
1

October 2005 Functional Programming for DB DB Foundations 1

data design separated from process design

↓

Database Foundations

the effect of process structure omitted for data design

↓

relationships between data and processes are of the first-order type
thus the final ‘technical’’ design is achieved by linear superposition

October 2005 Functional Programming for DB DB Foundations 2

CONCEPTUAL MODEL

VIEW A

VIEW B

VIEW C

INTERNAL MODEL

D
B
M
S mapping between

CONCEPTUAL and
INTERNAL models

mapping between
CONCEPTUAL and
EXTERNAL models

2

October 2005 Functional Programming for DB DB Foundations 3

•Data redundancy minimized

•Data shared amongst applications

•Data maintained centrally

•Common processes between applications

•Application software transparent

benefits

October 2005 Functional Programming for DB DB Foundations 4

R = (r1, r2, …ri-1, ri, ri+1, …rn)

• none of ri = (ri1, ri2, …)

Relational Model

• ∃ k = (ri, rj, …): [ΠR(k)] ≡ [R]

• {Ri} is closed under Π, σ, η, ...

FD: X → Y holds for R = (..., X, Y, ...)
 iff ∀ x ∈ X, [Πσ R(X=x)Y] ≤ 1

1NF

relational closure

identifier (PK)

functional dependency

relation as a constrained subset
of a product of simple domains

3

October 2005 Functional Programming for DB DB Foundations 5

{Ri} → {Sk}

• No transaction may

• violate entity integrity
• carry any risk of inconsistent updating

• cause loss of information

Relational Optimisation

• Minimized data redundancy

delete anomaly
insert anomaly
update anomaly

October 2005 Functional Programming for DB DB Foundations 6

R is in BCNF X1 X2 X3 X4 X5 X6 X7

χ

A 1NF relation R(X1, X2, ...Xn) is in BCNF iff:
for every attribute collection χ of R
 if any attribute not in χ is functionally dependent on χ

 then all attributes in R are functionally dependent on χ

Boyce-Codd Normal Form

4

October 2005 Functional Programming for DB DB Foundations 7

apply to a pair of relations
with comparable attributes

apply to a pair of union
compatible relations

UNION binary

DIFFERENCE binary

INTERSECTION binary

PRODUCT binary

PROJECTION unary

RESTRICTION unary

SELECTION unary

JOIN binary

DIVISION binary

co
nv

en
tio

na
l

se
t-o

pe
ra

tio
ns

co

m
pl

em
en

ta
ry

al

ge
br

a
op

er
at

io
ns

P R

P Q R

{ }

{ }

unary

binary

Relational Closure

Relational Algebra

October 2005 Functional Programming for DB DB Foundations 8

PROJECT

X

X

!

SELECT X=

X

A

B

C D

D ! G

E H

F

G

H

I

RESTRICT X= Y

X Y

A

B

C A

D ! E

E G

F

G

5

October 2005 Functional Programming for DB DB Foundations 9

JOIN X= S

U W X Y Q R S

A 1

B >< 12

C 43

D

U W X Y Q R S

A 12

C 1

D 12

DIVIDE

A B C D X

A B C

October 2005 Functional Programming for DB DB Foundations 10

[example] :-) print subject
class class_name
----- ---------------
C1 FICTION
C2 SCIENCE-FICTION
C3 NON-FICTION
C4 SCIENTIFIC
C5 POETRY
C6 DRAMA
Message: Relation subject returned.

[example] :-) print book
reference author title
--------- --------- ---------------------------

R003 JOYCE ULYSSES
R004 JOYCE ULYSSES
R023 GREENE SHORT STORIES
R025 ORWELL ANIMAL FARM
R033 LEM ROBOTS TALES
R034 LEM RETURN FROM THE STARS
R036 GOLDING LORD OF THE FLIES
R028 KING STRENGTH TO LOVE
R143 HEMINGWAY DEATH IN THE AFTERNOON
R149 HEMINGWAY TO HAVE AND HAVE NOT
Message: Relation book returned.

http://leap.sourceforge.net/

[example] :-) print index
author title class shelf
---------- ------------------------------ ----- -----
JOYCE ULYSSES C1 12
GREENE SHORT STORIES C1 14
ORWELL ANIMAL FARM C1 12
LEM ROBOTS TALES C2 23
LEM RETURN FROM THE STARS C2 23
GOLDING LORD OF THE FLIES C1 12
KING STRENGTH TO LOVE C3 24
HEMINGWAY DEATH IN THE AFTERNOON C3 22
HEMINGWAY TO HAVE AND HAVE NOT C1 12
Message: Relation index returned.

6

October 2005 Functional Programming for DB DB Foundations 11

[example] :-) b=(project (subject) (class))
 difference
 (project (index) (class))
Message: Relation b returned.

[example] :-) print b

class

C4
C5
C6
Message: Relation b returned.

[example] :-) quit
Message: Closing [s] database……

Π

SUBJECT

Π

INDEX

diff

October 2005 Functional Programming for DB DB Foundations 12

[example] :-) a = project (select (join (subject)(index)
(subject.class = index.class))

 (class_name = 'SCIENCE-FICTION'))
 (title)

Message: Relation a returned.

[example] :-) print a

title

ROBOTS TALES
RETURN FROM STARS

Message: Relation zzgxic returned.

[example] :-) quit
Message: Closing [s] database……

Π

SUBJECT

σ

INDEX

><

Π

SUBJECT σ

INDEX

><

7

October 2005 Functional Programming for DB DB Foundations 13

• separation of physical & logical aspects
• data - process independence
• high level of data abstraction
• universal & uniform data structure
• global behavioural rules
• set of higher-level operations
• structure optimisation algorithm

Why relational model has been so attractive ?

October 2005 Functional Programming for DB DB Foundations 14

• data - process independence

divorce from ADT

the only sensible way to do it:
→ make all operations universally
 applicable to every structure

the only sensible way to do it:
→ have one universal primitive

How was it possible

8

October 2005 Functional Programming for DB DB Foundations 15

any kind of ordering (set inclusion, tree, graph, convolution)
imposed on a structure contradicts relational foundations

→ evolution of RDB imminent

Conclusion

October 2005 Functional Programming for DB DB Foundations 16

Objectives

• structural simplicity → structural uniformity (regularity)

• separation of logical and physical aspects of database processing

• set-oriented processing → algebra-oriented processing

9

October 2005 Functional Programming for DB DB Foundations 17

M0 = {ADT, procedures}

M1 = {relations, r-operations} E. Codd

M2 = {nested relations, xr-operations} H. Korth at al.

M3 = {L, operations} D. Scott

M4 = {algebra (components, operations), transformations}

October 2005 Functional Programming for DB DB Foundations 18

KNOWLEDGE ::=

ELEMENTARY FACTS
• John Doe was born in London on 19 Nov 1962

• The car with a number plate B1 BYE is a Ferrari

SIMPLE RULES
• Every man has necessarily two parents of whom he is the child

• A person has sometimes a spouse and if X
 is the spouse of Y then Y is the spouse of X

• A car has (if any) only one owner. Conversely,
 an owner may have zero, one or several cars

COMPLEX RULES
• The sex of a person is not subject to any change

• A single person who marries may not be single again in the future

• A person may not be, at a given time, in two different places

DEDUCTIVE RULES
• if x > y then BIG:= x else BIG:= y

• square() = twice (twice ())

Abrial’s Binary Model

10

October 2005 Functional Programming for DB DB Foundations 19

WHEN THE MODEL DOES NOT KNOW A FACT OR A LAW ABOUT REALITY
THIS DOES NOT MEAN THAT THIS FACT OR LAW DOES NOT EXISTS,

CONSEQUENCE:

IF
THE MODEL HAS EXACTLY THE SAME KNOWLEDGE OF TWO OBJECTS
IT DOES NOT FOLLOW THEY ARE ONE AND THE SAME OBJECT.

THEREFORE

AN OBJECT ENTERING THE 'PERCEPTION FIELD' OF THE MODEL MUST
IDENTIFY ITSELF AS either NEW OBJECT or ALREADY KNOWN OBJECT

THE DESCRIPTION OF AN OBJECT INSIDE THE MODEL IS GIVEN VIA THE
CONNECTIONS (access functions) IT HAS WITH OTHER OBJECTS

October 2005 Functional Programming for DB DB Foundations 20

person_of_sex (MALE) = {JOHN, PETER}
person_of_sex (FEMALE) = {JANE, MARY}
age (JOHN) = {27}
person_of_age (50) = {PETER, MARY}
child (PETER) = {JANE}
parent (JANE) = {PETER, MARY}
. . .

JOHN

JANE

FEMALE

20

PETER

MARY

MALE

27

50

spouse

spouse
person_of_sex

child parent

11

October 2005 Functional Programming for DB DB Foundations 21

CATEGORIES

JOHN, JANE, PETER, MARY are PERSONs
27, 50, 20 are NUMBERs
MALE, FEMALE are SEXes

THUS, THE STRUCTURE OF THE EXAMPLE
CAN BE ABSTRACTED INTO

NUMBER PERSON SEX

sp
ou

s
e

child

pa
re

nt

sp
ou

s
e

AND FURTHER STILL INTO

CATEGORY

Ac
ce

ss
 fu

nc
tio

m

Ac
ce

ss
 fu

nc
tio

m

October 2005 Functional Programming for DB DB Foundations 22

CONNECTIONS MAY THEMSELVES REQUIRE SOME INFORMATION

EXAMPLE: PETER was_invited_by (PAUL and JANE) to PARIS on 15Jul1993

THIS CAN BE DESCRIBED BY BUILDING A NEW CATEGORY- INVITATION
AND THE FOLLOWING STRUCTURE

INVITATION

PERSON
PLACE DATE

invitation# 1257

PAUL Paris
15 July 1993

JANEPETER

inviti
ng

inv
ite

d

12

October 2005 Functional Programming for DB DB Foundations 23

defn CATEGORIES

PERSON = cat there is new category

JOHN = generate PERSON create new object of category

x ← generate PERSON

kill JOHN, kill x

October 2005 Functional Programming for DB DB Foundations 24

NUMBER PERSON SEX

sp
ou

s
e

child

pa
re

nt

sp
ou

s
e

age sex
of-sexof-age

r1 = rel (PERSON, SEX, sex = fun(1, 1), of_sex = fun (0,))

r2 = rel (PERSON, NUMBER, age = fun(1, 1), of_age = fun (0,))

r3 = rel (PERSON, PERSON, spouse = fun(0, 1), spouse)

r4 = rel (PERSON, PERSON, parent = fun(2, 2), child = fun (0,))8

8

8

a person has exactly one
sex, one age, two parents,
zero or one spouse and
any number of children

min max

