Automata Theory and Formal Languages Class 3

Marcin Luckner, PhD
mluckner@mini.pw.edu.pl

Version 1.2

October 28, 2021

Regular language

- A regular language is a language generated by a regular expression.
- To show that a language is regular one can:
- create a regular expression,
- use the Myhill-Nerode lemma.
- To show that a language is not regular one can:
- use the pumping lemma contraposition,
- use the Myhill-Nerode lemma.

Myhill-Nerode lemma

Myhill-Nerode lemma
Language L is regular if and only if relation R_{L} induced by language L has the finite number of equivalence classes.

Myhill-Nerode lemma - example I

- Use Myhill-Nerode theorem to prove that the following language is regular
- The language L over alphabet $\Sigma=\{a, b\}$ without three adjacent identical letters.
aabbaa $\in L$, aaab $\notin L$

Myhill-Nerode lemma - example II

- Let us name the equivalence classes:
A_{a} words in L that end with a single a
$A_{a a}$ words in L that end with a double a
A_{b} words in L that end with a single b
$A_{b b}$ words in L that end with a double b
$A_{\epsilon}\{\epsilon\}$
A_{R} words that are not in L
- The union of the classes covers Σ^{*} :
- A word from the language must end with $a, a a, b, b b$ or be the empty word ϵ
- All other words are in A_{R}.

Myhill-Nerode lemma - example III

- Elements from the same class are in the relation:

$$
\begin{aligned}
& A_{a} \forall w \in A_{a} w z \in L \Longleftrightarrow \\
& z \in L \wedge z \text { starts with not more than one a } \\
& A_{a a} \forall w \in A_{a a} w z \in L \Longleftrightarrow \\
& z \in L \wedge z \text { does not start with a } \\
& A_{b} \forall w \in A_{b} w z \in L \Longleftrightarrow \\
& z \in L \wedge z \text { starts with not more than one } \mathrm{b} \\
& A_{b b} \forall w \in A_{b b} w z \in L \Longleftrightarrow \\
& z \in L \wedge z \text { does not start with b } \\
& A_{\epsilon} \forall w \in A_{\epsilon} w z \in L \Longleftrightarrow z \in L \\
& A_{R} \forall w \in A_{R} w z \in L \Longleftrightarrow z \in \emptyset
\end{aligned}
$$

Myhill-Nerode lemma - example IV

- Elements from other classes are not in the relation.
- It is enough to find z that attached to a word from one class creates a word from L and attached to a word from another class creates a word outside L.
- $A_{a}, A_{a \mathrm{a}}: z=a$
- $A_{a}, A_{b}: z=a a$
- $A_{a}, A_{b b}: z=a a$
- $A_{a}, A_{\epsilon}: z=a a$
- $A_{a}, A_{R}: z=a$
- $A_{a a}, A_{b}: z=a$
- $A_{a a}, A_{b b}: z=a$
- $A_{\text {aa }}, A_{\epsilon}: z=a$
- $A_{a z}, A_{R}: z=\epsilon$
- $A_{b}, A_{b b}: z=b$
- $A_{b}, A_{\epsilon}: z=b b$
- $A_{b}, A_{R}: z=b$
- $A_{b b}, A_{\epsilon}: z=b$
- $A_{b b}, A_{R}: z=\epsilon$
- $A_{\epsilon}, A_{R}: z=\epsilon$

Myhill-Nerode lemma - example V

A_{a} words in L that end with a single a $A_{a a}$ words in L that end with a double a A_{b} words in L that end with a single b $A_{b b}$ words in L that end with a double b $A_{\epsilon}\{\epsilon\}$
A_{R} words that are not in L

- The number of classes is 6 , which is finite.
- Therefore, L is regular.

Pumping lemma contraposition

Pumping lemma contraposition
If for any constant n_{L} there exists a word $z \in L$ such that
$\left(|z| \geq n_{L}\right) \wedge\left[\left(\forall_{u, v, w} z=u v w \wedge|u v| \leq n_{L} \wedge|v| \geq 1\right) \exists_{i=0,1,2 \ldots} . . z_{i}=u v^{i} w \notin L\right]$
then language L is not regular.

Pumping lemma contraposition - example I

- Use the pumping lemma contraposition to prove that the following language is not regular.
- The language $L=\left\{a^{i} b^{j}: i \geq j \geq 1\right\}$ over alphabet $\Sigma=\{a, b\}$

Pumping lemma contraposition - example II

- Use the pumping lemma contraposition we will show that exists such $z=u v w$ from L that pumping segment v we can create a word not in L.

1. For each $n \in N$ word

$$
z=a^{n} b^{n}
$$

belongs to language L.
2. Because $|u v| \leq n$ then $v=a^{k}$ where $k \leq n$.
3. Let us take $i=0$. then word

$$
z_{0}=a^{n-k} b^{n} \notin L
$$

Therefore, language L is not regular.

Pumping lemma contraposition - discussion

- The main aspect of the proof is a selection of $z=u v w$ word.
- Part $u v$ should be homogeneous. Then it is easier to describe all variants of v.
- The contraposition allows us to multiply $(i>1)$ or remove $(i=0) v$.
- The word should be on the edge of the language. Then it is easy to modify the word in a way that creates a word not in L.

Assignments I

1. Which of the following languages are regular? Prove your answer
1.1 The language $L=\left\{a^{i} b^{j} a^{k}: i, j, k \in N \wedge i+k \leq j \leq 100\right\}$ over alphabet $\Sigma=\{a, b\}$
1.2 The language $L=\left\{a^{i} b^{j} c^{k}: i, j, k \in N \wedge i+k \leq j\right\}$ over alphabet $\Sigma=\{a, b, c\}$
1.3 The language L over alphabet $\Sigma=\{a, b, c\}$, such that each sequence of identical letters is shorter than the previous one aaabbc $\in L$, aabbaac $\notin L$

Assignments II

2. Use Myhill-Nerode theorem to prove that the following languages are regular
2.1 The language L over alphabet $\Sigma=\{0,1\}$ contains words, which have at least two 1 's after a pair of adjacent 0 's and before the next pair of adjacent 0 ' or the end of a word. A sequence of three 0 's is threatened as a single pair. $10100101 \in L, 10100100 \notin L$
2.2 The language L over alphabet $\Sigma=\{0,1\}$ contains words, which are a binary representation of odd numbers without useless zeros.

Assignments III

3. Use the pumping lemma contraposition to prove that the following languages are not regular.
3.1 The language L over alphabet $\Sigma=\{0,1\}$, such that for each position of 1 in the word a sum of 1 's before position (including observed one) is bigger than a number of preceding pairs of adjacent 0's $100100101 \in L, 0010000100 \notin L$
3.2 The language L over alphabet $\Sigma=\{0,1\}$, a number of 1 's has a common factor, different than 1 , with the number of 0 's (different than 1)
$011000 \in L, 00101 \notin L$
