
1

October 2005 Functional Programming for DB Hugs Lists 1

List manipulation

list - a collection of items of the same type

[1, 2, 3, 4] :: [Int]
[‘a’, ‘b’, ‘c’] :: String ≡ [Char]

[[1, 2], [2, 3]] :: [[Int]]

[] empty list
[1 .. 10] ≡ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[1, 3 .. 10] ≡ [1, 3, 5, 7, 9]

['s', 't', 'e', 'f', 'a', 'n'] ≡ "stefan"

++ concatenation operator
show [list] display list

Prelude> [1, 2, 3] ++ [8, 5]

[1,2,3,8,5]

Prelude> show [1, 2, 3]

"[1,2,3]"

Prelude> show ['a', 'b', 'c']

"\"abc\""

Prelude> show ["a", "b", "c"]

"[\"a\",\"b\",\"c\"]"

Prelude>

October 2005 Functional Programming for DB Hugs Lists 2

produce a list

[expression | generator, qualifiers]

Prelude> [2*n | n <- [2,4,7]]
[4,8,14]
Prelude> [2*n | n <- [1..10]]
[2,4,6,8,10,12,14,16,18,20]
Prelude> [x + y | x <- [1,2], y<- [3,4]]
[4,5,5,6]
Prelude>

evaluate
item generated
that conforms
to conditions

Prelude> [even a | a <- [2, 5, 1]]
[True,False,False]
Prelude> [even a | a <- [2, 5, 1], a < 5]
[True,False]
Prelude> [2 * a | a <- [1 .. 10], even a, a > 5]
[12,16,20]
Prelude>

Prelude> [(a, 2*4) | a <- [5 .. 9]]
[(5,8),(6,8),(7,8),(8,8),(9,8)]
Prelude> [(a, 2*a) | a <- [5 .. 9]]
[(5,10),(6,12),(7,14),(8,16),(9,18)]
Prelude> [(a, b) | a <- [1 .. 3], b <- [5 .. 7]]
[(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7)]
Prelude>

list comprehension

2

October 2005 Functional Programming for DB Hugs Lists 3

double :: [Int] -> [Int]
double x = [2 * a | a <- x]

Main> double [3]
[6]
Main> double [1 .. 5]
[2,4,6,8,10]
Main> double [5, 9, 3, 4]
[10,18,6,8]
Main>

getDigits :: [Char] -> [Char]
getDigits s = [c | c <-s, isDigit c]
-- isDigit c :: Char -> Bool is a Prelude function

Main> getDigits "a12b3"
"123"
Main>

October 2005 Functional Programming for DB Hugs Lists 4

divisors :: Int -> [Int]
divisors n = [d | d <- [1 .. n], mod n d == 0]

Main> divisors 1
[1]
Main> divisors 4
[1,2,4]
Main> divisors 6
[1,2,3,6]
Main> divisors 9
[1,3,9]
Main> divisors 13
[1,13]
Main>

3

October 2005 Functional Programming for DB Hugs Lists 5

is_prime :: Int -> Bool
is_prime n
 | n == 1 = True
 |otherwise = (divisors n == [1, n])

Main> is_prime 0
False
Main> is_prime 1
True
Main> is_prime 2
True
Main> is_prime 3
True
Main> is_prime 4
False
Main> is_prime 5
True
Main>

October 2005 Functional Programming for DB Hugs Lists 6

Main> addPairs [(1, 2), (3, 4), (5, 6)]
[3,7,11]
Main>

addPairs :: [(Int, Int)] -> [Int]
addPairs pairs = [a + b | (a, b) <- pairs]

matches :: Int -> [Int] -> [Int]
matches e x = [a | a <- x, a == e]

is_there :: Int -> [Int] -> Bool
is_there e x = length (matches e x) > 0

Main> matches 1 [2, 1, 3, 1, 1, 5]
[1,1,1]
Main> matches 5 [1,2,3]
[]
Main>
Main> is_there 1 [2, 1, 3, 1, 1, 5]
True
Main> is_there 1 [5, 6]
False
Main>

4

October 2005 Functional Programming for DB Hugs Lists 7

pattern matching on lists

every finite list is
 either empty []
 or contains head and tail x : xs

3 : [6, 9, 12, 15, 18] ≡ [3, 6, 9, 12, 15, 18]

head tail

a function is polymorphic if it has many types

length :: [Bool] -> Int
length :: [Int] -> Int
..................................

length :: [a] -> Int

stands for an
arbitrary value

type variable -
stands for an
arbitrary type

October 2005 Functional Programming for DB Hugs Lists 8

Prelude> 1: [2, 3, 4]
[1,2,3,4]
Prelude> 1 : 2 : 3 : 4 : []
[1,2,3,4]

Prelude> [3, 6, 9] ++ [12, 15, 18]
[3,6,9,12,15,18]

Prelude> concat [[3, 6, 9], [12, 15, 18]]
[3,6,9,12,15,18]

Prelude> reverse [12, 15, 18]
[18,15,12]

Prelude> zip [2, 3, 4] [4, 6, 8]
[(2,4),(3,6),(4,8)]
Prelude> zip [2, 3, 4] [1, 2, 3, 4, 5, 6]
[(2,1),(3,2),(4,3)]

Prelude> unzip [(2,1),(3,2),(4,3)]
([2,3,4],[1,2,3])

Prelude> zip [1, 2] [True, False]
[(1,True),(2,False)]
Prelude> zip ["a", "b", "c"] [1, 2, 3]
[("a",1),("b",2),("c",3)]

some standard functions

: a -> [a] -> a
add a single element to the front of the list

++ a -> [a] -> [a]
join two lists together

concat [[a]] -> [a]
concatenate a list of lists into a single list

zip [a] -> [a] -> [(a, b)]
two lists turned into a list of pairs

unzip [(a, b)] -> ([a], [b])
two lists turned into a list of pairs

5

October 2005 Functional Programming for DB Hugs Lists 9

Prelude> head [12, 15, 18]
12
Prelude> tail [12, 15, 18]
[15,18]
Prelude> head "Linz"
'L'
Prelude> tail "Linz"
"inz"
Prelude> head [1]
1
Prelude> length "Linz"
4
Prelude> length "123"
3
Prelude> length [1, 2, 3]
3
Prelude> length [(1,2), (2, 3)]
2
Prelude> length []
0
Prelude>

head [a] -> a
the first element of a list

tail [a] -> [a]
the remainder of the list

length [a] -> Int
the number of elements in the list

October 2005 Functional Programming for DB Hugs Lists 10

!! [a] -> Int -> a
the ‘Intth’ element of a list

reverse [a] -> [a]
treverse order of a elements

take Int -> [a] -> [a]
‘Int’ elements from the beginning of a list

drop Int -> [a] -> [a]
remove ‘Int’ elements from the beginning of a list

splitAt Int -> [a] -> ([a], [a])
split a list at a given position

Prelude> [14, 7, 3] !! 1
7
Prelude> [4, 7, 3, 5, 6] !! 0
4
Prelude> "Linz University" !! 5
'U'
Prelude> reverse [128, 15, 33,73]
[73,33,15,128]
Prelude> reverse "Kepler"
"relpeK"
Prelude> take 5 [1, 3, 5, 2, 4, 6, 7]
[1,3,5,2,4]
Prelude> take 2 "Linz"
"Li"
Prelude> drop 3 [1, 3, 5, 2, 4, 6, 7]
[2,4,6,7]
Prelude> drop 2 "Linz"
"nz"
Prelude> splitAt 8 "JohannesKepler"
("Johannes","Kepler")
Prelude> splitAt 2 [12, 14, 4, 18, 3]
([12,14],[4,18,3])
Prelude>

6

October 2005 Functional Programming for DB Hugs Lists 11

recursion over lists

 -- add up elements of a list

sumLint :: [Int] -> Int
sumLint [] = 0
sumLint (x : xs) = x + sumLint xs

Main> sumLint [2 .. 5]
14
Main> sumLint [1 .. 100]
5050
Main> sumLint [22, 35, 68]
125
Main>

sumLint [2,3,4,5]
→ 2 + sumLint [3,4,5]
→ 2 + (3 + sumLint [4,5])
→ 2 + (3 + (4 + sumLint [5]))
→ 2 + (3 + (4 + (5 + sumLint [])))
→ 2 + (3 + (4 + (5 + 0)))
→ 14

October 2005 Functional Programming for DB Hugs Lists 12

 -- length of the list
length :: [a] -> Int
length [] = 0
length (x : xs) = 1 + length xs

 -- reverse list
reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

 -- concatenate
conc :: [[a]] -> [a]
conc [] = []
conc (x : xs) = x ++ conc xs

7

October 2005 Functional Programming for DB Hugs Lists 13

-- conjunction of elements within list
andL :: [Bool] -> Bool
andL [] = True
andL (x : xs) = x && andL xs

Main> andL [True, False]
False
Main> andL [True, True]
True
Main> andL [True, True, False]
False
Main> andL [5==4, 25/2 >= 10]
False
Main> andL [5==5, 25/2 >= 10]
True
Main>

October 2005 Functional Programming for DB Hugs Lists 14

-- product of elements
timesL :: [Int] -> Int
timesL [] = 1
timesL (x : xs) = x * timesL xs

Main> timesL [1,3,5]
15
Main> timesL [2,5,7]
70
Main> timesL [1 .. 5]
120
Main>

8

October 2005 Functional Programming for DB Hugs Lists 15

-- add pairs of numbers in a list of tuples
addP :: [(Int, Int)] -> [Int]
addP [] = []
addP ((c, d) : xs) = [(c + d)] ++ addP xs

Main> addP [(1,2), (2,3), (3,4)]
[3,5,7]
Main> addP [head [(1,2),(2,3),(3,4)]]
[3]
Main> addP (tail [(1,2),(2,3),(3,4)])
[5,7]
Main>

October 2005 Functional Programming for DB Hugs Lists 16

-- membership of a list of integers
member :: [Int] -> Int -> Bool
member [] y = False
member (x : xs) y = (x == y) || member xs y

Main> member [1,2,3,4] 1
True
Main> member [10, 12, 3] 12
True
Main> member [1, 3, 5, 7, 11] 4
False
Main>

9

October 2005 Functional Programming for DB Hugs Lists 17

-- how many times element x occurs in the list xs
elemN :: Int -> [Int] -> Int
elemN s xs = length [a | a <- xs, a == s]

-- alternatively
elemN1 :: Int -> [Int] -> Int
elemN1 s [] = 0
elemN1 s (x : xs)
 | s == x = 1 + elemN1 s xs
 | otherwise = elemN1 s xs

Main> elemN 1 [1,2,1,1,4,5,1]
4
Main> elemN1 1 [1,2,1,1,4,5,1]
4
Main> elemN 9 [1,2,1,1,4,5,1]
0
Main> elemN1 9 [1,2,1,1,4,5,1]
0
Main>

October 2005 Functional Programming for DB Hugs Lists 18

-- list of numbers that occur exactly once in a given list
uniqueIN :: [Int] -> [Int]
uniqueIN xs = [a | a <- xs, elemN a xs == 1]

Main> uniqueIN [2,4,2,1,4,3,2]
[1,3]
Main> uniqueIN [2,4,2,1,4,3,2]
[1,3]
Main> uniqueIN [1,1,2,2,3,3]
[]
Main> uniqueIN [1,3,4,3,2,9,4,2,1]
[9]
Main> uniqueIN [1,2,3]
[1,2,3]
Main>

10

October 2005 Functional Programming for DB Hugs Lists 19

7 3 9 2

7 3 9 2

3 9 2

9 2

2

sortLIST

insHEAD sortTAIL

insHEAD sortTAIL

2

29 ≡ 92

2 9

:

2 93 ≡ 32 : 9

2 3 9

7 2 3 9 ≡ 2 : 7 3 9

2 3 7 9

-- where ins = insert into correct place

insertion sort

October 2005 Functional Programming for DB Hugs Lists 20

iSort :: [Int] -> [Int]
iSort [] = []
iSort (x : xs) = ins x (iSort xs)

ins :: Int -> [Int] -> [Int]
ins x [] = [x]
ins x (y : ys)
 | x <= y = x : y : ys
 | otherwise = y : ins x ys Main> iSort [1,2,3]

[1,2,3]
Main> iSort [7,3,9,2]
[2,3,7,9]
Main> iSort [1,1,2,3,5,2]
[1,1,2,2,3,5]
Main>

11

October 2005 Functional Programming for DB Hugs Lists 21

4 2 7 1

quick sort

4 5 6

4

2 1 4 7 5 6

p

left <= p right > p

1 2 4 5 6 7

1 2 4 5 6 74

4

October 2005 Functional Programming for DB Hugs Lists 22

qSort :: [Int] -> [Int]
qSort [] = []
qSort (x : xs) = qSort [y | y <- xs, y <= x] ++ [x] ++ qSort [y | y <- xs, y > x]

Main> qSort [1,2,3]
[1,2,3]
Main> qSort [7,3,9,2]
[2,3,7,9]
Main> qSort []
[]
Main> qSort [1]
[1]
Main> qSort [4,2,7,1,4,5,6]
[1,2,4,4,5,6,7]
Main>

