

NN - representation \& interpretation

SYNTAX
numeral ::= digit \mid numeral digit
digit $:=\{0,1,2,3, \ldots, r-1\}$
SEMANTICS
$0 \rightarrow$ zero
$1 \rightarrow$ one
$2 \rightarrow$ two

the meaning of the composite numeral is inferred
from the meaning of its constituent parts
meaning is a function that maps a string of d's into a unique number

OPERATIONS

42
51
Great, but what about + 1313729251 ?

Answer Part 1: automate
$12137=1^{*} 10^{4}+3^{*} 10^{3}+1^{*} 10^{2}+3^{*} 10^{1}+7^{*} 10^{0}$
$29251=2^{*} 10^{4}+9^{*} 10^{3}+2^{\star} 10^{2}+5^{*} 10^{1}+1^{*} 10^{0}$
since $(a+b)+(x+y)=(a+x)+(b+y)$ and $(a x+b x=(a+b) x$
$\begin{array}{lll}1 & 3 & 1\end{array}$

2	9	2	5	1
3	2	3	8	8

1	0	0	0	0
4	2	3	8	8

carry

Answer Part 3: automate further still

relation of equivalence in a non-empty set \mathbf{X} divides this set into disjoint, non-empty subsets (classes of equivalence) in the following way:
two elements $x, y \in X$ belong to the same class iff $x \approx y$ $|x|=\{y \in X: x \approx y\}$
integer may thus be defined as an equivalence class:

$$
\begin{array}{ll}
|(m, n)|=\{(p, q) \varepsilon(\mathbf{N N} \times \mathbf{N N}):(m, n) \approx(p, q)\} \\
|(1,1)|=\{(0,0),(1,1),(2,2) \ldots\} & \text { integer zero } \\
|(1,0)|=\{(1,0),(2,1),(3,2) \ldots\} & \text { integer +1 } \\
|(0,1)|=\{(0,1),(1,2),(2,3) \ldots\} & \text { integer -1 }
\end{array}
$$

Integer addition
$\left|\left(m_{1}, n_{1}\right)\right| \oplus\left|\left(m_{2}, n_{2}\right)\right|=\left|\left(m_{1}+m_{2}\right),\left(n_{1}+n_{2}\right)\right|$
Integer multiplication
$\left|\left(m_{1}, n_{1}\right)\right| \otimes\left|\left(m_{2}, n_{2}\right)\right|=\left|\left(m_{1} \times m_{2}+n_{1} \times n_{2}\right),\left(m_{1} \times n_{2}+n_{1} \times m_{2}\right)\right|$

NN -arithmetic is isomorphic to IN -arithmetics

Rational numbers can be defined similarly where

relation $\approx\left(p_{1}, q_{1}\right) \approx\left(p_{2}, q_{2}\right)$ iff $\left(p_{1} \otimes q_{2}\right)=\left(p_{2} \otimes q_{1}\right)$
$\mathrm{p}, \mathrm{q} \varepsilon \mathbf{I N}$


```
Suppose we need to evaluate the expression
(7+x)*(8+5*x) for x=4
->(7+4)* (8+5*4) }\quad->(7+4)* (8+5*4
->(7+4)* (8+20)
->(7+4)*28 }\quad->11*(8+20
->11* 28 }\quad->11*2
```


Church-Rosser property - the order of evaluations is immaterial

MANIPULATING EXPRESSIONS
$\lambda x .+x 1 \rightarrow_{\alpha} \lambda y .+y 1 \quad$ variable names are arbitrary
$\lambda \mathbf{x} .(\lambda \mathbf{y} . \mathbf{y x}) \mapsto_{\alpha} \lambda \mathbf{x} .(\lambda \mathbf{x . x x})$
but
$\lambda x .(\lambda y \cdot y x) \rightarrow_{\alpha} \lambda x .(\lambda z . z x)$
$\stackrel{1}{4}$
E
α-conversion rule
$\lambda \mathbf{x} . \mathrm{E} \rightarrow_{\alpha} \lambda \mathbf{z} .[\mathbf{z} \leftarrow \mathbf{x}] \mathrm{E}$
replace any bound \mathbf{x} by \mathbf{z} in \mathbf{E} provided that \mathbf{z} doesn't occur in \mathbf{E}

λ-expression that contains no reducible sub-expression is said to be in normal form

- not every expression has a normal form, for instance
$(\lambda x . \times x)(\lambda x . \times x) \rightarrow(\lambda x . \times x)(\lambda x . x \times) \rightarrow(\lambda x . \times x)(\lambda x . \times x) \rightarrow$.
- some reduction orders are more efficient than others:
(1) $\begin{aligned} & (\lambda x .1)(\lambda x . x x)(\lambda x . x x) \\ & (\lambda x .1)(\text { whatever }) \rightarrow 1\end{aligned}$

but
(2) $(\lambda x .1)(\lambda x . x \times)(\lambda x . x \times) \rightarrow(\lambda x .1)(\lambda x . x x)(\lambda x . x \times) \rightarrow \ldots$

NORMAL ORDER
($\lambda \mathrm{y} .(\lambda \mathrm{x} \cdot(\lambda z .(+\mathrm{zx})) 4) \mathrm{y}) 5$
$\rightarrow(\lambda x .(\lambda z .(+z x)) 4) 5$
$\rightarrow(\lambda z .(+z 5)) 4$
$\rightarrow(+45)$
$\rightarrow 9$

APPLICATIVE ORDER

$\lambda y .(\lambda x .(\lambda z .(+z x)) 4) y) 5$
$\rightarrow \lambda y .(\lambda x .(+4 x) y) 5$
$\rightarrow \lambda y .(+4 y) 5$
$\rightarrow(+45)$
$\rightarrow 9$

Church-Rosser Theorem

If λ-exp ${ }_{1} \leftrightarrow \lambda-\exp _{2}$ then there exists λ-exp such that
λ-exp ${ }_{1} \leftrightarrow \lambda$-exp
$\lambda-\exp _{2} \leftrightarrow \lambda$-exp

If λ-exp ${ }_{1} \leftrightarrow \lambda-\exp _{2}$ and λ - $\exp _{2}$ is in normal form then there exist a normal form reduction λ-exp $\boldsymbol{e x}_{1} \rightarrow \lambda$ - $\exp _{2}$
how does it work for numbers?

```
\(\lambda f . \lambda x . x \quad z e r o\)
\(\lambda f\). \(\lambda \mathrm{x}\) f x —
\(\lambda \mathbf{f} . \boldsymbol{\lambda} \mathbf{x} . \mathrm{f}(\mathrm{f} \mathbf{x})\) two how many times f is applied to \(\mathbf{x}\)
            4
Church numerals
successor \(\quad\) succ \(\equiv \boldsymbol{\equiv} \mathbf{n} . \boldsymbol{\lambda} \mathbf{f} \cdot \boldsymbol{\lambda} \mathbf{x} .(\mathbf{f}((\mathbf{n f}) \mathbf{x}))\)
```



```
\(\rightarrow \lambda f . \lambda x .(f(\lambda f . \lambda x . x f) \mathbf{x})\)
\(\rightarrow \lambda f . \lambda x .(f(\lambda g . \lambda y . y g) x)\)
\(\rightarrow \lambda f . \lambda x\). \(f(\lambda y . y) x)\)
\(\rightarrow \lambda f . \lambda x\). \((f x) \rightarrow\) one
```


Turing Machine, μ-recursive functions (Gödel), λ-calculus (Church),
formal grammars (Post), combinatory logic (Schönfinkel, Curry)

are computationally equivalent

Church Thesis every intuitively computable function is λ-definable
λ-calculus is about
processing functions by manipulating their abstractions using application and formal conversion rules
λ-calculus
everything in the computational process is represented via functions;
there are no other objects or types (bool, int, chars, strings, etc.) ; if they are needed they must be represented using functions
λ-calculus let us to analyse the functions

- without having to name them
- seeing their abstractions at all times
- being free from their intuitive properties
normal order β-reduction models lazy evaluation functional languages, such as Haskell

