
1

October 2005 Functional Programming for DB Classes 1

type classes

isinBList :: Bool -> [Bool] -> Bool
isinBList x [] = False
isinBList x (y : ys] = (x == Bool y) || isinBList x ys

is this an element of this l ist (of type, say, Bool) ?

October 2005 Functional Programming for DB Classes 2

isinList :: a -> [a] -> Bool

generically

and restrict a to only those types that have equality defined over them

isinIList :: Int -> [Int] -> Bool
isinIList x [] = False
isinIList x (y : ys] = (x == Int y) || isinIList x ys

if the list was of type [Int]

2

October 2005 Functional Programming for DB Classes 3

overloading

there are two kinds of function which work over more than one class

• polymorphic - single definition which works over all its types

length :: [a] -> Int

length [] = 0
length (x : xs) = 1 + length xs

• overloaded - (e.g. equality, +, show) that can be used for many types but have
 different definitions for different types

October 2005 Functional Programming for DB Classes 4

type

typetypetype

type classes - collection of types

Int Float Bool

Char

type

[Int, Bool] [[Char]]

type

equality type class (Eq)

instance of Eq

== == ==

== == ==

class Eq where
 (==) :: a -> a -> Bool

3

October 2005 Functional Programming for DB Classes 5

same3 :: Int -> Int -> Int -> Bool
same3 m n p = (m == n) && (n == p)

same3 :: Eq a => a -> a -> a -> Bool

same3 m n p = (m == n) && (n == p)

in the context of

thus restricting a to types
such as:
 • Char,
 • Int,
 • (Int, Bool),
 • Float,
etc.

isinList :: Eq a => a -> [a] -> Bool
isinList x [] = False
isinList x (y : ys] = (x ==y) || isinList x ys

a - • Bool
 • Char
 • Int
 • (Int, Int)

October 2005 Functional Programming for DB Classes 6

class Eq a where
 (==), (/=) :: a -> a -> Bool
 x /= y = not (x == y)
 x == y = not (x /= y)

signature

definition of Eq

class Eq a => Ord where
 (<), (<=), (>) , (>=) :: a -> a -> Bool
 max, min :: a -> a -> a
 compare :: Ordering

derived class Ord

compare x y
 | x == y = EQ
 | x <= y = LT
 | otherwise = GT

class Ord inherits the operations of Eq

4

October 2005 Functional Programming for DB Classes 7

class Ord a => Enum a where
 toEnum :: Int -> a
 fromEnum :: a -> Int
 enumFrom :: a -> [a]
 enumFromThen :: a -> a -> [a]
 enumFromTo :: a -> a -> [a]
 enumFromThenTo :: a -> a -> a -> [a]

class Enum

 [n ..]
 [n, m ..]
 [n .. m]
 [n, n’ .. m]

ord :: Char -> Int
ord = fromEnum

ord :: Char -> Int
ord = fromEnum

fromEnum and toEnum convert between a and Int;
in case of Char

October 2005 Functional Programming for DB Classes 8

class Bounded a where
 minBound, maxBound :: a

Int, Char, Bool, Ordering
types

type ShowS = String -> String

class Show a where
 showPrec :: Int -> a -> ShowS
 show :: a -> String
 showList :: [a] -> ShowS

most types belong to Show

5

October 2005 Functional Programming for DB Classes 9

numeric types in Haskel
Int fixed precision integers
Integer all integers represented accurately
Float floating point numbers
Double Float in double precision
Rational

the basic class to which all numeric types belong is Num

October 2005 Functional Programming for DB Classes 10

class (Eq a Show a) a => Num a where
 (+), (-), (*) :: a -> a -> a
 negate :: a -> a
 abs, signum :: a -> a
 fromInteger :: Integer -> a
 fromInt :: Int -> a

 x - y = x + negate y
 fromInt = fromIntegral

integer types belong to the class Integral
whose signature include:

quot, rem :: a -> a -> a
div, mod :: a -> a -> a

