
1

October 2005 Functional Programming for DB Higher Order Functions 1

higher order functions

doubleL :: [Int] -> [Int]
double xs = [2 * x | x <- xs]

doubleL :: [Int] -> [Int]
doubleL [] = []
doubleL [x : xs] = [2 * x : doubleL xs]

•take functions as arguments
•return functions as results
•or both

trebleL :: [Int] -> [Int]
trebleL xs = [3 * x | x <- xs]

trebleL :: [Int] -> [Int]
trebleL [] = []
trebleL [x : xs] = [3 * x : trebleL xs]

sin x
ord x
......

October 2005 Functional Programming for DB Higher Order Functions 2

map f xs = [f x | x <- xs] map f [] = []
map f [x : xs] = [f x : map f xs]

doubleL xs = map twice xs
 where twice x = 2 * x

2

October 2005 Functional Programming for DB Higher Order Functions 3

map :: (a b) [a] [b]
function IN OUT

values for which
the function can

be applied

the type of values
after applying
the function map - apply some function to

every element of a list
thus yielding another list

7 3 9 2

14 6 18 4

doubleL xs = map twice xs
 where twice x = 2 * x

October 2005 Functional Programming for DB Higher Order Functions 4

cnvrtC :: [Char] -> [Int]
cnvrtC xs = map ord xs

Main> cnvrtC "Stefan"
[83,116,101,102,97,110]
Main> cnvrtC ['a', 'b', 'c', 'd']
[97,98,99,100]

-- lambda notation for local function defn
doubleLambda xs = map (\x -> 2 * x) xs

Main> doubleLambda [2, 7, 3, 12]
[4,14,6,24]
Main> doubleLambda []
[]
Main> doubleLambda [1]
[2]
Main>

3

October 2005 Functional Programming for DB Higher Order Functions 5

properties as functions

getDigits “a 1 2 b 3 c d 7 x y” → 1 2 3 7

isDigit?

getDigits :: [Char] -> [Char]
getDigits s = [c | c <- s, isDigit c]

True

False

x has a property f if (f x) = True property f over type t t → Bool

isEven :: Int → Bool
isEven n = (mod n 2 == 0)

isSorted :: [Int] → Bool
isSorted xs = (xs == qSort xs)

October 2005 Functional Programming for DB Higher Order Functions 6

filtering

filter f [] = []
filter f (x : xs)
 | f x = x filter f xs
 | otherwise = filter f xs

filter f xs = [x | x <- xs, f x]

filter isSorted [[2,3,4,5], [], [7,3,6]] → [[2,3,4,5], []]

4

October 2005 Functional Programming for DB Higher Order Functions 7

folding

foldr1 ξ [e1, e2, e3, ..., en] =
=[e1 ξ (e2 ξ (... ξ en ...)

 = [e1 ξ (foldr1 ξ [e1, e2, e3, ..., en])

foldr1 (+) [e1, e2, e3]
= e1 (+) (foldr1 (+) [e2, e3])
= e1 (+) e2 (+) e3

October 2005 Functional Programming for DB Higher Order Functions 8

foldr1 :: (a -> a ->a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x : xs) = f x (foldr1 f xs)
-- at least one element in the list x

Main> foldr1 (+) [1,2,3,4]
10
Main> foldr1 (+) [1]
1
Main> foldr1 (+) []
Program error: {foldr1 (instNum_v30 Num_+) []}
Main> foldr1 (||) [True, False, False]
True
Main> foldr1 (++) ["Dark", "side", " ", "of”]
"Darkside of"
Main> foldr1 (*) [1 .. 7]
5040

binary function
over type a result

5

October 2005 Functional Programming for DB Higher Order Functions 9

higher order functions

cs3 % date
Saturday October 26 14:47:54 BST 2002
cs3 % f | grep p00 | cut -c48-58
 Mon 10:18
 Mon 16:23
 Sat 14:32
 Tue 14:38
 Mon 10:30
cs3 %

sequence of processes:
for every processi∈ P , OUT-processi → IN-processi+1

process1

process2

process3

IN

OUT

P

•take functions as arguments
•return functions as results
•or both

October 2005 Functional Programming for DB

Higher Order Functions
10

g f

Prelude> and [(5 == 5), (3 > 5)]
False
Prelude> (not . and) [(5 == 5), (3 > 5)]
True
Prelude>cos (sin pi)
1.0
Prelude> (cos . sin) pi
1.0
Prelude>

f . g

a b c (.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

type of f type of g type of f . g

function composition

6

October 2005 Functional Programming for DB

Higher Order Functions
11

f f

twice f = (f . f)

a a a

(twice) :: (a -> a) -> (a -> a)

must be of the same type

twice :: (a -> a) -> (a -> a)
twice = (\f -> f . f)

Main> succ 110
111
Main> succ (succ 110)
112
Main> (twice succ) 110
112
Main>

twice -- function on function

October 2005 Functional Programming for DB

Higher Order Functions
12

ntimes :: Int -> (a -> a) -> (a -> a)
ntimes n f
 | n > 0 = f . ntimes (n-1) f
 | otherwise = id

Main> twice succ 110
112
Main> ntimes 2 succ 110
112
Main> ntimes 1 succ 110
111
Main> ntimes 0 succ 110
110
Main> ntimes 5 succ 110
115
Main>

... thrice, four-times, ..., n-times

identity

