX)QI(loTX > 0) +P(b"X > 0)In V27
E(y/(b"X)2+4+b"X —1)I(b"X > 0) +In?2

+
1
< 5Irj«:,(loTX)QI(loTX > 0) +P(b"X > 0)In \/Z

+E(/(b7X)2 + 4b"X + 4+ b"X — 1)I(b"X > 0) + In2
1
< 2102 + S[[b|E[X|[3 + 2/[b|LE[[X]]2 + 1 < oc.

Analogously we obtain E|In ®(b"X)| = E|In(1 — &(~b"X))| < oc. This means that 8"
exists and is unique in view of Corollary [A.11] O

A.2. Elliptically contoured distributions

Main aim of this section is to discuss basic properties of elliptically contoured distri-

butions and their relation with linear regressions condition, which is used in Chapters

(2H3L

Definition A.15. We say that random vector X € RP, where p € N follows elliptically
contoured distribution with parameters p € RP, 3 € RP*P where ¥ is nonnegative definite
matriz (3 > 0) if characteristic function of X is of the form ¥ x(t) = et g (tTSt) for all
t € R? and some ¢: R — C. In this case we write X ~ EC,(w, 3, ¢).

Definition A.16. We say that random vector X € RP, where p € N follows spherically
contoured distribution if characteristic function of X is of the form x(t) = ¢(t't) for all
t € R? and some ¢: R — C. In this case we write X ~ SCy(o).
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Remark A.17. If X ~ N, (1, X), then X ~ EC,(u, 2, ¢), where ¢(s) = e 3.

Theorem A.18 (Cambanis et al. (1981, Theorem 1)). X ~ EC,(p, X, ¢) withrank 3 = k,
where k < p if and only if
X< uw+ AUYR,

where R > 0 is independent of U, U s uniformly distributed on the unit sphere in
R*, ¥ = AA” is a rank factorization of T (A € RP** rank A = k), and the distribution
function F' of R is related to ¢ as follows:
o(u) = / Qi(r?u) dF(r),

[0700)
where u > 0, Qu(t) := Q(||8]]?) (t € RF) is the characteristic function of U™,
Theorem A.19 (Cambanis et al.| (1981, Corollary 5)). Let

X=p+AUYR~ EC,(11,%, )

with AAT =3 and rank A = rank 2 = k > 1. Further, let
Y Y
31 Mo
where X1, uy € R™, ¥1; € R™™ and assume ko = rank 390 > 1 and ky = k — ky > 1.

Finally let S denote the column space of Xoo. Then a regular conditional distribution of

X=(X1,X)", p=(plu), ==

)

X, given X5 = x, is given by:

(X1| X2 = @) ~ ECy(lgys X7, Ga(an))  for @2 € py + S,
(X)X = @) £ oy for @y & py + 5,
with a full rank representation
(X1 Xy = m5) £ P, + AU Ry for @ € py + S,
where o, = P+ 10805 (22— ), 7 = 211 = X153 Bo1, d(2) = (22— 1) Bip (22— ),
35, is a generalized inverse of Xos and X* = A* AT s a rank factorization of ¥* and
rank A* = ki. Moreover, Ry, is independent of U,

Corollary A.20. Let X € R? be a random vector such that E|| X||2 < 0o and assumptions
of the Theorem are satisfied. Then for all B € R? such that BT3B # 0 we have for
all z € R:

E(X|X"8 = 2) = u+ SA(B7SH) (= — u B).
Proof. Since X ~ EC,(p, X, ¢), then we have (X', X" 8)T ~ EC, (1, >, ¢), where
> %8

o= (p" u"'B)" and ¥ = &% aTEg

To prove this statement, we observe that:

br xrgyr(t7,5)7) = B XHXI2 = BXT 0099 = g (6 4 58)
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= BTG (t+ 58) R (t + 58)) = ¢ I((t7, 5)D(t", 5)").
Hence from Theorem we obtain for z € R:
(XIXTB =2)" £ pu+3B(B"SB) ' ( — n'B) + AUMRy.).
Because E||X||5 < 0o and EU® = 0 and U® and Ry.) are independent, we get:
E(X|X"8 =2) = p+28(8728) "' (z — n'B).

Proof of the following Corollary is identical to proof of Corollary

Corollary A.21. Let X € R? be a random vector such that E|| X||2 < oo and all of the
assumptions of the Theorem [A.19 are satisfied. If £ > 0 and B € RP** is a matriz such
that rank B = k. Then for all z € R¥ we have:

E(X|X"B=2) =u+3XB(B"YSB) ' (2— B"p).
Now we want to characterize distributions of X satisfying conclusion of Corollary
[A.21] Lemma is a basic tool here, as it allows to characterize spherically contoured
distributions and is used in Theorem[A.23|to characterize elliptically contoured distributions

(see also Hardin| (1982) for similar results).

Lemma A.22 (Eaton| (1986, Theorem 1)). Suppose the random vector X € RP satis-
fies E|| X||2 < oo. Assume that for each vector v # 0, and for each vector w which is

perpendicular to v (that is u'v=0),

E(u" X|v" X) = 0. (A.2)
Then X is spherically contoured and conversely, if X is spherically contoured, then
1s satisfied.

Theorem A.23. Suppose the random vector X € RP (p > 2) satisfies E|| X]||]2 < o0,
EX = p. Assume that exists 3 € RP*P. % > 0 and k € {1,...,p — 1} such that for all
B ¢ RP** with rank B = k the following equality holds:

E(X|B'X) = (I, - XB(B'SB)'B )u+ =B(B"SB)"'B"X. (A.3)
Then X ~ EC,(p, X, ¢) for some function ¢: R — C.
Proof. From the Lemma we get for Z = X — u:
E(Z|B'Z) = ¥B(B"YB) 'B”Z. (A.4)
As ¥ is invertible because it is positive definite, we define V = ¥ 37 and C = X2B. After
substitution of this equalities into we obtain for every C € RP** with rank C = k:
E(V|CTV)=c(CcTC)'CTV. (A.5)
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Now we will prove that V follows spherically contoured distribution. Let b; = b € R?\{0,}
be any vector and let b1 = w € RP be vector perpendicular to b. We can find vectors
bs,..., by € RP\ {0,} such that all vectors b; for i = 1,...,k + 1 are orthogonal as
1 <k < p (for example by Gram-Schmidt orthogonalization). Let C = [by,...,by]. Then
we have in view of (A.5)):

E(w!'V[b'V) = E(E(w'V|CTV)|b'V) = w'C(CTC)'E(CTV|b'V) = 0.

0%
This means that V follows spherically contoured distribution in view of Lemma and,
consequently, X = DoV + p follows elliptically contoured distribution. O

A.3. Existence, sparseness and uniqueness of 3;

Facts presented in this section concern model without intercept, but they can be easily
generalized to the case of the model with intercept. The following lemma shows that
unique B ;. exists when p,, < n. This lemma holds for logistic, probit and quadratic loss

functions, as they are strictly convex and non-negative.

Lemma A.24. If (X1,Y1),...,(X,,Y,) € R x {0,1} is a random sample, p(-,y) is
strictly convex function bounded from below by m € R, p, <n, A > 0,X = (X1,..., X,,)7

and rank X = p,,, then exists unique

B, = argmin (%p(bTXi,m n A||b\|1) .
beRrn  \ M i
Proof. We note that for by, by € RP* with b; # by we have Xb; # Xbs, as rank X = p,,.
Hence there exists i € {1,...,n} such that b] X; # bl X;. Let h;i(b) = p(b’X;,Y;) for
i=1,...,n. Strict convexity of p gives for « € [0, 1]:
hi,(aby + (1 — a)bs) < ahiy(by) + (1 — a)hy, (ba).
Hence h;, is strictly convex. Moreover h; are convex from convexity of p for all: € {1, ... ,n}.

Function:
1 n n
gz p(b"X;,Y;) + A|[bl]y = Zhi(b)Jr)\Hle

is strictly convex as a sum of strictly convex and convex functions. This means that P, is

continuous. Moreover, P, (b) is coercive, as we have:
P,(b) > m+ A||b|[y = +o0
for |[b||; — +o00. Thus the existence of 8, follows from Lemma . Uniqueness of 3,

follows from strict convexity of P,. m
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Proofs of Lemmas and Theorem below are strengthtened versions of
the proof of Theorem 3 in [Rosset et al.| (2004) which do not use differentiability of loss
function. Theorem shows that there exist sparse Lasso solutions having at most n

nonzero coefficients, when p,, > n for a general loss function p provided a solution exists.

Lemma A.25. Let s: R — R be defined as s(t) = ||b+ tal|, fort € R, b,a € R and
a # 0,,. Then there exists t* = argmin s(t) and i € supp a satisfying b; + t*a; = 0.

Proof. Let S ={k € {l,...,p,}: ax # 0}. Then we obtain:

s(t) =D [bel + > laxl -

keSe kes
Without losing of generality we can assume that S = {ky,..., k} for some [ € N and:

b
k+t‘.
ax

bﬁ>...>%.

akl - akl
Let
m = min —— ), s
akl CLkl
Since for every i € {2,...,l} and t € [_bki—l/aki—17 —bki/aki} function s is linear, we obtain
for such ¢

be. be..
s(t) > min{s <—kl_1) .S (— k)} >m
Qf; 4 Ak,

Analogously, from the fact that lim s(¢f) = 4o0, for t € I} = (—o0, —by, /ax,| and

A==
t € Iy = [—by,/ax,, +00) and from linearity of s we obtain
b b
s(t) > s (—kl> >m and s(t) > s (—k’> >m
ak‘1 akl

for ¢ belonging to I; and Iy respectively. We thus have: s(t) > m for ¢ € R. Hence for

some t* = —b;/a; function s achieves its minimum, what proves our claim. O

Lemma A.26. Let g: R" — R be some function and let h: R, U {0} — R be
non-decreasing function. Let X € R™*P» and f: RP* — R - a function defined as:

f(b) = g(Xb) + h(|[b]1)-
Then for every b € RP* such that |supp b| > rank X there ezists ¢ € RP* such that
| supp ¢| < rank X and f(c) < f(b).

Proof. Columns of matrix Xgupppb are linearly dependent as | supp b| > rank X. This means
that exists a € RP* \ {0, } such that suppa C suppb and Xa = 0. Now we consider a
function d: R — R:

d(t) = f(b+ta) = g(X(b + ta)) + h(|[b + tal|1) = g(Xb) + A([|b + tal[,).
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To find the minimum of function d, we have to minimize s(t) = ||b + tal|; for t € R, as h
is non-decreasing. Function s is convex, therefore its minimum exists. In view of Lemma
there exists t* = arg min s(¢) and exists i € supp b such that b; + t*a; = 0. We take
that t* and define ¢; = b + t*a. Then d(t*) < d(0), what implies f(c;) < f(b). From our
choice of t* we get suppc; C suppb and |suppc;| < |suppb| — 1. If | supp ¢;| < rank X
we take ¢ = c¢; and the lemma is proven. If not, then we iterate this procedure (by setting

b := ¢;) and after finite number of steps we obtain ¢ having the desired properties. [

Theorem A.27. Let (X1,Y1),...,(X,,Y,) € RP» x {0,1} is a random sample, p: R x

{0,1} = R and A > 0. Let

1 n
== > p(b" X, Y;) + || b||x
=1

3

and assume that there exists

¢ = argmin P, (b).
beRP

Then there exists by = argmin P,(b) such that | supp by| < rank X < n.
beRP

Proof. Our proof starts with the observation that if |suppc| < rank X, then we take
by = c. If not, then in view of Lemma there exists a such that P,(a) < P,(c) and

| supp a| < rank X. This means that a = argmin P,(b) and we take by = a. O
beR?

Theorem A.28. Let p(-,y) be a differentiable function for all y. Assume that there does
not exist set J, a € RVI\ {0} and o € {-1,1}V! such that |J| > n, X;a = 0, and
oTa= 0. Then every vector BL minimizing P, defined in Theorem has at most n

nonzero coefficients.

Proof. Suppose the assertion of the theorem is false. Then exists B ; minimizing P, which
has more than n nonzero coefficients. Let J = {j € {1,...,p,}: BLJ- # 0}. Equation
(4.10]) for indices in J takes the form:

AT

By our assumption about 8, we have |.J| > n and there exists a € R/ \ {0} such that
AT A

Xya = 0. Thus we get: AsgnpB; ;a = vI'X a = 0. Taking o = sgn B ; € {1, 131

proves the theorem by contradiction. O

For completeness we state two known results which concern uniqueness of the solution
defined in Theorem [A.27]

Theorem A.29. If assumptions of Theorem are satisfied, p(-,y) is strictly convex for
all y and for every M C {1,...,p,} with |M| < n columns of Xy, are linearly independent,
then B 1 minimizing P, defined in Theorem 1S unique.

Proof. Proof is identical with the proof of Theorem 5 in Rosset et al.| (2004)). O
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Theorem A.30. (Lemma 5 in|Tibshirani (20153)) If X € R"*P» has entries drawn from a
continuous probability distribution on R"n p(-,y) is differentiable, strictly convez function
for all y and p(b,y) > —oo for all b,y, then for any A > 0 BL minimizing P, defined
in Theorem is unique with probability 1 and this solution has at most min{n, p,}

nonzero coefficients.

Note that result of theorem above holds in particular for quadratic and logistic loss

and also for dependent observations.

A.4. Selected properties of subgaussian random variables

In this section we present definition and basic properties of subgaussian random
variables which are used in Chapters [lf]

Definition A.31. We call a random variable X € R subgaussian if there exists o > 0
that for all t € R we have Eexp(tX) < exp(t?0?/2). If variable X satisfies this property,
we will write X ~ Subg(a?).

Lemma A.32. If X ~ Subg(c?), then we have:

1. EX =0,
2 EX2 < o?,

3. forallt>0: P(|X|>1t) < 2@—;722;
4. forallp>1: E|X|P < poP/2'T (g)’
5. foralln €[0,1): Eexp ("XQ) < A

202 1-n"

Proof. For the proofs of statements [I] and [2] we use inequality:

t2 2 t2 0'2

<EeX <e = .

1+tEX +
Using lir% (e —1)/x =1 and above inequality yields:
z—

2 2
51 to? {EX?
EXSMHCQ‘U— ):0

2.2
t—0+ tTU 2 2

and

t—0— % 2 2

2 2
51 to? {EX?
EXZMD&?.G_ >_0

This means that EX = 0. Proof of statement [2| can be conducted in the same fashion,
using EX = 0:

t2o'2 1
. e 2 —
EX? < lim —5—5— - 0% = ¢°
t—0 tTJ

110



A.4. SELECTED PROPERTIES OF SUBGAUSSIAN RANDOM VARIABLES

To prove statement [3] firstly we use Chernoff’s inequality for A > 0 and inequality
max{a,b} < a+ b for a,b > 0:

P(|X]| > t) < e MEMNX = e ME max{e*¥, e X} < e M(EeM + Ee ™) < Do MHYE
Taking optimal A = t/a? gives statement [3| Proof of statement [4| uses known representation

of moments of random variables, statement |3| and moments of normal distribution:
[e.e] oo 9
E|X]P = /IP(|X| > )t ldt < /2e—£7ptp—1dt _ po?/2'T (]2’) .
0 0
Proof of statement [5 can be found in Lemma 7.4 in Baraniuk et al.| (2011)). O

Remark A.33. If random variable X is bounded: X € [a,b] for some a < b and EX =0,
then X ~ Subg((b— a)*/4).

Proof. See Lemma 2.6 in Massart| (2007)) for proof. O

The following two lemmas show that sum of subgaussian random variables is always
subgaussian. Moreover, in the case of dependent random variables, Lemma gives
worse subgaussianity constant than Lemma[A.34]and thus results from Chapters {5 cannot

be easily generalized to the case of dependent observations.

Lemma A.34. If X; ~ Subg(c?) for i = 1,...,n are independent then 37 | X; ~
Subg (i, 07).

Proof. From independence and subgaussianity of X; for i = 1,...,n we have:

n 2 2 2\ 2
t7o; t E:i:lai
2

Ret2oim1 Xi — ﬁEetXi < He T =e¢
i=1

=1

Lemma A.35. If X; ~ Subg(0?) then Yy X; ~ Subg (S, 01)*).

Proof. We prove this lemma by induction. If n = 1, then it is obvious. Assume that lemma
is true for some n € N,. Then for n + 1 in view of Hélder’s inequality, subgaussianity of

X,+1 and induction assumption we have for A\;, Ao > 1 such that )\1_1 + Ay T—1.

0 \2
2\ (Z a->
22 2 i

Ee! 25 X < (BeMXnri )3 (B2 2im Xi) % < exp <t U"H)\l) exp —i;

2
(A.6)
We take
n+1 n+1
E: g; 2: g;
M= =
Tntl > o
i=1
Note that .
L1 o B
N N + n+1 =1
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Thus (A.6) gives:
" 2
2\ (Z cr)
2 2 2 i
Ee! S X < exp 775 Tnih exp S Ut S
2 2
n+1 n n+1 n+1 2
t0n+1(zaz>+t2<20i>'<20i) 752(202')
. i=1 i=1 _ i=1
= exp 5 exp —
This ends the proof. m

Lemma A.36. Let Z; ~ Subg(c?) for j € A and |A| > 1. Then
7
Erjnea%lZ | < m/ln\A] (A7)
Proof. Using union inequality and statement [3] from Lemma gives
t2
(maX]Z | > 1) <D P(|Z;] > t) < 2|Alexp (—2> :

2
jJEA o
Hence for any positive c:

| = . < o
EI?QA)HZ]' O/]P’(I?G%|Z]|>t)dt_c—|—2|A|/exp< 202) dt
/ exp dt = M(TQ exp S
c 202
For ¢ = /202 1n |A| we obtain:
1
EmaX|Z | < V2 (\/ln|A| + m) < ;a\/1n|¢4|,
In

where the last inequality uses the fact that

2 2
V2 V2 05vinz < 2,05/ |4
VIn |4 = Uz
and that 2.05 + /2 < 7/2. O

Below we give an auxiliary proof of known inequality for I function, which will be
used in Lemma [A.38 Tt is strengthened version of inequality in Lemma 1 in [Minc and
Sathre (1964)):

log(T'(x)) — ((x — 1/2) log(z) — z +log(2m)/2) < 1/x <1 Va>1

and it uses ideas from the proof of that Lemma.

Lemma A.37.

T(z) < V2ra* 2e *t1

for x > 0.
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Proof. We use the following Binet’s formula (see Bateman| (1953, Chapter I, Section 1.9
Equation (4), p.21)):
1

1 7 1
logl'(z) = <z - 2) logz—z+ = log (2m) +/ ( 2) : Ze_tzdt, (A.8)
0

where Re z > 0. Now we prove that for ¢t > 0:

(Ll
et—1 t 2) t 12
Multiplying both sides by 12t*(¢! — 1) and arranging terms shows that we need to prove:
(e! — 1)(t* — 6t + 12) > 12t. (A.9)
Observe that
2 3 t4 t5

> 14t LA
¢ Tt ST T T 10

Thus using the above inequality and t? —t +2 > > — 2t +2 = (t — 1)> + 1 > 0 gives for
t > 0:
2 t3 t4 t5

t
E_ D2 —6t+12) > [t —  — | - (=6t + 12 Al
(" =D =6 +12) > (t+ 5+ 5+ 5 + 155 | - (1P =6t +12) (A.10)
1

= — P2 —t+2) + 12t > 12t. A1l
gt~ t+2) 4 12t > (A1)

This means that for z > 0:

1 1 17
log I" —— 1 — log(2 — [
ogl'(z) < (:L‘ 2) ogr—z+ 5 og(2m) + 12 dt

1 1
= (ZB— 2> logz — x + —log(2m) +

2 12z

what proves our statement. ]
We state first two auxiliary Lemmas which will be used in proofs of Lemmas

and [5.1] The following Lemma used in the proof of Lemma which is interesting in its

own right states that a product of a subgaussian random variable by a bounded one is

subgaussian provided it has expectation zero. Explicit value of subgaussianity parameter

is provided.

Lemma A.38. Assume that S ~ Subg(c?) and T is random variable such that |T| < M,
where M is some positive constant and E(ST) = 0. Then ST ~ Subg(t>M?c?), where
T =e - 4/V/27 < 3.02.
Proof. Since S is subgaussian and T is bounded, we obtain using Lemma p. 3:
t —t2
P(|ST| > t) < P (|5| > M> < 25, (A.12)

From the above inequality, by using the same argument as in Vershynin| (2012]), it follows
that for p > 2:

o (0.) t2
B|ST? = [B(ST| > t)ptrLdt < [ 2¢™mim piv=dt = pMPoP VI T (129) (A.13)
0 0

113



APPENDIX A. AUXILIARY DEFINITIONS AND LEMMAS

By applying the above inequality and well known inequalities (see Robbins| (1955 and

Lemma |A.37)):

p_1
()< e e

we obtain using EST = 0

tPIE( ST > ]t|pMpap2ﬁp%+%efg+é
s
ST Z 1+Z .
P NP P S+es oo p
g S ey
p=2 2rpPtie p=2 VP
!t|M<7\/_> 1
<1+ V2eis. A.14
> (M2 (A1)

Observe that for k > 2 we have (see Robbins (1955)):
k! < \/ﬁk‘“ée_ﬂﬁ < \/ﬁeik‘k%e_k < ekFtie k.
Hence for £ > 1 (for kK = 1 both sides of first inequality are equal):
k! < ekbt3ek < e3fke 5
Thus we obtain for C' > 0:

2k
2,2 > (1202)k > [ Clt|es
o — 1 ( > 1 e,
e 1P DT D b e

k=1 k=1

NI

(A.15)

In order to show that Ee'ST < ¢“** we prove that the series in (A.15) bounds from above

ST To this end, consider the function

QT‘T(ZE + 1):}c+1

the sum appearing in the bound of Ee

flz) = (z + %)2x+1
which is decreasing for x > 1 and thus
32
< = —,
flo) < $0) = o

This implies

2 1 2k+1
e

Hence from the inequality 22 + y? > 22y and the inequality above we have

N 2k 1\ 2k+2 1 L\ 2k
Cltlet\ ™, ( Cltlet _ 2AC|ter)* >\/§ Cltles (A.16)
NG ErT) T e Vs k)

Define for ¢ > 0

2(k+a
o (U g (2
’ k=1 k+a p=2 VP .

From inequalities Iy > Iy, ({A.16)), o > 0 and Iy + I% = I we have

3 1 1 [ 27 [ 27
Io> 20+ =1, > -1, I > 21T
0= ot gl = olot oty =\ 198

From the last inequality and (A.15]) we obtain

Fil
128

NI

P>l ve i > 146 I (A.17)
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Note that for C' > Moezi ¢/64/27 we have

) P . 1 P
2\ b 27 =\ b 27
From (A.18)) and the bound for Ee** in (A.14)) we have

[V

Ee" <14 el/”\/;;e?/” x I <eo" (A.19)
for C > Moest \/64/27, where the last inequality in (A.19)) follows from (A.17). This ends
the proof. O

The following Lemma is a version of Lemma for independent variables S and T'
and is used in the proof of Lemmas and [5.1} Note that it gives smaller subgaussianity
constant than Lemma [A.38]

Lemma A.39. Assume that S ~ Subg(c?) and T is random variable such that |T| < M,
where M is some positive constant and S and T are independent. Then ST ~ Subg(M?*c?).

Proof. Observe that:
121252 2242

Ee™T = E(E(®T|T)) <Ee 2 <e 2

A.5. Inequalities related to Rademacher averages

Theorems in this section are useful for finding expectation bounds for expressions of
the form:

sup  |(Ra(b) — R(b)) — (R.(B") — R(B))|, (A.20)
be Al [b—B*[|,<r

where empirical risk
1 n
R,(b) = - > p(b"X,,Y;)
i=1

was defined in [£.3] R(b) = ER,(b), A C R? and p > 1. Note that the symmetrization
inequality given below in Theorem is a special case of Lemma 2.3.1 in [van der Vaart
and Wellner (1996)). The version given below is sufficient in our applications. Theorem
was originally formulated in Ledoux and Talagrand| (1991)) for contractions, but we
observe that it holds for Lipschitz function g : R — R with constant L > 0, if we take
g/L instead of g. Moreover, assumption ¢g(0) = 0 in can be easily omitted by taking
p(b,y) — p(0,y) instead of p(b,y) in Lemmas and [5.1] Boundedness of f(X;) assumed
in Theorem 4.12 in [Ledoux and Talagrand| (1991) is not needed in the Theorem
because we can prove the result conditionally on (X;);, assume integrability of appropriate

functions and take expectations of both sides.
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Theorem A.40 (Symmetrization inequality, see van der Vaart and Wellner| (1996, Lemma
2.3.1)). Let ® : Ry — R, be nondecreasing, convex function and Xy, ..., X, be independent
random variables with values in RP. Let F be some set of measurable functions f: RP — R.

Assume that: E®(2supser |f(Xi)|) < oo, supE|f( )| < oo foralli =1,...,n. Let
n, de. Ple; = £1) = 0.5.

<E®(2su (X)) .
>_ <fEJIT) Z )

Theorem A.41 (Talagrand-Ledoux inequality, see Ledoux and Talagrand| (1991, Theorem

€1,...,&p be i.i.d. Rademacher variables mdependem‘ of (X)i=1

-----

Then we have:

0 (sup L 3°(/(X) - EA(X)

JeF | TV iz

4.12)). Let ® : Ry — R be convex and increasing and Xy, . .., X, be independent random

variables with values in RP. Let F be some set of measurable functions f: RP — R.

Let g : R — R be Lipschitz function with constant L > 0 and g(0) = 0. Assume that

E®(2L ?Cug |f(Xi)]) < oo foralli. Letey,..., e, bei.i.d. Rademacher variables independent
€

of (Xi)i=1,..n- Then we have:

Zelg D <Ed <2L sup |—
A.6. Lasso consistency for logistic regression with intercept

Zéz

fer|n

We consider setup of Chapter [4 for model with intercept when logistic lasso is fitted.

The following theorem is a modification of Theorem 5 in [Fan et al. (2014a) which was
stated for logistic model without intercept. The proof is based mainly on the proof of that
theorem (see Fan et al| (2014b)) and only differences in key inequalities are written down.
The crucial difference in the present proof is a term | B ro — Bol in (compare (2) in
Fan et al. (2014Db)).

Theorem A.42. If (X;,Y:)i—1..n are random variables such that ||DR,(8")||e < %,
A< 20K\s*\7 where

.. ATD?R,(B)A

K, = inf 7 ,
AeC AT A
nt1 . A
C={A R 3| Ayl = ||},

sy = s"U{0}

and

then we have:

1B — B[l < 5l A"
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Proof. By definition of 3 ;, we have:

Ru(B) + MIBell < Ra(BY) + AIB[]1-
Definition of 3, , convexity of R,(8*) and condition || DR,(8")||s < 2 yield:

18Il > A7 (Ra(BL) — Ra(BY) + 1BLllh > A'DR.(B*)" (B, — B7) + 1B. s

L o s
> _§||BL — B +11BLlh

Now, definition of /; norm, fact that B... = 0|5+, triangle inequality: ||BL,3*||1 > (187, —

||BL73* — B7||, and again definition of I; norm give:
- 1 . . R 1. e .
171 = 118, — 811+ 1BLlly = 51810 — Bal — l1BL — Bll +11B, ]

1, - " 1 = ~ 1 2
= _§|BL,O - 50| - §||/8L,s* - 55* 1= §||5L,s*c
1+ ||BL,$*

1 - % 1,2 ~ %
= _§|5L,0 - ﬂ0| - §||IBL,5* - Bs*
1 . % 1, 2 ~ % ~ % 2 ~ % 1 2
> —1Bro = Bil = 5B — Bl + 18"l = 1Brw — Bl + 5B

1 * 3.2 ~ % ~ % 1,2
= 1Bro—Bil = NBre — Bl + 1B + H1Be.

Hence, using again that B: = 0, rearranging terms and multiplying the above inequality

1+ 1B sl 1

1+ ||ﬂL,s*

1 2
1+ §||/8L,s*C

1

1

1-

by 2, we obtain:

*

BI1B L = Bl +1Bro = Bol = ||Br e — Byee
Now, we define a map F : Rt — R:

F(A) = Ro(B"+ A) = Ry(B7) + M(|IB” + All, = |I87]Ih)

. (A.21)

and sets:

C={A c R 3|Au||; + |Ag| > [|A,-
D={AcC:||Al]=5|s5["2 s Y.

1}gca

Let G(u) = R,(B" + uA) for u € R. Analogously, as in the proof of Theorem 5 in [Fan
et al.| (2014a), we obtain for A € D:
G"(u)] < K[|A[LG"(u) < K - 4y/|sp|[|Al[2G" (u) = 2G"(u),

where

" 20K |s§| A
== akc\[sgll ], = 22210

n

as A € D. Moreover, z € [0, 1] from assumption on . Thus, from the Lemma we
obtain (see also (4) in the proof of Theorem 5 in [Fan et al.| (2014al)):

G(1) = G(0) = G'(0) = G"(0)h(z),
where h(z) = 27%(e™* + z — 1) and h(z) > h(1) > 1/3 for 2z € (0,1] in view of Lemma
[A.53l Hence we obtain for A € D:
Ru(B" + A) — R\(8") > DR.(B)"A + ;ATDQRn(ﬂ*)A. (A.22)
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Finally, from inequalities ||[DR,(8%)||s < 3, 18"+ Al = |1B7l1 > ||Ase|lr — || A1
(see (3) in the proof of Theorem 5 in Fan et al.| (2014a)) and (A.22) we have for A € C:
% 1 % ~ % ~ ~ %
F(A) = DR,(B")" A+ S ATD*Ry(B)A + A(1B” + Al — [187]1)
1)

1= MA

1 HAS*

A K ~
2 —5 1Al + gHAHg + A(|[Age

Kn, 5 A
= Al - Slas,

K A~
= A2 + Z||Agee

A - _
L= DAl NA

A -
1 §HA83 1= )‘HAS*

1

v

1

Kn 5 3A " _5|SE‘)|)\2
“alg - 2y isiial = 25 o

Kn 3\
Al = Z-11A
3 2

v

This ends the proof, because in a view of Lemma 4 in |Negahban et al| (2012)), we get
1B, — B*||2 < 5|st|'/2Ak; ! (see detailed explanation in the proof of Theorem 5 in [Fan
et al.| (2014a)). O

A.7. Technical lemmas

Lemmas [A.43] and [A.44] can be used to check the sign of proportionality constant n in
Remark 2.17 Lemma [A.44]is a slight modification of Lemma for strictly increasing

functions and has analogous proof.

Lemma A.43 (Thorisson (1995, Section 2)). Let U be a random variable and f,g: R — R
be non-decreasing functions. Then Cov(f(U),g(U)) > 0.

Lemma A.44. Let U be a random variable satisfying condition P(U = ¢) < 1 for all
ceRand f,g: R — R be strictly increasing functions. Then Cov(f(U),g(U)) > 0.

Proof. Since f and g are strictly increasing, then (f(x) — f(y))(g(x) — g(y)) > 0 for all
x,y € R with x # y. Let V' be an independent copy of variable U. Then
PU=V)=EI(U=V)=EPU=VIV)<1
from independence and we have:
0 <E(f(U) = fF(V))(gU) —g(V)IU # V) = E(f(U) = f(V))(g(U) = g(V))
=Ef(U)g(U) +Ef(V)g(V) —Ef(U)g(V) —Ef(V)g(U)
= 2Ef(U)g(U) = 2Ef(U)Eg(U) = 2 Cov(f(U), g(U)).
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Below we state Stein’s lemma which is useful in the semiparametric setup. First version
of this lemma appeared in [Stein| (1981). Proof of the most general version for multivariate
normal distribution (Lemma [A.46]) can be found in Liu (1994).

Lemma A.45. (Stein’s lemma for normal distribution) Suppose that the random vector
(Z1,Z5)" has a bivariate normal distribution and f: R — R is a differentiable function
fulfilling B|f'(Z1)| < oo, then

Cov(f(Z1), Z2) = Cov(Zy, Z2)Ef'(Z1).

Lemma A.46. (Stein’s lemma for multivariate normal distribution) Suppose that the
random vector (Z1, Z1)T, where Zy € R™, Zy € R™ has a multivariate normal distribution

and f: R™ — R is a differentiable function fulfilling E||D f(Zs)||s < 0o, then
Cov(Zy, [(Z,)) = Cov(Z1, Z2)ED f(Zs).

Lemma A.47 (Hjort and Pollard| (1993, Lemma 2)). Suppose A,: S - R, B,: § - R
be a sequence of random functions defined on an open convex set S € RP. Assume that A,
are convex functions. Let a, = argmin, g A,(v), b, = argmin,.g B, (v) and b, is unique.

Let 6 > 0. If ||a, — by||2 > 9 then

1
sup  |An(v) — B,(v)| > 3 inf B, (v) — Bu(b,).
[[v—bn|l2<d [|v—bn||2=0

Remark A.48. Lemma[A.]7 is true even when a, is not unique.

Theorem A.49. Assume that X,,, X € RP*! are random variables such that
E[| X, — X][; = 0,
X s integrable and q is uniformly continuous. Let P(Y, = 1|X,) = ¢(X.B), P(Y =
11X) = ¢(X"B),
B, = argminEl(b, X,,,Y,)

beRrt1
and
B* =argminEl(b, X|Y),

beRrt1

where | is a logistic loss (see (1.9)). Then we have B}, — B*.
Proof. Let f,(b) =1(b,X,,Y,), f(b) =1(b,X,Y). We first note that the uniform conver-
gence holds for |Ef,(b) — Ef(b)| on bounded sets, that is, for any finite K:

sup |Ef.(b) —Ef(b)] — 0. (A.23)

[[bll2<K
Indeed, using definition of [, triangle inequality, the Schwarz’s inequality, the mean

value theorem and boundedness of ¢ we get the following sequence of inequalities:
[Efa(b) = Ef(b)| < [E(Y,X,b — YXb)| + [E (In (14 ¢X°) —In (14 X))
= [E(¢(X;,8)X,b — ¢(X" B)Xb)|
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FIE (1n (1 ) (14 X))
< |E(¢(X,,8)X;,b — ¢(X" 8)X"b)| + [[b|[E[| X, — X2
< |E(q(X,8) — a(X" B))X"b| + E[¢(X, 8)|[X,b — XD
+ [|b[2E[[ Xy — X[z
< E|(¢(X,,8) — a(X" 8))X"b| + 2|[b|]2E[|X,, — X]|.
Now, observe that from uniform continuity of ¢, for any € > 0 exists § > 0 such that
for large n if ||X,, — X||2 < d, then |¢(X2B) — ¢(X*B)| < € and we have for large n:
El(¢(X;,8) — a(X"B))X"b| < eEI(|IX, — X||2 < 0)[X"b| + EI(||X, — X[|2 > 6)|X"b|
< el[bE[[X]l2 + [[blEL (|| X5 — X||2 = §)[|X]]2 < Cel[b][2,

where C is some constant. Convergence in (A.23)) readily follows from this as ¢ > 0 was
arbitrary. We now prove that 8; — B*. If it does not hold then for a certain k, € N,
kn, — oo we have [|8;, — B"||2 > 0 for some § > 0. From uniqueness of 3 and Lemma
for A, = fi., an = By, , B, = [ and b,, = 8" it directly follows that:

sup [Efi, (b) ~Ef(b) > J(EF(B) — sup Ef(b)>0,

[[b—p*||2<é [[b—B"|2=6
which contradicts (A.23]). O
Lemma A.50. Let U~ Ny(0,1), f: R—R, f € C? fisbounded and n € R*. Then:
Ef"(n" U)nim; ]

Ef(nTU)Uin = {
Ef(n"U)+Ef"(n" U)n; i=j

Proof. Let i # j. Then from Lemma we have:
Ef(n"U)UU; = E(UE(f(n"U)U;|U:)) = E(U; - E(f' (n" U)|U;) - Cov(n" U, Uj|U;))
=Ef'(n"U)Uin; = Ef"(n" U) Cov(n"U, U;)n; = Ef"(n" U)min;.

Now let ¢ = j. By integration by parts and the Stein’s lemma we have:

> uj
1 = z2
Ef(n"U)U? = @t / exp (#2) /f(nTu)ui - U; exXp (_u2> du; Hduj
Rk—1 R J#
> uj
__1 ) [T + FT _UY g T

=Ef'(n"U)Uin; + Ef (" U) =Ef"(n" U)n} + Ef(n"U).
0

Note that statement [I] of Lemma below is similar to Lemma [A.44] However, it
uses different method of proof which is used also in the proof of statement [3| of Lemma

[A5T]

Lemma A.51. (Ezpectation inequalities)
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1. Leta >0, X € R be a random variable such that P(X =0) < 1,X € L,EX = 0. Let
f: R —= R be strictly increasing, bounded, positive function and Z - random variable
independent of X. Then Ef(aX + Z)X > 0.

2. If f+ R — R is positive, bounded function, U € R? is a random vector, E||U||* < oo,
PA'U # 0) > 0 for every X € R?\ {0}. Then matriz Ef(nT UYUU" is positive
definite for n € RP.

3. If f: R — R is a function such that for every x > 0 we have f(x) > f(0) =0 > f(—z),
X € R is random wvariable such that P(X = 0) < 1 and E|f(X)X]| < oo, then
Ef(X)X > 0.

4. If X € R is a random wvariable such that E|X| < oo and P(X = 0) < 1, then
Eq! (X)X < 0.

5. If X ~ N(0,0?%) for some o > 0, then Eq}(X) < 0.

6. If X ~ N(0,02), then the function f(u) = uEq}(uX) is strictly increasing for u > 0.

Proof. 1. As f is strictly increasing and a > 0, we have:
Ef(aX+2)X =Ef(aX +2)XI(X >0)+Ef(aX + 2)XI(X <0)
>Ef(2)XI(X >0)+Ef(2)XI(X <0)=Ef(Z)X =Ef(Z)EX = 0.
2. For A € RP\ {0}, we have:
N(Ef(n"U)UUT)A = Ef(n"U)|IXU[PI(ATU £ 0) > 0.
3. Proof is analogous to proof of [I}
4. Note that —¢] satisfies assumptions of p. |3| and is bounded. This ends the proof.
5. From Stein’s lemma we have: E¢} (X)X = o?Eq}'(X), hence the inequality follows from
)
6. Observe that from the Stein’s lemma we have: f(u) = 072 Eqz(uX)X. Hence f'(u) =
072 Eq; (uX)X? > 0.
O

The following lemma (see [Bach| (2010))) provides inequality, which is used in Lemma
[A.54] and Theorem (see (A.22)) to give quadratic lower bounds respectively for risk
function R and for empirical risk R, when function p satisfies condition (stronger than

convexity) of the form:
Pp & p
%(ba Z/)‘ < K(y)w(b, y)-

for all b € R,y € {0,1}. This condition is in particular satisfied for logistic loss (see
(A.25). Lemma is an auxiliary fact to prove inequalities and - we note
that constant 1/3 occurring in them in quadratic terms can be replaced by e~!. Lemma
[A.54) shows that the assumptions regarding quadratic lower bounds of risk function in
neighbourhood of 8* (namely |(MC)|and (C.(w)])) are reasonable.
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Lemma A.52 (Bach (2010, Lemma 1)). Let g : R — R be a three times differentiable
function such that for all t € R: |g"(t)| < S¢"(t) for some S > 0. Then, for allt > 0:

o LN(eS 4 St—1) < g(t) — g(0) — g'(0)t < L (5 — St~ 1), if S >0,
o g(t) — g(0) — g'(0)t = “9= if S =0.

Lemma A.53.

for x € (0,1].

Proof. Let f(x) = (e™® +x — 1)xz~2. Using inequality e™® < 1 —x +22%/2 for x > 0 (where
equality holds only for x = 0) we obtain for z > 0:
l—z+2*/242-1 1
< =-.
To prove the right inequality, we compute derivative of f:
, (e + 1) —(e"+x—1)-20 —x+2—e%(v+2)
f (ZU) = 4 = 3 :
We now prove that f/(x) <0 for z € (0,1]. It is enough to prove that for x € [0, 1]:

g(z) =—e(x+2)—2+2<0.

Using again inequality e < 1 —x + 2?/2 for x > 0 gives:
2
1
Jx)y=e"(z+2)—e"—1l=e"(z+1)-1< (1—x+$2) (x+1)—1= i(x—l)xQ.
Hence ¢'(z) < 0 for x € [0, 1]. This means that g(z) < g(0) = 0 and f'(z) = g(z)x™2 <0
for x € (0,1]. Thus function f is decreasing and we obtain:

w2 =

This ends the proof. O

Lemma A.54. If R : RP»*1 — R is a risk function (see ) for logistic loss defined
in (1.9), X € R+ is bounded random vector: ||X||«c < M Px a.c., then for any
by, by € R with ||by — bol|; < 1/M we have:

1
R(b)) > R(by) + DR(by)" (b — by) + 3 (b1 = by)" D*R(by) (b — by). (A.24)
Proof. Firstly we observe that if p(b,y) = —yb + ln(l + eb), then we have:
b

Pp e 1—¢eb e 9?p
73(b7 y) = b\2 b =
b (I+ev)2|1+e

(A.25)

SAren oY
Let t € R and R(t) = R(by + t(b; — by)). We calculate that:
5p

R'(t) = E@(ng +t(by = b2)" X, Y)((b1 — b)) X)?,
I agp
R"(t) = E%(ng +t(b; — by)"X, Y)((by — by) ' X)3.
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Hence in view of (A.25)) and inequality |(b; — b)?X]| < ||X]|s|[b1 — ba||1 < M||by —byl|;

we obtain:

I 83 3
R"(H)] < E|2L(BIX + t(by — by)TX, Y)\ (b1 — by)"X|

b3
@ T T T~ |?
< M|[by — by[| ;B (X 4 t(by — by) X, Y) (b1 = by)"X]|
= M|[b; — by|[,R"(t). (A.26)

Using Lemma for g = R and S = M||b; — by||; yields for t > 0:
e~ MIPr=b2llit 4t N(|by — byt — 1)
Mz|[by — byt '

Using definition of R, above inequality can be rewritten for t = 1 as:

R(by) > R(by) + DR(b,)" (by — b)

R(t) > R(0) + B(0)t + B(0) - (

+ (bl . bQ)TD2R(b2)(b1 . b2) ) <6M||b1b2||1 + M||b1 _ b2||1 . 1) |

M?|[by — Dol[?
Now, in view of inequality M||b; — by||; < 1, which follows from assumptions and Lemma,

[A-53] we have: Milbi—balh 4 1f
- 1—D2]|1 _ —
e + M|[by — by|[; — 1 S el

1
M?|[by — ba|fi - 3

This ends the proof, as
(by = b2)" D*R(bs)(by — bs) = Eqz(by X)(1 — gz (b3 X))((b1 — bs)"X)? > 0.
O
Lemma A.55. If R: R — R is a risk function (see ) for quadratic loss defined in
, X € RP»*L s a random vector such that E||X||3 < oo, then for any by, by € RPnT!

we have:

R(b)) — R(by) = DR(by)" (b; — by) + ;(b1 — by)'D?R(by)(b; — by). (A.27)

Proof. Proof follows from Taylor’s expansion after noting that
1
R(b) = ibTIEJXXTb —b'XY +Y?
and thus derivative of the order higher than 2 disappears. O
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