take functions as arguments

higher order functions -
ereturn functions as results

~ «or both
doubleL :: [Int] ->[Int] doubleL :: [Int] ->[Int]
double xs =[2* x| x<-xs] doubleL [] =11

doubleL [x:xs]=[2 * x : doubleL xs]

trebleL :: [Int] ->[Int] trebleL :: [Int] ->[Int]
trebleL xs =[3 *x | x<-xs] trebleL [] =11
trebleL [x : xs] =[3 * x : trebleL xs]

October 2005 Functional Programming for DB Higher Order Functions 1

mapf xs=[fx|x<-xs] map f[] =[1
mapf[x:xs]=[fx: mapfxs]

doubleL xs = map twice xs
where twice x =2 * x

October 2005 Functional Programming for DB Higher Order Functions 2

function IN our

map —>[a] > [b]

values for which

A " the type of values
the function can .
'h Jicd afier applying
¢ applie the function

map - apply some function to
every element of a list
thus yielding another list

. [7]3[o]2]
doubleL xs = map twice xs
where twice x =2 * x
[14] 6 [18] 4

October 2005 Functional Programming for DB Higher Order Functions 3

Main> doubleLambda [2, 7, 3, 12]
doubleLambda xs =map (\x ->2 * x) xs m;:;saz‘:}bleumbda [

[1
Main> doubleLambda [1]

[2]

Main>

-- lambda notation for local function defn

cnvrtC :: [Char] ->[Int] Main> cnvrtC "Stefan"

cnvrtC xs = map ord xs [83,116,101,102,97,110]
Main> cnvrtC ['a’, 'b’, 'c', 'd"]
[97,98,99,100]

October 2005 Functional Programming for DB Higher Order Functions 4

properties as functions
- getDigits :: [Char] -> [Char]
getDigits s = [c | ¢ <- s, isDigit c]
getDigits “a12b3cd7xy” -1237

—>» True —»
isDigit?
—> False
x has a property f if (f x) = True property f over type t t— Bool

isEven :: Int = Bool
isEven n = (mod n 2 ==0)

isSorted :: [Int] - Bool
isSorted xs = (xs == qSort xs)

October 2005 Functional Programming for DB Higher Order Functions 5
filtering
filter f[] =[] filter f xs =[x |x<-xs,f x]

filter f (x : xs)
| fx = x filter f xs
| otherwise = filter f xs

filter isSorted [[2,3,4,5], [], [7,3,6]] = [[2,3,4,5], []]

October 2005 Functional Programming for DB Higher Order Functions 6

folding

foldr1E [e,, e, €;, ..., e] =
=[e;E (e, E (..Ee, ...
=[e, E (foldr1 E [e,, e,, e, ..., €,])

foldr1 (+) [e,, e,, e,]
=e, (+) (foldr1 (+) [ezs 93])
=e,(+) e, (+) e,

October 2005 Functional Programming for DB Higher Order Functions 7
binary function
over type a result

foldr1 :: (a->a->a) ->[a] -> a
foldr1 f [x] =x

October 2005

foldr1 f (x : xs) = f x (foldr1 f xs)
-- at least one element in the list x

Main> foldr1 (+) [1,2,3,4]

10

Main> foldr1 (+) [1]

1

Main> foldr1 (+) []

Program error: {foldr1 (instNum_v30 Num_+) []}
Main> foldr1 (||) [True, False, False]

True

Main> foldr1 (++) ["Dark", "side", " ", "of”]
"Darkside of"

Main> foldr1 (*) [1 .. 7]

5040

Functional Programming for DB Higher Order Functions 8

take functions as arguments
return functions as results

«or both
higher order functions
IN
vop
cs3 % date process,
Saturday October 26 14:47:54 BST 2002
cs3 % f| grep p00 | cut -c48-58 v
Mon 10:18 ro
Mon 16:23 process;
Sat 14:32
Tue 14:38 v
Mon 10:30
cs3 % process;
Yout

sequence of processes:

for every process;e P , OUT-process; — IN-process;,4

October 2005 Functional Programming for DB Higher Order Functions 9

function composition

(f.g)x=f(gx)

a E?EI c > ()i (b>e) > (a->b)>(a->c)

typeof f typeofg typeoff.g

Prelude> and [(5 == 5), (3 > 5)]

False

Prelude> (not . and) [(5 == 5), (3 > 5)]
True

Prelude>cos (sin pi)

1.0

Prelude> (cos . sin) pi

1.0

Prelude>

Higher Order Functions

October 2005 Functional Programming for DB 10

twice -- function on function

twice f= (f.f)

— —> EE——
el ad s
A A A

must be of the same type

twice :: (a->a) -> (a->a)
twice = (\f ->f.f)

October 2005

(twice) :: (a -> a) -> (a -> a)

Main> succ 110

111

Main> succ (succ 110)
112

Main> (twice succ) 110
112

Main>

Higher Order Functions

Functional Programming for DB 1

... thrice, four-times, ..., n-times

ntimes :: Int -> (a -> a) -> (a -> a)
ntimes n f
In>0 =f . ntimes (n-1) f
| otherwise =id

identity

October 2005

Main> twice succ 110
112

Main> ntimes 2 succ 110
112

Main> ntimes 1 succ 110
111

Main> ntimes 0 succ 110
110

Main> ntimes 5 succ 110
115

Main>

Higher Order Functions

Functional Programming for DB 12

