	_	
Name	Data	
INAIIIC	 Daie	

Test I, Example

For each task, a student takes a position on each statement circling the selected answer. Each correct answer has a value of one point. The lack of an answer gives zero points. An incorrect answer costs one point.

If the sum of points for a single task is negative, then the total assessment of the task is zero.

1. Find equivalence classes for the relation induced by a language L of words consisting of concatenated following non-empty strings of letters a, b, and c. When the number of a is even, the number of c is odd. When the number of a is odd, the number of c is even. The number of b is not relevant.

 $aabc, abbcc \in L, aac, abc \not\in L.$

Evaluate the following statements:

Statement		Answer	
The empty word ϵ creates a separate equivalence class $\{\epsilon\}$.	T	F	
The language L is regular.	T	F	
At least two classes have the finite number of elements.	T	F	
The number of the equivalence classes is higher than 8.	Т	F	

2. For language L over alphabet $\Sigma = \{a, b, c\}$ with the number of a twice as high as the number of b, and the number of b twice as high as the number of b evaluate the following statements:

Statement		Answer	
L is regular.	Т	F	
It is possible to create a context-free grammar for L .		F	
L is neither regular nor context-free.	Т	F	
In contraposition of the pumping lemma for a context-free grammar, it is enough to discuss vwx that contains only a symbols.	Т	F	

3. For the grammar $G = \{V = \{S, A, B, C\}, T = \{a, b, c, \}, P, S\}$

$$P \colon S \to ABC$$

$$A \to BCa|a$$

$$B \to BC|b$$

$$C \to c|\epsilon$$

evaluate the following statements:

Statement		Answer	
A translation of G into CNF needs not more than two new nonterminals.		F	
Productions from B can be replaced by $B \to bD b$ and $D \to C CD$		F	
The grammar contains some useless symbols.	Т	F	
The grammar contains unit production or such productions can be created during elimination of ϵ -productions.		F	

4. Using the CYK algorithm to check if word w = seeds belongs L(G)

$$G = (V = \{S, E, D\}, T = \{s, e, d\}, P, S)$$

$$P \colon S \to sEs|SD$$

$$E \to e|eE$$

$$D \to Ed|sDs$$

evaluate the following statements:

Statement		Answer	
Word w belongs to the language.	Т	F	
Exist at least two deriveration trees for w .	Т	F	
Word w can be deriverated from other symbol than S .	Т	F	
The algorytm CYK can be applied for the gramma in the current form.	Т	F	