
WARSAWUNIVERSITY OF
TECHNOLOGY

Faculty of Mathematics and Information Science

Ph.D. Thesis
Mariusz Kubkowski, M.Sc.

Misspecification of binary regression model: properties and
inferential procedures

Supervisor

Prof. Jan Mielniczuk, Ph.D., D.Sc.

WARSAW, 2019





Podziękowania

Pragnę serdecznie podziękować Panu prof. dr hab. Janowi Mielniczukowi za nieocenioną
pomoc, życzliwość, cenne uwagi merytoryczne i wsparcie, na które zawsze mogłem liczyć.

Składam podziękowania Panu prof. dr hab. Jackowi Wesołowskiemu, dr Bartoszowi
Kołodziejkowi oraz dr Wojciechowi Rejchelowi za okazaną pomoc i cenne sugestie, bez
których ta praca nie byłaby kompletna.

Pragnę też podziękować mojej Rodzinie, a w szczególności: Mamie, ś.p. Tacie, Dziadkom
oraz Siostrze, którzy zawsze we mnie wierzyli i mocno mnie wspierali.





Streszczenie

W poniższej rozprawie doktorskiej została przedstawiona problematyka złej specyfikacji
modelu regresji binarnej. Pracę możemy podzielić zasadniczo na 4 części. W pierwszej
części, którą stanowi Rozdział 1, został zawarty ogólny opis tego problemu oraz przykłady
sytuacji, w których zła specyfikacja może wystąpić.

W drugiej części omówiono własności wektora współczynników teoretycznych β∗ w
dopasowanym modelu - wyniki zawarte w tej części stanowią uogólnienie wyników zawartych
w pracach Kubkowski, Mielniczuk (2017) (Rozdział 2) oraz Kubkowski, Mielniczuk (2018)
(Rozdział 3) do przypadku wypukłej funkcji straty. W Rozdziale 2 zbadano własności
nośnika s∗ wektora współczynników teoretycznych w dopasowanym modelu w przypadku
spełnienia warunku liniowych regresji i w przypadku niespełnienia tego warunku. W
Rozdziale 3 jest rozważany ponadto addytywny model binarny.

Trzecia część, składająca się z Rozdziałów 4 i 5, skupia się na estymacji wektora β∗

oraz zbioru s∗ dla losowych predyktorów subgaussowskich (także w przypadku, gdy liczba
predyktorów jest większa od liczby obserwacji). W Rozdziale 4 pokazano wyniki dotyczące
metody Lasso oparte o idee zawarte w pracach Fan i in. (2014a) oraz Bühlmann, van de Geer
(2011). W Rozdziale 5 omówiono minimalizację Uogólnionego Kryterium Informacyjnego
(GIC) w pewnej rodzinie M, do której należy s∗. W Rozdziale 5 przedstawiono także
procedurę dwustopniową SS (Screening - Selection) służącą do znajdowania estymatora
s∗, która opiera się w swoim działaniu o metodę Lasso (pierwszy etap) i minimalizację
GIC (drugi etap). W Rozdziale 5 zaprezentowano także rezultaty teoretyczne dotyczące
jej działania.

Czwarta część (Rozdział 6) zawiera opisy i analizę eksperymentów numerycznych, w
których zbadano procedury będące modyfikacjami procedury SS dla próby losowej oraz
zaprezentowano procedurę numerycznego przybliżenia β∗ i sprawdzono numerycznie jej
działanie.

Słowa kluczowe: zła specyfikacja, binarny model regresyjny, regresja logistyczna, Lasso,
Uogólnione Kryterium Informacyjne, zbiory aktywnych predyktorów, selekcja zmiennych,
regresja wysoko-wymiarowa.
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Abstract

In this doctoral dissertation problem of misspecification of binary regression model is
discussed. This dissertation consists of four parts. In the first part, consisting of Chapter
1, general description of this problem and examples of situations, where misspecification
occurs, are given.

In the second part, we discuss properties of vector of theoretical coefficients β∗ in
fitted model. Results presented in this part generalize results contained in Kubkowski,
Mielniczuk (2017) (Chapter 2) and Kubkowski, Mielniczuk (2018) (Chapter 3) to the case
of convex loss function. In Chapter 2 we study properties of support s∗ of β∗ in fitted
model in the case when linear regressions condition is satisfied and in the case when this
condition is not satisfied. We consider additionally additive binary model in Chapter 3.

In third part, consisting of Chapters 4 and 5, we focus on estimation of vector β∗ and
set s∗ for random subgaussian predictors (also in the case when number of predictors is
greater than number of observations). In Chapter 4 several novel results concerning Lasso
are shown. The results are based on ideas contained in papers of Fan et al (2014a) and
Bühlmann, van de Geer (2011). In Chapter 5 minimization of Generalized Information
Criterion over familyM (to which s∗ belongs) is discussed. In Chapter 5 two-stage SS
(Screening - Selection) procedure of finding estimator of s∗ is presented and its selection
consistency is discussed. The procedure consists of screening based on Lasso in the
first stage and GIC minimization in the second stage. In Chapter 5 theoretical results
concerning SS procedure are presented.

Fourth part (Chapter 6) contains description and analysis of numerical experiments,
in which we study properties of procedures which are modifications of SS procedure. We
also present in this chapter procedure approximating β∗ numerically and we check its
performance.

Key words: misspecification, binary regression model, logistic regression, Lasso,
Generalized Information Criterion, sets of active predictors, variable selection,
high-dimensional regression.
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Notation and conventions
• Random variables are denoted by big letters, e.g. X1, X2, Y, Z, . . .,
• vectors are additionally denoted in bold font, e.g. X1,X2,Y,Z, . . .,
• observations of random variables are denoted in small font, e.g. x1, x2, y, z, . . .,
• observations of random vectors are additionally denoted in bold font, e.g. x1,x2,y, z, . . .,
• 0p - p× 1 vector of zeros,
• Op×m - p×m matrix of zeros,
• N - set of natural numbers (including 0), N+ = N \ {0},
• Df - gradient of function f ,
• Φ(x) =

x∫
−∞

e−
x2
2√

2π dx for x ∈ R - cdf of N (0, 1) distribution,

• φ(x) = e−
x2
2√

2π for x ∈ R - pdf of N (0, 1) distribution,
• β - vector of true values of parameters,
• β∗ - projection vector,
• β̂L - Lasso estimator of β∗,
• β̂(w) - ML estimator calculated on model w ⊆ {1, . . . , p},
• ṽ - vector v with omitted first coordinate,
• vπ = (vj1 , . . . , vjk)T -subvector of v ∈ Rp and π = {j1, . . . , jk} ⊆ {1, . . . , p}, (v∅ = 0),
• Xπ = X(j1,...,jk) - submatrix of X ∈ Rn×p with columns indexed by elements of π =
{j1, . . . , jk} ⊆ {1, . . . , p}, (X∅ = 0n),
• s - set of true active predictors,
• s∗ - set of active predictors corresponding to β∗,
• q, q(n) -response function,
• qL(x) = (1 + exp(−x))−1, x ∈ R - logistic function,
• I(A) - characteristic function of set A,
• a+ = aI(a > 0) and a− = aI(a < 0) for a ∈ R,
• |w| - cardinality of set w.
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Chapter 1

Introduction

Let n ∈ N+, pn ∈ N, (X, Y ), (X1, Y1), . . . , (Xn, Yn) ∼ P = Pn be i.i.d. random variables,
(X, Y ) ∈ Rpn+1 × {0, 1}. We consider a general binary model such that a conditional
distribution of Y given X is given by

P(Y = 1|X = x) = q(n)(x), (1.1)

where X = (X0, X1, . . . , Xpn)T is a column vector of predictors, X0 ≡ 1 and q(n) : R →
[0, 1] is a certain unknown response function. Note that variable X0 is associated with
intercept in the regression model.

Let Θ be a set of possible parameter values,

l : Θ× Rpn+1 × {0, 1} → R

be a loss function with R : Θ→ R associated risk function given by

R(b) = El(b,X, Y ). (1.2)

Object of main interest here is the minimizer of the risk:

β∗ = β∗n = arg min
b∈Θ

R(b). (1.3)

Consider set of active predictors corresponding to β∗:

s∗ = {i ∈ {1, . . . , pn} : ∃x ∈ Rpn+1, x′i ∈ R, y ∈ {0, 1} : l(β∗,x, y) 6= l(β∗,x′(i), y)}, (1.4)

where x = (1, x1, . . . , xi, . . . , xpn)T and x′(i) = (1, x1, . . . , x
′
i, . . . , xpn)T is vector x with

replaced (i+ 1)-th coordinate corresponding to xi by x′i. To discuss the properties of s∗

we have to assume that β∗ exists and is uniquely defined. Conditions for this are given in
Appendix A.1 for losses of the form l(b,x, y) = ρ(bTx, y).

Analogously, we define the following set of true active predictors:

s = {i ∈ {1, . . . , pn} : ∃x ∈ Rpn+1, x′i ∈ R : q(n)(x) 6= q(n)(x′(i))}. (1.5)

We now discuss the most important case of the above situation, when the loss function
is associated with a fitted model. Namely, assume that we want to find the projection of
the model (1.1) on the family of parametric models {π(x,b) : b ∈ Θ} (in this case β∗ is a
parameter corresponding to the projection) characterized by equation:

P(Y = 1|X = x) = π(x,b),

1



CHAPTER 1. INTRODUCTION

where π : Rpn+1 ×Θ→ [0, 1]. We note that the last equality can be written as:

P(Y = y|X = x) = π(x,b)y(1− π(x,b))1−y.

If for some β ∈ Θ π(x,β) = q(n)(x) PX - a.e. and associated loss function is given as

− logL(b,x, y) = − lnPb(Y = y|X = x) = −y ln(π(x,b))− (1− y) ln(1− π(x,b))

then the model is well specified. More specifically, we have:

Definition 1.1. We call binary model with loss function l well specified (in a general
sense) with respect to the family of parametric binary models {Pb(Y = 1|X = x) = π(x, b)},
where π : Rpn+1 ×Θ→ [0, 1] if it satisfies the following two conditions:

1. For all x ∈ Rpn+1, b ∈ Θ, y ∈ {0, 1} we have:

l(b,x, y) = −y log(π(x, b))− (1− y) log(1− π(x, b)).

2. There exists vector β ∈ Θ that for all x ∈ Rpn+1: q(n)(x) = π(x,β).

We say that binary model with loss function l is misspecified (in a general sense) with
respect to the family of parametric binary models {Pb(Y = 1|X = x) = π(x,b)}, if it is
not well specified with respect to this family.

We note in particular that if q(x) is itself a member of parametric family {π(x,b) :
b ∈ Θ}, i.e. q(x) = π(x,β) for some β ∈ Θ and equality l(b,x, y) = − logL(b,x, y)
does not hold for all b ∈ Θ, then binary model is misspecified (in a general sense) with
respect to parametric family {π(x,b) : b ∈ Θ}. In this case we simply call binary model
misspecified. Thus the model corresponding to data generating mechanism is misspecified
or well specified. We note that in Kubkowski and Mielniczuk (2017) different terminology
was used. We give examples of misspecified models in Section 1.2.

In addition to the general model in (1.1) we consider two specific setups in this
dissertation:

• semiparametric setup (β = (β0, β1, . . . , βpn)T ∈ Rpn+1, q(n) : R→ R) - see Chapter 2:

P(Y = 1|X = x) = q(n)(xTβ), (1.6)

(abusing notation slightly we will denote by q(n) a function satisfying (1.1) or (1.6)).
• generalized semiparametric setup (k ∈ N, β1, . . . ,βk ∈ Rpn+1, q(n) : Rk → R) - see

Chapter 3:
P(Y = 1|X = x) = q(n)(xTβ1, . . . ,xTβk). (1.7)

We note that semiparametric setup is equivalent in the binary case to the model often
considered in literature (see e.g. Li and Duan (1989)): Y = g(βTX, ε) for some function g
and ε independent of X, what is shown in the Remark 2.8. We note that the construction
discussed in the proof can be easily generalized to the case of generalized semiparametric
setup.
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In this thesis we consider regression type loss of the form l(b,x, y) = ρ(bTx, y), where
b ∈ Θ = Rpn+1, ρ : R× {0, 1} → R. In case of such loss we observe that

s∗ = {i ∈ {1, . . . , pn} : β∗i 6= 0}

(when ρ is not degenerate in the sense that ρ(c, y) 6≡ ρ(y)).
For semiparametric and generalized semiparametric setup we note also that we have:

s = {i ∈ {1, . . . , pn} : βi 6= 0},

s = {i ∈ {1, . . . , pn} : ∃j ∈ {1, . . . , k} : βji 6= 0},

respectively (assuming q(n) is nondegenerate function in similar sense as ρ).

Remark 1.2. In this dissertation we consider also model without intercept, when Θ =
Rpn+1. In this case we define:

β∗ = arg min
b∈Rpn

R((0, bT )T ). (1.8)

Proofs of all theorems will be given for the model with intercept (where β∗ is given by
Equation (1.3)) unless it is specified differently.

One of the main problems considered in this work is the interplay between sets s and
s∗. We show that set s∗ is a subset of set s (or even equal to it) in the semiparametric
setup under linear regressions condition (see Chapter 2). Moreover, we provide examples
that when linear regressions assumption is violated, the relation between sets s and s∗

can be arbitrary. The results for these relations given here are mainly for semiparametric
setup.

Next important problem considered here is the relation between vectors β∗ and β in
semiparametric setup (or between β∗ and β1, . . . ,βk in generalized semiparametric setup).
Under linear regressions condition it turns out that β∗ is proportional to β (or a linear
combination of β1, . . . ,βk) - see Chapter 3. The last question, which we will try to answer
is how to select the set which approximates s∗ when we are given i.i.d. random sample
(X1, Y1), . . . , (Xn, Yn) specified above. We introduce an appropriate procedure, establish
its properties for subgaussian predictors and perform numerical experiments to check its
effectiveness - see Chapters 4-6. Moreover, we show in numerical experiments (Chapter
6) that when the linear regressions condition is satisfied, set s∗ can be selected correctly
with high probability even for loss functions which are not associated with any particular
model (for example Huber loss).

Properties of inferential procedures under misspecification when family of logistic
models {qL(xTb)} for b ∈ Rp+1 is fitted (qL(x) = (1 + e−x)−1 for x ∈ R), serves as a main
example in the dissertation.
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CHAPTER 1. INTRODUCTION

1.1. Basic loss functions

In this chapter we give definitions of several loss functions, which are usually considered
in binary misspecification problem.

Logistic loss is the main loss function of our interest corresponding to logistic regression
fit:

llog(b,x, y) = −yxTb + ln
(
1 + exp

(
xTb

))
= ρlog(xTb, y), (1.9)

where ρlog(b, y) = −yb+ ln
(
1 + eb

)
. This loss equals − logP(Y = y|X = x) in the logistic

regression model. We note that ρlog(·, y) is non-negative, differentiable, strictly convex
function for all y.

0
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4

−4 −2 0 2 4
b

ρ l
og

(b
,y

)

y = 0 y = 1

Figure 1.1: Function ρ for logistic loss
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Figure 1.2: Function ρ for probit loss
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1.1. BASIC LOSS FUNCTIONS

Probit loss is a loss related to probit regression:

lprob(b,x, y) = −y ln
(
Φ(xTb)

)
− (1− y) ln

(
1− Φ(xTb)

)
= ρprob(xTb, y), (1.10)

where ρprob(b, y) = −y ln(Φ(b))− (1− y) ln(1− Φ(b)) and:

Φ(b) =
b∫

−∞

e−
x2
2

√
2π
dx.

We note that ρprob(·, y) is non-negative, differentiable, strictly convex function for all y
(for the proof of strict convexity see Remark A.14).

Quadratic (or squared) loss is a loss related to the linear regression:

llin(b,x, y) = 1
2(y − xTb)2 = ρlin(xTb, y), (1.11)

where
ρlin(b, y) = 1

2(y − b)2.

It turns out that for quadratic loss we can give explicit formula for β∗ (see (2.16)). We
also note that ρlin(·, y) is non-negative, differentiable, strictly convex function for all y.

0

4

8

12

−4 −2 0 2 4
b

ρ l
in
(b

,y
)

y = 0 y = 1

Figure 1.3: Function ρ for quadratic loss

Huber loss is a loss related to Huber regression:

lδH(b,x, y) =


(y−xTb)2

2δ |y − xTb| ≤ δ

|y − xTb| − 1
2δ |y − xTb| > δ

= ρδH(xTb, y), (1.12)

where δ > 0 and

ρδH(b, y) =


(y−b)2

2δ |y − b| ≤ δ

|y − b| − 1
2δ |y − b| > δ

.

We note that ρδH(·, y) is differentiable, Lipschitz, convex (but not strictly convex) function
for all y.
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0

1

2

3

4

−4 −2 0 2 4
b

ρ Hδ
(b

,y
)

y = 0 delta = 1
y = 1 delta = 1

y = 0 delta = 0.5
y = 1 delta = 0.5

y = 0 delta = 2
y = 1 delta = 2

Figure 1.4: Function ρ for Huber loss

Quantile loss is related to quantile regression:

lτq (b,x, y) = (y − xTb)(τ − I(y − xTb < 0)) = ρτq (xTb, y), (1.13)

where τ ∈ (0, 1) and
ρτq (b, y) = (y − b)(τ − I(y − b < 0)).

Note that for τ = 1/2 we have lτq (b,x, y) = |y − xTb|/2. We observe that ρτq (·, y) is
Lipschitz, convex function for all y. However, ρτq (·, y) is not differentiable.

0

1

2

3

4

−4 −2 0 2 4
b

ρ qτ (b
,y

)

y = 0 tau = 0.5
y = 1 tau = 0.5

y = 0 tau = 0.2
y = 1 tau = 0.2

y = 0 tau = 0.8
y = 1 tau = 0.8

Figure 1.5: Function ρ for quantile loss

1.2. Examples of misspecified models

In this section we provide examples of well specified and misspecified models in order
to provide better understanding of the problem presented in this dissertation.
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1.2. EXAMPLES OF MISSPECIFIED MODELS

Example 1.3. Let X ∼ N (0, 1), Θ = R2,

P(Y = 1|X = x) = Φ(x) =
x∫

−∞

e−
t2
2

√
2π
dt.

Observe that conditional distribution of Y given X corresponds to the probit model. Now we
consider the logistic loss function. Then the model is misspecified, as for all b = (b0, b1)T ∈
Θ as we have Φ(x) 6≡ qL(b0 + b1x).

Example 1.4. Let X1, X2 be independent random variables, where X1 ∼ N (0, 1), X2 ∼
Bern(0.5) and let

P(Y = 1|X1 = x1, X2 = x2) = q1(x1, x2) = 1
1 + e−x1−x2

.

We consider logistic loss function. Then the model with predictors X1 and X2 is well
specified, as for

b = (b0, b1, b2)T = (0, 1, 1)T

we have
q1(x1, x2) ≡ qL(b0 + b1x1 + b2x2).

However, when we omit variable X2, then we obtain:

P(Y = 1|X1 = x1) = P(Y = 1|X1 = x1, X2 = 1)P(X2 = 1|X1 = x1)

+ P(Y = 1|X1 = x1, X2 = −1)P(X2 = −1|X1 = x1)

= 1
2 ·

1
1 + e−x1−1 + 1

2 ·
1

1 + e−x1+1 = q2(x1).

This means that model with only predictor X1 is misspecified, as for all b = (b0, b1)T ∈ R2

we have q2(x1) 6≡ qL(b0 + b1x1).
Note that this example is a special case of Example 1.6 below.

Example 1.5. Let X1, X2 be independent non-degenerate random variables and assume
X1 ≤ 0,

P(X2 = 1) = P(X2 = −1) = 1
2 ,

P(Y = 1|X1 = x1, X2 = x2) = q(x1, x2) = 2
1 + e−x1

I(x2 = 1).

We consider logistic loss function. Then model containing X1 and X2 as predictors is
misspecified whereas model with only X1 as predictor will be well specified as we have:

P(Y = 1|X1 = x1) = P(Y = 1|X1 = x1, X2 = 1)P(X2 = 1|X1 = x1)

+ P(Y = 1|X1 = x1, X2 = −1)P(X2 = −1|X1 = x1) = 1
1 + e−x1

.

Example 1.6. Let T ∈ {1, . . . , k} and X ∈ Rp be independent random variables and let
for i ∈ {1, . . . , k} and β(i) ∈ Rp:

P(Y = 1|X = x, T = i) = qi(βT
(i)x), P(T = i) = pi ∈ (0, 1),

7



CHAPTER 1. INTRODUCTION

where ∑k
i=1 pi = 1. We consider the following additive model:

P(Y = 1|X = x) =
k∑
i=1

P(Y = 1|X = x, T = i)P(T = i|X = x)

=
k∑
i=1

qi(βT
(i)x)P(T = i) =

k∑
i=1

piqi(βT
(i)x).

We consider logistic loss function. We show for specific k,qi,β(i) and pi that the introduced
model is misspecified, if there exists x0 ∈ Rp such that βTx0 > 0 and supp X ⊇ {cx0 ∈
Rp : c ∈ R}. Let e.g. k = 2, p1 = 1− p, p2 = p, p ∈ (0, 1) \ {0.5}, β(1) = β, β(2) = −β,

β ∈ Rp, q1 = q2 = qL. Then:

P(Y = 1|X = x) = (1− p)qL(βTx) + pqL(−βTx). (1.14)

We have additionally

P(Y = 1|X = x, T = 1) = qL(βTx), P(Y = 1|X = x, T = 2) = qL(−βTx).

This means that when T = 2 then the mislabelling of Y class (from 0 to 1 and vice versa)
occurs. The probability of this event is P(T = 2) = p. Now, we observe that in view of
assumed condition:

lim
c→+∞

(
pqL(βT (x0c)) + (1− p)qL(−βT (x0c))

)
= p /∈

{
0, 1

2 , 1
}
.

However, we have for any γ ∈ Rp:

lim
c→+∞

qL(γT (x0c)) =


1, if γTx0 > 0
1
2 , if γTx0 = 0

0, if γTx0 < 0

.

Therefore we have shown that the model (1.14) with logistic loss is misspecified.

8



Chapter 2

Properties of the projection in the
semiparametric model

In this chapter we consider semiparametric binary model:

P(Y = 1|X = x) = q(n)(xTβ), (2.1)

where x,β ∈ Θ = Rpn+1. To simplify the considerations, we assume that q(n) = q : R→
[0, 1], pn = p ∈ N, Θ = Rp+1. Because our focus will be on non-constant predictors and not
on the intercept, we introduce the following notation: X = (X0, X̃

T )T , X̃ = (X1, . . . , Xp)T ,
X0 ≡ 1, b̃ = (b1, . . . , bp)T , b = (b0, b̃

T )T (and we define β̃ analogously as b̃). If the
appropriate moments of X̃ are finite, we will write EX̃ = µ, Var X̃ = Σ.

One of the most important assumptions considered in this chapter is linear regressions
condition:

(LRC(b)) ∃h0 = h0(b̃) ∈ Rp,h1 = h1(b̃) ∈ Rp : E(X̃|b̃T X̃) = h0 + h1b̃
T X̃,

Condition LRC(b) is satisfied for every b ∈ Rp+1 with b̃ 6= 0p by elliptically contoured
distributions of X̃ having finite second moment (see Section A.2 in Appendix). Moreover, if
the condition LRC(b) is satisfied for every b ∈ Rp+1, then X̃ follows elliptically contoured
distribution (see Theorem A.23 in Appendix). Note that normal distribution belongs to
the family of elliptically contoured distributions (see Remark A.17 in Appendix).

We will show in the Theorem 2.6 that the condition LRC(β) is essential in the proof of
equality β̃

∗ = ηβ̃ for some η ∈ R. Condition LRC(β∗) in the case of logistic (or quadratic)
loss below allows us to represent β∗ as some function of β even in the situation when some
relevant predictors are omitted in the fitted logistic (or linear) model - see Sections 2.2
and 2.3.

According to a discussion in Chapter 1 model (2.1) is misspecified when associated loss
function is not equal to minus log-likelihood of this model. Such a case will be investigated
in Chapter 2 for a general loss defined in (2.2) as well as for specific cases when l is logistic,
probit and quadratic loss.

In this chapter we assume throughout that loss function is of the form:

l(b,x, y) = ρ(bTx, y), (2.2)

9



CHAPTER 2. PROPERTIES OF THE PROJECTION IN THE SEMIPARAMETRIC MODEL

where ρ : R×{0, 1} → R is some function, b,x ∈ Rp+1, y ∈ {0, 1}. In almost all theorems
below (except Theorem 2.2) we assume that ρ(·, y) is convex (or strictly convex) function
for all y. Differentiability of ρ(·, y) for all y along with LRC is used in Sections 2.2–2.4
to show the form of β∗ in the fitted model or to show interplay between β∗log obtained as
minimizer of logistic risk and β∗lin obtained as minimizer of quadratic risk. If ρ(·, y) is
differentiable for all y, we will denote partial derivative of ρ with respect to first argument
by ∂ρ

∂b
.

Another important assumption related to uniqueness of β∗ is linear non-degenerability
of X:

(LND) P(bTX = 0) < 1 for all b ∈ Rp+1 \ {0p+1}.

It follows from the Lemma A.44 that if LND is satisfied and q is strictly increasing
then we obtain Cov(βTX, Y ) > 0.

Observe that if β∗ exists in (1.3), then uniqueness of β∗ follows easily from strict
convexity of ρ(·, y) for all y, LND and condition that for all b ∈ Rp+1: E|ρ(bTX, Y )| <∞
because risk function R defined in (1.2) is then strictly convex and thus it has unique
minimum (see Remark A.1 in Appendix). Note that when assumption LND is not satisfied
for a certain v ∈ Rp+1 and β∗ is a minimizer of risk function R, then β∗ + av is also
minimizer of R for a ∈ R as R(b + av) = R(b) for every b ∈ Rp+1. Corollary A.10 in the
Appendix gives sufficient conditions for existence of β∗, however it only works for loss
functions of a special form (like logistic and quadratic loss - see Remarks A.12 and A.13).
Conditions for existence of β∗ for e.g. Huber loss and quantile loss remain unknown. Thus
existence of β∗ will be assumed in this chapter in Sections 2.2, 2.3, 2.4 and 2.5.

Condition P(Y = 1|X = x) ∈ (0, 1) PX a.e. (assumed in Remark A.12) is crucial for
the existence of β∗ for logistic loss as it is shown in Example 2.40.

Definition 2.1. We define the following sets of active predictors:

s = {i ∈ {1, . . . , p} : βi 6= 0} = supp β̃, (2.3)

s∗ = {i ∈ {1, . . . , p} : β∗i 6= 0} = supp β̃
∗
. (2.4)

Note that intercept is not included in s and s∗.
Below we give a few results which also follow from the theorems for the generalized

semiparametric setup (see Chapter 3).

10
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2.1. General loss

The following theorem is a generalization of Theorem 3.1 in Kubkowski and Mielniczuk
(2017) which was proved there for logistic loss only. Theorem 2.2 states that when inactive
predictors X̃2 in binary model are such that X̃1 and X̃2 −AX̃1 are independent, where
X̃1 are remaining predictors and A is a linear transform, then minimizer β∗ of the risk in
the model containing X̃1 and X̃2 is obtained from the minimizer (β∗0 , β̃

∗T
1 ) of the risk in

the model containing only X̃1 by appending zeroes to the latter. It is easily seen that the
result fails if X̃1 and X̃2 are dependent (see Example 2.43). Example 2.39 shows possible
application of Theorem 2.2.

Theorem 2.2. Let X be a random vector such that E||X̃||2 < ∞ and assume that
E|ρ(bTX, Y )| < ∞ for all b ∈ Rp+1. Let X̃ = (X̃T

1 , X̃
T

2 )T , where X̃1 = (X1, . . . , Xj)T ,
X̃2 = (Xj+1, . . . , Xp)T , β̃ = (β̃T

1 , β̃
T

2 )T , where β̃1 ∈ Rj, β̃2 ∈ Rp−j. Assume that β̃2 = 0p−j
and that X̃1 and X̃2 −AX̃1 are independent for a certain A ∈ R(p−j)×j. If there exists
(β∗0 , β̃

∗T
1 )T such that:

(β∗0 , β̃
∗T
1 )T = arg min

(b0,bT1 )T∈Rj+1
Eρ(b0 + bT1 X̃1, Y ), (2.5)

then β∗ defined in Equation (1.3) exists and:

β∗ = (β∗0 , β̃
∗T
1 ,0Tp−j)T .

Moreover, if we assume LND and strict convexity of ρ(·, y) for all y, then β∗ is unique.

Proof. Let h(b0,bT1 ,bT2 ) = R(b) = Eρ(b0 + bT1 X̃1 + bT2 X̃2, Y ).
Note that h is well specified as E|ρ(bTX, Y )| < ∞ for all b ∈ Rp+1. Equation (2.5) is
equivalent to h(b0,bT1 ,0Tp−j) ≥ h(β∗0 , β̃

∗T
1 ,0Tp−j) for all (b0,bT1 )T ∈ Rj+1. Now, by condition-

ing on X̃, simple algebraic transformations, conditioning on X̃2 −AX̃1 and independence
of X̃1 and X̃2 −AX̃1 (last equality) we obtain:

h(b0,bT1 ,bT2 ) = Eρ(b0 + bT1 X̃1 + bT2 X̃2, Y ) = E(E(ρ(b0 + bT1 X̃1 + bT2 X̃2, Y )|X̃))

= Eρ(b0 + bT1 X̃1 + bT2 X̃2, 1)q(βTX)

+ Eρ(b0 + bT1 X̃1 + bT2 X̃2, 0)(1− q(βTX))

= E(ρ((b0 + bT2 (X̃2 −AX̃1)) + (b1 + ATb2)T X̃1, 1)q(β0 + β̃
T

1 X̃1))

+ E(ρ((b0 + bT2 (X̃2 −AX̃1)) + (b1 + ATb2)T X̃1, 0)(1− q(β0 + β̃
T

1 X̃1)))

= E
(
E(ρ((b0 + bT2 (X̃2 −AX̃1)) + (b1 + ATb2)T X̃1, 1)

× q(β0 + β̃
T

1 X̃1)|X̃2 −AX̃1)
)

+ E
(
E(ρ((b0 + bT2 (X̃2 −AX̃1)) + (b1 + ATb2)T X̃1, 0)

× (1− q(β0 + β̃
T

1 X̃1))|X̃2 −AX̃1)
)

11
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= Eh(b0 + bT2 (X̃2 −AX̃1),bT1 + bT2 A,0Tp−j) ≥ h(β∗0 , β̃
∗T
1 ,0Tp−j). (2.6)

This means that point β∗ = (β∗0 , β̃
∗T
1 ,0Tp−j) is a global minimum of h. From this the first

part of the theorem follows. To prove the second part, we use Lemma A.1 to see that h is
strictly convex. This means that β∗ is unique in view of strict convexity of h.

Remark 2.3. If we fit the model without intercept (see Definition 1.8) in the Theorem
2.2, we need additionally to assume EX̃ = 0p and the proof will be analogous (in the last
step before inequality in (2.6) we apply Jensen’s inequality):

h(0, bT1 , bT2 ) = Eh(bT2 (X̃2 −AX̃1), bT1 + bT2 A,0Tp−j)

≥ h(bT2 E(X̃2 −AX̃1), bT1 + bT2 A,0Tp−j) = h(0, bT1 + bT2 A,0Tp−j) ≥ h(0, β̃∗T1 ,0Tp−j).

Remark 2.4. Note that Theorem 2.2 holds in particular when X̃1 and X̃2 are independent.

Corollary 2.5. If we additionally assume that βi 6= 0 for all i ∈ {1, . . . , j}, that is
s = {1, . . . , j} then s∗ ⊆ s follows from Theorem 2.2. Moreover, we have ∅ 6= s∗ ⊆ s, if
we assume additionally that q(x) ∈ (0, 1) for x ∈ R (see Remark 2.18).

The following theorem states that under LRC(β) direction of a β̃
∗ is the same as

direction of β̃. This allows us to recover set s from the set s∗. This property was observed
for the first time in Brillinger (1982), where X̃ follows normal distribution and β∗ is a
minimizer of quadratic risk and for loss of the form −y ln π(x,b)− (1− y) ln(1− π(x,b)),
where π(x,b) ∈ (0, 1) in Ruud (1983). The result below is a generalisation of reasoning
shown in Section 3 in Ruud (1983), where the assumptions were not given explicitely. For
review of similar results we refer to Kubkowski and Mielniczuk (2017). Another proof
for Y = g(βTX, ε), where ε and X are independent, can be found in Li and Duan (1989)
(see also Remark 2.7). Remark 2.8 shows that semiparametric setup is equivalent to
Y = g(βTX, ε) considered in Li and Duan (1989) and thus our proof can be considered as
certain modification of the proof in Li and Duan (1989). In our version, we do not need to
use ε when conditioning expected loss on β̃

T X̃.

Theorem 2.6. Let X be a random vector such that E||X̃||2 < ∞, ρ(·, y) is convex and
differentiable function for all y. Assume LRC(β) and that for all b ∈ Rp+1 we have
E|ρ(bTX, Y )| <∞. If exist β∗0 , η ∈ R such that:

(β∗0 , η) = arg min
(b0,c)∈R×R

Eρ(b0 + cβ̃
TX, Y ), (2.7)

then β∗ defined in (1.3) exists and:

β∗ = (β∗0 , ηβ̃
T )T .

Moreover, if we assume LND and strict convexity of ρ(·, y) for all y, then β∗ is unique.

Proof. Let r ∈ Rp , c ∈ R and b̃ = β̃ · c+ r. Then loss l can be written as:

l(b,X, Y ) = ρ(b0 + cβ̃
T X̃ + rT X̃, Y ) =: h(b0, c, r).

12
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We define function J(b0, c, r) = Eh(b0, c, r). J is well defined in view of moment assumptions
about ρ. We observe that (2.7) is equivalent to: J(β∗0 , η,0p) ≤ J(b0, c,0p) for every b0 ∈ R
and c ∈ R. For the first part of the theorem, we need only to show that

(β∗0 , η,0p) = arg min
(b0,c,r)∈R×R×Rp

J(b0, c, r). (2.8)

Now, by conditioning on X̃ and then on β̃
T X̃, from LRC(β), Jensen’s inequality and (2.7)

we obtain:

J(b0, c, r) = Eρ(b0 + cβ̃
T X̃ + rT X̃, Y )

= E(E(ρ(b0 + cβ̃
T X̃ + rT X̃, Y )|X̃))

= Eρ(b0 + cβ̃
T X̃ + rT X̃, 1)q(βTX)

+ Eρ(b0 + cβ̃
T X̃ + rT X̃, 0)(1− q(βTX))

= E(E(ρ(b0 + cβ̃
T X̃ + rT X̃, 1)|β̃T X̃)q(βTX))

+ E(E(ρ(b0 + cβ̃
T X̃ + rT X̃, 0)|β̃T X̃)(1− q(βTX)))

≥ Eρ(E(b0 + cβ̃
T X̃ + rT X̃|β̃T X̃), 1)q(βTX)

+ Eρ(E(b0 + cβ̃
T X̃ + rT X̃|β̃T X̃), 0)(1− q(βTX))

= Eρ(E(b0 + cβ̃
T X̃ + rT X̃|β̃T X̃), Y )

= Eρ(b0 + cβ̃
T X̃ + rT (h0 + h1β̃

T X̃), Y )

= J(b0 + rTh0, c+ hT1 r,0p) ≥ J(β∗0 , η,0p).

This means that point (β∗0 , η,0p) is a global minimum of J. Hence (2.8) is satisfied, β∗

exists and equals (β∗0 , ηβ̃
T )T . Uniqueness of β∗ is obtained by using similar reasoning as

in the proof of the Theorem 2.2.

Remark 2.7. Let Y = g(βTX, ε), where ε and X are independent and g is some function.
Original proof of Theorem 2.1 Li and Duan (1989) is the following (we use Jensen’s
inequality and LRC(β)):

Eρ(b0 + b̃T X̃, Y ) = E(E(ρ(b0 + b̃T X̃, g(βTX, ε)|βTX, ε))

≥ Eρ(b0 + E(b̃T X̃|βTX, ε), Y ) = Eρ(b0 + bTh0 + bTh1β̃
T X̃, Y ).

Remark 2.8. Let Y ∈ {0, 1}, X ∈ Rp+1. Then the following conditions are equivalent:

1. There exists q : R→ [0, 1] - such that P(Y = 1|X = x) = q(βTx).
2. There exist g : R2 → {0, 1} and random variable ε ∈ R independent of X such that

Y
d= g(βTX, ε).

Proof. Part 1 follows from part 2, as we have from independence of X and ε for x ∈ Rp+1:

P(Y = 1|X = x) = P(g(βTX, ε) = 1|X = x) = Eg(βTx, ε).

13
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This means that q(βTx) := Eg(βTx, ε) satisfies part 1.
Part 2 is implied by part 1, because we take ε ∼ U [0, 1] independent of X, i.e.

P(ε ≤ t) = t for t ∈ [0, 1] and then we have for x ∈ Rp+1:

P(I(q(βTX) ≥ ε) = 1|X = x) = P(q(βTx) ≥ ε) = q(βTx) = P(Y = 1|X = x).

Hence we obtain Y d= I(q(βTX) ≥ ε) =: g(βTX, ε).

Corollaries 2.9-2.11 allow us to recover set s from s∗ for logistic, quadratic and probit
loss granted that η introduced in Theorem 2.6 is nonzero.

Corollary 2.9. If l is logistic loss, E||X̃||2 < ∞, q(βTX) ∈ (0, 1) PX a.e., LND and
LRC(β) holds then β∗ = (β∗0 , ηβT )T for some β∗0 , η ∈ R. Moreover s∗ = s or s∗ = ∅.

Proof. From Remark A.12 we obtain that solution of (2.7) exists and moment assumptions
of Theorem 2.6 are satisfied. Thus the conclusion follows from Theorem 2.6.

Analogously, for quadratic and probit losses we obtain in view of Theorem 2.6 (and a
note above that theorem) and Remarks A.13-A.14:

Corollary 2.10. If l is quadratic loss, E||X̃||22 < ∞, Σ > 0 and LRC(β) holds then
β∗ = (β∗0 , ηβT )T for some β∗0 , η ∈ R. Moreover s∗ = s or s∗ = ∅.

Corollary 2.11. If l is probit loss, E||X̃||22 < ∞, Σ > 0, q(βTX) ∈ (0, 1) PX a.e. and
LRC(β) holds then β∗ = (β∗0 , ηβT )T for some β∗0 , η ∈ R. Moreover s∗ = s or s∗ = ∅.

In the case of the model without intercept, Theorem 2.6 has the following form (with
additional assumption EX̃ = 0p) and the proof is analogous:

Theorem 2.12. Let X be a random vector such that E||X̃||2 < ∞, EX̃ = 0p, ρ(·, y) is
convex and differentiable function for all y. Assume LRC(β) and that for all b ∈ Rp+1 we
have E|ρ(bTX, Y )| <∞. If there exists η ∈ R such that:

η = arg min
c∈R

Eρ(cβ̃T X̃, Y ),

then β∗ defined in (1.8) exists and:
β∗ = ηβ̃.

Moreover, if we assume LND and strict convexity of ρ(·, y) for all y, then β∗ is unique.

Theorem below states conditions under which operations of taking derivative and
expectation can be interchanged in

D(ER(b))|b=β∗ = 0.

Theorem 2.13. Assume that ρ(·, y) is differentiable for all y,

∀b ∈ Rp+1 : E|ρ(bTX, Y )| <∞,

∃h : Rp+1 × {0, 1} → R ∀b ∈ Rp+1 :
∣∣∣∣∣
∣∣∣∣∣∂ρ∂b (bTX, Y )X

∣∣∣∣∣
∣∣∣∣∣
2
≤ h(X, Y )
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where Eh(X, Y ) <∞ and β∗ exists. Then β∗ is solution to normal equations:

E
(
∂ρ

∂b
(bTX, Y )X

)
= 0. (2.9)

Furthermore, if ρ(·, y) is convex function for all y and (2.9) is satisfied for b = β∗, then
β∗ is a minimizer of risk function R.

In the case of logistic loss, equality (2.9) reduces further to normal equations for fitting
logistic regression:

E(qL(β∗TX)− Y )X = 0. (2.10)

By conditioning on X in (2.10), we obtain:

E(qL(β∗TX)− q(βTX))X = 0. (2.11)

In the model with intercept we obtain additionally (EY = EqL(β∗TX)):

Cov(X̃, Y ) = Cov(X̃, q(βTX)) = Cov(X̃, qL(β∗TX)). (2.12)

In the case of probit loss, expression (2.9) reduces to:

E
(

φ(β∗TX)
Φ(β∗TX)(1− Φ(β∗TX))

(Φ(β∗TX)− Y )X
)

= 0. (2.13)

By conditioning on X in (2.13), we obtain:

E
(

φ(β∗TX)
Φ(β∗TX)(1− Φ(β∗TX))

(Φ(β∗TX)− q(βTX))X
)

= 0. (2.14)

For quadratic loss we do not need to assume existence of β∗ - we can replace this
assumption by E||X̃||22 <∞ and Σ > 0. For this loss (2.9) reduces to:

E(XTβ∗lin − Y )X = 0. (2.15)

This means that (after noting that from E||X̃||22 <∞ and Σ > 0 it follows that EXXT

exists and is invertible as a positive definite matrix):

β∗lin = (EXXT )−1EYX = (EXXT )−1Eq(βTX)X. (2.16)

Normal equations for Huber loss have more complicated form:
1
δ
E(XXTβ∗H − YX)I(|Y −XTβ∗H | ≤ δ)

− EX sgn(Y −XTβ∗H)I(|Y −XTβ∗H | > δ) = 0. (2.17)

Lemma 2.14. Let X be random vector such that E||X̃||22 < ∞ with EX̃ = µ and
Var X̃ = Σ > 0. If X satisfies LRC(β) with h0 and h1 and β̃ 6= 0p then we have:

h1 = Σβ̃

β̃
TΣβ̃

, (2.18)

h0 = (Ip − h1β̃
T )µ =

Ip −
Σβ̃β̃

T

β̃
TΣβ̃

µ. (2.19)

Proof. Observe that

Cov(X̃, β̃T X̃) = Cov(E(X̃|β̃T X̃),E(β̃T X̃|β̃T X̃)) + ECov(X̃, β̃T X̃|β̃T X̃) (2.20)
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= Cov(E(X̃|β̃T X̃), β̃T X̃) + 0p = Cov(h0 + h1β̃
T X̃, β̃T X̃). (2.21)

As h0 and h1 are deterministic, we have

Cov(h0 + h1β̃
T X̃, β̃T X̃) = h1 Var(β̃T X̃) = h1β̃

TΣβ̃. (2.22)

Because Cov(X̃, β̃T X̃) = Σβ̃, it follows from (2.20) and (2.22) that

Σβ̃ = h1β̃
TΣβ̃

and thus h1 = Σβ̃(β̃TΣβ̃)−1. Formula for h0 follows after taking expected values of both
sides of LRC(β) and using formula for h1.

Remark 2.15. Note that β̃
Th1 = 1 and β̃

Th0 = 0.

2.2. Logistic loss

In this section we assume that function ρ defined in (2.2) is given by the formula:

ρ(b, y) = −by + ln(1 + exp(b)). (2.23)

Here we give another proof of Theorem 2.6 for logistic loss based on normal equations
(2.10). The following theorem gives sufficient condition for the proportionality constant η
to be nonzero. Method of the proof is based on Brillinger (1982) where the proportionality
constant was obtained for linear model. This method allows us to represent β∗ as a
function of β even in the situation when some predictors are omitted what is shown in
Proposition 2.25.

Theorem 2.16. Let X be random vector such that E||X̃||22 <∞ and Σ > 0. Let β̃ 6= 0p.
If X satisfies LRC(β) and LRC(β∗) then we have

β̃
∗
aβ∗ = β̃aβ, (2.24)

where
aβ = (Var(β̃T X̃))−1 Cov(β̃T X̃, Y )

for β̃ 6= 0p and aβ∗ is defined analogously. Moreover if Cov(βTX, Y ) 6= 0, then aβ, aβ∗ 6= 0.

Proof. Using covariance decomposition with conditioning vector β̃
T X̃ and Lemma 2.14,

we obtain

Cov(X̃, q(βTX)) = Cov(E(X̃|β̃T X̃), q(βTX)) + ECov(X̃, q(βTX)|β̃T X̃) =

= Cov(h0 + h1β̃
T X̃, q(βTX)) =

= Σβ̃(β̃TΣβ̃)−1 Cov(β̃T X̃, q(βTX)) = Σβ̃aβ, (2.25)

as Cov(X̃, q(βTX)|β̃T X̃) = 0p and the last equality follows from the definition of aβ.
Analogously, using linear regressions condition for β̃

∗ and Lemma 2.14 for β̃
∗ we obtain

the equality:
Cov(X̃, qL(β∗0 + X̃T

β̃
∗)) = Σβ̃

∗
aβ∗ . (2.26)

16



2.2. LOGISTIC LOSS

From the normal equations (2.12) we have:

Cov(X̃, qL(β∗0 + X̃T
β̃
∗)) = Cov(X̃, q(βTX)).

Thus from (2.25) and (2.26) it follows:

Σβ̃
∗
aβ∗ = Σβ̃aβ.

From the invertibility of the matrix Σ the first part of the theorem follows. To prove the
second part, we observe that:

0 6= Cov(βTX, Y ) = Cov(β̃T X̃, q(βTX)) = β̃
TΣβ̃aβ.

This means that aβ 6= 0 (as Σ > 0 and β̃
TΣβ̃ = ||Σ 1

2 β̃||22). From the first part of the
theorem it follows that aβ∗ 6= 0.

Remark 2.17. If all of the assumptions imposed in the Theorem 2.16 are satisfied and
Cov(βTX, Y ) 6= 0, then we have aβ∗ > 0. Namely, it follows from (2.24) that β̃

∗ 6= 0p and
in view of Theorem 2.6 we have

η = aβ

aβ∗
6= 0.

From (2.26) and Lemma A.43 we obtain

0 ≤ Cov(β̃∗T X̃, qL(β∗0 + X̃T
β̃
∗)) = β̃

∗TΣβ̃
∗
aβ∗ = ||Σ 1

2 β̃
∗||22aβ∗ .

Thus aβ∗ > 0 as aβ∗ 6= 0 and we obtain s∗ = s.

Remarks 2.18 and 2.19 below show that under some conditions s∗ = ∅ is equivalent to
s = ∅. These results are generalization of Theorem 4 in Mielniczuk and Teisseyre (2016)
where assumption about absolute continuity of distribution of X̃ was imposed. Moreover,
in Proposition 1 in Mielniczuk and Teisseyre (2016) it was shown that s∗ = ∅ is equivalent
to E(X̃|Y = 1) = E(X̃|Y = 0), if E||X̃||2 <∞.

Remark 2.18. If X is a random vector satisfying LND, E||X̃||2 <∞, q(z) ∈ (0, 1) for
z ∈ R and β̃ = 0p, then β̃

∗ = 0p.
To prove this, we observe that normal equations (2.10) imply that:

Cov(X̃, qL(β∗TX)) = Cov(X̃, q(β0)) = 0p.

This means that Cov(β∗TX, qL(β∗TX)) = 0. In view of Lemma A.44 we have P(β∗TX =
c) = 1 for some c ∈ R. This equality and LND together imply that β̃

∗ = 0p.

Remark 2.19. If X is a random vector satisfying LND, E||X̃||2 <∞, q(z) ∈ (0, 1) for
z ∈ R, q is strictly monotone and β̃

∗ = 0p, then β̃ = 0p.
Proof of this fact is analogous to proof of Remark 2.18.

Remark 2.20. Theorem 2.16 holds also for the model without intercept. We have in this
case:

aβ = (Var(β̃T X̃))−1Eβ̃
T X̃Y

17
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and
aβ∗ = (Var(β̃∗T X̃))−1Eβ̃

∗T X̃Y.

Lemma 2.21. Assume that EX̃ = 0p, E||X̃||2 <∞, X satisfies LND, P(Y = 1|X = x) ∈
(0, 1) PX a.e. If β∗,β∗−0 denote respectively argmins of risk function R in models with
intercept and without intercept, s∗, s∗−0 are sets of active predictors corresponding to them,
then s∗ = ∅ if and only if s∗−0 = ∅.

Proof. If s∗ = ∅, then in view of normal equations for the model with intercept we have:

EY X̃ = EqL(β∗0)X̃ = 0p.

Now, in view of normal equations for the model without intercept and from above equation
we obtain:

EqL(β∗T−0X̃)X̃ = EY X̃ = 0p.

This implies:
EqL(β∗T−0X̃)β∗T−0X̃ = 0.

Using Lemma A.44 yields P(β∗T−0X̃ = c) = 1 for some c ∈ R. From the equality above it
follows that:

c = Eβ∗T−0X̃ = 0.

From LND condition we obtain β∗−0 = 0p. Hence s∗−0 = ∅.
Proof of implication s∗−0 = ∅ ⇒ s∗ = ∅ is analogous.

From the above lemma, Corollary 2.9 and Theorems 2.6 and 2.12 follows the following
remark which states that active sets of predictors for logistic models with intercept and
without intercept are always the same under appropriate assumptions.

Remark 2.22. If assumptions of Lemma 2.21 are satisfied and X satisfies LRC(β), then
s∗ = s∗−0 = s or s∗ = s∗−0 = ∅.

If X follows normal distribution, formulas for aβ and aβ∗ can be simplified.

Lemma 2.23. If q is differentiable, X̃ follows normal distribution with Σ > 0, β̃ 6= 0p,
E|q′(βTX)| <∞, then aβ = Eq′(βTX) and aβ∗ = Eq′L(β∗TX) ∈ (0, 1/4).

Proof. From Lemma A.45 we obtain

Var(βTX)aβ = Cov(β̃T X̃, Y ) = Cov(β̃T X̃, q(βTX)) = Cov(βTX, q(βTX))

= Var(βTX)Eq′(βTX).

Proof for aβ∗ is analogous (we use there additionally normal equations for logistic loss
(2.12)). Moreover, aβ∗ ∈ (0, 1/4) follows from

q′L(x) = ex

(1 + ex)2 = qL(x)(1− qL(x)) ∈ (0, 1/4) for x 6= 0.

18
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Remark 2.24. If all of assumptions of Lemma 2.23 are satisfied then

η = Eq′(βTX)
Eq′L(β∗TX)

(2.27)

and
|η| > 4|Eq′(βTX)|. (2.28)

Proposition 2.25. Let X = (X0, X̃
T

1 , X̃
T

2 )T , β = (β0, β̃
T

1 , β̃
T

2 )T and β̃1, X̃1 ∈ Rm,

β̃2, X̃2 ∈ Rp−m, Cov(X̃i, X̃j) = Σij for i, j = 1, 2. Suppose that logistic model Y ∼
b0 + X̃T

1 b̃1 with omitted X̃2 is fitted and (β∗0 ,β∗T1 )T is the corresponding projection. If
E||X̃||22 < ∞, Σ11 > 0, LRC(β) and LRC((β∗0 , β̃

∗T
1 )T ) hold and Cov(βTX, Y ) 6= 0, then

we have
β̃
∗
1 = η(β̃1 + Σ−1

11 Σ12β̃2), (2.29)

where η = aβ

aβ∗1
6= 0 and

aβ∗1
= Cov(Y, X̃T

1 β̃
∗
1)

Var(X̃T

1 β̃
∗
1)

= Cov(qL(β∗0 + X̃T

1 β̃
∗
1), X̃T

1 β̃
∗
1)

Var(X̃T

1 β̃
∗
1)

. (2.30)

Proof. Analogously as in Theorem 2.16, we obtain the equations:
Cov(X̃1, q(β0 + β̃

T

1 X̃1 + β̃
T

2 X̃2)) = aβ Cov(X̃1, β̃
T

1 X̃1 + β̃
T

2 X̃2),

Cov(X̃1, qL(β∗0 + β̃
∗T
1 X̃1)) = aβ∗1

Cov(X̃1, β̃
∗T
1 X̃1).

Hence from normal equations we obtain
aβ∗1

Cov(X̃1, β̃
∗
1X̃1) = aβ Cov(X̃1, β̃

T

1 X̃1 + β̃
T

2 X̃2),
what can be simplified to

aβ∗1
Σ11β̃

∗
1 = aβ(Σ11β̃1 + Σ12β̃2). (2.31)

As Σ11 is invertible, we conclude that aβ∗1
is non-zero similarly as in Theorem 2.16.

Multiplying both sides of Equation (2.31) by (aβ∗1
Σ11)−1, we obtain the conclusion.

Remark 2.26. If in Proposition 2.25 we assume additionally that Σ12 = Om×(p−m), then
β̃
∗
1 = ηβ̃1. For independent X̃1 and X̃2 we thus obtain a complementary conclusion to that

of Theorem 2.2.

2.3. Quadratic loss

In this section we assume that function ρ defined in (2.2) is given by the formula:
ρ(b, y) = 1

2(y − b)2. (2.32)
Here we give another proof of Theorem 2.6 for quadratic loss based on normal equations
(2.15). The following theorem gives sufficient condition for the proportionality constant η
being nonzero and provides explicit formula for β∗. The proof is similar to that of Theorem
2.16. This method allows us to represent β∗ as a function of β even in the situation when
some predictors are omitted what is shown in Proposition 2.32.
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Theorem 2.27. Let X be random vector with E||X̃||22 < ∞ and Σ > 0. If LRC(β) is
satisfied then

β̃
∗ = β̃aβ, (2.33)

β∗0 = Eq(βTX)− µT β̃aβ, (2.34)

where aβ is defined similarly as in the Theorem 2.16. Moreover if Cov(βTX, Y ) 6= 0, then
β̃
∗
, aβ 6= 0.

Proof. From (2.15) we obtain:
EXXTβ∗ = EXY.

This means that we obtain system of linear equations:
β∗0 + EX̃T

β̃
∗ = Eq(βTX),

EX̃β∗0 + EX̃X̃T
β̃
∗ = EX̃q(βTX).

(2.35)

Hence, using (2.25), we have:

Σβ̃
∗ = Var X̃β̃

∗ = Cov(X̃, q(βTX)) = Σβ̃aβ.

Matrix Σ is invertible as it is positive definite and we obtain:

β̃
∗ = β̃aβ,

Thus, after substituting β̃
∗ into (2.35), we have:

β∗0 = Eq(βTX)− EX̃T
β̃
∗ = Eq(βTX)− µT β̃aβ.

Second part of the proof is identical as in proof of the Theorem 2.16.

Remark 2.28. Theorem 2.27 holds also for the model without intercept. We have in this
case (see Remark 2.20):

aβ = (Var(β̃T X̃))−1Eβ̃
T X̃Y.

The following lemma is a version of Lemma 2.21 for quadratic loss.

Lemma 2.29. Assume that EX̃ = 0p, E||X̃||22 < ∞ and Σ = Var(X̃) > 0. If β∗,β∗−0

denote respectively argmins of risk function R in models with intercept and without intercept,
s∗, s∗−0 are corresponding to them sets of active predictors, then s∗ = ∅ if and only if
s∗−0 = ∅.

Proof. If s∗ = ∅, then in view of normal equations for the model with intercept we have:

EY X̃ = Eβ∗0X̃ = 0p.

Now, in view of normal equations for the model without intercept and from above equation
we obtain:

Eβ∗T−0X̃X̃ = EY X̃ = 0p.

This means that:
E(β∗T−0X̃) · (β∗T−0X̃) = 0.
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Using Lemma A.44 yields P(β∗T−0X̃ = c) = 1 for some c ∈ R. We observe that:

c = Eβ∗T−0X̃ = 0.

From LND condition we obtain β∗−0 = 0p. Hence s∗−0 = ∅.
Proof of implication s∗−0 = ∅ ⇒ s∗ = ∅ is analogous.

From the above lemma, Corollary 2.10 and Theorems 2.6 and 2.12 follows the following
remark which states that active sets of predictors for logistic models with intercept and
without intercept are always the same under appropriate assumptions.

Remark 2.30. If assumptions of Lemma 2.29 are satisfied and X satisfies LRC(β), then
s∗ = s∗−0 = s or s∗ = s∗−0 = ∅.

Lemma 2.31. If q is differentiable, X̃ follows normal distribution, E||X̃||22 <∞, Σ > 0
and E|q′(βTX)| <∞, then aβ = Eq′(βTX).

Proof. Proof is analogous to that of Lemma 2.23.

Proposition 2.32. Let X = (X0, X̃
T

1 , X̃
T

2 )T , β = (β0, β̃
T

1 , β̃
T

2 )T and β̃1, X̃1 ∈ Rm,

β̃2, X̃2 ∈ Rp−m, Cov(X̃i, X̃j) = Σij for i, j = 1, 2. Suppose that logistic model Y ∼
b0 + X̃T

1 b̃1 with omitted X̃2 is fitted and (β∗0 ,β∗T1 )T is the corresponding projection. Under
assumptions of Theorem 2.27 for X̃ and γ̃ = β̃, β̃

∗
1 and provided that Cov(Y,βTX) 6= 0

we have
β̃
∗
1 = aβ(β̃1 + Σ−1

11 Σ12β̃2), (2.36)

where aβ 6= 0.

Proof. Proof is similar to the proof of Proposition 2.25.

2.4. Quadratic loss vs logistic loss

In this section we compare vectors

β∗log = (β∗0,log, β̃
∗T
1,log, β̃

∗T
2,log)T = arg min

b=(b0,bT1 ,b
T
2 )T :b2=0

Ellog(b,X, Y ),

β∗lin = (β∗0,lin, β̃
∗T
1,lin, β̃

∗T
2,lin)T = arg min

b=(b0,bT1 ,b
T
2 )T :b2=0

Ellin(b,X, Y )

and sets of active predictors corresponding to them:

s∗log = supp β̃
∗
log,

s∗lin = supp β̃
∗
lin.

It turns out that β̃
∗
1,log and β̃

∗
1,lin will have the same direction under linear regressions

conditions. Proposition 2.33 shows that result holds even when in the fitted logistic model
we omit predictors X̃2 from the vector X = (X0, X̃

T

1 , X̃
T

2 )T .
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Proposition 2.33. Let X be a random vector such that E||X̃||2 <∞ and LRC is satisfied
for X̃1 and β̃

∗
1,log. We assume that E||X̃1||22 < ∞ and Var X̃1 = Σ11 > 0. If β∗log exists

then:
β̃
∗
1,lin = aβ∗1,log

β̃
∗
1,log. (2.37)

Proof. Observe that:

Cov(X̃1, qL(β∗0,log + β̃
∗T
1,logX̃1)) = Cov(X̃1, Y ) = Cov(X̃1, β

∗
0,lin + β̃

∗T
1,linX̃1) = Σ11β̃

∗
1,lin.

Moreover, reasoning as in proof of Theorem 2.16 we have:

Cov(X̃1, qL(β∗0,log + β̃
∗T
1,logX̃1)) = aβ∗1,log ·Σ11β̃

∗
1,log.

Thus from two last equalities we obtain matrix equation

Σ11β̃
∗
1,lin = aβ∗1,logΣ11β̃

∗
1,log,

which is equivalent to (2.37).

Remark 2.34. In particular the result hold for X̃1 = X̃ when all regressors are fitted and
for X̃1 = Xj when the univariate regressor Xj is fitted. In the latter case linear regression
condition for Xj and β̃

∗
1,log is always satisfied. Note also that when model is correctly

specified as logistic model and X̃1 = X̃, it follows that β̃
∗
lin is proportional to β̃. Thus in

this case an important problem of ranking unknown coefficients of logistic model can be
based on a fit of a linear model which is much easier computationally than a logistic fit.

Remark 2.35. If X̃ ∼ Np(µ,Σ) then from Lemma 2.23 we obtain:

aβ∗1,log = Eq′L(β∗T1,logX̃1) ∈ (0, 1/4).

In view of Proposition 2.33 it follows that corresponding coefficients of vectors β̃
∗
1,log

and β̃
∗
1,lin have identical signs and |β̃∗1,lin,i| < 1

4 |β̃
∗
1,log,i|. As aβ∗1,log > 0, we obtain equality

s∗1,lin = s∗1,log, where s∗1,log = supp β̃
∗
1,log and s∗1,lin = supp β̃

∗
1,lin. In particular, when X̃1 = X̃

we have s∗lin = s∗log.

2.5. Sets of active predictors when LRC is not imposed

In this section we consider various sets of predictors in the regression problem for
Z = (1, Z̃T )T ∈ Rp+1 and V ∈ {0, 1} satisfying relation

P(V = 1|Z) = q(βT (Z)Z)

for fixed vector
β(Z) = (β0(Z), β̃(Z)T )T ∈ Rp+1.

We write β = β(Z) to underline the fact that regression parameter β is considered in a
model with predictors Z. We will denote by

β∗(Z) = (β∗0(Z), β̃∗(Z)T )T = arg min
b∈Rp+1

Eρ(bTZ, V )
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coefficients of a fitted model with predictors Z and by

s∗(Z) = supp β̃
∗(Z),

s(Z) = supp β̃(Z).

In this section we assume that function ρ defined in (2.2) is given by the formula:

ρ(b, y) = −by + ln(1 + exp(b)). (2.38)

Lemma 2.36. Let q : R→ (0, 1) be uniformly continuous function, Zm = (1, Z̃T

m)T ,

Z̃m = (Zm1, . . . , Zmp)T ∼
p∑
l=1

plNp(xl,
σ2

m
Ip),

where l = 1, . . . , p, pl > 0,
p∑
l=1

pl = 1, xl ∈ Rp, σ > 0. Let P(Z = xl) = pl, l = 1, . . . , p and

assume that P(bTZ = 0) < 1 for all b ∈ Rp+1. If s∗(Z) = {1, . . . , p}, then s∗(Zm) = s∗(Z)
for sufficiently large m and uniformly continuous function q.

Proof. Firstly, it should be noted that β∗(Zm) and β∗(Z) exist and are unique (see Remark
A.12).
By Theorem A.49 we have β∗(Zm) → β∗(Z) and moreover we know that s∗(Z) =
{1, . . . , p}. Thus for all i = 1, . . . , p we have β∗i (Z) 6= 0, and hence for sufficiently large m
we have β∗i (Zm) 6= 0.

Lemma 2.37. If p ∈ N, p ≥ 2, k ∈ {1, . . . , p − 1} and q : R → (0, 1) is continuous
response function such that model is misspecified with respect to logistic loss (i.e. for all
a, b ∈ R there exists x ∈ R : q(x) 6= qL(ax+ b)), then there exists random vector Z such
that s∗(Z) = {1, . . . , p}, s(Z) = {1, . . . , k} and P(bTZ = 0) < 1 for all b ∈ Rp+1.

Proof. Let us define f(x) = q−1
L (q(x)) which by assumption about misspecification of

logistic model is a nonlinear function. Our goal is to define linearly non-degenerate random
vector Z = (1, Z1, . . . , Zp)T such that:

Z1 + . . .+ Zp = f(Z1 + . . .+ Zk), (2.39)

that is
qL(Z1 + . . .+ Zp) = q(Z1 + . . .+ Zk).

Then it is obvious that with βi(Z) = I(i ≤ k), this implies β∗i (Z) = 1 for i = 1, . . . , p
and thus s(Z) = {1, . . . , k} and s∗(Z) = {1, . . . , p}. To this end let Ω = {1, . . . , p+ 1} and
P({j}) = 1/(p+ 1) for all j = 1, . . . , p+ 1.
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For u1, u2 ∈ R specified later define matrix:

A = [ai1,i2 ]1≤i1,i2≤p+1 =



1 1 · · · 0 0 · · · 0 f(1)− 1
... ... . . . ... ... . . . ... ...
1 0 · · · 1 0 · · · 0 f(1)− 1
1 0 · · · 0 1 · · · 0 f(0)− 1
... ... . . . ... ... . . . ... ...
1 0 · · · 0 0 · · · 1 f(0)− 1
1 u1 0 · · · · · · · · · 0 f(u1)− u1

1 u2 0 · · · · · · · · · 0 f(u2)− u2


and Zj(i) = ai,j+1 for i = 1, . . . , p + 1 and j = 0, 1, . . . , p. Then Z = (Z0, Z1, . . . , Zp)T

satisfies (2.39). Now we will choose u1, u2 such that Z is linearly non-degenerate. From the
definition of Z this condition is equivalent to existence of b ∈ Rp+1 \ {0p+1} that system
of linear equations Ab = 0p+1 has nonzero solution.

We observe that | detA| = |(1− u2)(f(u1)− u1f(1))− (1− u1)(f(u2)− u2f(1))|. We
will prove that we can choose u1, u2 that this determinant is nonzero and the theorem
will follow. From nonlinearity of f there exists u2 such that f(u2) 6= u2f(1). Obviously,
u2 6= 1. Determinant detA is 0 if and only if for all u1 ∈ R:

f(u1) = f(u2)− f(1)
u2 − 1 u1 + u2f(1)− f(u2)

u2 − 1 =: αu1 + γ.

From nonlinearity of f again the equality above does not hold for a certain u1 6∈ {1, u2},
otherwise we would have detA = 0. This ends the proof.

Theorem 2.38. For any uniformly continuous response function q : R→ (0, 1) such that
binary model is misspecified with respect to logistic loss (i.e. for all a, b ∈ R there exists
x ∈ R : q(x) 6= qL(ax+ b)) there exists Rp+1-valued random variable X = (1, X̃T )T , for
which X̃ is supported on the set of non-zero Lebesgue measure and s(X) ∩ s∗(X) = ∅.

Proof. In order to prove the theorem we apply Lemma 2.36 to a discrete variable Z
constructed as in Lemma 2.37 and βi(Z) = βi(Zm) = βi = I(i ≤ k), i = 1, . . . , p. Let Zm
from Lemma 2.36 for sufficiently large m be such that s∗(Zm) = {1, . . . , p}. From the
construction s(Zm) = {1, . . . , k}. Let Xi = Zmi for i ≤ k, where Zmi is defined in Lemma
2.36, Xk+1 =

k+1∑
i=1

β∗i (Zm)Zmi, Xk+1+i = β∗k+1+i(Zm)Zm,k+1+i for every p − 1 − k ≥ i > 0.
Then we show that s(X) = {1, . . . , k}, s∗(X) = {k + 1, . . . , p}, that is s(X) ∩ s∗(X) = ∅.
Indeed, normal equations for the vector Zm have the form

EqL(β∗T (Zm)Zm)Zm = Eq(βTZm)Zm = Eq
(

k∑
i=1

βiZmi
)
Zm.

By rewriting them for vector X, we obtain:

EqL

 p∑
i=k+1

Xi

X = Eq
(

k∑
i=1

βiXi

)
X.
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We can easily see that s(X) = {1, . . . , k}. In turn from the uniqueness of projection
we obtain s∗(X) = {k + 1, . . . , p}.

2.6. Sets of active predictors - examples

In this section we assume that function ρ defined in (2.2) is given by the formula:

ρ(b, y) = −by + ln(1 + exp(b)). (2.40)

Example 2.39. Let Xt =
p∑
i=1

aiXt−i + εt with ai ∈ R, t ∈ Z be a causal autoregressive
AR(p) process where (εt) is a sequence of i.i.d. random variables with finite second moment
(Brockwell and Davis, 1991, Chapter 3). Let X̃1 = (Xn, . . . , X1)T and X̃2 = Xn+1 and
X = (1, X̃T

1 , X̃
T

2 )T for n ≥ p. Let P(Y = 1|X = (1, x̃T1 , x̃T2 )T ) = q(β0 + β̃
T

1 x̃1) for some
(β0, β̃

T

1 )T ∈ Rn+1. We take A = (a1, . . . , ap,0Tn−p). Then from Theorem 2.2 we obtain
β∗ = (β∗0 , β̃

∗T
1 , 0)T , as X̃1 and X̃2 −AX̃1 are independent.

Example 2.40. Let p = 1, b = (b0, b1)T ∈ R2,

P(X1 = 1) = P(X1 = −1) = 1
2

and let q(βTx) = I(x1 = 1). Then the risk function has the form:

R(b) = El(b,X, Y ) = −EY (b0 + b1X1) + E ln
(
1 + eb0+b1X1

)
= −1

2(b0 + b1) + 1
2 ln

(
1 + eb0+b1

)
+ 1

2 ln
(
1 + eb0−b1

)
= 1

2 ln
(
(1 + e−b0−b1)(1 + eb0−b1)

)
.

We observe that inf
b∈R2

R(b) = 0 (we take bn = (0, n)T for n ∈ N), however R does not have
global minimum. Thus β∗ does not exist in this case. Moreover, assumption of Remark
A.12 that P(Y = 1|X = x) ∈ (0, 1) PX a.e. is not satisfied.

Example 2.41. Let X̃ ∼ Np(0p,Σ) with Σ > 0 and X = (1, X̃T )T . Consider a probit
model for which q(x) = Φ(x) and β = (0, β̃T )T . To vector (X, Y ) we fit logistic model. We
have from symmetry of X, q and qL:

1− Eq(βTX) = Eq(−βTX) = Eq(βTX) = EqL(β∗0 + β̃
∗T X̃)

= EqL(β∗0 − β̃
∗T X̃) = 1− EqL(−β∗0 + β̃

∗T X̃),

which implies:
Eq(βTX) = EqL(β∗0 + β̃

∗T X̃) = EqL(−β∗0 + β̃
∗T X̃).

Hence β∗0 = 0 from uniqueness of β∗. Let U = βTX and σ2 = VarU = β̃
TΣβ̃. Thus

U ∼ N (0, σ2). Then

Eq′(βTX) = Eq′(U) =
∫
R

e−
x2
2

√
2π
· e
− x2

2σ2

√
2πσ

dx = 1
√

2π(σ2 + 1) 1
2
.
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This means that η in Theorem 2.6 satisfies the following inequality in view of Remark 2.24:

η ≥ 4√
2π(βTΣβ + 1)

. (2.41)

We consider the previous example for general X.

Example 2.42. Let X = (1, X̃T )T ∈ Rp+1 be a random vector with E||X̃||2 <∞ satisfying
LRC(β) for β = (0, β̃T )T 6= 0p+1, X̃ d= −X̃, LND and q(x) = Φ(x). Firstly, we observe
that β∗0 = 0 as in Example 2.41 where only symmetry of X̃ was used. Let U = β̃

T X̃. Left
inequality in Theorem 4.1 in Alzer (2010) can be rewritten as:

Φ(x) > qL

√ 8
π
x


for x > 0 and

Φ(x) < qL

√ 8
π
x


for x < 0. This means that for x 6= 0 we have:

Φ(x)x > qL

√ 8
π
x

x.
Let f(x) = EqL(xU)U for x > 0. Function f is strictly increasing as q′L(x) > 0 for x ∈ R
and we have f ′(x) = Eq′L(xU)U2 > 0. In view of normal equations (2.10) we have:

f(η) = EqL(ηU)U = EΦ(U)U > EqL

√ 8
π
U

U = f

√ 8
π

 .
Hence

η >

√
8
π
. (2.42)

This lower bound is tighter than (2.41), as we have:√
8
π
≥ 4√

2π(βTΣβ + 1)
and in contrast to (2.41) does not depend on β or Σ.

Example below shows that we are able in case of some discrete distributions to give
explicit formulas for β∗ and moreover, that without LRC sets s and s∗ can be disjoint (see
also Examples 4.1 and 4.2 in Kubkowski and Mielniczuk (2017) for cases when s∗ ⊂ s and
s ⊂ s∗ respectively).

Example 2.43. Let vector X̃ = (X1, X2) have the distribution:

P(X1 = X2 = 0) = P(X1 = X2 = 1) = P(X1 = 7, X2 = 5) = 1
3 ,

and

q(x) =


qL(x) if x ≤ 1,

qL(2
3x+ 1

3) otherwise.
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Let β0 = 0, β1 = 1, β2 = 0. The normal equations are:

EqL(β∗0 + β∗1X1 + β∗2X2) = Eq(X1),

EqL(β∗0 + β∗1X1 + β∗2X2)X1 = Eq(X1)X1,

EqL(β∗0 + β∗1X1 + β∗2X2)X2 = Eq(X1)X2,

which simplify to the form:

qL(β∗0) + qL(β∗0 + β∗1 + β∗2) + qL(β∗0 + 7β∗1 + 5β∗2) = q(0) + q(1) + q(7),

qL(β∗0 + β∗1 + β∗2) + 7qL(β∗0 + 7β∗1 + 5β∗2) = q(1) + 7q(7),

qL(β∗0 + β∗1 + β∗2) + 5qL(β∗0 + 7β∗1 + 5β∗2) = q(1) + 5q(7).

Hence after simple transformations we obtain:

qL(β∗0) = q(0),

qL(β∗0 + 7β∗1 + 5β∗2) = q(7),

qL(β∗0 + β∗1 + β∗2) = q(1).

Similarly as before we have:

β∗0 = 0,

β∗0 + 7β∗1 + 5β∗2 = 5,

β∗0 + β∗1 + β∗2 = 1.

Hence β∗2 = 1, β∗1 = β∗0 = 0. This means that sets s∗ = {2} and s = {1} are disjoint:
s∗ ∩ s = ∅.

We show now an example of s ∩ s∗ = ∅ for continuous X̃.

Example 2.44. Let q(x) = q(−x), X1, ε are independent and U [−1, 1] distributed, X2 =
k(X1 + lε)2 for some arbitrary non-zero constants k, l. If β1 = 1, β2 = β0 = 0, then
from symmetry of distribution and q it follows that β∗1 = 0. Moreover, if Cov(Y,X2) =
Cov(q(X1), X2) 6= 0, then we have β∗2 6= 0.
Firstly, let us observe that:X1

X2

 =
 X1

k(X1 + lε)2

 d=
 −X1

k(−X1 + lε)2

 d=
 −X1

k(−X1 − lε)2

 =
−X1

X2

 .
Let β∗ = (β∗0 , β∗1 , β∗2)T be corresponding projection of β1 = 1, β2 = β0 = 0 in fitted logistic
model and β̄ = (β̄0, β̄1, β̄2)T be projection for β1 = −1, β2 = β0 = 0. Since distributions of
(X1, X2) and (−X1, X2) coincide it easily follows from normal equations that β̄0 = β∗0 , β̄1 =
−β∗1 , β̄2 = β∗2 . On the other hand, symmetry of q implies that q(X1) = q(−X1), hence we
have β∗ = β̄ from uniqueness of projection. This means that β∗1 = 0.
Suppose now that β∗2 = 0. Normal equations take the form:

Eq(X1) = qL(β∗0),

Eq(X1)X1 = qL(β∗0)EX1,
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Eq(X1)X2 = qL(β∗0)EX2.

Note that the second equation is always satisfied, because from symmetry of distribution X1

and function q we obtain EX1 = 0 and Eq(X1)X1 = Eq(−X1)(−X1) = Eq(X1)(−X1) = 0.
By replacing qL(β∗0) in the third equation above with Eq(X1), we obtain:

Eq(X1)X2 = qL(β∗0)EX2 = Eq(X1)EX2.

This means that Cov(q(X1), X2) = 0, contradicting the assumptions, thus β∗2 6= 0.
Figure 2.1 shows direction of ML estimate from logistic model when k = 2, l = 0.25 and
q(t) = 0.75− 0.5 · t2 for t ∈ [−1, 1].
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Figure 2.1: Scatter plot pertaining to the distribution in Example 2.44. Triangles and
circles correspond to Y = 0 and Y = 1, respectively. Solid line shows the direction of
estimator β̂ based on fitted logistic model. The form of q is depicted in the lower plot.

Example 2.45. Let q(x) = qL(x3), X = (1, X̃T )T , where X̃ = (X1, . . . , Xp)T ∼ Np(0p,Σ)
and Σ = [ρ|i−j|]1≤i,j≤p. Let P(Y = 1|X) = q(X1 + X2) = qL((X1 + X2)3). This model is
misspecified and vector X satisfies linear regressions condition. Hence from the Theorem
2.16 it follows that β̃

∗ = ηβ̃ = (η, η,0Tp−2)T .
We see that s = {1, 2}. Now we will prove that η > 0 and s∗ = s. To see this observe that
function q is strictly increasing. From Lemma A.44 we have that:

0 < Cov(β̃T X̃, q(βTX)) = β̃
TΣβ̃aβ = ||Σ 1

2 β̃||22aβ.
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Hence aβ > 0, moreover from Remark 2.17 we obtain aβ∗ > 0. Thus η = aβ

aβ∗
> 0 and

s∗ = s.

Example 2.46. Let q(x) = qL(x3), Z = (1, Z̃T )T , where Z̃ = (Z1, . . . , Zp)T ∼ Np(0p,Σ)
and Σ = [ρ|i−j|]1≤i,j≤p. Let X = (1, X1, . . . , Xp)T , where X1 = Z1, X2 = Z2, X3 = Z3

1 , X4 =
Z3

2 , X5 = Z2
1Z2, X6 = Z1Z

2
2 , X7 = Z2

1 , X8 = Z2
2 , X9 = Z1Z2 and Xi+7 = Zi for i = 3, . . . , p.

Let

P(Y = 1|X) = q(X1 +X2) = qL((X1 +X2)3) = qL(X3 +X4 + 3X5 + 3X6).

This model is clearly well specified. This means that s∗ = {3, 4, 5, 6}. Analogously, as in the
Example 2.45 we obtain s = {1, 2}. This means that s ∩ s∗ = ∅. Note that vector X does
not satisfy linear regressions condition in this example. The above model (with different
ordering of predictors) will be considered in numerical experiments.
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Chapter 3

Properties of the projection in the
generalized semiparametric model

In this chapter we consider generalized semiparametric binary model:

P(Y = 1|X = x) = q(xTβ1, . . . ,xTβk) = q(BTX), (3.1)

where k ∈ N, x,βi ∈ Θ = Rpn+1 for i = 1, . . . , k. Analogously to the Chapter 2, we
assume that q(n) = q : Rk → [0, 1], pn = p ∈ N. We additionally assume that k ≤ p and
B = [β1, . . . ,βk] ∈ R(p+1)×k. Because our focus will be on non-constant predictors and not
on the intercept, we introduce the following notation: X = (X0, X̃

T )T , X̃ = (X1, . . . , Xp)T ,
X0 ≡ 1, b̃ = (b1, . . . , bp)T ,b = (b0, b̃

T )T , B̃ = [β̃1, . . . , β̃k], B = [β1, . . . ,βk] = [BT
0 , B̃

T ]T ,
where βi = (βi0, β̃

T

i )T and B0 = [β10, . . . , βk0]. If the appropriate moments of X̃ are finite,
we write EX̃ = µ, Var X̃ = Σ.

Our main aim in this chapter is to show how to extend results from the Chapter 2 to
the case of generalized semiparametric binary model with the focus on results related to
logistic loss (see Sections 3.1-3.2). Moreover, in Section 3.4 we consider additive binary
model, which is a special case of the model considered in this chapter. Section 3.3 presents
a result interesting in its own right, which shows that direction obtained by LDA method
is the same as direction of β̃

∗ under linear regressions condition (see Theorem 3.20).
Linear regressions condition has more general form in this chapter than in Chapter 2

(matrix C has analogous structure to matrix B):

(LRC(C)) ∃h0 = h0(C) ∈ Rp,H = H(C) ∈ Rp×k : E(X̃|C̃T X̃) = h0 + HC̃T X̃,

Condition LRC(C) is satisfied for every C ∈ R(p+1)×k with rank C̃ = k, where X̃ has
elliptically contoured distributions with finite second moment (see Section A.2). Moreover,
if k < p and the condition LRC(C) is satisfied for every C ∈ R(p+1)×k with rank C̃ = k,

then X̃ has elliptically contoured distribution (see Theorem A.23). Note that normal
distribution belongs to the family of elliptically contoured distributions (see Remark A.17).
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We will show in the Theorem 3.4 that the condition LRC(B) is essential in the proof
of equality β̃

∗ = B̃η for some η ∈ Rk. Condition LRC(β∗) allow us to represent β∗ as
some function of B even in the situation when some predictors are omitted in the fitted
model - in the case of logistic loss see Section 3.2.
In this chapter we assume that loss function is of the form:

l(b,x, y) = ρ(bTx, y), (3.2)

where ρ : R× {0, 1} → R is some function, b,x ∈ Rp+1, y ∈ {0, 1}. In almost all theorems
(except Theorem 3.1) we assume that ρ(·, y) is convex (or strictly convex) function for all
y. Differentiability of ρ(·, y) for all y along with LRC is used in Sections 3.1, 3.2 and 3.4
to show the form of β∗ in the fitted model.

We will also consider LND condition introduced in Chapter 2. We note that discussion
before Section 2.1 remains valid for generalized semiparametric model.

The results discussed below are slight modifications of Kubkowski and Mielniczuk
(2018).

3.1. General loss

The following theorem is a generalization of Theorem 2.2. It states that when inactive
predictors X̃2 in binary model are such that X̃1 and X̃2 −AX̃1 are independent, where
X̃1 are remaining predictors and A is a linear transform, then minimizer β∗ of the risk in
the model containing X̃1 and X̃2 is obtained from the minimizer (β∗0 , β̃

∗T
1 ) of the risk in

the model containing only X̃1 by appending zeroes to the latter. It is easily seen that the
result fails if X̃1 and X̃2 are dependent (see Example 2.43).

Theorem 3.1. Let X be a random vector such that E||X̃||2 < ∞ and assume that
E|ρ(bTX, Y )| < ∞ for all b ∈ Rp+1. Let X̃ = (X̃T

1 , X̃
T

2 )T , where X̃T

1 = (X1, . . . , Xj)T ,
X̃T

2 = (Xj+1, . . . , Xp)T , B̃ = (B̃T

1 , B̃
T

2 )T , where B̃1 ∈ Rj×k, B̃2 ∈ R(p−j)×k. Assume that
B̃2 = O(p−j)×k is matrix with elements equal 0 and that X̃1 and X̃2−AX̃1 are independent
for a certain A ∈ R(p−j)×j. If there exists (β∗0 , β̃

∗T
1 )T such that:

(β∗0 , β̃
∗T
1 )T = arg min

(b0,bT1 )T∈Rj+1
Eρ(b0 + bT1 X̃1, Y ), (3.3)

then β∗ defined in (1.3) exists and:

β∗ = (β∗0 , β̃
∗T
1 ,0Tp−j)T .

Moreover, if we assume LND and strict convexity of ρ(·, y) for all y, then β∗ is unique.

Proof. Let (analogously as in the Theorem 2.2):

h(b0,bT1 ,bT2 ) = Eρ(b0 + bT1 X̃1 + bT2 X̃2, Y ).
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The proof is now identical to the Theorem 2.2 (we need only to replace β0, β̃1 by B0, B̃1,
respectively).

Remark 3.2. If we fit the model without intercept (see Definition 1.8) in the Theorem
3.1, we need additionally to assume EX̃ = 0p for Theorem 3.1 to remain valid and the
proof is analogous as in the case of semiparametric setup.

Remark 3.3. Note that Theorem 3.1 holds in particular when X̃1 and X̃2 are independent.

The following theorem is a generalization of Theorem 1 in Kubkowski and Mielniczuk
(2018) to the case of any convex loss. Moreover, it can be also viewed as generalization of
Theorem 2.6 to the case of generalized semiparametric model, as the proof is similar.

Theorem 3.4. Let X be a random vector such that E||X̃||2 <∞, ρ(·, y) is convex function
for all y, condition

∀b ∈ Rp+1 : E|ρ(bTX, Y )| <∞,

is satisfied and assume LRC(B). If there exists β∗0 ∈ R,η ∈ Rk such that:

(β∗0 ,ηT )T = arg min
(b0,cT )T∈R×Rk

Eρ(b0 + cT B̃T X̃), (3.4)

then β∗ defined in (1.3) exists and is a linear combination of β̃1, . . . , β̃k :

β̃
∗ =

k∑
i=1

ηiβ̃i = B̃η. (3.5)

Moreover, if we assume LND and strict convexity of ρ(·, y) for all y, then β∗ is unique.

Proof. Let r ∈ Rp , c ∈ Rk and b̃ = B̃c + r. Then loss l can be written as:

l(b,X, Y ) = ρ(b0 + cT B̃T X̃ + rT X̃, Y ) =: h(b0, c, r).

We define function J(b0, c, r) = Eh(b0, c, r). J is well defined in view of moment assumptions
about ρ. We observe that (3.4) is equivalent to: J(β∗0 ,η,0p) ≤ J(b0, c,0p) for every b0 ∈ R
and c ∈ Rk. For the first part of the theorem, we need only to show that

(β∗0 ,η,0p) = arg min
(b0,c,r)∈R×Rk×Rp

J(b0, c, r). (3.6)

Now, by conditioning on X̃ and then on B̃T X̃, from LRC(B), Jensen’s inequality and (3.4)
we obtain:

J(b0, c, r) = Eρ(b0 + cT B̃T X̃ + rT X̃, Y )

= E(E(ρ(b0 + cT B̃T X̃ + rT X̃, Y )|X̃))

= Eρ(b0 + cT B̃T X̃ + rT X̃, 1)q(BTX)

+ Eρ(b0 + cT B̃T X̃ + rT X̃, 0)(1− q(BTX))

= E(E(ρ(b0 + cT B̃T X̃ + rT X̃, 1)|B̃T X̃)q(BTX))

+ E(E(ρ(b0 + cT B̃T X̃ + rT X̃, 0)|B̃T X̃)(1− q(BTX)))
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≥ Eρ(E(b0 + cT B̃T X̃ + rT X̃|B̃T X̃), 1)q(BTX)

+ Eρ(E(b0 + cT B̃T X̃ + rT X̃|B̃T X̃), 0)(1− q(BTX))

= Eρ(E(b0 + cT B̃T X̃ + rT X̃|B̃T X̃), Y )

= Eρ(b0 + cT B̃T X̃ + rT (h0 + HB̃T X̃), Y )

= J(b0 + rTh0, c + HT r,0p) ≥ J(β∗0 ,η,0p).

This means that point (β∗0 ,η,0p) is a global minimum of J. Hence (3.6) is satisfied and
β∗ = (β∗0 , B̃

T
η)T exists. Uniqueness of β∗ is obtained by using similar reasoning as in the

proof of the Theorem 2.2.

Corollary 3.5. If l is logistic loss, E||X̃||2 < ∞, q(BTX) ∈ (0, 1) PX a.e., LND and
LRC(B) hold then β∗ = (β∗0 ,ηT B̃T )T for some β∗0 ∈ R,η ∈ Rk.

Proof. From Remark A.12 we obtain that solution of (3.4) exists and moment assumptions
of Theorem 3.4 are satisfied. This ends the proof.

Analogously, for quadratic and probit losses we obtain in view of Theorem 3.4, note
above Theorem 2.6 and Remarks A.13-A.14:

Corollary 3.6. If l is quadratic loss, E||X̃||22 < ∞, Σ > 0 and LRC(B) holds then
β∗ = (β∗0 ,ηT B̃T )T for some β∗0 ∈ R,η ∈ Rk.

Corollary 3.7. If l is probit loss, E||X̃||22 < ∞, Σ > 0, q(BTX) ∈ (0, 1) PX a.e. and
LRC(B) holds then β∗ = (β∗0 ,ηT B̃T )T for some β∗0 ∈ R,η ∈ Rk.

In the case of the model without intercept, Theorem 3.4 has the following form (with
additional assumption EX̃ = 0p) and the proof is analogous:

Theorem 3.8. Let X be a random vector such that E||X̃||2 < ∞, EX̃ = 0p, ρ(·, y) is
convex function for all y, condition

∀b ∈ Rp+1 : E|ρ(bTX, Y )| <∞,

is satisfied and assume LRC(B). If there exists η ∈ Rk such that:

η = arg min
c∈Rk

Eρ(cT B̃TX, Y ),

then β∗ defined in (1.3) exists and:

β∗ = B̃η.

Moreover, if we assume LND and strict convexity of ρ(·, y) for all y, then β∗ is unique.

Remark 3.9. Note that when ρ(·, y) is differentiable for all y,

∀b ∈ Rp+1 : E|ρ(bTX, Y )| <∞,

∃h : Rp+1 × {0, 1} → R ∀b ∈ Rp+1 :
∣∣∣∣∣
∣∣∣∣∣∂ρ∂b (bTX, Y )X

∣∣∣∣∣
∣∣∣∣∣
2
≤ h(X, Y )
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where Eh(X, Y ) <∞ and β∗ exists, then β∗ is solution to normal equations (the same as
in the semiparametric setup - see (2.9)):

E
(
∂ρ

∂b
(bTX, Y )X

)
= 0. (3.7)

Furthermore, if ρ(·, y) is convex function for all y and (3.7) is satisfied for b = β∗, then
β∗ is a minimizer of risk function R.

In the case of logistic loss, expression (3.7) reduces further to normal equations for
logistic regression which are the same as in the semiparametric setup (compare with (2.10)):

E(Y − qL(β∗TX))X = 0. (3.8)

By conditioning the above expectation on X, we obtain analogous equations as in semi-
parametric setup:

E(q(BTX)− qL(β∗TX))X = 0. (3.9)

In the model with intercept we obtain additionally (EY = EqL(β∗TX)):
Cov(X̃, Y ) = Cov(X̃, q(BTX)) = Cov(X̃, qL(β∗TX)). (3.10)

Similar equations can be written down in the case of probit, quadratic and Huber
losses analogously to (2.13)-(2.17) with B instead of β.

The following lemma is a generalization of Lemma 2.14, which was proved in the case
of the semiparametric setup.

Lemma 3.10. Let X be random vector such that E||X̃||22 < ∞ with EX̃ = µ and
Var X̃ = Σ > 0. If X satisfies LRC(B), where rank B̃ = k then we have:

H =ΣB̃(B̃TΣB̃)−1, (3.11)

h0 = (Ip −HB̃T )µ =(Ip −ΣB̃(B̃TΣB̃)−1B̃T )µ. (3.12)

Proof. Observe that
Cov(X̃, B̃T X̃) = Cov(E(X̃|B̃T X̃),E(B̃T X̃|B̃T X̃)) + ECov(X̃, B̃T X̃|B̃T X̃) (3.13)

= Cov(E(X̃|B̃T X̃), B̃T X̃) + 0p = Cov(h0 + HB̃T X̃, B̃T X̃). (3.14)
As h0 and H are deterministic, we have

Cov(h0 + HB̃T X̃, B̃T X̃) = HVar(B̃T X̃) = HB̃TΣB̃. (3.15)
Because Cov(X̃, B̃T X̃) = ΣB̃ it follows from Equations (3.13) and (3.15) that

ΣB̃ = HB̃TΣB̃

and thus H = ΣB̃(B̃TΣB̃)−1. Formula for h0 follows after taking expected values of both
sides of LRC(B) and using formula for H.

Remark 3.11. Note that as B̃TH = Ip it follows from Lemma 3.10 that βi is perpendicular
to H(j) for i 6= j. Moreover, we have that h0 is perpendicular to all βj, as BTh0 =
(BT −BTHBT )µ = 0k.
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3.2. Logistic loss

In this section we assume that function ρ defined in (2.2) is given by the formula:

ρ(b, y) = −by + ln(1 + exp(b)). (3.16)

Here we give another proof of Theorem 3.4 for logistic loss based on normal equations (3.8).
The following theorem gives sufficient condition when the vector η is nonzero. Method of
the proof is based on Brillinger (1982) where the proportionality constant was obtained
for linear model. This method allows us to represent β∗ as a function of B even in the
situation where some predictors are omitted what is shown in Proposition 3.17. We define:

aB = (Var(B̃T X̃))−1 Cov(B̃T X̃, Y ) ∈ Rk. (3.17)

Theorem 3.12. Let X be random vector such that E||X̃||22 <∞ and Σ > 0. If rank B̃ = k,

X satisfies LRC(B) and LRC(β∗) then we have

β̃
∗
aβ∗ = B̃aB, (3.18)

where
aβ∗ = (Var(β̃∗T X̃))−1 Cov(β̃∗T X̃, Y ).

Moreover if Cov(BTX, Y ) 6= 0k, then aB, aβ∗ and β̃
∗ are nonzero.

Proof. Using covariance decomposition with conditioning vector BTX and Theorem 3.10,
we obtain

Cov(X̃, q(BTX)) = Cov(E(X̃|B̃T X̃), q(BTX)) + ECov(X̃, q(BTX)|B̃T X̃) =

= Cov(h0 + HB̃T X̃, q(BTX)) =

= ΣB̃(B̃TΣB̃)−1 Cov(B̃T X̃, q(BTX)) = ΣB̃aB, (3.19)

as Cov(X̃, q(BTX)|B̃T X̃) = 0p and the last equality follows from the definition of aB.
Analogously, using linear regressions condition for β̃

∗ and Theorem 3.10 for k = 1 and β̃
∗

we obtain the equality:

Cov(X̃, qL(β∗0 + X̃T
β̃
∗)) = Σβ̃

∗
aβ∗ . (3.20)

From the normal equations (3.10) we have:

Cov(X̃, qL(β∗0 + X̃T
β̃
∗)) = Cov(X̃, q(BTX)).

Thus from (3.19) and (3.20) it follows:

Σβ̃
∗
aβ∗ = ΣB̃aB.

From the invertibility of the matrix Σ the first part of the Theorem follows. To prove the
second part, we observe that:

0k 6= Cov(BTX, Y ) = Cov(B̃T X̃, q(BTX)) = B̃TΣB̃aB.
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Because Σ > 0 and rank B̃ = k, hence B̃TΣB̃ > 0. This means that aB 6= 0k. From the
first part of the Theorem and again from assumption rank B̃ = k we have B̃aB 6= 0p and
β̃
∗
aβ∗ 6= 0p. Thus aβ∗ 6= 0 and β̃

∗ 6= 0p.

Remark 3.13. If all of the assumptions imposed in the Theorem 3.12 are satisfied and
Cov(BTX, Y ) 6= 0k then we have aβ∗ > 0. We observe that β̃

∗ 6= 0p and in view of
Theorem 3.12 we get:

η = aB

aβ∗
6= 0k.

From (3.20) and from Lemma A.43 we obtain

0 ≤ Cov(β̃∗T X̃, qL(β∗0 + X̃T
β̃
∗)) = β̃

∗TΣβ̃
∗
aβ∗ = ||Σ 1

2 β̃
∗||22aβ∗ .

Thus aβ∗ > 0 as aβ∗ 6= 0 and we obtain s∗ 6= ∅.

Remark 3.14. Theorem 3.12 holds also for the model without intercept. We have in this
case:

aB = (Var(B̃T X̃))−1EB̃T X̃Y

and
aβ∗ = (Var(β̃∗T X̃))−1Eβ̃

∗T X̃Y.

Lemma 3.15. If q is differentiable, X̃ follow normal distribution with Σ > 0, rank B̃ = k,

E||Dq(BTX)||2 <∞, then aB = EDq(BTX) and aβ∗ = Eq′L(β∗TX) ∈ (0, 1/4).

Proof. Proof is similar to the proof of Lemma 2.23 (we replace β by B and use Lemma
A.46 instead of Lemma A.45).

Remark 3.16. If all of assumptions of Lemma 3.15 are satisfied then

η = EDq(BTX)
Eq′L(β∗TX)

(3.21)

and each coordinate of η satisfies:

|ηi| > 4|EDiq(BTX)|. (3.22)

Proposition 3.17. Let X = (X0, X̃
T

1 , X̃
T

2 )T , B = (B0, B̃
T

1 , B̃
T

2 )T and B̃1 ∈ Rm×k, X̃1 ∈
Rm, B̃2 ∈ R(p−m)×k, X̃2 ∈ Rp−m, Cov(X̃i, X̃j) = Σij for i, j = 1, 2. Suppose that logistic
model Y ∼ β∗0 + X̃T

1 β̃
∗
1 with omitted X̃2 variables is fitted and (β∗0 ,β∗T1 )T is the corre-

sponding projection. If E||X̃||22 < ∞, Σ11 > 0, LRC(B) and LRC((β∗0 , β̃
∗T
1 )T ) hold and

Cov(BTX, Y ) 6= 0k, then we have

β̃
∗
1 = (B̃1 + Σ−1

11 Σ12B̃2)η, (3.23)

where η = aB
aβ∗1
6= 0k and

aβ∗1
= Cov(Y, X̃T

1 β̃
∗
1)

Var(X̃T

1 β̃
∗
1)

= Cov(qL(β∗0 + X̃T

1 β̃
∗
1), X̃T

1 β̃
∗
1)

Var(X̃T

1 β̃
∗
1)

. (3.24)
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Proof. Analogously as in Theorem 3.12, we obtain the equations:

Cov(X̃1, q(B0 + B̃T

1 X̃1 + B̃T

2 X̃2)) = Cov(X̃1, B̃
T

1 X̃1 + B̃T

2 X̃2)aB,

Cov(X̃1, qL(β∗0 + β̃
∗T
1 X̃1)) = Cov(X̃1, β̃

∗T
1 X̃1)aβ∗1

.

Hence from normal equations 3.10 we have

Cov(X̃1, β̃
∗
1X̃1)aβ∗1

= Cov(X̃1, B̃
T

1 X̃1 + B̃T

2 X̃2)aB,

what can be simplified to

Σ11β̃
∗
1aβ∗1

= (Σ11B̃1 + Σ12B̃2)aB. (3.25)

As Σ11 is invertible, we conclude that aβ∗1
is non-zero similarly as in Theorem 3.12.

Multiplying both sides of Equation (3.25) by (aβ∗1
Σ11)−1, we obtain the conclusion.

Remark 3.18. If in Proposition 3.17 we assume additionally that Σ12 = Om×(p−m), then
β̃
∗
1 = B̃1η. For independent X̃1 and X̃2 we thus obtain a complementary conclusion to

that of Theorem 3.1.

3.3. β∗ as first canonical vector

Lemma 3.19. If X is a random vector such that E||X̃||2 <∞, EX̃ = µ and LRC(B) is
satisfied, then for Z = X̃− µ we have:

E(Z|B̃TZ) = HB̃TZ.

Proof. Using Lemma 3.10, we have:

E(Z|B̃TZ = d) = E(X̃− µ|B̃T X̃ = B̃T
µ + d) = h0 + H(B̃T

µ + d)− µ

= h0 − µ + HB̃T
µ + Hd = (Ip −HB̃T )µ− µ + HB̃T

µ + Hd = Hd.

It turns out that when LRC(B) and LRC(β∗) are satisfied, then the direction of the
first canonical vector defined in (3.26) is the same as direction of β̃

∗ in the case of logistic
loss, what follows from the theorem below. This sheds a new light on known effectiveness
of canonical analysis in classification problems.

Theorem 3.20. Let X be a random vector such that E||X̃||22 <∞, rank B̃ = k, LRC(B)
is satisfied and

w = arg max
v∈Rp\{0}

vTΓv
vTΣv , (3.26)

where Γ = Var(E(X̃|Y )). If Cov(X̃, Y ) 6= 0p and q(BTX) ∈ (0, 1) PX a.e., then w =
d · B̃aB for some d 6= 0, where aB is defined in (3.17).
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Proof. Let Z = X̃− EX̃ and µi = E(Z|Y = i) for i = 0, 1.
Then it is easy to check:

µ1 = EZq(BTX)
Eq(BTX)

, µ0 = −EZq(B
TX)

1− Eq(BTX)
.

As Y is binary, we have:

VarY = EY 2 − (EY )2 = EY − (EY )2 = Eq(BTX)(1− Eq(BTX)).

Moreover we obtain:

µ1 − µ0 = EZq(BTX)
(

1− Eq(BTX) + Eq(BTX)
Eq(BTX)(1− Eq(BTX))

)
= EZq(BTX)

Eq(BTX)(1− Eq(BTX))
.

Hence:

Γ = Var(E(Z|Y )) = Var(µ0 + (µ1 − µ0)Y ) = (µ1 − µ0) VarY (µ1 − µ0)T

= EZq(BTX) · (EZq(BTX))T

Eq(BTX)(1− Eq(BTX))
.

Now observe that from LRC(B), Theorem 3.10 and Lemma 3.19 it follows that:

EZq(BTX) = E(E(Zq(BTX)|B̃TZ)) = HEB̃TZq(BTX)

= ΣB̃(B̃TΣB̃)−1E(B̃T X̃− EB̃T X̃)q(BTX) = ΣB̃aB.

Thus we have:
Γ = 1

Eq(BTX)(1− Eq(BTX))
ΣB̃aBa

T
BB̃

TΣ,

therefore
Σ−1Γ = 1

Eq(BTX)(1− Eq(BTX))
B̃aBa

T
BB̃

TΣ.

Let a = B̃aB, b = Σa. Clearly a,b are vectors and Σ−1Γ has the form :

Σ−1Γ = cabT ,

where c = (Eq(BTX)(1− Eq(BTX)))−1. Hence we obtain

Σ−1Γa = caTba

and caTb = caTBB̃ΣB̃aB > 0 (B̃ΣB̃ is positive definite, as rank B̃ = k and Σ > 0). This
means that a is the eigenvector of the matrix Σ−1Γ corresponding to the largest eigenvalue
as matrix abT has rank 1 and remaining eigenvalues are equal to 0. Hence w = da for
d 6= 0.

3.4. Logistic loss - additive binary model

In this section we will consider properties of projections for a special case of (3.1),
namely

q(BTX) = λ1q1(βT
1 X) + · · ·+ λkqk(βT

kX), (3.27)
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where X ∈ Rp, B = [β1, . . . ,βk] ∈ Rp×k, λi ≥ 0, i = 1, . . . , k, ∑k
i=1 λi = 1 and qi : R →

(0, 1) are differentiable. Moreover, we will assume that qi are strictly increasing. Such
model will be called an additive binary model. We assume that βi do not contain intercept,
as in the opposite case we may define q̃i as q̃i(x) = qi(βi0 + x) instead of qi. Note that a
simple example of such model is a logistic mixture, where qi(s) = qL(s) for all i = 1, . . . , n.

Model (3.27) has the following natural interpretation. Namely, assume that in addition
to X a discrete random variable I is observed which is independent of X, P (I = i) =
λi, i = 1, . . . , k and given X = x and I = i we have

P(Y = 1|X = x, I = i) = qi(βT
i x), (3.28)

for i = 1, . . . , k. Thus averaging over I we obtain that P(Y = 1|X = x) is given by (3.27).
We will consider normal predictors X ∼ Np(0p,Σ), where Σ > 0. Note that in this

case LRC is satisfied for every B ∈ Rp×k with rankB = k and k < p. We consider the case
when logistic model without intercept P(Y = 1|X) = qL(β∗TX) is fitted. This corresponds
to the situation when q in (3.1) is calibrated in such a way that q(0, . . . , 0) = 0.5. We note
that assertions of the previous sections in this chapter hold also in this case and vector β∗

is a linear combination of βis.
When the logistic model with the intercept is fitted, Theorem 3.21 will hold and validity

of the remaining results is still an open question. The proof of Lemma 3.22 uses the
implicit function theorem and the derivation there relies crucially on the lack of intercept
in β∗.

For the additive binary model (3.27) we prove that the coefficients ηi of the combination
in (3.5) are non-negative and establish upper bounds for them (cf. Theorem 3.23). In
particular, when predictors are normal and βT

i X have the same variances, in the case of
logistic mixture the bounds imply that ηi ≤ λi. Moreover, we prove that the variance of
β∗TX is not larger than maximal variance of the projected linear combinations for the
corresponding univariate problems.

Let
U = (U1, . . . , Uk)T = (βT

1 X, . . . ,β
T
kX)T .

We define Di as the unique solutions of equations:

Di = Eq′i(Ui)
Eq′L(DiUi)

, (3.29)

where i = 1, . . . , k and qL is logistic function. Observe that existence and uniqueness of
Di follows from the following reasoning. Consider binary model P(Y = 1|X) = qi(βT

i X) =
qi(Ui) and its projection on logistic model with pertaining vector β∗i . Then unique β∗i

exists in view of Remark A.12, as Σ > 0 and qi(x) ∈ (0, 1) for x ∈ R. This means, that in
view of Lemma 2.23 and (2.27) β∗i = ηβi and:

η = Eq′i(Ui)
Eq′L(ηUi)

. (3.30)
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Hence η = Di from uniqueness of η. Thus vectors βi and β∗i are proportional and Di are
the constants of proportionality in the univariate projection problem. We first prove

Theorem 3.21. Let X ∼ Np(0p,Σ) with Σ > 0, rank B = k and Y given X follows the
conditional distribution defined in (3.27), where qi are strictly increasing and differentiable
such that E||qi(βT

i X)X||2 <∞, Eq′i(βT
i X) <∞. If β∗ = η1β1 + . . .+ ηkβk then

ηi = λi
Eq′i(Ui)

Eq′L(ηTU) , (3.31)

and ηi ≥ 0.

Proof. Normal equations (3.9) for η1, . . . , ηk in view of β∗TX = ∑k
i=1 ηiβ

T
i X have the

form:
EqL(η1β

T
1 X + . . .+ ηkβ

T
kX)X =

k∑
i=1

λiEqi(βT
i X)X.

After multiplying these equations by matrix BT and using the definition of U, we obtain:

EqL(ηTU)U =
k∑
i=1

λiEqi(Ui)U. (3.32)

It follows from Stein’s Lemma A.46 applied componentwise that (3.32) is equivalent to

ΣUηEq′L(ηTU) = ΣUw,

where ΣU = VarU = BTΣB and w = (λ1Eq′1(U1), . . . , λkEq′k(Uk))T . Since ΣU > 0
equality (3.31) follows.

From the equation above we observe that ηi ≥ 0 and ηi = 0 only when λi = 0. Hence
when λi = 1 for some i, then ηj = 0 for j 6= i and from uniqueness of η we have ηi = Di,

where Di is the constant defined in the equation (3.29).

We state now the crucial lemma from which upper bounds on the coefficients ηi follow.

Lemma 3.22. Assume that conditions of Theorem 3.21 are satisfied. Then

k∑
i=1

ηi
Eq′i(Ui)

≤ max
i=1,...,k

(
Di

Eq′i(Ui)

)
= max

i=1,...,k

(
1

Eq′L(DiUi)

)
. (3.33)

Proof. Since it follows from (3.31) that η = (η1, . . . , ηk)T exists and is unique for each
λ1, . . . , λk, we can consider η as a function of λ1, . . . , λk−1 as λk = 1−∑k−1

i=1 λi. We will
use the implicit function theorem to prove the lemma.
Let us observe that the theorem is true for k0 = 1. Now assume that it holds for
k0 = k − 1 ≥ 1 and we proceed by induction. Let

Bk = {(λ1, . . . , λk−1) ∈ Rk−1 : ∀i : λi ≥ 0,
k−1∑
i=1

λi ≤ 1}.

Consider the following function F : Bk × Rk → Rk, where

F (λ1, . . . , λk−1, η1, . . . , ηk) = EqL(ηTU)U−
k−1∑
i=1

λiEqi(Ui)U− Eqk(Uk)U
(

1−
k−1∑
i=1

λi

)
.
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Function F = (F1, . . . , Fk) equals the difference of both sides of (3.9) after substituting
1−∑k−1

i=1 λi for λk. We have for m = 1, . . . , k:
∂Fm
∂λj

= −Eqj(Uj)Um + Eqk(Uk)Um,
∂Fm
∂ηj

= Eq′L(ηTU)UmUj.

We rewrite the above equations in matrix form:

DηF = Eq′L(ηTU)UUT , DλjF = Eqk(Uk)U− Eqj(Uj)U.

As EUUT > 0, we observe that DηF > 0. This means that we can use the implicit
function theorem to obtain:

DηF ·Dλjη = −DλjF. (3.34)

Let V = Σ−
1
2

U U, where ΣU = BTΣB is the covariance matrix ofU. The above substitution
and Lemma A.50 gives:

DηF = Eq′L(ηTU)UUT = Σ
1
2
UEq′L((Σ

1
2
Uη)TV)VVTΣ

1
2
U

= Σ
1
2
U

(
Eq′L((Σ

1
2
Uη)TV)Ik + Eq′′′L ((Σ

1
2
Uη)TV)(Σ

1
2
Uη)(Σ

1
2
Uη)T

)
Σ

1
2
U. (3.35)

It follows from the structure of matrix DηF in (3.35) that it has the following eigenvalues:
a1 = . . . = ak−1 = Eq′L(ηTU), ak = Eq′L(ηTU) + Eq′′′L (ηTU)||Σ

1
2
Uη||2, which are positive

by positive definiteness of matrix DηF. Moreover, using formula

(I + λxxT )−1 = I− λ

1 + ||x||2λxx
T ,

we have:

(DηF )−1 = Σ−
1
2

U
Eq′L(ηTU) ·

Ik − Eq′′′L (ηTU)
Eq′L(ηTU) + ||Σ

1
2
Uη||2Eq′′′L (ηTU)

(Σ
1
2
Uη)(Σ

1
2
Uη)T

Σ−
1
2

U

= 1
Eq′L(ηTU)

Σ−1
U −

Eq′′′L (ηTU)
Eq′L(ηTU) + ||Σ

1
2
Uη||2Eq′′′L (ηTU)

· ηηT

 . (3.36)

From the Stein’s Lemma A.45 we obtain:

Dλ1F = −Eq1(U1)U + Eqk(Uk)U = −Eq′1(U1) Cov(U, U1) + Eq′k(Uk) Cov(U, Uk)

= −Eq′1(U1)ΣUe1 + Eq′k(Uk)ΣUek = ΣU(−Eq′1(U1)e1 + Eq′k(Uk)ek),

where ei is ith vector of the standard basis in Rk for i = 1, . . . , k. Hence:

Dλ1η = −(DηF )−1 ·Dλ1F

= 1
Eq′L(ηTU)

Ik − Eq′′′L (ηTU)
Eq′L(ηTU) + ||Σ

1
2
Uη||2Eq′′′L (ηTU)

ηηTΣU


· (Eq′1(U1)e1 − Eq′k(Uk)ek). (3.37)

Let:

v =
(

1
Eq′1(U1) ,

1
Eq′2(U2) , . . . ,

1
Eq′k(Uk)

)T
∈ Rk.

Then we obtain:
k∑
i=1

1
Eq′i(Ui)

∂ηi
∂λ1

= vTDλ1η = 1
Eq′L(ηTU) ·

vT (Eq′1(U1)e1 − Eq′k(Uk)ek)︸ ︷︷ ︸
0
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− Eq′′′L (ηTU)
Eq′L(ηTU) + ||Σ

1
2
Uη||2Eq′′′L (ηTU)

(vTη) · ηTΣU(Eq′1(U1)e1 − Eq′k(Uk)ek)


= −Eq
′′′
L (ηTU)

Eq′L(ηTU)︸ ︷︷ ︸
>0 (Lemma A.51)

· 1
Eq′L(ηTU) + ||Σ

1
2
Uη||2Eq′′′L (ηTU)︸ ︷︷ ︸

>0

·
(

k∑
i=1

ηi
Eq′i(Ui)

)
︸ ︷︷ ︸

>0

×

×
(
ηTΣU(Eq′1(U1)e1 − Eq′k(Uk)ek)

)
.

From the above equation and in view of Lemma A.51 we observe that the sign of its left
hand side is the same as the sign of the expression ηTΣU(Eq′1(U1)e1 − Eq′k(Uk)ek). Let
ΣU = [σij]i,j=1,...,k. Then from equalities (3.31), λk = 1−∑k−1

i=1 λi and from symmetry of
ΣU we obtain the following:

ηTΣU(Eq′1(U1)e1 − Eq′k(Uk)ek) = λ1C1 + C2

Eq′L(ηTU) , (3.38)

where
C1 = (Eq′1(U1))2σ11 − 2Eq′1(U1)Eq′k(Uk)σ1k + (Eq′k(Uk))2σkk

and

C2 =
k−1∑
i=2

λi

(
Eq′i(Ui)Eq′1(U1)σi1 − Eq′i(Ui)Eq′k(Uk)σik − Eq′1(U1)Eq′k(Uk)σ1k

+ (Eq′k(Uk))2σkk

)
+ Eq′1(U1)Eq′k(Uk)σ1k − (Eq′k(Uk))2σkk.

From inequality x2 + y2 ≥ 2xy and positive definiteness of ΣU we have:

(Eq′1(U1))2σ11 + (Eq′k(Uk))2σkk ≥ 2Eq′1(U1)Eq′k(Uk)
√
σ11σkk > 2Eq′1(U1)Eq′k(Uk)σ1k.

Thus C1 > 0. Hence we obtain that ηTΣU(Eq′1(U1)e1 − Eq′k(Uk)ek) > 0 if and only if
λ1 > h, where h = −C2C1

−1. Therefore
k∑
i=1

(Eq′i(Ui))−1 ∂ηi
∂λ1

> 0 if and only if λ1 > h. Thus

function
k∑
i=1

(Eq′i(Ui))−1ηi is increasing function of λ1 for λ1 > h and decreasing for λ1 < h.
Because (λ1, . . . , λk−1) ∈ Bk, we have λ1 ∈ [0, 1− λ2 − . . .− λk−1]. This means that:(

k∑
i=1

ηi
Eq′i(Ui)

)
(λ1, λ2, . . . , λk−1) ≤ max

{(
k∑
i=1

ηi
Eq′i(Ui)

)
(0, λ2, . . . , λk−1),

(
k∑
i=1

ηi
Eq′i(Ui)

)
(1− λ2 − . . .− λk−1, λ2, . . . , λk−1)

}
. (3.39)

But the right hand side of the above inequality by induction step is bounded from above
by:

max
{

max
i=2,...,k

(
Di

Eq′i(Ui)

)
, max
i=1,...,k−1

(
Di

Eq′i(Ui)

)}
= max

i=1,...,k

(
Di

Eq′i(Ui)

)
and we have finally proved inequality (3.33).

Theorem 3.23. Assume that conditions of Theorem 3.21 are satisfied,

D = max
i=1,...,k

(
Di

Eq′i(Ui)

)
= max

i=1,...,k

1
Eq′L(DiUi)
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and Di are defined in (3.29). Then (3.33) is equivalent to:

ηi ≤ λiDEq′i(Ui) for all i ∈ {1, . . . , k} (3.40)

and to
Var(ηTU) ≤ max

i=1,...,k
Var(DiUi). (3.41)

Proof. (3.33) implies (3.40), as from Lemma 3.22, (3.31) and ∑k
i=1 λi = 1 we have :

D = max
i=1,...,k

(
Di

Eq′i(Ui)

)
≥

k∑
i=1

ηi
Eq′i(Ui)

=
k∑
i=1

λi
Eq′L(ηTU) = 1

Eq′L(ηTU) .

Thus again from equality (3.31) and the above inequality we obtain:

ηi = λi
Eq′i(Ui)

Eq′L(ηTU) ≤ λiEq′i(Ui)D.

Conversely, (3.40) implies (3.33) as
k∑
i=1

ηi
Eq′i(Ui)

≤
k∑
i=1

λiD = D.

Moreover, (3.33) is equivalent to (3.41) as in view of (3.29), (3.31) and (3.12) inequality
(3.33) is equivalent to the following inequality:

1
Eq′L(ηTU) ≤ max

i=1,...,k

1
Eq′L(DiUi)

.

Function h(σ) = Eq′L(σZ) is decreasing if σ ≥ 0 and Z ∼ N (0, 1) in view of Lemma A.51,
statement 4 as h′(σ) = Eq′′L(σZ)Z < 0. Thus the last inequality implies (3.41).

Observe that Var(ηTU) = Var(β∗TX) and Var(DiUi) = Var(β∗Ti X), where β∗i are
defined below (3.29). Thus (3.41) can be stated as

Var(β∗TX) ≤ max
i=1,...,k

Var(β∗Ti X).

Thus the variance of β∗TX is not larger than the maximal variance of the projected linear
combinations in the corresponding univariate problems. Another way of interpreting (3.40)
is to say that contribution to β∗ of ith component βi is bounded by the term proportional
to Ciλi, where λi is the probability with which ith model is chosen and Ci = Eq′i(Ui)
depends only on the ith model (cf. the discussion of the additive model below (3.27)).
Also note that Eq′L(DiUi) is an averaged variance of the response in the univariate logistic
model with parameter β∗i . Thus D−1 equals to the minimal averaged variability for such
models.

Corollary 3.24. If the assumptions of Lemma 3.22 hold and q1 = . . . = qk = qL, then for
any i ∈ {1, . . . , k}

ηi ≤ λi
Eq′L(Ui)

min
j=1,...,k

Eq′L(Uj)
.

Proof. Observe that Di defined in (3.29) are equal to 1. This means that D in Theorem
3.23 satisfies:

D = max
j=1,...,k

(
1

Eq′L(Uj)

)
= 1

min
j=1,...,k

Eq′L(Uj)
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and the theorem follows.

Definition 3.25. We say that vector X = (X1, . . . , Xm)T is balanced, if

VarX1 = . . . = VarXm = σ2 <∞.

Corollary 3.26. If the assumptions of Lemma 3.22 hold, q1 = . . . = qk and the vector U
is balanced, then for any i ∈ {1, . . . , k}

ηi ≤ λiD1.

Equality in these inequalities holds if and only if λi = 1 for some i ∈ {1, . . . , k} :

Proof. From the fact that U is normally distributed and balanced it follows that U1
d=

. . .
d= Uk and as q1 = . . . = qk we have Eq′1(U1) = . . . = Eq′k(Uk) . From the uniqueness of

Di, which satisfies the equation (3.31), we have D1 = . . . = Dk and D in Theorem 3.23
satisfies:

D = D1

Eq′1(U1) .

Hence from Theorem 3.23 we obtain ηi ≤ λiD1. The last statement of the theorem follows
from the proof of Lemma 3.22, namely inequality (3.39) is strict when the inequality
0 < λ1 < 1−

k−1∑
j=2

λj holds.

We call (3.27) a balanced additive logistic model when q1 = . . . = qk = qL and vector
U is balanced.

Corollary 3.27. If the assumptions of Lemma 3.22 hold and (3.27) is a balanced additive
logistic model then

∀i ∈ {1, . . . , k} : ηi ≤ λi.

Equality in these inequalities holds if and only if for some i ∈ {1, . . . , k} λi = 1.

Proof. From Corollary 3.26 we obtain:

∀i ∈ {1, . . . , k} : ηi ≤ D1λi,

where the equality holds if and only if if for some i ∈ {1, . . . , k} λi = 1. However, as in
proof of Theorem 3.24, we obtain D1 = 1.

Finally, we give examples of the situations when using the proved results it is possible
to bound the norm of the vector β∗ or its coefficients. The bounds on ||β∗||2 may be useful
when calculating its maximum likelihood estimator. Then optimisation of the likelihood
may be restricted to the ball B(0, c), where c is specified below.

Corollary 3.28. Let p = k, X ∼ Np(0p, σ2I), λi ≥ 0 for i = 1, . . . , p, ∑p
i=1 λi = 1,

q1 = . . . = qp, q1 is differentiable, increasing, such that q′1(x) < cq′L(cx) for every x ∈ R,
B = Ip thus

q(βT
1 X, . . . ,βT

p X) = λ1q1(X1) + . . .+ λpq1(Xp)
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and assumptions of Lemma 3.22 are fulfilled. Then Di < c and ||β∗||2 < c.

Proof. Suppose that Di ≥ c. Then we would have from equation (3.29) and Lemma A.51,
statement 6:

Eq′1(Xi) = DiEq′L(DiXi) ≥ cEq′L(cXi) > Eq′1(Xi).

Thus Di < c and from the Theorem 3.23 we obtain:

σ2||β∗||22 = Var(β∗TX) ≤ max
i=1,...,k

Var(DiXi) = D2
1σ

2 < c2σ2.

Corollary 3.29. Under assumptions of the Corollary 3.27 we have for i = 1, . . . , p:

|β∗i | ≤ max
j=1,...,k

|βji|. (3.42)

Proof.

|β∗i | =
∣∣∣∣∣∣
k∑
j=1

ηjβji

∣∣∣∣∣∣ ≤
k∑
j=1
|ηj||βji| ≤

k∑
j=1

λj|βji| ≤ max
j=1,...,k

|βji|.

Inequality (3.42) means that in this case coefficients of β∗ are shrunk in the sense
specified above (and for k = 1 in the usual sense). Similar property for binary predictor
was established in Gail et al. (1988).
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Chapter 4

Properties of Lasso estimator in misspecified
binary model

In this chapter we consider properties of Lasso estimator for a misspecified binary
model. Study of properties of inferential procedures under misspecification goes back to
White (1982) who considered consistency and asymptotic normality of ML estimators in
such a case (see also Vuong (1989)). The subject resurfaced recently in the setting of
high-dimensional regression models. Bühlmann et al. (2015) studied properties of debiased
Lasso for misspecified linear model, see also Lu et al. (2012). Properties of Lasso estimator,
in particular important separation property will be used in Chapter 5 to prove consistency
of two-step selection procedure. We stress that some of the properties considered here, in
particular separation property are known for deterministic predictors (see eg. Fan et al.
(2014a)). Their modified versions proved here for random regressors required substantially
different approaches and proofs.

We consider an i.i.d. random sample (X(n)
1 , Y

(n)
1 ), . . . , (X(n)

n , Y (n)
n ) d= (X(n), Y (n)) ∈

Rpn+1 × {0, 1}, where X(n) ∼ PX and we analyse general binary model:

P(Y (n) = 1|X(n) = x) = q(n)(x), (4.1)

where x ∈ Rpn+1. We adopt triangular scenario: X(n)
i = (X(n)

i0 , X
(n)
i1 , . . . , X

(n)
ipn )T , X(n)

i0 ≡ 1.
Frequently considered scenario is the sequential one. In this case, when sample size n
increases we observe values of new predictors additionally to the ones observed earlier.
This is a special case of the above scheme as then X(n+1)

i = (X(n)T
i , Xi,pn+1, . . . , Xi,pn+1)T .

To simplify the notation, we will further write q(n) = q, X(n)
i = Xi = (1, X̃T

i )T , Y (n)
i = Yi.

We assume that coordinates Xij of Xi for i = 1, . . . , n and j = 1, . . . , pn are subgaussian

Subg(σ2
jn) with subgaussianity parameter σjn > 0 i.e. it holds that EetXij ≤ e

t2σ2
jn

2 for all
t ∈ R. For future reference let s2

n = max
j=1,...,pn

σ2
jn and we assume throughout that

lim sup
n

s2
n <∞.
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In the sequential scenario this is equivalent to the assumption that all subgaussianity
parameters are bounded from above. We assume existence and uniqueness of β∗ which
was defined in (1.8). Case of models with intercept (only for logistic loss) and without
intercept are treated separately, as the assumptions needed differ significantly. We note
that for distributions of X̃ satisfying LRC, fitted model without intercept and model with
intercept both yield the same active set of predictors for logistic and quadratic loss (see
Remarks 2.22, 2.30).

Now let X = (X1, . . . ,Xn)T denote matrix of experiment of dimension n × (pn + 1)
and let X̃ = (X̃1, . . . , X̃n)T . In this chapter we assume throughout that loss function is of
the form:

l(b,x, y) = ρ(bTx, y), (4.2)

where ρ : R × {0, 1} → R is some function, b,x ∈ Rpn+1, y ∈ {0, 1}. Further, we define
empirical risk as:

Rn(b) = 1
n

n∑
i=1

ρ(bTXi, Yi). (4.3)

We will denote by:
Pn(b) = Rn(b) + λ||b̃||1 (4.4)

l1 penalized empirical risk, where b = (b0, b̃
T )T . In this chapter we will be interested in

properties of minimizer β̂L of Pn in the fitted model with intercept:

β̂L = arg min
b∈Rpn+1

Pn(b) (4.5)

and in the model without intercept:

β̂L,−0 = arg min
b̃∈Rpn

Pn((0, b̃T )T ). (4.6)

In all of the theorems we assume that ρ(·, y) is convex function for all y and is bounded
from below by m ∈ R. These two properties assure that β̂L exists in view of Lemma A.3.
If β̂L exists and ρ(·, y) is convex and differentiable function for all y, then β̂L satisfies
Karush–Kuhn–Tucker conditions (in subgradient form):

0 ∈ ∂bjPn(β̂L) =
{

1
n

n∑
i=1

∂ρ

∂b
(β̂T

LXi, Yi)Xij + λsj(β̂L)
}

for j ∈ {1, . . . , pn}, (4.7)

and for j = 0:

0 ∈ ∂b0Pn(β̂L) =
{

1
n

n∑
i=1

∂ρ

∂b
(β̂T

LXi, Yi)
}
, (4.8)

where ˆ̃βL = (β̂L,1, . . . , β̂L,pn)T is a subvector of β̂L and sj(β̂L) ∈ ∂bj ||
ˆ̃βL||1 is a j-th

coefficient of a subgradient of the l1 norm evaluated at ˆ̃βL, i.e.:

sj(β̂L) ∈


{sgn β̂L,j} if β̂L,j 6= 0

[−1, 1] if β̂L,j = 0.
(4.9)

For β̂L,−0 KKT conditions (4.7) have the same form.
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If we denote by:

v(β̂T

LX) = − 1
n

[
∂ρ

∂b
(β̂T

LX1, Y1), . . . , ∂ρ
∂b

(β̂T

LXn, Yn)
]T
,

s(β̂L) = [s1(β̂L), . . . , spn(β̂L)]T ,

then (4.7) can be rewritten as:

λsT (β̂L) = vT (β̂T

LX)X̃. (4.10)

We note that if there exist two solutions of (4.5), namely β̂
(1)
L and β̂

(2)
L with Xβ̂

(1)
L 6=

Xβ̂
(2)
L and ρ(·, y) is strictly convex, then we would have for α ∈ (0, 1) from strict convexity

of ρ:
Pn(αβ̂

(1)
L + (1− α)β̂(2)

L ) < αPn(β̂(1)
L ) + (1− α)Pn(β̂(2)

L ) = Pn(β̂(1)
L ),

what contradicts optimality property of β̂
(1)
L (proof of strict convexity of Pn is conducted in

the same way as in Lemma A.24). Therefore Xβ̂
(1)
L = Xβ̂

(2)
L . This means that Rn(β̂(1)

L ) =
Rn(β̂(2)

L ), what gives ||ˆ̃β(1)
L ||1 = ||ˆ̃β(2)

L ||1, if λ > 0. Moreover, we obtain s(ˆ̃β(1)
L ) = s(ˆ̃β(2)

L ) in
view of (4.10). This implies weak sign consistency for every two Lasso solutions: β̂(1)

L,jβ̂
(2)
L,j ≥

0 for j = 1, . . . , pn, because if β̂(1)
L,j > 0, then from equality sj(β̂

(2)
L ) = sj(β̂

(1)
L ) = 1 it follows

that β̂
(2)
L,j ≥ 0 (we perform analogous reasoning when β̂(1)

L,j < 0). Note also that the above
reasoning shows that if there are two different Lasso solutions, there are uncountably many
of them.

Now we will address the question when β̂L is unique. Before we do this, let us introduce
the following definition:

Definition 4.1. We say that A ∈ Rn×m has columns in general position, if for every
k < min{n,m} no k-dimensional subspace L ⊆ Rm contains at least k + 2 points of
{±A(1), . . . ,±A(m)}, excluding antipodal pairs.

From geometric point of view, when k = 1, no 3 columns of A (considered as points
in Rn) multiplied by ±1, say ±A(j1),±A(j2),±A(j3), can lie on the same line excluding
antipodal pairs (i.e. +A(j) and −A(j)), that is if a line contains points ±A(j1) and ±A(j2)

then it may only contain points ∓A(j1) and ∓A(j2) among ±A(j) for j = 1, . . . ,m.
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Sufficient and necessary conditions for uniqueness of β̂L are known for quadratic loss
(see Schneider and Ewald (2017)). Proof of uniqueness provided columns of X (or X̃
for the model without intercept) are in general position for quadratic loss can be found
in Tibshirani (2013). Moreover, it is noted in Tibshirani and Wasserman (2015), that
general position assumption is also sufficient in the case of strictly convex differentiable
functions ρ(·, y) provided that β̂L exists. In the case of pn + 1 ≤ n we give sufficient
conditions for uniqueness of β̂L (see Lemma A.24) involving strict convexity of ρ(·, y) for
all y and a condition on X. In the case of general loss in high-dimensional setup we give
sufficient conditions for uniqueness analogous to Rosset et al. (2004) (see also Theorem
A.29, which ensures additionally sparsity of Lasso solutions). If PX̃ is absolutely continuous
distribution with nondegenerate support contained in Rpn in the sense that Lebesgue’s
measure µpn(supp X̃) > 0, ρ(·, y) is strictly convex and differentiable, then β̂L is unique
with probability one (see Theorem A.30). Note that we do not need to impose assumption
about distribution of X to ensure uniqueness of β̂L in any of the proofs in this chapter.

In this chapter we consider cones of the form:

C(d, w) = {∆ : ||∆wc ||1 ≤ d||∆w||1}, (4.11)

where d > 0, ∆ ∈ Rpn+1 and w ⊆ {0, 1, . . . , pn}, wc = {1, . . . , pn} \ w and ∆w =
(∆w1 , . . . ,∆wk) for w = {w1, . . . , wk}. Cones C(d, w) are of special importance, because
we prove that β̂L − β∗ ∈ C in the Theorem A.42 for the logistic model with intercept,
where

C = C(3, s∗0), (4.12)

s∗0 = s∗ ∪ {0} and s∗ = {i ∈ {1, . . . , pn} : β∗i 6= 0} was defined in (1.4). For the model
without intercept the cone is defined analogously but with ∆ ∈ Rpn and w ⊆ {1, . . . , pn}.
In the cone C(d, w) we define a quantity κ which can be regarded as generalized minimal
eigenvalue of a matrix in high-dimensional setup. For the logistic model with intercept we
are interested in:

κ = inf
∆∈C

∆TH(β∗)∆
∆T∆

, (4.13)

κn = inf
∆∈C

∆THn(β∗)∆
∆T∆

, (4.14)

where C was defined in (4.12), H(b) = D2R(b) = E(XXT q′L(XT
1 b)) is expected value

of Hessian. Moreover, empirical Hessian based on all predictors is Hn(b) = D2Rn(b) =
XTΠ(b)X

n
, with Π(b) = diag(q′L(XT

1 b), . . . , q′L(XT
nb)). For the model without intercept we

define for ε > 0:
κH(ε) = inf

∆∈C̃ε

∆TH∆
∆T∆

, (4.15)

where H ∈ Rpn×pn is non-negative definite matrix and

C̃ε = C(3 + ε, s∗).

50



Moreover, throughout this chapter we introduce a following notation:

B1(r) = {∆ : ||∆||1 ≤ r}, (4.16)

W (b) = R(b)−R(β∗), (4.17)

Wn(b) = Rn(b)−Rn(β∗), (4.18)

S(r) = sup
b:b−β∗∈B1(r)

|W (b)−Wn(b)|, (4.19)

β∗min = min
i∈s∗
|β∗i |. (4.20)

We will need the following margin condition for model without intercept in Lemma
4.13 and Theorem 4.15:

(MC) There exist ϑ, ε, δ > 0 and non-negative definite matrix H ∈ Rpn×pn such that for
all b ∈ Θ with b− β∗ ∈ C̃ε ∩B1(δ) we have

R(b)−R(β∗) ≥ ϑ

2 (b− β∗)TH(b− β∗).

The above condition can be viewed as a weaker version of strong convexity of function R in
the restricted neighbourhood of β∗ (namely in the intersection of ball B1(δ) and cone C̃ε).
We stress the fact that H does not need to be positive definite, as in the Section 4.2 we
use (MC) together with stronger conditions than κH(ε) > 0 - in this situation right hand
side of inequality in (MC) is positive. We also do not require here twice-differentiability
of R and we note in particular that condition (MC) is satisfied in the case of logistic
loss, X being bounded random variable and H = D2R(β∗) - see Lemma A.54. From
the Lemma A.55 it also follows that (MC) is satisfied for quadratic loss, X satisfying
E||X||22 < ∞ and H = D2R(β∗). Similar condition to (MC) (called Restricted Strict
Convexity) was considered in Negahban et al. (2012) for empirical risk Rn in the context
of l1 regularization:

Rn(β∗ + ∆)−Rn(β∗) ≥ DRn(β∗)T∆ + κL||∆||2 − τ 2(β∗)

for all ∆ ∈ C(3, s∗) and some κL > 0 and tolerance function τ .
Another important assumption, used in the Theorem 4.15 and Lemma 4.14 is the

Lipschitz property of ρ :

(LL) ∃L > 0 ∀b1, b2 ∈ R, y ∈ {0, 1} : |ρ(b1, y)− ρ(b2, y)| ≤ L|b1 − b2|.
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4.1. Logistic loss - model with intercept

The main theorem in this section is Theorem 4.9 which is a probabilistic version of
Theorem 5 in Fan et al. (2014a) and is also a generalization of this theorem to the case
of the model with intercept. Main assumptions of Theorem 5 in Fan et al. (2014a) for
the case of deterministic X are ||DRn(β∗)||∞ ≤ λ/2 and max |Xij| ≤ κn/(20λ|s∗|). Here
we will show that these conditions hold with sufficiently high probability, and thus the
consistency result for Lasso holds with probability tending to 1 in appropriate setup (see
Remark 4.11). We stress that assumption about logistic loss cannot be omitted in Theorem
4.9 as it is essential in the proof of Lemma 4.8. In this section we will denote s∗0 = s∗ ∪{0}
and we assume that unique β∗ exists.

Lemma 4.2. (Corollary 8.2 in van de Geer (2016)) Let Z1, . . . , Zn be independent random
variables such that for some constant L0 they satisfy

C2
0 = max

i=1,...,n
E exp(|Zi|/L0) <∞.

Then
P
(

1
n

n∑
i=1

(Zi − EZi) ≥ 2L0

(
C0

(2t
n

)1/2
+ t

n

))
≤ e−t.

First we prove

Lemma 4.3. Assume that X1j, L0, C0 > 0 are such that for all n

max
j=0,1,...,pn

E exp
(
X2

1j

4L0

)
≤ C2

0 . (4.21)

Then for any t > 0 and n > t/(2C2
0 ) we have with probability at least 1− 2(pn + 1)2e−t for

any ∆ ∈ Rpn+1: ∣∣∣∆THn(β∗)∆−∆TH(β∗)∆
∣∣∣ ≤ 4||∆||21L0C0

(2t
n

) 1
2
. (4.22)

Proof. Note that

|∆THn(β∗)∆−∆TH(β∗)∆| =
∣∣∣∣∣ 1n

n∑
i=1

(XT
i ∆)2q′L(XT

i β∗)− E(XT
1 ∆)2q′L(XT

1 β∗)
∣∣∣∣∣

≤
pn∑

j,k=0
|∆j∆k|

∣∣∣∣∣ 1n
n∑
i=1

XijXikq
′
L(XT

i β∗)− EX1jX1kq
′
L(XT

1 β∗)
∣∣∣∣∣

≤ ||∆||21 max
j,k=0,...,pn

∣∣∣∣∣ 1n
n∑
i=1

XijXikq
′
L(XT

i β∗)− EX1jX1kq
′
L(XT

1 β∗)
∣∣∣∣∣ .

It follows from Lemma 4.2 applied with Zi = XijXikq
′
L(XT

i β∗) that for any j, k we have

P
(

1
n

n∑
i=1

XijXikq
′
L(XT

i β∗)− EX1jX1kq
′
L(XT

1 β∗) ≥ 2L0

(
C0

(2t
n

) 1
2

+ t

n

))
≤ e−t

since we have (|q′L(s)| ≤ 1/4):

E exp
(
|X1jX1kq

′
L(XT

1 β∗)|
L0

)
≤ E exp

(
|X1jX1k|

4L0

)
≤ E exp

(
X2
ij +X2

ik

8L0

)
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≤ 1
2

(
E exp

(
X2

1j

4L0

)
+ E exp

(
X2

1k
4L0

))
≤ 1

2(C2
0 + C2

0) = C2
0 .

If n > t/(2C2
0), then it follows that:

C0

(2t
n

) 1
2
>
t

n
.

Now union inequality is used to obtain the result. Note that the set having probability at
least 1− 2(pn + 1)2e−t on which (4.22) holds can be chosen independently of ∆.

Corollary 4.4. If assumptions of Lemma 4.3 are satisfied, then for t ∈ (0, 8C2
0L0) we

have:

P

∃∆ ∈ Rpn+1 :

∣∣∣∆T (Hn(β∗)−H(β∗))∆
∣∣∣

||∆||21
> t

 ≤ 2(pn + 1)2 exp
(
− t2n

32L2
0C

2
0

)
. (4.23)

We define

A1 = {κn ≥ κ/2}, A2 =

 max
i=1,...,n

j=0,1,...,pn

|Xij| ≤
κ

40λ|s∗0|

 , A3 = {||DRn(β∗)||∞ ≤ λ/2} .

Lemma 4.5. If assumptions of Lemma 4.3 are satisfied, κ ≤ M for some M > 0, then
we have:

P (A1) ≥ 1− 2(pn + 1)2 exp
(
− κ2n

C1|s∗0|2

)
, (4.24)

where C1 = 323L2
0C̃

2
0 and C̃2

0 = max (C2
0 ,M/(256L0)).

Proof. Firstly, we observe that if ∆ ∈ C, then:
||∆||21
||∆||22

≤
(4||∆s∗0

||1)2

||∆||22
≤

16|s∗0|||∆s∗0
||22

||∆||22
≤ 16|s∗0|.

Now, if for some t > 0 and all ∆ ∈ Rpn+1 we have

|∆THn(β∗)∆−∆TH(β∗)∆| ≤ t||∆||21,

then we obtain:

S = sup
∆∈C

∣∣∣∣∣∆
THn(β∗)∆

∆T∆
− ∆TH(β∗)∆

∆T∆

∣∣∣∣∣ = sup
∆∈C

||∆||21
||∆||22

∣∣∣∆THn(β∗)∆−∆TH(β∗)∆
∣∣∣

||∆||21

≤ 16|s∗0| sup
∆∈C

∣∣∣∆THn(β∗)∆−∆TH(β∗)∆
∣∣∣

||∆||21
≤ 16|s∗0|t.

On the other hand, observe that for all ∆ ∈ C we have:

κ ≤ ∆TH(β∗)∆
∆T∆

≤ ∆THn(β∗)∆
∆T∆

+ S. (4.25)

Taking infimum of right-hand side yields κ ≤ κn + S. This means that if S ≤ κ
2 , then

κn ≥ κ
2 . Finally, in view of above inequalities and Corollary 4.4 we get:

P (A1) ≥ P
(
S ≤ κ

2

)
≥ P

(
∀∆ ∈ Rpn+1 : |∆THn(β∗)∆−∆TH(β∗)∆| ≤ κ||∆||21

32|s∗0|

)

≥ 1− 2(pn + 1)2 exp
(
− κ2n

323|s∗0|2L2
0C

2
0

)
.
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The last inequality in the above chain of inequalities holds, if
κ

32|s∗0|
≤ 8C2

0L0.

If this condition is not satisfied, then we note that it is sufficient to replace C0 in Lemma
4.3 by a larger constant, therefore the Lemma holds for:

C̃2
0 = max

(
C2

0 ,
M

256L0

)
,

as we have:
κ

32|s∗0|
≤ M

32 ≤ 8C̃2
0L0.

Remark 4.6. If Xij ∼ Subg(σ2
jn) then (4.21) is satisfied with L0 = s2

n and C0 =
4
√

2, what follows from part 5 in Lemma A.32. Hence (4.24) is satisfied with C1 =
323s4

n max{
√

2,M/(256s2
n)}.

Lemma 4.7. If Xij ∼ Subg(σ2
jn), κ ≤M for some M > 0 and κ ≥ 40|s∗0|λ, then:

P(A1 ∩ A2) ≥ 1− 2(pn + 1)2 exp
(
− κ2n

C1|s∗0|2

)
− 2npn exp

(
− κ2

C2λ2|s∗0|2

)
,

where C2 = 3200s2
n and C1 was defined in Remark 4.6.

Proof. As Xij ∼ Subg(σ2
jn), we have in view of union inequality, part 3 in Lemma A.32

and inequality s2
n ≥ σ2

jn for t ≥ 1:

P

 max
i=1,...,n

j=0,1,...,pn

|Xij| > t

 = P

 ⋃
i=1,...,n
j=1,...,pn

{|Xij| > t}

 ≤ ∑
i=1,...,n
j=1,...,pn

P(|Xij| > t)

≤ 2npn exp
(
− t2

2s2
n

)
.

Thus, we obtain from the above inequality (note that κ/(40λ|s∗0|) > 1):

P(A1 ∩ Ac2) = P

κn ≥ κ

2 ∧ max
i=1,...,n

j=0,1,...,pn

|Xij| >
κn

20λ|s∗0|

 ≤ P

 max
i=1,...,n

j=0,1,...,pn

|Xij| >
κ

40λ|s∗0|


≤ 2npn exp

(
− κ2

3200λ2|s∗0|2s2
n

)
.

The theorem follows from the union inequality: P((A1 ∩ A2)c) ≤ P(Ac1) + P(A1 ∩ Ac2).

Lemma 4.8. If Xij ∼ Subg(σ2
jn), then we have

P(A3) ≥ 1− 2pn exp
(
− λ2n

8τ 2s2
n

)
− 2 exp

(
−λ

2n

8

)
,

where τ = e
13
24 · 4/ 4

√
27 ≤ 3.02.
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Proof. Let Zi = Yi − qL(XT
i β∗). Then we have |Zi| ≤ 1 and EXijZi = 0 in view of normal

equations 2.11 for i = 1, . . . , n and j = 0, 1, . . . , pn. Hence, using Lemmas A.38 and A.33
yields respectively XijZi ∼ Subg(τ 2σ2

jn) for j = 1, . . . , pn and XijZi ∼ Subg(1) for j = 0.
As observations (Xi, Yi) are independent, we have in view of Lemma A.34:

n∑
i=1

XijZi ∼


Subg(n), if j = 0,

Subg(nτ 2σ2
jn), if j = 1, . . . , pn.

Thus from the union inequality and part 3 in Lemma A.32 we obtain

P(Ac3) = P
(
||DRn(β∗)||∞ >

λ

2

)
= P

 pn⋃
j=0

{
n∑
i=1

XijZi >
nλ

2

}
≤

pn∑
j=0

P
(

n∑
i=1

XijZi >
nλ

2

)
≤ 2 exp

(
−nλ

2

8

)
+ 2pn exp

(
− nλ2

8τ 2s2
n

)
.

Theorem 4.9. If Xij ∼ Subg(σ2
jn) for j = 1, . . . , pn, κ ≤ M for some M > 0 and

κ ≥ 40λ|s∗0|, then

P

||β̂L − β∗||2 >
10
√
|s∗0|λ
κ

 ≤ 2(pn + 1)2 exp
(
− κ2n

C1|s∗0|2

)
+ 2npn exp

(
− κ2

C2λ2|s∗0|2

)

+ 2 exp
(
−nλ

2

8

)
+ 2pn exp

(
− nλ2

8τ 2s2
n

)
,

where τ = e
13
24 · 4/ 4

√
27 ≤ 3.02, C1 = 323s4

n max{
√

2,M/(256s2
n)} and C2 = 3200s2

n.

Proof. On the set A2 ∩ A3 assumptions of Theorem A.42 are satisfied and we have:

||β̂L − β∗||2 ≤ 5|s∗0|1/2λκ−1
n .

Thus, on the set A1 ∩ A2 ∩ A3 κn ≥ κ/2 and we obtain:

||β̂L − β∗||2 ≤ 10|s∗0|1/2λκ−1.

This means that:

P(||β̂L − β∗||2 > 10|s∗0|1/2λκ−1) ≤ P((A1 ∩ A2 ∩ A3)c) = P((A1 ∩ A2)c ∪ Ac3)

≤ P((A1 ∩ A2)c) + P(Ac3).

This completes the proof in view of Lemmas 4.7 and 4.8.

Corollary 4.10. If Xij ∼ Subg(σ2
jn), 0 < σjn ≤ sn, m ≤ κ ≤ M for some m,M > 0,

lim supn sn <∞, |s∗0|2 log pn = o(n), λ2|s∗0|2 log(npn) = o(1) and log pn = o(nλ2), then:

P

||β̂L − β∗||2 ≤
10
√
|s∗0|λ
κ

→ 1.

If additionally β∗minκ ≥ 20
√
|s∗0|λ (or

√
|s∗0|λ = o(β∗min)), then we have:

P
(

max
i∈s∗c
|β̂L,i| ≤ min

i∈s∗
|β̂L,i|

)
→ 1.
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Proof. First part is proved in Theorem 4.9. For the second part, we observe that:

||ˆ̃βL − β̃
∗||2 ≤ ||β̂L − β∗||2 ≤

10
√
|s∗0|λ
κ

≤ β∗min
2

and for the remaining part of proof see proof of Corollary 4.16, as it is almost identical
(we replace l1 norm there with l2).

Remark 4.11. (Separation property)
Conclusion of Corollary 4.10 holds in high-dimensional setup when pn = O(ecnγ), |s∗0| =
O(nξ) and λ = Cn

√
log(pn)/n for some c > 0, γ ∈ (0, 0.5), ξ ∈ (0, 0.5 − γ) and for

some sequence Cn tending to ∞ sufficiently slowly, satisfying Cn = O(nu), where u ∈
(0, 0.5− γ − ξ).

4.2. General loss - model without intercept

The main Theorem in this section is Theorem 4.15. Idea of the proof is based on
fact that if S(r) defined in (4.19) is sufficiently small, then β̂L lies in a ball {∆ ∈
Rpn : ||∆− β∗||1 ≤ r} (see Lemma 4.13). In Lemma 4.14 we prove a tail inequality for
S(r), what finally gives us Theorem 4.15.

In this section β̂L stands for β̂L,−0 defined in (4.6). Quantities W (v),Wn(v) and S(r)
are defined in (4.17) - (4.19) respectively.

Lemma 4.12. (Basic inequality). Let ρ(·, y) be convex function for all y. If

u = r

r + ||β̂L − β||1
, v = uβ̂L + (1− u)β∗,

then:
W (v) + λ||v− β∗||1 ≤ S(r) + 2λ||vs∗ − β∗s∗||1.

Proof. Firstly, observe that from convexity of ρ function Rn is convex. Moreover, from
the definition of β̂L we get the inequality:

Wn(β̂L) = Rn(β̂L)−Rn(β∗) ≤ λ(||β∗||1 − ||β̂L||1). (4.26)

We note that v− β∗ ∈ B1(r), as we have:

||v− β∗||1 = ||β̂L − β∗||1
r + ||β̂L − β∗||1

· r ≤ r. (4.27)

By definition of Wn, convexity of Rn, (4.27) and definition of S we have:

W (v) = W (v)−Wn(v) +Rn(v)−Rn(β∗)

≤ W (v)−Wn(v) + u(Rn(β̂L)−Rn(β∗)) ≤ S(r) + uWn(β̂L). (4.28)

From the convexity of l1 norm, (4.28), (4.26), ||β∗||1 = ||β∗s∗||1 and triangle inequality it
follows that:

W (v) + λ||v||1 ≤ W (v) + λu||β̂L||1 + λ(1− u)||β∗||1
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≤ S(r) + uWn(β̂L) + uλ(||β̂L||1 − ||β∗||1) + λ||β∗||1
≤ S(r) + λ||β∗||1 ≤ S(r) + λ||β∗ − vs∗ ||1 + λ||vs∗ ||1. (4.29)

Hence:

W (v) + λ||v− β∗||1 = (W (v) + λ||v||1) + λ(||v− β∗||1 − ||v||1)

≤ S(r) + λ||β∗ − vs∗||1 + λ||vs∗||1 + λ(||v− β∗||1 − ||v||1) = S(r) + 2λ||β∗ − vs∗||1.

Lemma 4.13. Let ρ(·, y) be convex function for all y. Assume that λ > 0. Moreover,
assume margin condition (MC) with constants ϑ, ε, δ > 0 and some non-negative definite
matrix H ∈ Rpn×pn. If for some r ∈ (0, δ] we have S(r) ≤ C̄λr and 2|s∗|λ ≤ κH(ε)ϑC̃r,
where C̄ = ε/(8 + 2ε) and C̃ = 2/(4 + ε), then

||β̂L − β∗||1 ≤ r.

Proof. Let u and v be defined as in Lemma 4.12. Observe that ||v − β∗||1 ≤ r/2 is
equivalent to ||β̂L − β∗||1 ≤ r, as the function f(x) = rx/(x+ r) is increasing, f(r) = r/2
and f(||β̂L − β∗||1) = ||v− β∗||1. Let C = 1/(4 + ε). We consider two cases:
(i) ||vs∗ − β∗s∗||1 ≤ Cr:
From the basic inequality (Lemma 4.12) we have:
||v− β∗||1 ≤ λ−1(W (v) + λ||v− β∗||1) ≤ λ−1S(r) + 2||vs∗ − β∗s∗||1 ≤ C̄r + 2Cr = r

2 .
(ii) ||vs∗ − β∗s∗||1 > Cr:
Firstly, we observe, that ||vs∗c||1 < (1 − C)r, otherwise we would have ||v − β∗||1 > r

which contradicts (4.27).
Now, we observe that v−β∗ ∈ C̃ε, as we have from definition of C and assumption of this
case:

||vs∗c ||1 < (1− C)r = (3 + ε)Cr < (3 + ε)||vs∗ − β∗s∗||1.

By inequality between l1 and l2 norm, definition of κH(ε), inequality ca2/4 + b2/c ≥ ab

and margin condition (MC) (which holds because v− β∗ ∈ B1(r) ⊆ B1(δ) from (4.27)) it
may be concluded that:

||vs∗ − β∗s∗||1 ≤
√
|s∗|||vs∗ − β∗s∗||2 ≤

√
|s∗|||v− β∗||2 ≤

√
|s∗|

√√√√(v− β∗)TH(v− β∗)
κH(ε)

≤ ϑ(v− β∗)TH(v− β∗)
4λ + |s∗|λ

ϑκH(ε) ≤
W (v)

2λ + |s∗|λ
ϑκH(ε) . (4.30)

Hence from the basic inequality (Lemma 4.12) and above inequality it follows that:

W (v) + λ||v− β∗||1 ≤ S(r) + 2λ||vs∗ − β∗s∗||1 ≤ S(r) +W (v) + 2|s∗|λ2

ϑκH(ε) .

Substracting W (v) from both sides of above inequality, using assumption about S, in-
equality about |s∗| and definition of C̃ yields:

||v− β∗||1 ≤
S(r)
λ

+ 2|s∗|λ
ϑκH(ε) ≤ C̄r + 2|s∗|λ

ϑκH(ε) ≤ (C̄ + C̃)r = r

2 .
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Lemma 4.14. Let ρ(·, y) be convex function for all y and satisfy Lipschitz condition (LL)
for all b1, b2, y. Assume that Xij for j ≥ 1 are subgaussian Subg(σ2

jn) where σjn ≤ sn.
Then for r, t > 0:

P(S(r) > t) ≤
14Lrsn

√
log(pn ∨ 2)
t
√
n

.

Proof. From the Chebyshev inequality (first inequality), symmetrization inequality (Theo-
rem A.40) and Talagrand - Ledoux inequality (Theorem A.41) we have for t > 0 (where
(εi)i=1,...,n are Rademacher variables independent of X̃):

P(S(r) > t) ≤ ES(r)
t
≤ 2
t
E sup

b∈Rpn :b−β∗∈B1(r)

∣∣∣∣∣ 1n
n∑
i=1

εi(ρ(XT
i b, Yi)− ρ(XT

i β∗, Yi))
∣∣∣∣∣

≤ 4L
t
E sup

b∈Rpn :b−β∗∈B1(r)

∣∣∣∣∣ 1n
n∑
i=1

εiXT
i (b− β∗)

∣∣∣∣∣ ≤ 4Lr
t

E max
j∈{1,...,pn}

∣∣∣∣∣ 1n
n∑
i=1

εiXij

∣∣∣∣∣ .
In view of Lemma A.39 we obtain εiXij ∼ Subg(σ2

jn). From independence of (εiXi)i=1,...,n

and Lemma A.34 we have that 1
n

n∑
i=1

εiXij ∼ Subg(σ
2
jn

n
). Thus 1

n

n∑
i=1

εiXij ∼ Subg( s2
n

n
).

In view of Lemma A.36 we obtain:

E max
j∈{1,...,pn}

∣∣∣∣∣ 1n
n∑
i=1

εiXij

∣∣∣∣∣ ≤ 7
2sn

√
log(pn ∨ 2)

n
.

This ends the proof.

Theorem 4.15. Let ρ(·, y) be convex function for all y and satisfy Lipschitz condition
(LL). Assume that Xij ∼ Subg(σ2

jn) with σjn ≤ sn, β∗ defined in (1.8) exists and is unique,
margin condition (MC) is satisfied for ε, δ, ϑ > 0, non-negative definite matrix H ∈ Rpn×pn

and let
2|s∗|λ
ϑκH(ε) ≤ C̃ min

{
β∗min

2 , δ

}
,

where C̃ = 2/(4 + ε). Then:

P
(
||β̂L − β∗||1 ≤

β∗min
2

)
≥ 1−

14(8 + 2ε)Lsn
√

log(pn ∨ 2)
ελ
√
n

.

Proof. Let:

m = min
{
β∗min

2 , δ

}
.

Lemmas 4.13 and 4.14 imply that:

P
(
||β̂L − β∗||1 >

β∗min
2

)
≤ P

(
||β̂L − β∗||1 > m

)
≤ P

(
S (m) > C̄λm

)

≤
14(8 + 2ε)Lsn

√
log(pn ∨ 2)

ελ
√
n

.
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Corollary 4.16. (Separation property) If assumptions of Theorem 4.15 are satisfied,
log pn = o(λ2n) and κH(ε) > d for some d, ε > 0 for large n, |s∗|λ = o(min{β∗min, 1}), then

P
(
||β̂L − β∗||1 ≤

β∗min
2

)
→ 1.

Moreover
P
(

max
i∈s∗c
|β̂L,i| ≤ min

i∈s∗
|β̂L,i|

)
→ 1.

Proof. First part of the corollary follows directly from Theorem 4.15. Now we prove that
condition ||β̂L − β∗||1 ≤ β∗min/2 implies separation property max

i∈s∗c
|β̂L,i| ≤ min

i∈s∗
|β̂L,i|.

Observe that for all j ∈ {1, . . . , pn} we have:
β∗min

2 ≥ ||β̂L − β∗||1 ≥ |β̂L,j − β∗j |. (4.31)

If j ∈ s∗, then using triangle inequality yields:

|β̂L,j − β∗j | ≥ |β∗j | − |β̂L,j| ≥ β∗min − |β̂L,j|.

Hence from the above inequality and (4.31) we obtain for j ∈ s∗:

|β̂L,j| ≥
β∗min

2 .

If j ∈ s∗c, then β∗j = 0 and (4.31) takes the form:

|β̂L,j| ≤
β∗min

2 .

This ends the proof.
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Chapter 5

GIC minimization

Consider an arbitrary familyM⊆ 2{1,...,pn} of models (which may be data-dependent)
such that s∗ ∈ M, ∀w ∈ M : |w| ≤ kn a.e. and kn ∈ N+ is some sequence. We define
Generalized Information Criterion (GIC) as:

GIC(w) = nRn(β̂(w)) + an|w|, (5.1)

where
β̂(w) = arg min

b∈Rpn : bwc=0|wc|
Rn(b)

and an > 0 is some penalty. Typical examples of an include:

• AIC (Akaike Information Criterion): an = 2,
• BIC (Bayesian Information Criterion): an = log n,
• EBIC(d) (Extended BIC): an = log n+ 2d log pn, where d > 0.

In this chapter we consider only the model without intercept as the results for GIC
minimization generalise easily to the case of the model with intercept. Moreover, throughout
the chapter we introduce a following notation:

B2(r) = {∆ ∈ Rpn : ||∆||2 ≤ r}, (5.2)

D1 = {b ∈ Rpn : ∃w ∈M : |w| ≤ kn ∧ s∗ ⊂ w ∧ suppb ⊆ w}, (5.3)

S1(r) = sup
b∈D1:b−β∗∈B2(r)

|(Rn(b)−Rn(β∗))− (R(b)−R(β∗))|, (5.4)

D2 = {b ∈ Rpn : suppb ⊂ s∗}, (5.5)

S2(r) = sup
b∈D2:b−β∗∈B2(r)

|(Rn(b)−Rn(β∗))− (R(b)−R(β∗))|. (5.6)

We note that such definitions of Di for i = 1, 2 guarantee that if b ∈ Di, then | supp(b−
β∗)| ≤ kn, what we exploit in Lemma 5.1.

We assume that Xij are subgaussian: Xij ∼ Subg(σ2
jn), where: σjn > 0 and moreover

lim sup
n

sn = γ <∞, where sn = max
j
σjn.

Moreover, in Section 5.1 we consider the following condition for ε > 0, w ⊆ {1, . . . , pn}
and some θ > 0:
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Cε(w) : R(b)−R(β∗) ≥ θ||b− β∗||22 for all b ∈ Rpn such that suppb ⊆ w and b− β∗ ∈
B2(ε).

We note in particular that in view of Lemma A.54 the above condition is satisfied for
logistic loss, X ∈ Rpn being bounded, sufficiently small ε > 0 and when the following
condition is fulfilled:

lim inf
n

inf
∆∈Rpn

∆TD2R(β∗)∆
∆T∆

> 0. (5.7)

Moreover, Cε(w) is satisfied for quadratic loss and X ∈ Rpn satisfying E||X||22 <∞ and
(5.7) in view of Lemma A.55. Condition (5.7) in the proofs can be replaced also by the
following weaker one to guarantee that Cε(w) is fulfilled:

lim inf
n

inf
∆∈Rpn : ||∆||0≤kn

∆TD2R(β∗)∆
∆T∆

> 0. (5.8)

We observe also that the conditions (MC) and Cε(w) are not equivalent, as they hold
for v = b−β∗ belonging to different sets: B1(r)∩C̃ε and B2(ε)∩{∆ ∈ Rpn : supp ∆ ⊆ w}
respectively. We note that if the following condition is satisfied for matrix H in condition
(MC):

inf
∆∈Rpn

∆TH∆
∆T∆

= λmin > 0,

and (MC) holds for b− β∗ ∈ B1(r) (instead of for b− β∗ ∈ C̃ε ∩B1(r)) then we have for
b− β∗ ∈ B2(r/√pn) ⊆ B1(r):

R(b)−R(β∗) ≥ ϑ

2 (b− β∗)TH(b− β∗) ≥ ϑλmin
2 ||b− β∗||22.

Furthermore, if

sup
∆∈Rpn

∆TH∆
∆T∆

= λmax,

and Cε(w) holds for all v = b− β∗ ∈ B2(r) without restriction on suppb, then we have
for b− β∗ ∈ B1(r) ⊆ B2(r):

R(b)−R(β∗) ≥ θ||b− β∗||22 ≥
θ

λmax
(b− β∗)TH(b− β∗).

Similar condition to Cε(w) for empirical risk Rn was considered in (Kim and Jeon, 2016,
(2.1)) in the context of GIC minimization.

It turns out that condition Cε(w) together with ρ(·, y) being convex for all y and
satisfying Lipschitz condition (LL) are sufficient to establish bounds which ensure GIC
consistency for kn ln pn = o(n) and kn ln pn = o(an) (see Corollaries 5.3 and 5.5).

Theorems 5.2 and 5.4 state probability inequalities related to GIC consistency respec-
tively on supersets of s∗ and on subsets of s∗. Corollaries 5.3 and 5.5 present asymptotic
conditions for GIC consistency in the aforementioned situations. Corollaries 5.6 and 5.7
gather conclusions of Corollaries 4.10, 4.16, 5.3 and 5.5 to show consistency of SS procedure
(see Pokarowski and Mielniczuk (2015)) in case of subgaussian variables.
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5.1. GIC consistency

Lemma 5.1 is similar to Lemma 4.14. However, we bound S1(r) and S2(r) on ball
B2(r) instead of B1(r), which was considered in Lemma 4.14.

Lemma 5.1. If Xij ∼ Subg(σ2
jn), ρ(·, y) is Lipschitz with constant L > 0 for all y, r, t > 0,

then:

1. P(S1(r) ≥ t) ≤ 14Lr√
nt

√
knsn

√
ln(pn ∨ 2),

2. P(S2(r) ≥ t) ≤ 4Lr√
nt

√
|s∗|sn.

Proof. Using respectively: Markov’s inequality, Lemmas A.40, A.41, Schwarz’s inequality,
inequality ||v||2 ≤

√
||v||0||v||∞, inequality ||vπ||∞ ≤ ||v||∞ for π ⊆ {1, . . . , pn} and

Lemma A.36 yields:

P(S1(r) ≥ t) ≤ ES1(r)
t

≤ 2
nt

E sup
b∈D1 : b−β∗∈B2(r)

∣∣∣∣∣
n∑
i=1

εi(ρ(XT
i b, Yi)− ρ(XT

i β∗, Yi))
∣∣∣∣∣

≤ 4L
nt

E sup
b∈D1 : b−β∗∈B2(r)

∣∣∣∣∣
n∑
i=1

εiXT
i (b− β∗)

∣∣∣∣∣ ≤ 4Lr
nt

E max
π⊆{1,...,pn},|π|≤kn

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiXi,π

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4Lr
nt

E max
π⊆{1,...,pn},|π|≤kn

√
|π|
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiXi,π

∣∣∣∣∣
∣∣∣∣∣
∞
≤ 4Lr

√
kn

nt
E
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiXi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ 14Lr
t
√
n

√
knsn

√
ln(pn ∨ 2).

Similarly for S2(r), using inequality ||vπ||2 ≤ ||vs∗||2 which is valid for π ⊆ s∗, definition
of l2 norm, inequality E|Z| ≤

√
EZ2 and Lemma A.32 p. 2, we obtain:

P(S2(r) ≥ t) ≤ ES2(r)
t

≤ 2
nt

E sup
b∈D2 : b−β∗∈B2(r)

∣∣∣∣∣
n∑
i=1

εi(ρ(XT
i b, Yi)− ρ(XT

i β∗, Yi))
∣∣∣∣∣

≤ 4L
nt

E sup
b∈D2 : b−β∗∈B2(r)

∣∣∣∣∣
n∑
i=1

εiXT
i (b− β∗)

∣∣∣∣∣ ≤ 4Lr
nt

Emax
π⊆s∗

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiXi,π

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4Lr
nt

E
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiXi,s∗

∣∣∣∣∣
∣∣∣∣∣
2
≤ 4Lr

nt

√√√√E
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiXi,s∗

∣∣∣∣∣
∣∣∣∣∣
2

2
= 4Lr

nt

√√√√√∑
j∈s∗

E
(

n∑
i=1

εiXij

)2

≤ 4Lr√
nt

√
|s∗|sn.

Theorem below provides conditions for GIC consistency on supersets of s∗ in Corollary
5.3. We note that bound in (5.9) is optimized for

r =
√

4an
θn

,

however this requires assumption an = o(n), as r < ε and consistency on supersets of s∗

is obtained when kn ln pn = o(an). Corollary 5.3 gives weaker assumptions for a special
choice of r = rn → 0.
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Theorem 5.2. Assume that ρ(·, y) is convex, Lipschitz function with constant L > 0,
Xij ∼ Subg(σ2

jn), condition Cε(w) holds for some ε, θ > 0 and for every w ⊆ {1, . . . , pn}
such that |w| ≤ kn. Then for any r < ε we have:

P( min
w∈M:s∗⊂w

GIC(w) ≤ GIC(s∗)) ≤
14L
√
knsn

√
ln(pn ∨ 2)

√
n

(
rn

an
+ 4
θr

)
. (5.9)

Proof. If s∗ ⊂ w ∈ M and β̂(w)− β∗ ∈ B2(r) then in view of inequalities Rn(β̂(s∗)) ≤
Rn(β∗) and R(β∗) ≤ R(b) we observe that:

Rn(β̂(s∗))−Rn(β̂(w)) ≤ sup
b∈D1 : b−β∗∈B2(r)

(Rn(β∗)−Rn(b))

≤ sup
b∈D1 : b−β∗∈B2(r)

((Rn(β∗)−R(β∗))− (Rn(b)−R(b)))

≤ sup
b∈D1 : b−β∗∈B2(r)

|Rn(b)−R(b)− (Rn(β∗)−R(β∗))| = S1(r).

Moreover, we observe that: an(|w| − |s∗|) ≥ an. Hence, if we have for some w ⊃ s∗:
GIC(w) ≤ GIC(s∗) then we obtain nRn(β̂(s∗))− nRn(β̂(w))) ≥ an(|w| − |s∗|) and from
the above inequality we have S1(r) ≥ an

n
. Furthermore, if β̂(w)− β∗ ∈ B2(r)c and r < ε,

then we take:
v = uβ̂(w) + (1− u)β∗,

where u = r/(r + ||β̂(w)− β∗||2). This means that:

||v− β∗||2 = u||β̂(w)− β∗||2 = r · ||β̂(w)− β∗||2
r + ||β̂(w)− β∗||2

≥ r

2 ,

as function x/(x + r) is increasing with respect to x for x > 0. Moreover, we have
||v− β∗||2 ≤ r < ε. Hence, in view of Cε(w) condition we get:

R(v)−R(β∗) ≥ θ||v− β∗||22 ≥
θr2

4 .

From convexity of Rn we have:

Rn(v) ≤ u(Rn(β̂(w))−Rn(β∗)) +Rn(β∗) ≤ Rn(β∗).

We observe that suppv ⊆ supp β̂(w) ∪ supp β∗ ⊆ w, hence v ∈ D1. Finally, we have:

S1(r) ≥ Rn(β∗)−R(β∗)− (Rn(v)−R(v)) ≥ R(v)−R(β∗) ≥ θr2

4 .

Hence we obtain the following sequence of inequalities:

P( min
w∈M:s∗⊂w

GIC(w) ≤ GIC(s∗)) ≤ P(S1(r) ≥ an
n
,∀w ∈M : β̂(w)− β∗ ∈ B2(r))

+ P(∃w ∈M : s∗ ⊂ w ∧ β̂(w)− β∗ ∈ B2(r)c) ≤ P(S1(r) ≥ an
n

) + P(S1(r) ≥ θr2

4 )

≤ 14Lr
√
n

an

√
knsn

√
ln(pn ∨ 2) + 56L

θr
√
n

√
knsn

√
ln(pn ∨ 2).
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Corollary 5.3. Assume that ρ(·, y) is convex, Lipschitz function with constant L > 0,
Xij ∼ Subg(σ2

jn), condition Cε(w) holds for some ε, θ > 0 and for every w ⊆ {1, . . . , pn}
such that |w| ≤ kn, kn ln(pn ∨ 2) = o(n) and kn ln(pn ∨ 2) = o(an). Then we have

P( min
w∈M:s∗⊂w

GIC(w) ≤ GIC(s∗))→ 0.

Proof. We take: rn = Cn
√

kn ln(pn∨2)
n

, where Cn = 4
√

n
kn ln(pn∨2) min{1, 4

√
an
n
}. We observe

that Cn → +∞, rn ≤ 4
√

kn ln(pn∨2)
n

→ 0 and

Cn
kn ln(pn ∨ 2)

an
≤
(
kn ln(pn ∨ 2)

an

) 3
4

→ 0.

In view of Theorem 5.2 we have for sufficiently large n such that rn < ε holds:

P( min
w∈M:s∗⊂w

GIC(w) ≤ GIC(s∗)) ≤
14L
√
knsn

√
ln(pn ∨ 2)rn

√
n

an
+

56L
√
knsn

√
ln(pn ∨ 2)

√
nθrn

= 14LCnknsn ln(pn ∨ 2)
an

+ 56Lsn
θCn

→ 0.

The most restrictive condition of Corollary 5.3 is kn ln(pn ∨ 2) = o(an). We note that
in the case when pn ≥ n and kn = d, EBIC penalty defined above corresponds to the
borderline of this condition.

Theorem 5.4. Assume that ρ(·, y) is convex, Lipschitz function with constant L > 0,
Xij ∼ Subg(σ2

jn), condition Cε(s∗) holds for some ε, θ > 0 and 8an|s∗| < θnmin{ε2, β∗2min}.
Then we have:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤
32Lsn

√
|s∗|

θ
√
nmin{ε, β∗min}

.

Proof. Suppose that for some w ⊂ s∗ we have GIC(w) ≤ GIC(s∗). This inequality is
equivalent to:

nRn(β̂(s∗))− nRn(β̂(w)) ≥ an(|w| − |s∗|).

In view of inequalities Rn(β̂(s∗)) ≤ Rn(β∗) and an(|w| − |s∗|) ≥ −an|s∗| we obtain:

nRn(β∗)− nRn(β̂(w)) ≥ −an|s∗|.

Let:
v = uβ̂(w) + (1− u)β∗

for some u ∈ [0, 1] specified later. From convexity of ρ we have:

nRn(β∗)− nRn(v) ≥ nu(Rn(β∗)−Rn(β̂(w))) ≥ −uan|s∗| ≥ −an|s∗|. (5.10)

We have two cases:
1) β∗min > ε.

First we observe that exists some h0 ∈ (0, 1) such that

an|s∗| ≤
θ

2

(
h0

h0 + 1

)2

ε2n, (5.11)
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what follows from our assumption. Let h ∈ [h0, 1), r = hε, u = r/(r+ ||β̂(w)−β∗||2) and

v = uβ̂(w) + (1− u)β∗. (5.12)

Note that ||β̂(w) − β∗||2 ≥ ||β∗s∗\w||2 ≥ β∗min. Then, as function d(x) = x/(x + c) is
increasing and bounded from above by 1 for x, c > 0, we obtain:

r = hε ≥ ||v− β∗||2 = hε||β̂(w)− β∗||2
hε+ ||β̂(w)− β∗||2

≥ hεβ∗min
hε+ β∗min

≥ hε2

(h+ 1)ε = h

h+ 1ε. (5.13)

Hence, in view of Cε(s∗) condition we have:

R(v)−R(β∗) ≥ θ

(
h

h+ 1

)2

ε2.

Using (5.10)-(5.12) and above inequality yields:

S2(r) ≥ Rn(β∗)−R(β∗)− (Rn(v)−R(v)) ≥ θ

(
h

h+ 1

)2

ε2 − an
n
|s∗| ≥ θ

2

(
h

h+ 1

)2

ε2.

Thus, in view of Lemma 5.1, we obtain:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤ P

S2(r) ≥ θ

2

(
h

h+ 1

)2

ε2

 ≤ 8L
√
|s∗|sn(h+ 1)2

√
nθhε

.

Taking h→ 1− leads to inequality:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤
32L

√
|s∗|sn√
nθε

. (5.14)

2) β∗min ≤ ε.
In this case we take u = β∗min/(β∗min+ ||β̂(w)−β∗||2) and define v as in (5.12). Analogously
as in (5.13), we have:

β∗min
2 ≤ ||v− β∗||2 ≤ β∗min.

Hence, in view of Cε(s∗) condition we have:

R(v)−R(β∗) ≥ θ
β∗2min

4 .

Using (5.10) and above inequality yields:

S2(β∗min) ≥ Rn(β∗)−R(β∗)− (Rn(v)−R(v)) ≥ θ
β∗2min

4 − an
n
|s∗| ≥ θ

8β
∗2
min.

Thus, in view of Lemma 5.1, we obtain:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤ P
(
S2(β∗min) ≥ θ

8β
∗2
min

)
≤

32L
√
|s∗|sn√

nθβ∗min
. (5.15)

By combining (5.14) and (5.15) the theorem follows.

Corollary 5.5. Assume that loss ρ(·, y) is convex, Lipschitz function with constant L > 0,
Xij ∼ Subg(σ2

jn), condition Cε(s∗) holds for some ε, θ > 0 and an|s∗| = o(nmin{1, β∗min}2),
then

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗))→ 0.
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Proof. First we observe that if an|s∗| = o(nmin{1, β∗min}2) and |s∗| = o(nmin{1, β∗min}2),
then in view of Theorem 5.4 we have

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗))→ 0.

Condition |s∗| = o(nmin{1, β∗min}2) can be omitted as an → +∞ and is implied by
an|s∗| = o(nmin{1, β∗min}2).

5.2. Selection consistency of SS procedure

SS (Screening and Selection) procedure for the model without intercept is the following:

1. Take some λ > 0.
2. Find β̂L,−0 = arg min

b∈Rpn
Rn((0,bT )T ) + λ||b||1.

3. Find ŝL = supp β̂L,−0 = {j1, . . . , jk} such that |β̂L,−0,j1 | ≥ . . . ≥ |β̂L,−0,jk | > 0 and
j1, . . . , jk ∈ {1, . . . , pn}.

4. DefineMSS = {∅, {j1}, {j1, j2}, . . . , {j1, j2, . . . , jk}}.
5. Find ŝ = arg min

w∈MSS

GIC(w).

SS procedure is a modification of SS procedure in Pokarowski et al. (2018).
In the model with intercept we modify SS procedure as follows:

1. Take some λ > 0.
2. Find β̂L = arg min

b∈Rpn+1
Rn(b) + λ||b̃||1.

3. Find ŝL = supp β̂L \ {0} = {j1, . . . , jk} such that |β̂L,j1| ≥ . . . ≥ |β̂L,jk | > 0 and
j1, . . . , jk ∈ {1, . . . , pn}.

4. MSS = {∅, {j1}, {j1, j2}, . . . , {j1, j2, . . . , jk}}.
5. Find ŝ = arg min

w∈MSS

GIC(w ∪ {0}).

Corollaries 5.6, 5.7 and Remark 5.8 describe the situations when SS procedure works.

Corollary 5.6. (model without intercept) Assume that ρ(·, y) is convex, Lipschitz function
with constant L > 0, Xij ∼ Subg(σ2

jn) and β∗ exists and is unique. If kn ∈ N+ is some
sequence, margin condition (MC) is satisfied for some ϑ, δ, ε > 0, condition Cε(w) holds
for some ε, θ > 0 and for every w ⊆ {1, . . . , pn} such that |w| ≤ kn,MSS is hierarchical
family constructed in the step 4 of SS procedure and the following conditions are fulfilled:

• P(∀w ∈MSS : |w| ≤ kn)→ 1,
• |s∗| ≤ kn,
• lim inf

n
κH(ε) > 0 for some ε > 0, where H is non-negative definite matrix and κH(ε)

is defined in (4.15),
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• log(pn) = o(nλ2),
• knλ = o(min{β∗min, 1}),
• kn log pn = o(n),
• kn log pn = o(an),
• ankn = o(nmin{β∗min, 1}2),

then for SS procedure for the model without intercept we have

P(ŝ = s∗)→ 1.

Proof. In view of Corollary 4.16 from separation property (4.31) we obtain P(s∗ ∈MSS)→
1. Let:

A1 = { min
w∈MSS :w⊃s∗,|w|≤kn

GIC(w) ≤ GIC(s∗)},

A2 = { min
w∈MSS :w⊃s∗,|w|>kn

GIC(w) ≤ GIC(s∗)},

B = {∀w ∈MSS : |w| ≤ kn}.

Then we have again from union inequality:

P( min
w∈MSS :w⊃s∗

GIC(w) ≤ GIC(s∗)) = P(A1 ∪ A2)

= P((A1 ∩B) ∪ (A1 ∩Bc) ∪ (A2 ∩B) ∪ (A2 ∩Bc)) ≤ P(A1 ∩B) + P(A1 ∩Bc)

+ P(A2 ∩B) + P(A2 ∩Bc).

Firstly we observe that P(A2 ∩B) = 0. In view of Corollary 5.3 and monotonicity of
probability we obtain:

P(A1 ∩B) ≤ P(A1)→ 0.

Similarly, we obtain:

P(A1 ∩Bc) ≤ P(Bc)→ 0,

P(A2 ∩Bc) ≤ P(Bc)→ 0.

Hence:
P( min

w∈MSS :w⊃s∗
GIC(w) ≤ GIC(s∗))→ 0. (5.16)

In the analogous way, using |s∗| ≤ kn and Corollary 5.5 yields:

P( min
w∈MSS :w⊂s∗

GIC(w) ≤ GIC(s∗))→ 0. (5.17)

Now, observe that in view of definition of ŝ and union inequality:

P(ŝ = s∗) = P( min
w∈MSS :w 6=s∗

GIC(w) > GIC(s∗))

≥ 1− P( min
w∈MSS :w⊂s∗

GIC(w) ≤ GIC(s∗))− P( min
w∈MSS :w⊃s∗

GIC(w) ≤ GIC(s∗)).

Thus P(ŝ = s∗)→ 1 in view of above inequality, (5.16) and (5.17).
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Corollary 5.7. (logistic model with intercept) Assume that ρ is logistic loss, Xij ∼
Subg(σ2

jn) and β∗ exists and is unique. If kn ∈ N is some sequence, condition Cε(w) holds
for some ε, θ > 0 and for every w ⊆ {1, . . . , pn} such that |w0| ≤ kn, where w0 = w ∪ {0},
MSS is hierarchical family constructed in the step 4 of SS procedure and the following
conditions are fulfilled:

• m ≤ κ ≤M (κ defined in (4.13)) for some m,M > 0,
• |s∗0| ≤ kn,
• P(∀w ∈MSS : |w0| ≤ kn)→ 1,
• k2

n log pn = o(n),
• λ2k2

n log(npn) = o(1),
• log pn = o(nλ2),
• knλ2 = o(β∗2min),
• kn log pn = o(an),
• ankn = o(nmin{β∗min, 1}2).

then for SS procedure for the logistic model with intercept we have:

P(ŝ = s∗)→ 1.

Proof. Proof of this Corollary is analogous to the proof of Corollary 5.6 and it follows
from Corollaries 4.10, 5.3 and 5.5. We note that condition k2

n log pn = o(n) from Corollary
5.6 implies kn log pn = o(n) (as kn ≥ 1), what is one of assumptions in Corollary 5.3.

Remark 5.8. If pn = O(ecnγ) for some c > 0, γ ∈ (0, 1/2), ξ ∈ (0, 0.5 − γ), u ∈
(0, 0.5− γ− ξ), kn = O(nξ), λ = Cn

√
log(pn)/n, Cn = O(nu), Cn → +∞, n−u2 = O(β∗min),

an = dn
1
2−u, then assumptions about asymptotic behaviour of parameters in Corollary 5.7

are satisfied.

Remark 5.9. We note that in order to apply Corollary 5.7 to two-step procedure based on
Lasso it is required that |s∗0| ≤ kn and that the support of Lasso estimator with probability
tending to 1 contains no more than kn elements. Some results bounding | supp β̂L| are
available for deterministic X (see Huang et al. (2008)) and for random X (see Theorems
A.27, A.30), but they are too weak to be useful in our context, therefore we use stronger
assumptions. The other possibility to prove consistency of two-step procedure is to modify
it in the first step by using thresholded Lasso (see Zhou (2010)) corresponding to k′n largest
Lasso coefficients where k′n ∈ N is such that kn = o(k′n).
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Chapter 6

Numerical experiments

6.1. Logistic loss - calculation of β∗

Note that finding explicit form of projections β∗ is rarely possible in continuous case.
Nevertheless, our objective here will be to show that for a given distribution of r.v. X and
function q computation of projection β∗ is numerically feasible for logistic loss. Reasoning
presented here can be easily generalized to other loss functions.

6.1.1. General assumptions

To compute β∗ in general case, we define: F (b) = EqL(bTX)X − EYX. In view of
normal equations (2.10): F (β∗) = 0p. Now we compute matrix of the first derivatives
of F : JF (b) = Eq′L(bTX)XXT . If X satisfies LND and E||X̃||22 < ∞, then JF (b) is
well defined positive definite matrix, as we have for every b ∈ Rp+1, γ ∈ Rp+1 \ {0p+1}:
γTJF (b)γ = Eq′L(bTX)||γTX||2 > 0. The iteration of Newton–Raphson method is thus
given by:

β∗n+1 = β∗n − JF (β∗n)−1F (β∗n).

6.1.2. Generalized semiparametric model - linear regressions condition

If X satisfies linear regressions condition and

P(Y = 1|X = x) = q(BTX), (6.1)

then we know that β̃
∗ = B̃η, hence β∗ = (β∗0 ,ηT B̃

T )T and we need to estimate only β∗0
and η, what is much easier task than under general assumptions. In this case we define

F (x,y) =
 EqL(x+ yT B̃T X̃)− Eq(BTX)
EqL(x+ yT B̃T X̃)B̃T X̃− Eq(BTX)B̃T X̃

 .
Matrix of the first derivatives of F has the form:

JF (x,y) =
 Eq′L(x+ yT B̃T X̃) Eq′L(x+ yT B̃T X̃)X̃T B̃
Eq′L(x+ yT B̃T X̃)B̃T X̃ Eq′L(x+ yT B̃T X̃)B̃T X̃X̃T B̃

 .
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Similarly as in general case, JF (x, y) > 0 and we can use Newton–Raphson iterations:β∗0,n+1

ηn+1

 =
β∗0,n

ηn

− JF (β∗0,n,ηn)−1F (β∗0,n,ηn).

In order to choose a starting point of Newton–Raphson procedure in case of X̃ ∼
N (0,Σ), the following approximations can be used

Eq(β0 + B̃T X̃) = EqL(β∗0 + ηT B̃T X̃) ≈ qL(β∗0)

and using Remark 3.16 (we use normality of X̃ here):

η = EDq(β0 + B̃T X̃)
Eq′L(β∗0 + ηT B̃T X̃)

≈ EDq(β0 + B̃X̃)
q′L(β∗0) .

Hence we can take:
β∗0,0 = q−1

L (Eq(β0 + B̃T X̃)),

η0 = EDq(β0 + B̃T X̃)
q′L(β∗0,0) = Eq′(β0 + B̃T X̃)

Eq(β0 + B̃T X̃)(1− Eq(β0 + B̃T X̃))
,

as q′L(β∗0,0) = qL(β∗0,0)(1− qL(β∗0,0)) = Eq(β0 + B̃T X̃)(1− Eq(β0 + B̃T X̃)).
We note that the above procedure is similar to procedure for semiparametric model -

we replace B by β and η by η. Moreover, if X̃ does not follow normal distribution with
zero mean, we choose starting point equal zero instead of the one given above.

6.2. Simulation I - calculation of β∗ in semiparametric model

We assume that X = (1, X̃T )T , where X̃ ∼ Np(0p, Ip) and p = 15. Conditional
distribution Y |X is given by semiparametric model:

P(Y = 1|X = x) = q(βT
s xs).

The following coefficients have been considered (they are the same as in the numerical
experiments in Mielniczuk and Teisseyre (2016)):

(M1) s = {10}, βs = 0.2,
(M2) s = {2, 4, 5}, βs = (1, 1, 1)T ,
(M3) s = {1, 2}, βs = (0.5, 0.7)T ,
(M4) s = {1, 2}, βs = (0.3, 0.5)T ,
(M5) s = {1, . . . , 8}, βs = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)T .

Let Φ(·) denote distribution function of standard normal distribution and FCauchy(u,v)(·)
distribution function of Cauchy distribution with location u and scale v. In the case of
incorrect model specification, the following response functions are considered:

q1(s) = Φ(s),

72



6.2. SIMULATION I - CALCULATION OF β∗ IN SEMIPARAMETRIC MODEL

q2(s) =


Φ(s) for Φ(s) ∈ (0.1, 0.8)

0.1 for Φ(s) ≤ 0.1

0.8 for Φ(s) ≥ 0.8,

q3(s) =


Φ(s) for Φ(s) ∈ (0.2, 0.7)

0.2 for Φ(s) ≤ 0.2

0.7 for Φ(s) ≥ 0.7,

q4(s) =


Φ(s) for |s| > 1

0.5 + 0.5 cos[4πs]Φ(s) for |s| ≤ 1,

q5(s) = FCauchy(0,1)(s),

q6(s) = FCauchy(0,2)(s).

In Mielniczuk and Teisseyre (2016) values of η were calculated using Monte Carlo
experiments and are given in Table 1 there. In Tables 6.1-6.2 values of β∗0 and η for models
M1-M5, functions q1 − q6 and qL are given. Integrals were computed using Gauss-Hermite
quadrature with 1000 nodes. No more than 7 iterations of the procedure were needed for
convergence. Comparing these results with simulated values in Mielniczuk and Teisseyre
(2016), we observe that for all functions except q4 (non-monotonic case) the results of
both calculations are very close, what suggest that the above Newton-Raphson procedure
performs well for monotone q. Note that Monte-Carlo calculation of η̂ performed in Miel-
niczuk and Teisseyre (2016) was based on n = 106 observations drawn from distribution of
(X, Y ) whereas here we use a single run of the iterative procedure for its evaluation. We
also note that values of η (and η̂) for q1 are greater but close to

√
8/π, what is consistent

with (2.42).

Table 6.1: Values of η for models M1-M5 calculated by Newton–Raphson procedure.

qL q1 q2 q3 q4 q5 q6

M1 1.0000 1.6041 1.6041 1.5977 -0.1814 1.2462 0.6330
M2 1.0000 1.7526 0.8655 0.5326 1.3211 0.8696 0.5244
M3 1.0000 1.6836 1.3488 0.9634 0.8832 1.0504 0.5893
M4 1.0000 1.6487 1.5300 1.2386 0.4861 1.1305 0.6107
M5 1.0000 1.7503 0.8841 0.5461 1.3263 0.8772 0.5275
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Table 6.2: Values of β∗0 for models M1-M5 calculated by Newton–Raphson procedure.

qL q1 q2 q3 q4 q5 q6

M1 4.39E-16 4.32E-16 -6.04E-07 -3.78E-04 4.25E-02 -1.43E-17 -1.91E-18
M2 -2.08E-16 4.41E-18 -1.54E-01 -1.66E-01 -4.63E-02 -2.05E-16 -1.33E-16
M3 -1.20E-16 -2.06E-16 -5.85E-02 -9.95E-02 1.38E-02 3.90E-16 4.16E-16
M4 4.10E-16 -1.41E-16 -1.87E-02 -5.62E-02 3.33E-04 -8.56E-17 -2.84E-17
M5 -2.23E-16 4.43E-17 -1.51E-01 -1.64E-01 -6.16E-02 -1.94E-16 -1.30E-16

Table 6.3: Simulated values of η̂ for considered models reproduced from Mielniczuk and
Teisseyre (2016) (first 5 rows) together with MSEs between simulated and numerically
calculated values given in the last row.

qL q1 q2 q3 q4 q5 q6

M1 0.988 1.642 1.591 1.591 0.788 1.241 0.651
M2 1.005 1.741 0.863 0.537 1.735 0.874 0.522
M3 0.993 1.681 1.352 0.968 1.524 1.045 0.580
M4 1.005 1.644 1.510 1.236 1.293 1.140 0.610
M5 1.013 1.779 0.897 0.552 1.724 0.879 0.532

MSE×102 0.008 0.049 0.016 0.003 46.600 0.003 0.009

6.3. Simulation II - calculation of β∗ in additive binary model

We consider X = (X1, X2)T ∼ N2(02,Σ), where

Σ =
r2 ρr

ρr 1

 ,
r ≥ 1 and ρ ∈ (−1, 1). We assume that:

P(Y = 1|X = x) = αqL(x1) + (1− α)qL(x2)

for x = (x1, x2) ∈ R2. This means that β1 = (0, 1, 0)T ,β2 = (0, 0, 1)T . We fit the model
with logistic loss without intercept. In view of Theorem 3.8:

β∗ = B̃η = η1β̃1 + η2β̃2 = (η1, η2)T .

It follows from Lemma A.51 part 4 that function h(σ) = Eq′L(σZ) is decreasing for
Z ∼ N (0, 1) as its derivative EZq′′L(σZ) is negative. This means that Eq′L(X1) ≤ Eq′L(X2),
because VarX1 ≥ VarX2. Thus Corollary 3.24 gives us:

η1 ≤ α,

η2 ≤ (1− α)Eq
′
L(X2)

Eq′L(X1) .
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When r = 1, then X1 and X2 have the same distribution and thus η2 ≤ 1− α. This
yields η1 +η2 ≤ 1, when r = 1. For r = 2 lower panels of Figure 6.1 suggest that η1 +η2 ≤ 1,
but it is still open problem to prove it for r 6= 1. Moreover, in the case ρ = 0.9 the
difference 1− η1 − η2 is smaller than in the case ρ = 0.

rho = 0 rho = 0.9

r 
=

 1
r 

=
 2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

0.0

0.5

1.0

alpha

Figure 6.1: Values of η1 and η2 against α. Black solid line shows the values of η1 versus
α, black dashed line represents upper bound for η1 = α (see text). Dark orange lines
correspond to η2 and upper bound for η2. Dashed blue line represents sum of η1 and η2.

Figure 6.1 contains graph computed values of η1 and η2 as a functions of α for r = 1, 2
and ρ = 0, 0.9. η1 and η2 were computed with Newton–Raphson method (see Section 6.1.1)
and expected values approximated by Gauss–Hermite quadrature with 50 nodes (using R
package fastGHQuad).
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6.4. Selection procedures

In performed simulations we have implemented modifications of SS procedure introduced
in Section 5.2, as the original procedure is defined for a single λ only. In practice it is
generally easier to consider some sequence λ1 > . . . > λm > 0 instead of λ in the first
step, because we do not know how to choose the best λ (see e.g. Remark 4.11). When we
consider the sequence λ1, . . . , λm, we can construct for corresponding familiesM1, . . . ,Mm

having the similar form toM in the step 4 of SS procedure. Hence we arrive here at the
following SSnet procedure, which is the modification of SOSnet procedure in Pokarowski
et al. (2018):

1. Choose some λ1 > . . . > λm > 0.
2. Find β̂

(i)
L = arg min

b∈Rpn+1
Rn(b) + λi||b̃||1 for i = 1, . . . ,m.

3. Find ŝ(i)
L = supp ˆ̃β(i)

L = {j(i)
1 , . . . , j

(i)
ki
} where j(i)

1 , . . . , j
(i)
ki

are such that |β̂(i)
L,j

(i)
1
| ≥ . . . ≥

|β̂(i)
L,j

(i)
k

| > 0 for i = 1, . . . ,m.

4. DefineMi = {{j(i)
1 }, {j

(i)
1 , j

(i)
2 }, . . . , {j

(i)
1 , j

(i)
2 , . . . , j

(i)
ki
}} for i = 1, . . . ,m.

5. DefineM = {∅} ∪
m⋃
i=1
Mi.

6. Find ŝ = arg min
w∈M

GIC(w ∪ {0}), where GIC(w ∪ {0}) = min
b∈Rpn+1:supp b̃⊆w

nRn(b) +

an(|w|+ 1).

Instead of constructing familiesMi for each λi in SSnet procedure, we can choose λi
by cross-validation using "one-standard error" rule (see Friedman et al. (2010)) and then
proceed as in SS procedure. This gives the following SSCV procedure:

1. Take some λ1 > . . . > λm > 0.
2. For each i = 1, . . . ,m compute for Lasso model K-fold cross-validation error ECV (λi)

and a standard deviation of cross-validation error SDCV (λi).
3. Find λmin = arg minλ1,...,λm ECV (λi).
4. Choose λ = max{λi : ECV (λi) ≤ ECV (λmin) + SDCV (λmin), i = 1, . . . ,m}.
5. Find β̂L = arg min

b∈Rpn+1
Rn(b) + λ||b̃||1.

6. Find ŝL = supp ˆ̃βL = {j1, . . . , jk} such that |β̂L,j1 | ≥ . . . ≥ |β̂L,jk | > 0.
7. DefineM = {∅, {j1}, {j1, j2}, . . . , {j1, j2, . . . , jk}}.
8. Find ŝ = arg min

w∈M
GIC(w ∪ {0}), where GIC(w ∪ {0}) = min

b∈Rpn+1:supp b̃⊆w
nRn(b) +

an(|w|+ 1).
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The last procedure considered in this dissertation has been introduced in Fan and
Tang (2013) and contains also a step for choosing λ. However, it is different from previous
procedures, as λ is chosen by minimizing function similar to GIC, but computed for Lasso
estimator instead of MLE. Then ŝ is equal to support of optimal Lasso estimator. We took
an = log(log n) · log(pn + 1) as in Fan and Tang (2013). We will call this procedure LFT:

1. Take some λ1 > . . . > λm > 0.
2. Find β̂

(i)
L = arg min

b∈Rpn+1
Rn(b) + λi||b̃||1 for i = 1, . . . ,m.

3. Find ŝ(i)
L = {j ∈ {0, 1, . . . , pn} : β̂

(i)
L,j 6= 0} for i = 1, . . . ,m.

4. Find i0 = arg mini=1,...,m nRn(β̂(i)
L ) + an|ŝ(i)

L |, where an = log(log n) · log(pn + 1).
5. Find ŝ = ŝ

(i0)
L \ {0}.

We note that familyM is defined for LFT procedure (in order to compute performance
measures) as:

M = {ŝ(i)
L : i = 1, . . . ,m}.

We list below versions of the above procedures along with R packages, which were
used to choose sequence λ1, . . . , λm and computation of Lasso estimator. The following
packages were chosen based on selection performance after initial tests for each loss and
procedure:

• SSnet with logistic or quadratic loss: ncvreg,
• SSCV or LFT with logistic or quadratic loss: glmnet,
• SSnet, SSCV or LFT with Huber loss: hqreg.

We list below functions which were used to optimize Rn in GIC minimization step for
each loss:

• logistic loss: glm.fit (package stats),
• quadratic loss: .lm.fit (package stats),
• Huber loss: rlm (package rlm).

We did not perform simulations for probit loss and quantile loss due to time constraints
and lack of well implemented R packages to compute Lasso estimator and MLE estimator
for these loss functions.

Before applying each procedure, each column of matrix X̃ was standardized, because
β̂L depends on scaling of predictors. We set length of λi sequence to m = 20. Moreover,
in all of the procedures we considered only λi for which |ŝ(i)

L | ≤ n. It is due to the fact
that when |ŝ(i)

L | > n Lasso solutions are not unique (see discussion in Section A.3). For
Huber loss we set parameter δ = 1/10 (see Yi and Huang (2017)). Number of folds in
SSCV was set to K = 10.
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Each simulation consisted of L repetitions, during which samples Xk = (X(k)
1 , . . . ,X(k)

n )T

and Yk = (Y (k)
1 , . . . , Y (k)

n )T were generated for k = 1, . . . , L. For k-th sample (Xk,Yk) we
have computed ŝk - estimator of set of active predictors obtained by a given procedure,

β̂(ŝk) = (β̂0(ŝk), ˆ̃β(ŝk)T )T = arg min
b∈Rpn+1:b(ŝk∪{0})c=0

1
n

n∑
i=1

ρ(bTX(k)
i , Y

(k)
i )

is MLE estimator for k-th sample on set ŝk.
M(k) is the familyM obtained by a given procedure for k-th sample.
In our numerical experiments we have computed the following measures of selection

performance:

• ANGLE = 1
L

L∑
k=1

arccos | cos∠(β̃, ˆ̃β(ŝk))|, where cos∠(β̃, ˆ̃β(ŝk)) =

pn∑
j=1

βj β̂j(ŝk)

||β̃||2||ˆ̃β(ŝk)||2
and we

let cos∠(β̃, ˆ̃β(ŝk)) = 0, if ||β̃||2||ˆ̃β(ŝk)||2 = 0,
• Pinc = 1

L

L∑
k=1

I(s∗ ∈M(k)),

• Pequal = 1
L

L∑
k=1

I(ŝk = s∗),

• Psupset = 1
L

L∑
k=1

I(ŝk ⊇ s∗).

In our simulations we additionally computed time of 1st stage of each procedure, which
includes finding Lasso estimators and building familyM (in case of SSnet and SSCV) and
time of 2nd stage which includes GIC minimization.

6.5. Simulation III - selection

6.5.1. Experimental setup - model M1

We generated n observations (Xi, Yi) ∈ Rp+1 × {0, 1} for i = 1, . . . , n such that:

Xi1 = Zi1, Xi2 = Zi2, Xij = Zi,j−7 for j = 10, . . . , p,

Xi3 = X2
i1, Xi4 = X2

i2, Xi5 = Xi1Xi2, Xi6 = X2
i1Xi2, Xi7 = Xi1X

2
i2, Xi8 = X3

i1, Xi9 = X3
i2,

where Zi = (Zi1, . . . , Zip)T ∼ Np(0p,Σ), Σ = [ρ|i−j|]i,j=1,...,p and ρ ∈ (−1, 1). We consider
response function q(x) = qL(x3) for x ∈ R, s = {1, 2} and βs = (1, 1)T . This means that:

P(Yi = 1|Xi = xi) = q(βT
s xi,s) = q(xi1 + xi2) = qL((xi1 + xi2)3)

= qL(x3
i1 + x3

i2 + 3x2
i1xi2 + 3xi1x2

i2) = qL(3xi6 + 3xi7 + xi8 + xi9).

We observe that the above binary model is well specified with respect to family of logistic
models. Hence s∗log = {6, 7, 8, 9} and β∗log,s∗

log
= (3, 3, 1, 1)T are respectively set of active

predictors and non-zero coefficients of projection onto family of logistic models.
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We took the following parameters in the simulation: n = 500, p = 150, ρ ∈ {−0.9+0.15·
k : k = 0, 1, . . . , 12} and L = 500 - number of generated data sets for each combination of
parameters. We considered procedures SSnet, SSCV and LFT using logistic, quadratic
and Huber loss functions. For procedures SSnet and SSCV we used GIC penalties with:

• an = log n (BIC),
• an = log n+ 2 log pn (EBIC1).

6.5.2. Experimental setup - model M2

We generated n observations (Xi, Yi) ∈ Rp+1 × {0, 1} for i = 1, . . . , n such that
X̃i = (Xi1, . . . , Xip)T ∼ Np(0p,Σ), Σ = [ρ|i−j|]i,j=1,...,p and ρ ∈ (−1, 1). We took response
function q(x) = qL(x3) for x ∈ R, s = {1, 2} and βs = (1, 1)T . This means that:

P(Yi = 1|Xi = xi) = q(βT
s xi,s) = q(xi1 + xi2) = qL((xi1 + xi2)3)

This model in comparison to the one presented in Section 6.5.1 does not contain monomials
of Xi1 and Xi2 of degree higher than 1 in its set of predictors. We observe that this binary
model is missspecified with respect to family of logistic models, because q(xi1 + xi2) 6≡
qL(βTxi) for any β ∈ Rp+1. However, in this case linear regressions condition LRC is
satisfied for X̃, as it follows normal distribution. Hence in view of Remark 2.24 we have
s∗log = {1, 2} and β∗log,s∗

log
= η(1, 1)T for some η > 0.

We took the following parameters in the simulation: n = 500, p = 150, ρ ∈ {−0.9+0.15·
k : k = 0, 1, . . . , 12} and L = 500 - number of generated data sets for each combination of
parameters. We considered procedures SSnet, SSCV and LFT using logistic, quadratic
and Huber loss functions. For procedures SSnet and SSCV we used GIC penalties with:

• an = log n (BIC),
• an = log n+ 2 log pn (EBIC1).

6.5.3. Results for models M1 and M2

We observe that values of Pinc for SSCV and SSnet are close to 1 for low correlations
in M2 model for every tested loss (see Figure 6.2). In M1 model Pinc attains highest
values for SSnet procedure and logistic loss for low correlations - this is due to the fact
that in most cases corresponding familyM is the largest among the families created in
considered procedures. Pinc is close to 0 in model M1 for quadratic and Huber loss, what
affects other measures and could be caused by large correlations in the data, as we have
Cor(Xi1, Xi8) = 3/

√
15 ≈ 0.77. It is seen that in model M1 inclusion probability Pinc is

much lower than in model M2 (except for negative correlations). It it also seen that Pinc
for SSCV is larger than for LFT and LFT fails with respect to Pinc in M1.
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In the model M1 Pequal attains highest values for SSnet with BIC penalty, then for
SSCV with EBIC1 penalty (see Figure 6.3). In the model M2 Pequal attains values close
to 1 for SSnet and SSCV with EBIC1 penalty and was much larger than Pequal for the
corresponding versions using BIC penalty - moreover choice of loss was significant only for
larger correlations. These results confirm theoretical results of Theorem 2.6. We observe
also that although in the model M2 remaining procedures do not select s∗ with high
probability, they select w ⊃ s∗ with high probability, what is indicated by values of Psupset
(see 6.4). This analysis is confirmed by an analysis of ANGLE measure (see 6.5), which
attains values close to 0, when Psupset is close to 1. Low values of ANGLE measure mean
that estimated vector ˆ̃β(ŝk)) is approximately proportional to β̃, what was the case for
M2 model, where we had normal predictors satisfying linear regressions condition. Note
that ˆ̃β(ŝk)) and β̃

∗ are not approximately collinear in M1 despite the fact that M1 is well
specified. Also, for the best performing procedures, Pequal was much larger in M2 than
in M1, despite the fact that the latter is correctly specified. However there are 4 active
variables in M1 compared to 2 in M2.

In model M1 procedures with BIC penalty performed better than those with EBIC1
penalty, however the gain for Pequal was much smaller than the gain when using EBIC1
in M2. LFT procedure performed poorly in model M1 and reasonably well in model M2.
The overall winner in both model is SSnet. SSCV performs only slightly worse than SSnet
in M2 but it is significantly worse in M1.

Analysis of computing times of 1st and 2nd stage of each procedure shows that SSnet
procedure creates large families M, thus GIC minimization becomes computationally
intensive. We also observe that 1st stage for SSCV takes more time than for SSnet, what
is caused by multiple fitting of Lasso in cross-validation. However, SSCV is much quicker
than SSnet in 2nd stage. We do not compare times between M1 and M2 models, because
the results were calculated on 2 separate machines.
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Figure 6.2: Pinc for models M1 and M2
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Figure 6.3: Pequal for models M1 and M2
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Figure 6.4: Psupset for models M1 and M2
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Figure 6.5: ANGLE for models M1 and M2
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Figure 6.6: Time of selecting λ and building familyM for models M1 and M2 (logarithmic
scale y)
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Figure 6.7: Time of GIC minimizing for models M1 and M2 (logarithmic scale y)
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6.5.4. Experimental setup - model M2a

To check robustness of procedures in this chapter, we considered also modification
of model M2, where X do not follow Np(0p,Σ) distribution with Σ = [ρ|i−j|]i,j=1,...,p and
ρ ∈ (−1, 1). Below we define the modification for model M2a and vector X.

Firstly, we observe that vector (X1, . . . , Xp)T having Np(0p,Σ) distribution and Σ =
[ρ|i−j|]i,j=1,...,p is AR(1) process constructed as follows:

X1 = ε1

Xj = ρXj−1 +
√

1− ρ2εj for j = 2, . . . , p,

where ε1, . . . , εp ∼ N (0, 1) are independent. We replace here N (0, 1) distribution of
εi by 0.9N (0, 1) + 0.05N (5, 1) + 0.05N (−5, 1). Moreover, because we want X to be
(approximately) AR(1) process, we reject first k Xi generated by the above procedure
(warm start). This means that the final algorithm for generating vector X is the following:

1. Generate ε1, . . . , εp+k ∼ 0.9N (0, 1) + 0.05N (5, 1) + 0.05N (−5, 1).
2. Let U1 = ε1, Uj = ρUj−1 +

√
1− ρ2εj for j = 2, . . . , p+ k.

3. Let Xj = Uj+k for j = 1, . . . , p.

In model M2a we consider k = 100.

6.5.5. Results for the model M2a

From the results it can be seen that Pinc is close to 1 even for large correlations for
SSnet and SSCV (see Figure 6.8). LFT procedure performs poorly compared to SSnet
and SSCV, when Pinc is considered. Moreover, Pequal attains highest values for SSnet
with EBIC1 penalty and SSCV with EBIC1 is only slightly worse. Pequal in almost all
situations (except |ρ| = 0.9) is close to 1 for SSnet and SSCV with EBIC1 penalty. Pequal
for SSnet and SSCV with BIC penalty is lower than for these procedures with EBIC1
penalty. Moreover, Pequal for SSCV with BIC penalty is higher than for SSnet with
BIC penalty. Pequal attains similar values for LFT and SSCV with BIC penalty for low
correlations. Psubset attains high values (close to 1, especially for low correlations) for every
method, except LFT with ρ = −0.9. This means that supersets of s∗ are selected with
high probability. Similarly, ANGLE measure is lower than 20° for every method, except
LFT with ρ = −0.9. This means that ˆ̃β(ŝk) is approximately proportional to β̃ although
linear regressions condition does not hold in this case. The results for SSnet and SSCV
with EBIC1 are similar for logistic and quadratic loss. It is worth noting that SSnet and
SSCV procedures with quadratic loss are much faster than their versions with logistic loss
(see Figure 6.9).
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Figure 6.8: Pequal, Pinc, Psupset and ANGLE for model M2a
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Also, results of Simulation I suggest that fitting logistic model to a binary model with
response function different from logistic may yield better results when the set of active
predictors is sparse than for correctly specified model with larger number of potential
predictors. Moreover, not much is lost in regard to probability of correct selection when
linear model is fitted in place of logistic one in case of low correlations between predictors.
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Figure 6.9: Times of 1st and 2nd stage of selection procedures for model M2a

6.6. Simulation IV - selection

6.6.1. Experimental setup - models MF1-MF4

We generated n observations (Xi, Yi) ∈ Rp+1 × {0, 1} for i = 1, . . . , n such that
X̃i = (Xi1, . . . , Xip)T ∼ Np(0p,Σ), Σ = [ρ|i−j|]i,j=1,...,p and ρ ∈ (−1, 1). We took response
function q, s ⊆ {1, . . . , pn} and βs ∈ R|s| such that:

P(Yi = 1|Xi = xi) = q(βT
s xi,s).

Parameters n, p, s and βs, which we considered in the simulation are shown in the
Table 6.4. Moreover, we took ρ ∈ {−0.9+0.15 ·k : k = 0, 1, . . . , 12} and L = 500 - number
of generated data sets for each combination of parameters. We considered the following
response functions:

89



CHAPTER 6. NUMERICAL EXPERIMENTS

• q(x) = qL(x),
• q(x) = Φ(x),
• q(x) = FCauchy(x) = 1

2 + 1
π

atan x.

This setup for logistic loss, q(x) = qL(x), ρ = 0 and parameter values specified in Table
6.4 was considered in Fan and Tang (2013). Response functions given here were considered
in Mielniczuk and Teisseyre (2016).

We considered procedures SSnet, SSCV and LFT using logistic loss function. For
procedures SSnet and SSCV we used GIC penalties with:

• an = log n (BIC),
• an = log n+ 2 log pn (EBIC1).

Model n p s βs

MF1 100 168 {1, 2, 5} (−3.5, 1.5,−2)T

MF2 180 692 {1, 2, 5, 6} (−3.5, 1.5,−2, 2)T

MF3 260 1993 {1, 2, 5, 6, 7} (−3.5, 1.5,−2, 2,−2)T

MF4 340 4680 {1, 2, 5, 6, 7, 8} (−3.5, 1.5,−2, 2,−2, 2)T

Table 6.4: Values of parameters in the Simulation 2

In this simulation we compared only values of Pequal, Pinc and Psubset due to limited
space.

6.6.2. Results for models MF1-MF4

Pinc achieves highest values for negative correlations, moreover it increases with n for
low correlations (see Figures 6.10, 6.13, 6.16). This affects Pequal, which achieves highest
values for low correlations and increases with the sample size - the only exception was LFT
procedure for which Pequal attained highest values for negative correlations (see Figures
6.11, 6.14, 6.17). Psupset attains significantly higher values than Pequal only for SSCV with
BIC ponalty and LFT method (see Figures 6.12, 6.15, 6.18). From the results we observe
that the model with response q = Φ was the easiest when logistic response was fitted.
Moreover, the data with q = FCauchy represented the most difficult case.
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In this experiment it is seen that when Pequal is considered SSnet with EBIC1 is
the overall winner for sufficiently high ρ (ρ ≥ −0.3 for q = qL, ρ ≥ −0.6 for q = Φ,
ρ ≥ 0 for q = FCauchy), and SSCV with EBIC1 performs only slightly worse. Moreover
Pequal increases with n for low correlations. However, for large negative correlations LFT
performs better in terms of Pequal than other procedures. Penalty change from EBIC1
to BIC results in very significant deterioration of performance measured by Pinc of both
SSnet and SSCV. This means that the choice of penalty is crucial for performance of such
selection procedures. Surprisingly, selection procedures performed better in overall for the
probit i.e. misspecified binary model than for correctly specified logistic regression. We
conclude that in the considered experiments SSnet with EBIC1 penalty works the best
in most cases, however even for the winning procedure strong dependence of predictors
makes the problem considerably harder.

It is clear from our experiments that choice of GIC penalty is crucial for its performance.
Moreover, modification of SS procedure, which would perform satisfactorily for large
correlations is still an open problem.
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Figure 6.10: Pinc for models MF1-MF4 with q = qL
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Figure 6.11: Pequal for models MF1-MF4 with q = qL
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Figure 6.12: Psupset for models MF1-MF4 with q = qL
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Figure 6.13: Pinc for models MF1-MF4 with q = Φ
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Figure 6.14: Pequal for models MF1-MF4 with q = Φ
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Figure 6.15: Psupset for models MF1-MF4 with q = Φ
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Figure 6.16: Pinc for models MF1-MF4 with q = FCauchy
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Figure 6.17: Pequal for models MF1-MF4 with q = FCauchy
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Figure 6.18: Psupset for models MF1-MF4 with q = FCauchy
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Appendix A

Auxiliary definitions and lemmas

A.1. Existence and uniqueness of β∗ for binary response

In this section we present results about existence and uniqueness of β∗ defined in
(1.3), when Y ∈ {0, 1}. The organization of this section is the following: Lemmas A.1-A.4
present auxiliary facts used in later part of this section. Lemma A.1 is used in Corollaries
A.10-A.11 to show that risk function is strictly convex. Lemma A.2 is used in the proof
of Remark A.13 and provides equivalent condition for positive-definiteness of covariance
matrix Σ, which can be easier to check than the condition that vector X is linearly
nondegenerate. Lemma A.3 is a known fact in optimization (see Theorem 2.32 in Beck
(2014)) which is crucial in the proof of Lemma A.4 and Theorem A.6. Lemma A.4 is a
simple technical fact, which allows us to prove Theorem A.5 with the use of Lebesgue’s
monotone convergence theorem and without using Lebesgue’s dominated convergence
theorem. From Theorem A.5 follows existence and uniqueness of β∗ also in the case of
quadratic loss (see Remark A.13).

Theorems A.5-A.6 show that there exists minimum of risk function in any direction.
This conclusion together with strict convexity of risk function is used in Lemma A.8 to
prove that β∗ exists (see Corollaries A.10-A.11). Then finally in Remarks A.12-A.14 we
find sufficient conditions for existence and uniqueness of β∗.

For original formulation of Theorem A.5 and A.8 see Li and Duan (1989). Note that
the proof of Theorem A.5 is different from the proof in Li and Duan (1989), as we show
directly in the proof how to avoid use of Lebesgue’s dominated convergence theorem.
Moreover, our proof of Lemma A.8 is different from the proof of Lemma 2.1 in Li and
Duan (1989), because we show explicit way to construct a sequence described in Lemma
2.1 in Li and Duan (1989) and our construction uses one ball instead of two balls in Rpn+1

to prove the Lemma.
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Lemma A.1. If function g : R → R is strictly convex, X ∈ Rp+1 is a random vector,
for all b ∈ Rp+1: E|g(bTX)| < ∞ and for all b ∈ Rp+1 \ {0p+1}: P(bTX = 0) < 1, then
function f : Rp+1 → R, where f(b) = Eg(bTX) is strictly convex.

Proof. Let b1,b2 ∈ Rp+1, b1 6= b2 be some vectors and let α ∈ [0, 1],b = αb1 + (1−α)b2.

Let A = {bT1 X = bT2 X}. As b1 6= b2, we have

P(A) = P(bT1 X = bT2 X) = P((b1 − b2)TX = 0) < 1.

On set Ac we get from strict convexity of g:

g(bTX) < αg(bT1 X) + (1− α)g(bT2 X).

We have, using convexity:

f(b) = Eg(bTX) = Eg(bTX)I(A) + Eg(bTX)I(Ac)

= E(αg(bT1 X) + (1− α)g(bT2 X))I(A) + Eg(bTX)I(Ac)

< E(αg(bT1 X) + (1− α)g(bT2 X))I(A)

+ E(αg(bT1 X) + (1− α)g(bT2 X))I(Ac) = αf(b1) + (1− α)f(b2)

as strict inequality follows from P(Ac) > 0.

Lemma A.2. Let X = (1, X̃T )T ∈ Rp+1 be a random vector satisfying E||X̃||22 <∞. Let
Var X̃ = Σ. Then Σ > 0 if and only if for every b ∈ Rp+1 \ {0p+1}: P(bTX = 0) < 1.

Proof. Condition Σ > 0 is equivalent to

∀b = (b0, b̃
T )T ∈ Rp+1, b̃T 6= 0p : 0 < b̃TΣb̃ = Var(b̃T X̃) = Var(bTX).

From this we obtain P(bTX = 0) < 1.
Now we need to prove that Σ > 0 is implied by P(bTX = 0) < 1 for all b ∈ Rp+1 \ {0p+1}.
Firstly, we observe that

∀b̃ ∈ Rp \ {0p} : P(b̃T X̃ = Eb̃T X̃) = P((−Eb̃T X̃, b̃T )X = 0) < 1.

Hence, we obtain:

b̃TΣb̃ = Var(b̃T X̃) = E(b̃T X̃− Eb̃T X̃)2 = E(b̃T X̃− Eb̃T X̃)2I(b̃T X̃ 6= Eb̃T X̃) > 0.

This means that Σ > 0.

Lemma A.3 (Beck (2014, Theorem 2.32)). Let f : Rn → R be a continuous and coercive
function, i.e. lim

||x||2→+∞
f(x) = +∞. Let S ⊆ Rn be a nonempty closed set. Then f has a

global minimum in S.

Lemma A.4. Let d : R→ R be function satisfying lim inf
t→+∞

d(t) > 0 and lim sup
t→−∞

d(t) < 0.

Let R̃ be continuous function such that for all s, t ∈ R we have:

R̃(s)− R̃(t) ≥ d(t)(s− t).

Then there exists
t∗ = arg min

t∈R
R̃(t).
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Proof. Because lim inf
t→+∞

d(t) > 0, then there exist t1 ∈ R, η1 > 0 such that for all t ≥ t1

d(t) > η1. This means that for all t ≥ t1:

R̃(t) ≥ R̃(t1) + d(t1)(t− t1) > R̃(t1) + η1(t− t1).

Hence lim
t→+∞

R̃(t) = +∞. Analogously, from the fact that lim sup
t→−∞

d(t) < 0 it follows that

lim
t→−∞

R̃(t) = +∞. This means that R̃ is continuous and coercive. By Lemma A.3, we
obtain the conclusion of theorem.

Theorem A.5 (based on Li and Duan (1989, Lemma 3.1 and Remark 3.2)). Let φ : R→ R
and g : {0, 1} → R be some functions. Define ρ : R× {0, 1} → R as

ρ(b, y) = −yb+ φ(b) + g(y)

for all b ∈ R and y ∈ {0, 1} be convex and differentiable function of b. Let E||X||2 <∞,
for all b ∈ Rp+1 E|φ(bTX)| < ∞ and E||φ′(bTX)X||2 < ∞. Assume additionally that
E(Y |X) ∈ (φ′(−∞), φ′(+∞)) PX a.e., where

φ′(+∞) = lim
t→+∞

φ′(t), φ′(−∞) = lim
t→−∞

φ′(t).

Let for a given b ∈ Rp+1:

R̃(t) = R(tb) = Eρ(tbTX, Y ).

Then there exists t∗ ∈ R such that:

t∗ = arg min
t∈R

R̃(t).

Proof. Let l̃(t, x, y) = l(tb, x, y), where l(b,x, y) = ρ(bTx, y) and d(t) = E ∂l̃
∂t

(t,X, Y ) =
−EY bTX + Eφ′(tbTX)bTX. Function l̃ is convex and differentiable function of t, what
follows from convexity and differentiability of ρ. Hence we obtain for all s, t ∈ R (see
Theorem 25.1 in Rockafellar (1970)):

l̃(s,X, Y )− l̃(t,X, Y ) ≥ ∂l̃

∂t
(t,X, Y )(s− t).

Thus, after taking expectations, we get:

R̃(s)− R̃(t) ≥ d(t)(s− t). (A.1)

We observe that φ is convex and differentiable function, as we have from the definition
of ρ: φ(b) = ρ(b, y) + yb− g(y). This means that φ′ is nondecreasing function. Thus we
obtain for all t ≥ s (a+ = aI(a > 0), a− = aI(a < 0)):

EY bTX + d(t) = Eφ′(tbTX)bTX = Eφ′(tbTX)(bTX)+ + Eφ′(tbTX)(bTX)−
≥ Eφ′(sbTX)(bTX)+ + Eφ′(sbTX)(bTX)− = Eφ′(sbTX)bTX = EY bTX + d(s).

In the above inequality we used the fact that if bTX < 0, then φ′(tbTX) ≤ φ′(sbTX) and
thus

φ′(tbTX)(bTX)− ≥ φ′(sbTX)(bTX)−.
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Hence function d is nondecreasing. From the Lebesgue’s monotone convergence theorem
we have:

lim
t→+∞

d(t) + EY βTX = lim
t→+∞

Eφ′(tβTX)βTX = E lim
t→+∞

φ′(tβTX)βTX

= Eφ′(+∞)(βTX)+ + Eφ′(−∞)(βTX)− = φ′(+∞)E(βTX)+ + φ′(−∞)E(βTX)−,

lim
t→−∞

d(t) + EY βTX = lim
t→−∞

Eφ′(tβTX)βTX = E lim
t→−∞

φ′(tβTX)βTX

= Eφ′(−∞)(βTX)+ + Eφ′(+∞)(βTX)− = φ′(−∞)E(βTX)+ + φ′(+∞)E(βTX)−.

Thus, we get (as E(Y |X) ∈ (φ′(−∞), φ′(+∞)) PX a.e.):

EY βTX = E(βTXE(Y |X)) = E((βTX)+E(Y |X)) + E((βTX)−E(Y |X))

< φ′(+∞)E(βTX)+ + φ′(−∞)E(βTX)− = lim
t→+∞

d(t) + EY βTX.

This means that lim
t→+∞

d(t) > 0. Analogously, we get lim
t→−∞

d(t) < 0. Now, from the convexity
of l̃ we have that function R̃ is convex. Because R̃ is convex function in open domain, it is
continuous (see Roberts and Varberg (1973), chapter IV.41). Hence arg min

t∈R
R̃(t) exists in

view of Lemma A.4.

Theorem A.6. Let π : R → (0, 1) be nondecreasing function such that ln π(b) and
ln(1− π(b)) are concave functions of b,

lim
b→−∞

π(b) = 0, lim
b→+∞

π(b) = 1.

Assume that X ∈ Rp+1 is a random variable such that for all b ∈ Rp+1 \ {0p+1} P(bTX =
0) < 1, E| ln π(bTX)| <∞, E| ln

(
1− π(bTX)

)
| <∞ and Y ∈ {0, 1} is a random variable

such that P(Y = 1|X = x) = q(x) ∈ (0, 1) PX a.e. Define:

ρ(b, y) = −y ln π(b)− (1− y) ln(1− π(b)),

and let for a given b ∈ Rp+1

R̃(t) = R(tb) = Eρ(tbTX, Y )

for t ∈ R. Then there exists t∗ ∈ R such that:

t∗ = arg min
t∈R

R̃(t).

Proof. For a given b 6= 0p+1 we define set A = {bTX = 0}. From our assumption
P(Ac) > 0. Observe that:

lim
t→+∞

ln π(tbTX) =


0 bTX > 0

−∞ bTX < 0

ln π(0) bTX = 0

,

lim
t→+∞

ln
(
1− π(tbTX)

)
=


−∞ bTX > 0

0 bTX < 0

ln(1− π(0)) bTX = 0

.
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Thus on set Ac ∩ {q(X) ∈ (0, 1)} we have:

lim
t→+∞

q(X) ln π(tbTX) + (1− q(X)) ln
(
1− π(tbTX)

)
= −∞.

Moreover, by conditioning on X we obtain:

R(b) = −Eq(X) ln π(bTX)− E(1− q(X)) ln
(
1− π(bTX)

)
.

Hence from Lebesgue’s monotone convergence theorem we obtain (as π is nondecreasing):

lim
t→+∞

R̃(t) = Eρ(0, Y )I(A)

− lim
t→+∞

E
(
q(X) ln π(tbTX) + (1− q(X)) ln

(
1− π(tbTX)

))
I(Ac) = +∞.

Analogously we obtain lim
t→−∞

R̃(t) = +∞. Thus R̃ is coercive function. Moreover, R̃ is
continuous, as it is convex function. Convexity of R̃ is implied by convexity of ρ(·, y) for
all y. This means that existence of t∗ = arg min

t∈R
R̃(t) follows directly from Lemma A.3.

Remark A.7. Conditions E| ln π(bTX)| <∞, E| ln
(
1− π(bTX)

)
| <∞ in Theorem A.6

for logistic regression are satisfied for all b ∈ Rp+1 when E||X||2 <∞. See also Remark
A.12.

Lemma A.8 (based on Li and Duan (1989, Lemma 2.1)). Let R : Rp+1 → R for p ∈ N
be strictly convex function satisfying the following property:

∀b ∈ Rp+1 ∃t∗ = arg min
t∈R

R(tb).

Then there exists
β∗ = arg min

b∈Rp+1
R(b).

Proof. Because R is convex function in open domain, it is continuous (see Roberts and
Varberg (1973), Chapter IV.41). Suppose that β∗ does not exist. From continuity of R we
can take a sequence (bn) such that

R(bn)→ inf
b∈Rp+1

R(b) and ||bn||2 →∞.

Let b̃n = bn/||bn||2. Then ||b̃n||2 = 1. Moreover, set S = {b ∈ Rp+1 : ||b||2 = 1} is
compact. This means that there exists subsequence (bkn) such that b̃kn → b̃0 for some
b̃0 ∈ S. From our assumption there exists

t0 = arg min
t∈R

R(tb̃0).

Since R is strictly convex, this minimum is unique. Now we take t1 > t0. Then R(t1b̃0) >
R(t0b̃0) and from continuity of R there exists ε > 0 and η > 0 that for all b ∈ B(t1b̃0, ε):
R(b) > R(t0b̃0) + η.

Now let
αn = t1 − t0

||bkn||2 − t0
, vn = αnbkn + (1− αn)t0b̃0.

We observe that αn → 0 as ||bkn||2 →∞ and

lim
n→∞

vn = lim
n→∞

αnbkn + lim
n→∞

(1− αn)t0b̃0 = lim
n→∞

t1 − t0
||bkn||2 − t0

||bkn||2b̃kn + t0b̃0
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= (t1 − t0) lim
n→∞

b̃kn + t0b̃0 = (t1 − t0)b̃0 + t0b̃0 = t1b̃0.

This means that for large n we have vn ∈ B(t1b̃0, ε) and R(vn) > R(t0b̃0) + η. From strict
convexity for large n we have:

R(t0b̃0) + η < R(vn) < αnR(bkn) + (1− αn)R(t0b̃0).

Hence after simple transformations we obtain R(bkn) > R(t0b̃0) + η
αn
, but from the

property
R(bkn)→ inf

b∈Rp+1
R(b)

we get a contradiction as αn → 0. Hence β∗ exists.

Example A.9. Assumption of strict convexity of R in Lemma A.8 cannot be omitted.
Let b = (x, y)T and consider the function R(b) = R(x, y) = max(x, y + x2). We define
g(x,y)(t) = R(tx, ty). Function R is convex as a maximum of convex functions. We will
show that for all (x, y) ∈ R2 function g(x,y) has a minimum. We consider 3 cases:
Case 1: (x, y) = (0, 0).
In this case g(x,y)(t) = 0 for all t ∈ R and thus it has a minimum.
Case 2: x 6= 0.
In this case g(x,y)(t) = t2x2 + ty for |t| > (x− y)/x2, thus

lim
t→±∞

g(x,y)(t) = +∞.

This property and convexity of g(x,y) imply that g(x,y) has a minimum (see Lemma A.3).
Case 3: x = 0, y 6= 0.
In this case g(x,y)(t) = max(0, ty) ≥ 0 = g(x,y)(0). Thus g(x,y) has a minimum.
Function R does not have a minimum, as we have R(x,−x2 + x) = max(x, x) = x.

Corollary A.10. Assume that assumptions of Theorem A.5 hold, ρ(·, y) is strictly convex
function for all y and for all b ∈ Rp+1 \{0p+1}: P(bTX = 0) < 1. Then there exists unique

β∗ = arg min
b∈Rp+1

R(b).

Proof. The proof follows directly from Theorem A.5 and Lemma A.8 after noting that for
all b ∈ Rp+1 \ {0p+1} the function R̃(t) = El(tb,X, Y ) is strictly convex in view of strict
convexity of ρ and Lemma A.1.

Corollary A.11. Assume that assumptions of Theorem A.6 hold and ln π(b), ln(1− π(b))
are strictly concave functions of b. Then there exists unique

β∗ = arg min
b∈Rp+1

R(b).

Proof. The proof follows directly from Theorem A.6 and Lemma A.8 after noting that for
all b ∈ Rp+1 \ {0p+1} the function R̃(t) = El(tb,X, Y ) is strictly convex in view of strict
convexity of ρ (what follows from strict concavity of ln π(b) and ln(1− π(b))) and Lemma
A.1.
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We prove the following remark using Corollary A.10, but the same conclusions can be
obtained from Corollary A.11.

Remark A.12. Unique β∗ exists for logistic loss:

l(b,x, y) = −yxTb + ln
(
1 + exp

(
xTb

))
if the following conditions are satisfied: E||X||2 <∞, for all b ∈ Rp+1 \ {0p+1}: P(bTX =
0) < 1 and P(Y = 1|X = x) ∈ (0, 1) PX a.e.

Proof. We have g(y) ≡ 0, φ(b) = ln
(
1 + eb

)
, φ′(b) = (1 + e−b)−1. Function φ is strictly

convex, therefore l is strictly convex with respect to b. Obviously, l is continuously
differentiable.
Now we observe that |φ′(b)| ≤ 1 thus φ is a Lipschitz function and we have:

E|φ(bTX)| ≤ E|φ(bTX)− φ(0)|+ |φ(0)| ≤ E|bTX|+ ln 2 ≤ ||b||2E||X||2 + ln 2 <∞,

E||φ′(bTX)X||2 = E|φ′(bTX)|||X2||2 ≤ E||X||2 <∞.

We see that φ′(−∞) = 0, φ′(+∞) = 1 and E(Y |X = x) = P(Y = 1|X = x) ∈ (0, 1). Hence
β∗ exists in view of Corollary A.10.

Remark A.13. Unique β∗ exists for quadratic loss:

l(b,x, y) = 1
2(y − xTb)2 = −yxTb + 1

2(xTb)2 + 1
2y

2

if E||X||22 <∞ and Var X̃ = Σ > 0.

Proof. We have g(y) = y2/2, φ(b) = b2/2, φ′(b) = b. Function φ is a strictly convex
function, therefore l is strictly convex with respect to b. Obviously, l is differentiable with
respect to b.
Condition E||X||2 <∞ follows from E||X||22 <∞. Then we check moment conditions:

E|φ(bTX)| = 1
2E|b

TX|2 ≤ 1
2 ||b||

2
2E||X||22 <∞,

E||φ′(bTX)X||2 = E|bTX|||X||2 ≤ ||b||2E||X||22 <∞.

P(bTX = 0) < 1 follows from Σ > 0 in view of Lemma A.2.
Moreover, we have: E(Y |X = x) = P(Y = 1|X = x) ∈ [0, 1] ⊂ R = (φ′(−∞), φ′(+∞)).
Hence existence of β∗ follows from Corollary A.10.

Remark A.14. Unique β∗ exists for probit loss:

l(b,x, y) = −y ln Φ(xTb)− (1− y) ln
(
1− Φ(xTb)

)
,

if the following conditions are satisfied: E||X||22 <∞, Var X = Σ > 0 and P(Y = 1|X =
x) ∈ (0, 1) PX a.e.

Proof. Firstly, we observe that log Φ(x) is strictly concave function, as we have:

(log Φ(x))′′ = φ(x)(−xΦ(x)− φ(x))
Φ2(x) < 0,
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where φ(x) = Φ′(x) > 0 and xΦ(x) + φ(x) > 0 what follows from Mill’s inequality (see
Gordon (1941)):

x

x2 + 1 <
1− Φ(x)
φ(x) <

1
x
.

Analogously log(1− Φ(x)) = log Φ(−x) is strictly concave function. π(s) = Φ(s) is a cdf
of N (0, 1) hence the assumptions of Theorem A.6 regarding monotonicity and limits in
±∞ of Φ are satisfied. From Birnbaum’s inequality (see Birnbaum (1942)) valid for x > 0:

1− Φ(x) > 2φ(x)√
x2 + 4 + x

and from inequality
√
x2 + 4 ≤ x+ 2 for x > 0 we have:

E| ln
(
1− Φ(bTX)

)
| = −E ln

(
1− Φ(bTX)

)
= −E ln

(
1− Φ(bTX)

)
I(bTX > 0)

− E ln
(
1− Φ(bTX)

)
I(bTX ≤ 0)

≤ −E ln
(
2φ(bTX)

)
I(bTX > 0)

+ E ln
(√

(bTX)2 + 4 + bTX
)
I(bTX > 0) + P(bTX ≤ 0) ln 2

≤ −P(bTX > 0) ln 2 + 1
2E(bTX)2I(bTX > 0) + P(bTX > 0) ln

√
2π

+ E(
√

(bTX)2 + 4 + bTX− 1)I(bTX > 0) + ln 2

≤ 1
2E(bTX)2I(bTX > 0) + P(bTX > 0) ln

√
π

2
+ E(

√
(bTX)2 + 4bTX + 4 + bTX− 1)I(bTX > 0) + ln 2

≤ 2 ln 2 + 1
2 ||b||

2
2E||X||22 + 2||b||2E||X||2 + 1 <∞.

Analogously we obtain E| ln Φ(bTX)| = E| ln
(
1− Φ(−bTX)

)
| <∞. This means that β∗

exists and is unique in view of Corollary A.11.

A.2. Elliptically contoured distributions

Main aim of this section is to discuss basic properties of elliptically contoured distri-
butions and their relation with linear regressions condition, which is used in Chapters
2-3.

Definition A.15. We say that random vector X ∈ Rp, where p ∈ N follows elliptically
contoured distribution with parameters µ ∈ Rp, Σ ∈ Rp×p, where Σ is nonnegative definite
matrix (Σ ≥ 0) if characteristic function of X is of the form ψX(t) = eit

Tµφ(tTΣt) for all
t ∈ Rp and some φ : R→ C. In this case we write X ∼ ECp(µ,Σ, φ).

Definition A.16. We say that random vector X ∈ Rp, where p ∈ N follows spherically
contoured distribution if characteristic function of X is of the form ψX(t) = φ(tT t) for all
t ∈ Rp and some φ : R→ C. In this case we write X ∼ SCp(φ).
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Remark A.17. If X ∼ Np(µ,Σ), then X ∼ ECp(µ,Σ, φ), where φ(s) = e−
s
2 .

Theorem A.18 (Cambanis et al. (1981, Theorem 1)). X ∼ ECp(µ,Σ, φ) with rank Σ = k,

where k ≤ p if and only if
X d= µ + AU(k)R,

where R ≥ 0 is independent of U(k), U(k) is uniformly distributed on the unit sphere in
Rk, Σ = AAT is a rank factorization of Σ (A ∈ Rp×k, rank A = k), and the distribution
function F of R is related to φ as follows:

φ(u) =
∫

[0,∞)

Ωk(r2u) dF (r),

where u ≥ 0, Ωk(t) := Ωk(||t||2) (t ∈ Rk) is the characteristic function of U(k).

Theorem A.19 (Cambanis et al. (1981, Corollary 5)). Let

X = µ + AU(k)R ∼ ECp(µ,Σ, φ)

with AAT = Σ and rank A = rank Σ = k ≥ 1. Further, let

X = (XT
1 ,XT

2 )T , µ = (µT
1 ,µ

T
2 )T , Σ =

Σ11 Σ12

Σ21 Σ22

 ,
where X1,µ1 ∈ Rm, Σ11 ∈ Rm×m, and assume k2 = rank Σ22 ≥ 1 and k1 = k − k2 ≥ 1.
Finally let S denote the column space of Σ22. Then a regular conditional distribution of
X, given X2 = x2, is given by:

(X1|X2 = x2) ∼ ECm(µx2 ,Σ
∗, φd(x2)) for x2 ∈ µ2 + S,

(X1|X2 = x2) d= µ1 for x2 6∈ µ2 + S,

with a full rank representation

(X1|X2 = x2) d= µx2 + A∗U(k1)Rd(x2) for x2 ∈ µ2 + S,

where µx2 = µ1+Σ12Σ−22(x2−µ2), Σ∗ = Σ11−Σ12Σ−22Σ21, d(x2) = (x2−µ2)TΣ−22(x2−µ2),
Σ−22 is a generalized inverse of Σ22 and Σ∗ = A∗A∗T is a rank factorization of Σ∗ and
rank A∗ = k1. Moreover, Rd(x2) is independent of U(k1).

Corollary A.20. Let X ∈ Rp be a random vector such that E||X||2 <∞ and assumptions
of the Theorem A.19 are satisfied. Then for all β ∈ Rp such that βTΣβ 6= 0 we have for
all z ∈ R:

E(X|XTβ = z) = µ + Σβ(βTΣβ)−1(z − µTβ).

Proof. Since X ∼ ECp(µ,Σ, φ), then we have (XT ,XTβ)T ∼ ECp+1(µ̃, Σ̃, φ), where

µ̃ = (µT ,µTβ)T and Σ̃ =
 Σ Σβ

βTΣ βTΣβ

 .
To prove this statement, we observe that:

ψ(XT ,XTβ)T ((tT , s)T ) = EetTX+sXTβ = EeXT (t+sβ) = ψX(t + sβ)
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= ei(t+sβ)Tµφ((t + sβ)TΣ(t + sβ)) = ei(t
T ,s)µ̃φ((tT , s)Σ̃(tT , s)T ).

Hence from Theorem A.19 we obtain for z ∈ R:

(X|XTβ = z)T d= µ + Σβ(βTΣβ)−1(z − µTβ) + A∗U(k)Rd(z).

Because E||X||2 <∞ and EU(k) = 0 and U(k) and Rd(z) are independent, we get:

E(X|XTβ = z) = µ + Σβ(βTΣβ)−1(z − µTβ).

Proof of the following Corollary is identical to proof of Corollary A.20.

Corollary A.21. Let X ∈ Rp be a random vector such that E||X||2 <∞ and all of the
assumptions of the Theorem A.19 are satisfied. If Σ > 0 and B ∈ Rp×k is a matrix such
that rank B = k. Then for all z ∈ Rk we have:

E(X|XTB = z) = µ + ΣB(BTΣB)−1(z−BTµ).

Now we want to characterize distributions of X satisfying conclusion of Corollary
A.21. Lemma A.22 is a basic tool here, as it allows to characterize spherically contoured
distributions and is used in Theorem A.23 to characterize elliptically contoured distributions
(see also Hardin (1982) for similar results).

Lemma A.22 (Eaton (1986, Theorem 1)). Suppose the random vector X ∈ Rp satis-
fies E||X||2 < ∞. Assume that for each vector v 6= 0p and for each vector u which is
perpendicular to v (that is uTv = 0),

E(uTX|vTX) = 0. (A.2)

Then X is spherically contoured and conversely, if X is spherically contoured, then (A.2)
is satisfied.

Theorem A.23. Suppose the random vector X ∈ Rp (p ≥ 2) satisfies E||X||2 < ∞,
EX = µ. Assume that exists Σ ∈ Rp×p, Σ > 0 and k ∈ {1, . . . , p − 1} such that for all
B ∈ Rp×k with rank B = k the following equality holds:

E(X|BTX) = (Ip −ΣB̃(B̃TΣB̃)−1B̃T )µ + ΣB(BTΣB)−1BTX. (A.3)

Then X ∼ ECp(µ,Σ, φ) for some function φ : R→ C.

Proof. From the Lemma 3.19 we get for Z = X− µ:

E(Z|BTZ) = ΣB(BTΣB)−1BTZ. (A.4)

As Σ is invertible because it is positive definite, we define V = Σ−
1
2Z and C = Σ

1
2B. After

substitution of this equalities into (A.4) we obtain for every C ∈ Rp×k with rankC = k:

E(V|CTV) = C(CTC)−1CTV. (A.5)
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Now we will prove thatV follows spherically contoured distribution. Let b1 = b ∈ Rp\{0p}
be any vector and let bk+1 = w ∈ Rp be vector perpendicular to b. We can find vectors
b2, . . . ,bk ∈ Rp \ {0p} such that all vectors bi for i = 1, . . . , k + 1 are orthogonal as
1 ≤ k < p (for example by Gram-Schmidt orthogonalization). Let C = [b1, . . . ,bk]. Then
we have in view of (A.5):

E(wTV|bTV) = E(E(wTV|CTV)|bTV) = wTC︸ ︷︷ ︸
0Tk

(CTC)−1E(CTV|bTV) = 0.

This means that V follows spherically contoured distribution in view of Lemma A.22 and,
consequently, X = Σ

1
2V + µ follows elliptically contoured distribution.

A.3. Existence, sparseness and uniqueness of β̂L

Facts presented in this section concern model without intercept, but they can be easily
generalized to the case of the model with intercept. The following lemma shows that
unique β̂L exists when pn ≤ n. This lemma holds for logistic, probit and quadratic loss
functions, as they are strictly convex and non-negative.

Lemma A.24. If (X1, Y1), . . . , (Xn, Yn) ∈ Rpn × {0, 1} is a random sample, ρ(·, y) is
strictly convex function bounded from below by m ∈ R, pn ≤ n, λ > 0,X = (X1, . . . ,Xn)T

and rankX = pn, then exists unique

β̂L = arg min
b∈Rpn

(
1
n

n∑
i=1

ρ(bTXi, Yi) + λ||b||1
)
.

Proof. We note that for b1,b2 ∈ Rpn with b1 6= b2 we have Xb1 6= Xb2, as rankX = pn.
Hence there exists i0 ∈ {1, . . . , n} such that bT1 Xi 6= bT2 Xi. Let hi(b) = ρ(bTXi, Yi) for
i = 1, . . . , n. Strict convexity of ρ gives for α ∈ [0, 1]:

hi0(αb1 + (1− α)b2) < αhi0(b1) + (1− α)hi0(b2).

Hence hi0 is strictly convex. Moreover hi are convex from convexity of ρ for all i ∈ {1, . . . , n}.
Function:

Pn(b) = 1
n

n∑
i=1

ρ(bTXi, Yi) + λ||b||1 = 1
n

n∑
i=1

hi(b) + λ||b||1

is strictly convex as a sum of strictly convex and convex functions. This means that Pn is
continuous. Moreover, Pn(b) is coercive, as we have:

Pn(b) ≥ m+ λ||b||1 → +∞

for ||b||1 → +∞. Thus the existence of β̂L follows from Lemma A.3. Uniqueness of β̂L

follows from strict convexity of Pn.
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Proofs of Lemmas A.25, A.26 and Theorem A.27 below are strengthtened versions of
the proof of Theorem 3 in Rosset et al. (2004) which do not use differentiability of loss
function. Theorem A.27 shows that there exist sparse Lasso solutions having at most n
nonzero coefficients, when pn ≥ n for a general loss function ρ provided a solution exists.

Lemma A.25. Let s : R → R be defined as s(t) = ||b + ta||1 for t ∈ R, b,a ∈ Rpn and
a 6= 0pn . Then there exists t∗ = arg min s(t) and i ∈ supp a satisfying bi + t∗ai = 0.

Proof. Let S = {k ∈ {1, . . . , pn} : ak 6= 0}. Then we obtain:

s(t) =
∑
k∈Sc
|bk|+

∑
k∈S
|ak| ·

∣∣∣∣∣ bkak + t

∣∣∣∣∣ .
Without losing of generality we can assume that S = {k1, . . . , kl} for some l ∈ N and:

bk1

ak1

≥ . . . ≥ bkl
akl
.

Let
m = min

{
s

(
− bk1

ak1

)
, . . . , s

(
− bkl
akl

)}
.

Since for every i ∈ {2, . . . , l} and t ∈
[
−bki−1/aki−1 ,−bki/aki

]
function s is linear, we obtain

for such t
s(t) ≥ min

{
s

(
−
bki−1

aki−1

)
, s

(
− bki
aki

)}
≥ m.

Analogously, from the fact that lim
|t|→±∞

s(t) = +∞, for t ∈ I1 = (−∞,−bk1/ak1 ] and
t ∈ I2 = [−bkl/akl ,+∞) and from linearity of s we obtain

s(t) ≥ s

(
− bk1

ak1

)
≥ m and s(t) ≥ s

(
− bkl
akl

)
≥ m

for t belonging to I1 and I2 respectively. We thus have: s(t) ≥ m for t ∈ R. Hence for
some t∗ = −bi/ai function s achieves its minimum, what proves our claim.

Lemma A.26. Let g : Rn → R be some function and let h : R+ ∪ {0} → R be
non-decreasing function. Let X ∈ Rn×pn and f : Rpn → R - a function defined as:

f(b) = g(Xb) + h(||b||1).

Then for every b ∈ Rpn such that | supp b| > rankX there exists c ∈ Rpn such that
| supp c| ≤ rankX and f(c) ≤ f(b).

Proof. Columns of matrix Xsupp b are linearly dependent as | suppb| > rankX. This means
that exists a ∈ Rpn \ {0pn} such that supp a ⊆ suppb and Xa = 0. Now we consider a
function d : R→ R:

d(t) = f(b + ta) = g(X(b + ta)) + h(||b + ta||1) = g(Xb) + h(||b + ta||1).
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To find the minimum of function d, we have to minimize s(t) = ||b + ta||1 for t ∈ R, as h
is non-decreasing. Function s is convex, therefore its minimum exists. In view of Lemma
A.25 there exists t∗ = arg min s(t) and exists i ∈ supp b such that bi + t∗ai = 0. We take
that t∗ and define c1 = b + t∗a. Then d(t∗) ≤ d(0), what implies f(c1) ≤ f(b). From our
choice of t∗ we get supp c1 ⊂ suppb and | supp c1| ≤ | suppb| − 1. If | supp c1| ≤ rankX,
we take c = c1 and the lemma is proven. If not, then we iterate this procedure (by setting
b := c1) and after finite number of steps we obtain c having the desired properties.

Theorem A.27. Let (X1, Y1), . . . , (Xn, Yn) ∈ Rpn × {0, 1} is a random sample, ρ : R×
{0, 1} → R and λ > 0. Let

Pn(b) = 1
n

n∑
i=1

ρ(bTXi, Yi) + λ||b||1

and assume that there exists
c = arg min

b∈Rp
Pn(b).

Then there exists b0 = arg min
b∈Rp

Pn(b) such that | supp b0| ≤ rankX ≤ n.

Proof. Our proof starts with the observation that if | supp c| ≤ rankX, then we take
b0 = c. If not, then in view of Lemma A.26 there exists a such that Pn(a) ≤ Pn(c) and
| supp a| ≤ rankX. This means that a = arg min

b∈Rp
Pn(b) and we take b0 = a.

Theorem A.28. Let ρ(·, y) be a differentiable function for all y. Assume that there does
not exist set J, a ∈ R|J | \ {0|J |} and σ ∈ {−1, 1}|J | such that |J | > n, XJa = 0n and
σTa = 0. Then every vector β̂L minimizing Pn defined in Theorem A.27 has at most n
nonzero coefficients.

Proof. Suppose the assertion of the theorem is false. Then exists β̂L minimizing Pn which
has more than n nonzero coefficients. Let J = {j ∈ {1, . . . , pn} : β̂L,j 6= 0}. Equation
(4.10) for indices in J takes the form:

λ sgn β̂
T

L,J = vTXJ .

By our assumption about β̂L, we have |J | > n and there exists a ∈ R|J | \ {0|J |} such that
XJa = 0|J |. Thus we get: λ sgn β̂

T

L,Ja = vTXJa = 0. Taking σ = sgn β̂L,J ∈ {−1, 1}|J |

proves the theorem by contradiction.

For completeness we state two known results which concern uniqueness of the solution
defined in Theorem A.27.

Theorem A.29. If assumptions of Theorem A.28 are satisfied, ρ(·, y) is strictly convex for
all y and for every M ⊂ {1, . . . , pn} with |M | ≤ n columns of XM are linearly independent,
then β̂L minimizing Pn defined in Theorem A.27 is unique.

Proof. Proof is identical with the proof of Theorem 5 in Rosset et al. (2004).
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Theorem A.30. (Lemma 5 in Tibshirani (2013)) If X ∈ Rn×pn has entries drawn from a
continuous probability distribution on Rnpn , ρ(·, y) is differentiable, strictly convex function
for all y and ρ(b, y) > −∞ for all b, y, then for any λ > 0 β̂L minimizing Pn defined
in Theorem A.27 is unique with probability 1 and this solution has at most min{n, pn}
nonzero coefficients.

Note that result of theorem above holds in particular for quadratic and logistic loss
and also for dependent observations.

A.4. Selected properties of subgaussian random variables

In this section we present definition and basic properties of subgaussian random
variables which are used in Chapters 4-5.

Definition A.31. We call a random variable X ∈ R subgaussian if there exists σ ≥ 0
that for all t ∈ R we have E exp(tX) ≤ exp(t2σ2/2). If variable X satisfies this property,
we will write X ∼ Subg(σ2).

Lemma A.32. If X ∼ Subg(σ2), then we have:

1. EX = 0,
2. EX2 ≤ σ2,
3. for all t ≥ 0: P(|X| ≥ t) ≤ 2e−

t2
2σ2 ,

4. for all p ≥ 1: E|X|p ≤ pσp
√

2pΓ
(
p
2

)
,

5. for all η ∈ [0, 1): E exp
(
ηX2

2σ2

)
≤ 1√

1−η .

Proof. For the proofs of statements 1 and 2 we use inequality:

1 + tEX + t2EX2

2 ≤ EetX ≤ e
t2σ2

2 .

Using lim
x→0

(ex − 1)/x = 1 and above inequality yields:

EX ≤ lim
t→0+

e t2σ2
2 − 1
t2σ2

2
· tσ

2

2 −
tEX2

2

 = 0

and

EX ≥ lim
t→0−

e t2σ2
2 − 1
t2σ2

2
· tσ

2

2 −
tEX2

2

 = 0.

This means that EX = 0. Proof of statement 2 can be conducted in the same fashion,
using EX = 0:

EX2 ≤ lim
t→0

e
t2σ2

2 − 1
t2σ2

2
· σ2 = σ2.
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To prove statement 3, firstly we use Chernoff’s inequality for λ > 0 and inequality
max{a, b} ≤ a+ b for a, b ≥ 0:
P(|X| ≥ t) ≤ e−λtEeλ|X| = e−λtEmax{eλX , e−λX} ≤ e−λt(EeλX + Ee−λX) ≤ 2e−λt+λ2σ2

2 .

Taking optimal λ = t/σ2 gives statement 3. Proof of statement 4 uses known representation
of moments of random variables, statement 3 and moments of normal distribution:

E|X|p =
∞∫
0

P(|X| ≥ t)ptp−1dt ≤
∞∫
0

2e−
t2

2σ2 ptp−1dt = pσp
√

2pΓ
(
p

2

)
.

Proof of statement 5 can be found in Lemma 7.4 in Baraniuk et al. (2011).

Remark A.33. If random variable X is bounded: X ∈ [a, b] for some a ≤ b and EX = 0,
then X ∼ Subg((b− a)2/4).

Proof. See Lemma 2.6 in Massart (2007) for proof.

The following two lemmas show that sum of subgaussian random variables is always
subgaussian. Moreover, in the case of dependent random variables, Lemma A.35 gives
worse subgaussianity constant than Lemma A.34 and thus results from Chapters 4-5 cannot
be easily generalized to the case of dependent observations.

Lemma A.34. If Xi ∼ Subg(σ2
i ) for i = 1, . . . , n are independent then ∑n

i=1Xi ∼
Subg (∑n

i=1 σ
2
i ).

Proof. From independence and subgaussianity of Xi for i = 1, . . . , n we have:

Eet
∑n

i=1 Xi =
n∏
i=1

EetXi ≤
n∏
i=1

e
t2σ2

i
2 = e

t2
∑n

i=1 σ
2
i

2 .

Lemma A.35. If Xi ∼ Subg(σ2
i ) then ∑n

i=1Xi ∼ Subg
(
(∑n

i=1 σi)
2
)
.

Proof. We prove this lemma by induction. If n = 1, then it is obvious. Assume that lemma
is true for some n ∈ N+. Then for n+ 1 in view of Hölder’s inequality, subgaussianity of
Xn+1 and induction assumption we have for λ1, λ2 ≥ 1 such that λ−1

1 + λ−1
2 = 1:

Eet
∑n+1

i=1 Xi ≤ (Eetλ1Xn+1)
1
λ1 (Eetλ2

∑n

i=1 Xi)
1
λ2 ≤ exp

(
t2σ2

n+1λ1

2

)
exp


t2λ2

(
n∑
i=1

σi

)2

2

 .
(A.6)

We take

λ1 =

n+1∑
i=1

σi

σn+1
, λ2 =

n+1∑
i=1

σi

n∑
i=1

σi
.

Note that

1
λ1

+ 1
λ2

= σn+1
n+1∑
i=1

σi

+

n∑
i=1

σi

n+1∑
i=1

σi

= 1.
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Thus (A.6) gives:

Eet
∑n+1

i=1 Xi ≤ exp
(
t2σ2

n+1λ1

2

)
exp


t2λ2

(
n∑
i=1

σi

)2

2



= exp


t2σn+1

(
n+1∑
i=1

σi

)
+ t2

(
n∑
i=1

σi

)
·
(
n+1∑
i=1

σi

)
2

 = exp


t2
(
n+1∑
i=1

σi

)2

2

 .
This ends the proof.

Lemma A.36. Let Zj ∼ Subg(σ2) for j ∈ A and |A| > 1. Then

Emax
j∈A
|Zj| ≤

7
2σ
√

ln |A| (A.7)

Proof. Using union inequality and statement 3 from Lemma A.32 gives

P(max
j∈A
|Zj| > t) ≤

∑
j∈A

P(|Zj| > t) ≤ 2|A| exp
(
− t2

2σ2

)
.

Hence for any positive c:

Emax
j∈A
|Zj| =

∞∫
0

P
(

max
j∈A
|Zj| > t

)
dt ≤ c+ 2|A|

∞∫
c

exp
(
− t2

2σ2

)
dt

≤ c+ 2|A|
c

∞∫
c

t exp
(
− t2

2σ2

)
dt = c+ 2|A|

c
σ2 exp

(
− c2

2σ2

)
.

For c =
√

2σ2 ln |A| we obtain:

Emax
j∈A
|Zj| ≤

√
2σ2

√ln |A|+ 1√
ln |A|

 ≤ 7
2σ
√

ln |A|,

where the last inequality uses the fact that√
2√

ln |A|
≤
√

2√
ln 2
≤ 2.05

√
ln 2 ≤ 2.05

√
ln |A|

and that 2.05 +
√

2 ≤ 7/2.

Below we give an auxiliary proof of known inequality for Γ function, which will be
used in Lemma A.38. It is strengthened version of inequality in Lemma 1 in Minc and
Sathre (1964):

log(Γ(x))− ((x− 1/2) log(x)− x+ log(2π)/2) < 1/x < 1 ∀ x > 1

and it uses ideas from the proof of that Lemma.

Lemma A.37.
Γ(x) <

√
2πxx− 1

2 e−x+ 1
12x

for x > 0.
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Proof. We use the following Binet’s formula (see Bateman (1953, Chapter I, Section 1.9
Equation (4), p.21)):

log Γ(z) =
(
z − 1

2

)
log z − z + 1

2 log(2π) +
∞∫
0

( 1
et − 1 −

1
t

+ 1
2

)
· 1
t
e−tzdt, (A.8)

where Re z > 0. Now we prove that for t > 0:( 1
et − 1 −

1
t

+ 1
2

)
· 1
t
≤ 1

12 .

Multiplying both sides by 12t2(et − 1) and arranging terms shows that we need to prove:

(et − 1)(t2 − 6t+ 12) > 12t. (A.9)

Observe that
et ≥ 1 + t+ t2

2 + t3

6 + t4

24 + t5

120 .

Thus using the above inequality and t2 − t+ 2 > t2 − 2t+ 2 = (t− 1)2 + 1 > 0 gives for
t > 0:

(et − 1)(t2 − 6t+ 12) ≥
(
t+ t2

2 + t3

6 + t4

24 + t5

120

)
· (t2 − 6t+ 12) (A.10)

= 1
120t

5(t2 − t+ 2) + 12t > 12t. (A.11)

This means that for x > 0:

log Γ(x) <
(
x− 1

2

)
log x− x+ 1

2 log(2π) + 1
12

∞∫
0

e−txdt

=
(
x− 1

2

)
log x− x+ 1

2 log(2π) + 1
12x,

what proves our statement.

We state first two auxiliary Lemmas which will be used in proofs of Lemmas 4.8, 4.14
and 5.1. The following Lemma used in the proof of Lemma 4.8 which is interesting in its
own right states that a product of a subgaussian random variable by a bounded one is
subgaussian provided it has expectation zero. Explicit value of subgaussianity parameter
is provided.

Lemma A.38. Assume that S ∼ Subg(σ2) and T is random variable such that |T | ≤M,

where M is some positive constant and E(ST ) = 0. Then ST ∼ Subg(τ 2M2σ2), where
τ = e

13
24 · 4/ 4

√
27 ≤ 3.02.

Proof. Since S is subgaussian and T is bounded, we obtain using Lemma A.32 p. 3:

P(|ST | ≥ t) ≤ P
(
|S| ≥ t

M

)
≤ 2e

−t2
2σ2M2 . (A.12)

From the above inequality, by using the same argument as in Vershynin (2012), it follows
that for p ≥ 2:

E|ST |p =
∞∫
0

P(|ST | ≥ t)ptp−1dt ≤
∞∫
0

2e−
t2

2M2σ2 ptp−1dt = pMpσp
√

2pΓ
(
p

2

)
. (A.13)
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By applying the above inequality and well known inequalities (see Robbins (1955) and
Lemma A.37):

Γ
(
p

2

)
≤
√

2π
(
p

2

) p
2−

1
2
e−

p
2 + 1

6p , p! ≥
√

2πpp+ 1
2 e−p,

we obtain using EST = 0

EetST = 1 +
∞∑
p=2

tpE(ST )p
p! ≤ 1 +

∞∑
p=2

|t|pMpσp2
√
πp

p
2 + 1

2 e−
p
2 + 1

6p

p!

≤ 1 +
∞∑
p=2

|t|pMpσp2
√
πp

p
2 + 1

2 e−
p
2 + 1

6p

√
2πpp+ 1

2 e−p
= 1 +

∞∑
p=2

(
|t|Mσ

√
e

√
p

)p√
2e

1
6p

≤ 1 +
∞∑
p=2

(
|t|Mσ

√
e

√
p

)p√
2e 1

12 . (A.14)

Observe that for k ≥ 2 we have (see Robbins (1955)):

k! <
√

2πkk+ 1
2 e−k+ 1

12k ≤
√

2πe 1
24kk+ 1

2 e−k ≤ ekk+ 1
2 e−k.

Hence for k ≥ 1 (for k = 1 both sides of first inequality are equal):

k! ≤ ekk+ 1
2 e−k ≤ e

1
2kke−

k
2 .

Thus we obtain for C ≥ 0:

eC
2t2 = 1 +

∞∑
k=1

(t2C2)k
k! ≥ 1 +

∞∑
k=1

C|t|e 1
4

√
k

2k

· e−
1
2 . (A.15)

In order to show that EetST ≤ eC
2t2 , we prove that the series in (A.15) bounds from above

the sum appearing in the bound of EetST . To this end, consider the function

f(x) = xx(x+ 1)x+1

(x+ 1
2)2x+1

which is decreasing for x ≥ 1 and thus

f(x) ≤ f(1) = 32
27 .

This implies

kk(k + 1)(k+1) ≤ 32
27

(
k + 1

2

)2k+1
.

Hence from the inequality x2 + y2 ≥ 2xy and the inequality above we haveC|t|e 1
4

√
k

2k

+
 C|t|e 1

4
√
k + 1

2k+2

≥ 2(C|t|e 1
4 )2k+1

√
k
k√
k + 1k+1 ≥

√
27
8

 C|t|e 1
4√

k + 1
2

2k+1

. (A.16)

Define for a ≥ 0

Ia =
∞∑
k=1

 C|t|e 1
4

√
k + a

2(k+a)

and I =
∞∑
p=2

C|t|e 1
4
√

2
√
p

p .
From inequalities I0 ≥ I1, (A.16), I0 ≥ 0 and I0 + I 1

2
= I we have

I0 ≥
3
4I0 + 1

4I1 ≥
1
2I0 +

√
27
128I

1
2
≥
√

27
128I.

From the last inequality and (A.15) we obtain

eC
2t2 ≥ 1 + e−

1
2 I0 ≥ 1 + e−

1
2

√
27
128I. (A.17)
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Note that for C ≥Mσe
13
24 4
√

64/27 we have
∞∑
p=2

(
|t|Mσ

√
e

√
p

)p√256
27 e

7
12 ≤

∞∑
p=2

 |t|Mσe
1
2

√
p
· e

7
24 · 4

√
256
27

p ≤ I. (A.18)

From (A.18) and the bound for EetST in (A.14) we have

EetST ≤ 1 + e1/12

√
27
256e

−7/12 × I ≤ eC
2t2 (A.19)

for C ≥Mσe
13
24 4
√

64/27, where the last inequality in (A.19) follows from (A.17). This ends
the proof.

The following Lemma is a version of Lemma A.38 for independent variables S and T
and is used in the proof of Lemmas 4.14 and 5.1. Note that it gives smaller subgaussianity
constant than Lemma A.38.

Lemma A.39. Assume that S ∼ Subg(σ2) and T is random variable such that |T | ≤M,

whereM is some positive constant and S and T are independent. Then ST ∼ Subg(M2σ2).

Proof. Observe that:

EetST = E(E(etST |T )) ≤ Ee
t2T2σ2

2 ≤ e
t2M2σ2

2 .

A.5. Inequalities related to Rademacher averages

Theorems in this section are useful for finding expectation bounds for expressions of
the form:

sup
b∈A:||b−β∗||p≤r

|(Rn(b)−R(b))− (Rn(β∗)−R(β∗))|, (A.20)

where empirical risk
Rn(b) = 1

n

n∑
i=1

ρ(bTXi, Yi)

was defined in 4.3, R(b) = ERn(b), A ⊆ Rp and p ≥ 1. Note that the symmetrization
inequality given below in Theorem A.40 is a special case of Lemma 2.3.1 in van der Vaart
and Wellner (1996). The version given below is sufficient in our applications. Theorem
A.41 was originally formulated in Ledoux and Talagrand (1991) for contractions, but we
observe that it holds for Lipschitz function g : R → R with constant L > 0, if we take
g/L instead of g. Moreover, assumption g(0) = 0 in can be easily omitted by taking
ρ(b, y)− ρ(0, y) instead of ρ(b, y) in Lemmas 4.14 and 5.1. Boundedness of f(Xi) assumed
in Theorem 4.12 in Ledoux and Talagrand (1991) is not needed in the Theorem A.41,
because we can prove the result conditionally on (Xi)i, assume integrability of appropriate
functions and take expectations of both sides.

115



APPENDIX A. AUXILIARY DEFINITIONS AND LEMMAS

Theorem A.40 (Symmetrization inequality, see van der Vaart and Wellner (1996, Lemma
2.3.1)). Let Φ : R+ → R+ be nondecreasing, convex function and X1, . . . ,Xn be independent
random variables with values in Rp. Let F be some set of measurable functions f : Rp → R.
Assume that: EΦ(2 supf∈F |f(Xi)|) < ∞, sup

f∈F
E|f(Xi)| < ∞ for all i = 1, . . . , n. Let

ε1, . . . , εn be i.i.d. Rademacher variables independent of (Xi)i=1,...,n, ie. P(εi = ±1) = 0.5.
Then we have:

EΦ
(

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− Ef(Xi))
∣∣∣∣∣
)
≤ EΦ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)
∣∣∣∣∣
)
.

Theorem A.41 (Talagrand-Ledoux inequality, see Ledoux and Talagrand (1991, Theorem
4.12)). Let Φ : R+ → R+ be convex and increasing and X1, . . . ,Xn be independent random
variables with values in Rp. Let F be some set of measurable functions f : Rp → R.
Let g : R → R be Lipschitz function with constant L > 0 and g(0) = 0. Assume that
EΦ(2L sup

f∈F
|f(Xi)|) <∞ for all i. Let ε1, . . . , εn be i.i.d. Rademacher variables independent

of (Xi)i=1,...,n. Then we have:

EΦ
(

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εig(f(Xi))
∣∣∣∣∣
)
≤ EΦ

(
2L sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)
∣∣∣∣∣
)
.

A.6. Lasso consistency for logistic regression with intercept

We consider setup of Chapter 4 for model with intercept when logistic lasso is fitted.
The following theorem is a modification of Theorem 5 in Fan et al. (2014a) which was

stated for logistic model without intercept. The proof is based mainly on the proof of that
theorem (see Fan et al. (2014b)) and only differences in key inequalities are written down.
The crucial difference in the present proof is a term |β̂L,0 − β∗0| in (A.21) (compare (2) in
Fan et al. (2014b)).

Theorem A.42. If (Xi, Yi)i=1,...,n are random variables such that ||DRn(β∗)||∞ ≤ λ
2 ,

λ ≤ κn
20K|s∗0|

, where

κn = inf
∆∈C

∆TD2Rn(β∗)∆
∆T∆

,

C = {∆ ∈ Rpn+1 : 3||∆s∗0
||1 ≥ ||∆̃s∗c ||1},

s∗0 = s∗ ∪ {0}

and
K = max

i=1,...,n
j=0,1,...,pn

|Xij|,

then we have:
||β̂L − β∗||2 ≤ 5|s∗0|1/2λκ−1

n .
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Proof. By definition of β̂L we have:

Rn(β̂L) + λ||ˆ̃βL||1 ≤ Rn(β∗) + λ||β̃∗||1.

Definition of β̂L, convexity of Rn(β∗) and condition ||DRn(β∗)||∞ ≤ λ
2 yield:

||β̃∗||1 ≥ λ−1(Rn(β̂L)−Rn(β∗)) + ||ˆ̃βL||1 ≥ λ−1DRn(β∗)T (β̂L − β∗) + ||ˆ̃βL||1

≥ −1
2 ||β̂L − β∗||1 + ||ˆ̃βL||1

Now, definition of l1 norm, fact that β̃
∗
s∗c = 0|s∗c|, triangle inequality: ||ˆ̃βL,s∗||1 ≥ ||β̃

∗||1 −
||ˆ̃βL,s∗ − β̃

∗||1 and again definition of l1 norm give:

||β̃∗||1 ≥ −
1
2 ||β̂L − β∗||1 + ||ˆ̃βL||1 = −1

2 |β̂L,0 − β∗0| −
1
2 ||

ˆ̃βL − β̃
∗||1 + ||ˆ̃βL||1

= −1
2 |β̂L,0 − β∗0| −

1
2 ||

ˆ̃βL,s∗ − β̃
∗
s∗||1 −

1
2 ||

ˆ̃βL,s∗c ||1 + ||ˆ̃βL,s∗||1 + ||ˆ̃βL,s∗c ||1

= −1
2 |β̂L,0 − β∗0| −

1
2 ||

ˆ̃βL,s∗ − β̃
∗
s∗||1 + ||ˆ̃βL,s∗||1 + 1

2 ||
ˆ̃βL,s∗c||1

≥ −1
2 |β̂L,0 − β∗0| −

1
2 ||

ˆ̃βL,s∗ − β̃
∗
s∗ ||1 + ||β̃∗||1 − ||ˆ̃βL,s∗ − β̃

∗||1 + 1
2 ||

ˆ̃βL,s∗c ||1

= −1
2 |β̂L,0 − β∗0| −

3
2 ||

ˆ̃βL,s∗ − β̃
∗||1 + ||β̃∗||1 + 1

2 ||
ˆ̃βL,s∗c||1.

Hence, using again that β̃
∗
s∗c = 0, rearranging terms and multiplying the above inequality

by 2, we obtain:

3||ˆ̃βL,s∗ − β̃
∗||1 + |β̂L,0 − β∗0| ≥ ||

ˆ̃βL,s∗c − β̃
∗
s∗c||1. (A.21)

Now, we define a map F : Rpn+1 → R:

F (∆) = Rn(β∗ + ∆)−Rn(β∗) + λ(||β̃∗ + ∆̃||1 − ||β̃
∗||1)

and sets:
C̃ = {∆ ∈ Rpn+1 : 3||∆̃s∗ ||1 + |∆0| ≥ ||∆̃s∗c ||1} ⊆ C,

D = {∆ ∈ C : ||∆||2 = 5|s∗0|1/2λκ−1
n }.

Let G(u) = Rn(β∗ + u∆) for u ∈ R. Analogously, as in the proof of Theorem 5 in Fan
et al. (2014a), we obtain for ∆ ∈ D:

|G′′′(u)| ≤ K||∆||1G′′(u) ≤ K · 4
√
|s∗0|||∆||2G′′(u) = zG′′(u),

where
z = 4K

√
|s∗0|||∆||2 = 20K|s∗0|λ

κn
as ∆ ∈ D. Moreover, z ∈ [0, 1] from assumption on λ. Thus, from the Lemma A.52, we
obtain (see also (4) in the proof of Theorem 5 in Fan et al. (2014a)):

G(1)−G(0)−G′(0) ≥ G′′(0)h(z),

where h(z) = z−2(e−z + z − 1) and h(z) ≥ h(1) > 1/3 for z ∈ (0, 1] in view of Lemma
A.53. Hence we obtain for ∆ ∈ D:

Rn(β∗ + ∆)−Rn(β∗) ≥ DRn(β∗)T∆ + 1
3∆TD2Rn(β∗)∆. (A.22)
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Finally, from inequalities ||DRn(β∗)||∞ ≤ λ
2 , ||β̃

∗ + ∆̃||1 − ||β̃
∗||1 ≥ ||∆̃s∗c||1 − ||∆̃s∗||1

(see (3) in the proof of Theorem 5 in Fan et al. (2014a)) and (A.22) we have for ∆ ∈ C̃:

F (∆) ≥ DRn(β∗)T∆ + 1
3∆TD2Rn(β∗)∆ + λ(||β̃∗ + ∆̃||1 − ||β̃

∗||1)

≥ −λ2 ||∆||1 + κn
3 ||∆||

2
2 + λ(||∆̃s∗c ||1 − ||∆̃s∗ ||1)

= κn
3 ||∆||

2
2 −

λ

2 ||∆s∗0
||1 −

λ

2 ||∆̃s∗c ||1 + λ||∆̃s∗c ||1 − λ||∆̃s∗||1

= κn
3 ||∆||

2
2 + λ

2 ||∆̃s∗c ||1 −
λ

2 ||∆s∗0
||1 − λ||∆̃s∗ ||1

≥ κn
3 ||∆||

2
2 −

3λ
2 ||∆s∗0

||1

≥ κn
3 ||∆||

2
2 −

3λ
2
√
|s∗0|||∆||2 = 5|s∗0|λ2

6κn
> 0.

This ends the proof, because in a view of Lemma 4 in Negahban et al. (2012), we get
||β̂L − β∗||2 ≤ 5|s∗0|1/2λκ−1

n (see detailed explanation in the proof of Theorem 5 in Fan
et al. (2014a)).

A.7. Technical lemmas

Lemmas A.43 and A.44 can be used to check the sign of proportionality constant η in
Remark 2.17. Lemma A.44 is a slight modification of Lemma A.43 for strictly increasing
functions and has analogous proof.

Lemma A.43 (Thorisson (1995, Section 2)). Let U be a random variable and f, g : R→ R
be non-decreasing functions. Then Cov(f(U), g(U)) ≥ 0.

Lemma A.44. Let U be a random variable satisfying condition P(U = c) < 1 for all
c ∈ R and f, g : R→ R be strictly increasing functions. Then Cov(f(U), g(U)) > 0.

Proof. Since f and g are strictly increasing, then (f(x)− f(y))(g(x)− g(y)) > 0 for all
x, y ∈ R with x 6= y. Let V be an independent copy of variable U. Then

P(U = V ) = EI(U = V ) = EP(U = V |V ) < 1

from independence and we have:

0 < E(f(U)− f(V ))(g(U)− g(V ))I(U 6= V ) = E(f(U)− f(V ))(g(U)− g(V ))

= Ef(U)g(U) + Ef(V )g(V )− Ef(U)g(V )− Ef(V )g(U)

= 2Ef(U)g(U)− 2Ef(U)Eg(U) = 2 Cov(f(U), g(U)).
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Below we state Stein’s lemma which is useful in the semiparametric setup. First version
of this lemma appeared in Stein (1981). Proof of the most general version for multivariate
normal distribution (Lemma A.46) can be found in Liu (1994).

Lemma A.45. (Stein’s lemma for normal distribution) Suppose that the random vector
(Z1, Z2)T has a bivariate normal distribution and f : R→ R is a differentiable function
fulfilling E|f ′(Z1)| <∞, then

Cov(f(Z1), Z2) = Cov(Z1, Z2)Ef ′(Z1).

Lemma A.46. (Stein’s lemma for multivariate normal distribution) Suppose that the
random vector (ZT

1 ,ZT
2 )T , where Z1 ∈ Rm1 ,Z2 ∈ Rm2 has a multivariate normal distribution

and f : Rm2 → R is a differentiable function fulfilling E||Df(Z2)||2 <∞, then

Cov(Z1, f(Z2)) = Cov(Z1,Z2)EDf(Z2).

Lemma A.47 (Hjort and Pollard (1993, Lemma 2)). Suppose An : S → R, Bn : S → R
be a sequence of random functions defined on an open convex set S ∈ Rp. Assume that An
are convex functions. Let an = arg minv∈S An(v), bn = arg minv∈S Bn(v) and bn is unique.
Let δ > 0. If ||an − bn||2 ≥ δ then

sup
||v−bn||2≤δ

|An(v)−Bn(v)| ≥ 1
2 inf
||v−bn||2=δ

Bn(v)−Bn(bn).

Remark A.48. Lemma A.47 is true even when an is not unique.

Theorem A.49. Assume that Xn,X ∈ Rp+1 are random variables such that

E||Xn −X||2 → 0,

X is integrable and q is uniformly continuous. Let P(Yn = 1|Xn) = q(XT
nβ), P(Y =

1|X) = q(XTβ),
β∗n = arg min

b∈Rp+1
El(b,Xn, Yn)

and
β∗ = arg min

b∈Rp+1
El(b,X, Y ),

where l is a logistic loss (see (1.9)). Then we have β∗n → β∗.

Proof. Let fn(b) = l(b,Xn, Yn), f(b) = l(b,X, Y ). We first note that the uniform conver-
gence holds for |Efn(b)− Ef(b)| on bounded sets, that is, for any finite K:

sup
||b||2≤K

|Efn(b)− Ef(b)| → 0. (A.23)

Indeed, using definition of l, triangle inequality, the Schwarz’s inequality, the mean
value theorem and boundedness of q we get the following sequence of inequalities:

|Efn(b)− Ef(b)| ≤ |E(YnXnb− YXb)|+
∣∣∣E (ln (1 + eXT

nb
)
− ln

(
1 + eXTb

))∣∣∣
= |E(q(XT

nβ)Xnb− q(XTβ)Xb)|
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+
∣∣∣E (ln (1 + eXT

nb
)
− ln

(
1 + eXTb

))∣∣∣
≤ |E(q(XT

nβ)XT
nb− q(XTβ)XTb)|+ ||b||2E||Xn −X||2

≤ |E(q(XT
nβ)− q(XTβ))XTb|+ E|q(XT

nβ)||XT
nb−XTb|

+ ||b||2E||Xn −X||2
≤ E|(q(XT

nβ)− q(XTβ))XTb|+ 2||b||2E||Xn −X||2.

Now, observe that from uniform continuity of q, for any ε > 0 exists δ > 0 such that
for large n if ||Xn −X||2 < δ, then |q(XT

nβ)− q(XTβ)| < ε and we have for large n:

E|(q(XT
nβ)− q(XTβ))XTb| ≤ εEI(||Xn −X||2 < δ)|XTb|+ EI(||Xn −X||2 ≥ δ)|XTb|

≤ ε||b||2E||X||2 + ||b||2EI(||Xn −X||2 ≥ δ)||X||2 ≤ Cε||b||2,

where C is some constant. Convergence in (A.23) readily follows from this as ε > 0 was
arbitrary. We now prove that β∗n → β∗. If it does not hold then for a certain kn ∈ N,
kn → ∞ we have ||β∗kn − β∗||2 ≥ δ for some δ > 0. From uniqueness of β∗ and Lemma
A.47 for An = fkn , an = β∗kn , Bn = f and bn = β∗ it directly follows that:

sup
||b−β∗||2≤δ

|Efkn(b)− Ef(b)| ≥ 1
2(Ef(β∗)− sup

||b−β∗||2=δ
Ef(b)) > 0,

which contradicts (A.23).

Lemma A.50. Let U ∼ Nk(0, I), f : R→ R, f ∈ C2, f is bounded and η ∈ Rk. Then:

Ef(ηTU)UiUj =


Ef ′′(ηTU)ηiηj i 6= j

Ef(ηTU) + Ef ′′(ηTU)η2
i i = j

.

Proof. Let i 6= j. Then from Lemma A.45 we have:

Ef(ηTU)UiUj = E(UiE(f(ηTU)Uj|Ui)) = E(Ui · E(f ′(ηTU)|Ui) · Cov(ηTU, Uj|Ui))

= Ef ′(ηTU)Uiηj = Ef ′′(ηTU) Cov(ηTU, Ui)ηj = Ef ′′(ηTU)ηiηj.

Now let i = j. By integration by parts and the Stein’s lemma we have:

Ef(ηTU)U2
i = 1

(2π)n2

∫
Rk−1

exp

−
∑
j 6=i

u2
j

2

∫
R

f(ηTu)ui · ui exp
(
−u

2
i

2

)
dui

∏
j 6=i

duj

= 1
(2π)n2

∫
Rk−1

exp

−
∑
j 6=i

u2
j

2

∫
R

(f ′(ηTu)ηiui + f(ηTu)) exp
(
−u

2
i

2

)
dui

∏
j 6=i

duj

= Ef ′(ηTU)Uiηi + Ef(ηTU) = Ef ′′(ηTU)η2
i + Ef(ηTU).

Note that statement 1 of Lemma A.51 below is similar to Lemma A.44. However, it
uses different method of proof which is used also in the proof of statement 3 of Lemma
A.51.

Lemma A.51. (Expectation inequalities)
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1. Let a > 0, X ∈ R be a random variable such that P(X = 0) < 1, X ∈ L1,EX = 0. Let
f : R→ R be strictly increasing, bounded, positive function and Z - random variable
independent of X. Then Ef(aX + Z)X > 0.

2. If f : R→ R is positive, bounded function, U ∈ Rp is a random vector, E||U||2 <∞,
P(λTU 6= 0) > 0 for every λ ∈ Rp \ {0}. Then matrix Ef(ηTU)UUT is positive
definite for η ∈ Rp.

3. If f : R→ R is a function such that for every x > 0 we have f(x) > f(0) = 0 > f(−x),
X ∈ R is random variable such that P(X = 0) < 1 and E|f(X)X| < ∞, then
Ef(X)X > 0.

4. If X ∈ R is a random variable such that E|X| < ∞ and P(X = 0) < 1, then
Eq′′L(X)X < 0.

5. If X ∼ N (0, σ2) for some σ > 0, then Eq′′′L (X) < 0.
6. If X ∼ N (0, σ2), then the function f(u) = uEq′L(uX) is strictly increasing for u > 0.

Proof. 1. As f is strictly increasing and a > 0, we have:

Ef(aX + Z)X = Ef(aX + Z)XI(X > 0) + Ef(aX + Z)XI(X < 0)

> Ef(Z)XI(X > 0) + Ef(Z)XI(X < 0) = Ef(Z)X = Ef(Z)EX = 0.

2. For λ ∈ Rp \ {0}, we have:

λT (Ef(ηTU)UUT )λ = Ef(ηTU)||λTU||2I(λTU 6= 0) > 0.

3. Proof is analogous to proof of 1.
4. Note that −q′′L satisfies assumptions of p. 3 and is bounded. This ends the proof.
5. From Stein’s lemma we have: Eq′′L(X)X = σ2Eq′′′L (X), hence the inequality follows from

4.
6. Observe that from the Stein’s lemma we have: f(u) = σ−2 · EqL(uX)X. Hence f ′(u) =
σ−2 · Eq′L(uX)X2 > 0.

The following lemma (see Bach (2010)) provides inequality, which is used in Lemma
A.54 and Theorem A.42 (see (A.22)) to give quadratic lower bounds respectively for risk
function R and for empirical risk Rn when function ρ satisfies condition (stronger than
convexity) of the form: ∣∣∣∣∣∂3ρ

∂b3 (b, y)
∣∣∣∣∣ ≤ K(y)∂

2ρ

∂b2 (b, y).

for all b ∈ R, y ∈ {0, 1}. This condition is in particular satisfied for logistic loss (see
(A.25)). Lemma A.53 is an auxiliary fact to prove inequalities (A.22) and (A.24) - we note
that constant 1/3 occurring in them in quadratic terms can be replaced by e−1. Lemma
A.54 shows that the assumptions regarding quadratic lower bounds of risk function in
neighbourhood of β∗ (namely (MC) and (Cε(w))) are reasonable.
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Lemma A.52 (Bach (2010, Lemma 1)). Let g : R → R be a three times differentiable
function such that for all t ∈ R: |g′′′(t)| ≤ Sg′′(t) for some S ≥ 0. Then, for all t ≥ 0:

• g′′(0)
S2 (e−St + St− 1) ≤ g(t)− g(0)− g′(0)t ≤ g′′(0)

S2 (eSt − St− 1), if S > 0,
• g(t)− g(0)− g′(0)t = g′′(0)t2

2 , if S = 0.

Lemma A.53.
1
2 >

e−x + x− 1
x2 ≥ e−1

for x ∈ (0, 1].

Proof. Let f(x) = (e−x + x− 1)x−2. Using inequality e−x ≤ 1− x+ x2/2 for x ≥ 0 (where
equality holds only for x = 0) we obtain for x > 0:

f(x) < 1− x+ x2/2 + x− 1
x2 = 1

2 .

To prove the right inequality, we compute derivative of f :

f ′(x) = (−e−x + 1)x2 − (e−x + x− 1) · 2x
x4 = −x+ 2− e−x(x+ 2)

x3 .

We now prove that f ′(x) ≤ 0 for x ∈ (0, 1]. It is enough to prove that for x ∈ [0, 1]:

g(x) = −e−x(x+ 2)− x+ 2 ≤ 0.

Using again inequality e−x ≤ 1− x+ x2/2 for x ≥ 0 gives:

g′(x) = e−x(x+ 2)− e−x − 1 = e−x(x+ 1)− 1 ≤
(

1− x+ x2

2

)
(x+ 1)− 1 = 1

2(x− 1)x2.

Hence g′(x) ≤ 0 for x ∈ [0, 1]. This means that g(x) ≤ g(0) = 0 and f ′(x) = g(x)x−3 ≤ 0
for x ∈ (0, 1]. Thus function f is decreasing and we obtain:

e−x + x− 1
x2 = f(x) ≥ f(1) = e−1.

This ends the proof.

Lemma A.54. If R : Rpn+1 → R is a risk function (see (1.2)) for logistic loss defined
in (1.9), X ∈ Rpn+1 is bounded random vector: ||X||∞ ≤ M PX a.e., then for any
b1, b2 ∈ Rpn+1 with ||b1 − b2||1 ≤ 1/M we have:

R(b1) ≥ R(b2) +DR(b2)T (b1 − b2) + 1
3(b1 − b2)TD2R(b2)(b1 − b2). (A.24)

Proof. Firstly we observe that if ρ(b, y) = −yb+ ln
(
1 + eb

)
, then we have:∣∣∣∣∣∂3ρ

∂b3 (b, y)
∣∣∣∣∣ = eb

(1 + eb)2

∣∣∣∣∣1− eb1 + eb

∣∣∣∣∣ ≤ eb

(1 + eb)2 = ∂2ρ

∂b2 (b, y). (A.25)

Let t ∈ R and R̃(t) = R(b2 + t(b1 − b2)). We calculate that:

R̃′′(t) = E
∂2ρ

∂b2 (bT2 X + t(b1 − b2)TX, Y )((b1 − b2)TX)2,

R̃′′′(t) = E
∂3ρ

∂b3 (bT2 X + t(b1 − b2)TX, Y )((b1 − b2)TX)3.
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Hence in view of (A.25) and inequality |(b1−b2)TX| ≤ ||X||∞||b1−b2||1 ≤M ||b1−b2||1
we obtain:

|R̃′′′(t)| ≤ E
∣∣∣∣∣∂3ρ

∂b3 (bT2 X + t(b1 − b2)TX, Y )
∣∣∣∣∣ ∣∣∣(b1 − b2)TX

∣∣∣3
≤M ||b1 − b2||1E

∂2ρ

∂b2 (bT2 X + t(b1 − b2)TX, Y )
∣∣∣(b1 − b2)TX

∣∣∣2
= M ||b1 − b2||1R̃′′(t). (A.26)

Using Lemma A.52 for g = R̃ and S = M ||b1 − b2||1 yields for t ≥ 0:

R̃(t) ≥ R̃(0) + R̃′(0)t+ R̃′′(0) ·
(
e−M ||b1−b2||1t +M ||b1 − b2||1t− 1

M2||b1 − b2||21

)
.

Using definition of R̃, above inequality can be rewritten for t = 1 as:

R(b1) ≥ R(b2) +DR(b2)T (b1 − b2)

+ (b1 − b2)TD2R(b2)(b1 − b2) ·
(
e−M ||b1−b2||1 +M ||b1 − b2||1 − 1

M2||b1 − b2||21

)
.

Now, in view of inequality M ||b1−b2||1 ≤ 1, which follows from assumptions and Lemma
A.53 we have:

e−M ||b1−b2||1 +M ||b1 − b2||1 − 1
M2||b1 − b2||21

≥ e−1 >
1
3 .

This ends the proof, as

(b1 − b2)TD2R(b2)(b1 − b2) = EqL(bT2 X)(1− qL(bT2 X))((b1 − b2)TX)2 > 0.

Lemma A.55. If R : Rpn+1 → R is a risk function (see (1.2)) for quadratic loss defined in
(1.11), X ∈ Rpn+1 is a random vector such that E||X||22 ≤ ∞, then for any b1, b2 ∈ Rpn+1

we have:

R(b1)−R(b2) = DR(b2)T (b1 − b2) + 1
2(b1 − b2)TD2R(b2)(b1 − b2). (A.27)

Proof. Proof follows from Taylor’s expansion after noting that

R(b) = 1
2b

TEXXTb− bTXY + Y 2

and thus derivative of the order higher than 2 disappears.
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