
1

October 2005 Functional Programming for DB Xtras 1

base types
 Int
 Float
 Bool
 Char

algebraic types
 • type of months January, ..., December
 • alternative e.g. elements can be either strings or numbers
 • trees

composite types
 tuples
 lists
 function

algebraic types

October 2005 Functional Programming for DB Xtras 2

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

enumerated types

defines 7 new constants called constructors

dayval :: Day -> Int

dayval Sun = 0
dayval Mon = 1
...........
dayval Sat = 6

2

October 2005 Functional Programming for DB Xtras 3

data People = Student Id Grade

product types

type Id = String
type Grade = Int

type name
constructor name

Student “BS02143” 86
Student “MS02187” 67

showStdnt :: People -> String
showStdnt (Student x y) = show x ++ “ “ ++ show y

October 2005 Functional Programming for DB Xtras 4

product versus tuple types

type Student = (Id, Grade)

type error will be identified in the
compiler/interpreter diagnostics

many Prelude polymorphic functions
exist (and thus can be ‘inherited’).

especially for pairs

each object must be explicitly
constructed by using the predefined

constructors

shorter definitions, more familiar
notation

each object of the type has an explicit
label of the purpose of the object

(meaning)

product types tuple types

the previous example could be defined as

3

October 2005 Functional Programming for DB Xtras 5

alternative types

data GeomS = Circle Float |

 Square Float |

Rect Float Float

area :: GeomS -> Float

area (Circle r) = pi * r ^ 2

area (Square a) = a ^ 2

area (Rect a b) = a * b

October 2005 Functional Programming for DB Xtras 6

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving (Eq, Ord, Enum, Show)

deriving instances of classes

built-in classess
Eq equality, inequality
Ord ordering of elements
Enum allows the type to be enumerated [n .. m] style
Show elements of the type to be turned into text form
Read values can be read from strings

which let us do
comparisons Mon == Mon, Mon /= Tue
represent via [Mon ... Fri]

4

October 2005 Functional Programming for DB Xtras 7

data Tree a
 = Nil |
 Node a (Tree a) (Tree a)
 deriving (Eq, Ord, Show, Read)

binary trees

depth :: Tree a -> Int
depth Nil = 0
depth (Node n t1 t2) = 1 + max (depth t1) (depth t2)

traverse :: Tree a -> [a]
traverse Nil = []
traverse (Node x t1 t2) = traverse t1 ++ [x] ++ traverse t2

10

14 20

17

12

... (Node 17 (Node 14 Nil Nil) (Node 20 Nil Nil)) ...

October 2005 Functional Programming for DB Xtras 8

binary trees

left, right :: Tree a -> Tree a

left (Node x ys zs) = ys
right (Node x ys zs) = zs

isinT :: Eq a => a -> Tree a -> Bool
isinT p Nil = false
isinT p (Node x ys zs) = (p == x) || isinT p ys || isinT p zs

10

14 20

17

12

mirrorT :: Tree a -> Tree a
mirror T Nil = Nil
mirrorT (Node x ys zs) = (Node x zs ys)

5

October 2005 Functional Programming for DB Xtras 9

evaluation

square (4 + 2)
 = square 6
 = 6 * 6
 = 36

applicative-order evaluation
reduce func expr

 • reduce expr as far as possible

 • expand definition of func
 and continue reducing

simple but may not terminate
fst (42, inf) where inf = 1 + inf

October 2005 Functional Programming for DB Xtras 10

evaluation

square (4 + 2)
 = (4 + 2) * (4 + 2)
 = 6 * (4 + 2)
 = 6 * 6
 = 36

normal-order evaluation
reduce func expr

 • expand definition of func,
 substituting expr as necessary

 • reduce result

avoids non termination fst (42, inf) = 42

may involve repeating work as in (4 + 2) * (4 + 2)

6

October 2005 Functional Programming for DB Xtras 11

lazy evaluation

square (4 + 2)
 = square x where x = (4 + 2)
 = x * x where x = (4 + 2)
 = x * x where x = 6
 = 36

as normal-order evaluation ...
reduce func expr

 • expand definition of func,
 substituting expr as necessary

 • reduce result

does not
• evaluate argument unless it is needed (normal order)
• evaluate argument more than once (applicative order)

but instead of copying arguments,
make pointers and share them

lazy evaluation wait with all computation for as long as possible

October 2005 Functional Programming for DB Xtras 12

example

sumSq n = sum (map (^2) [1 .. n])

 = sumSq 100
 = sum (map (^2) [1 .. 100])
 = sum (map (^2) (1: [2 .. 100]))
 = sum (1^2 : map (^2) [2 .. 100])
 = 1^2 + sum (map (^2) [2 .. 100])
 = 1 + sum (map (^2) [2 .. 100])
 = ...
 = 1 + (4 + sum (map (^2) [3 .. 100])
 = ...

in this evaluation never
the whole list [1 ..100]
is in existence

7

October 2005 Functional Programming for DB Xtras 13

infinite lists

head ones → 1

take 4 (map (^2) [1 ..]) → [1, 4, 9, 16]

if they were to be evaluated fully an infinite amount of time
 would have been needed - but we can compute with a part of
rather than the whole object

ones = 1 : ones
would generate [1, 1, 1, 1, 1, 1^C{Interrupted}

October 2005 Functional Programming for DB Xtras 14

some infinite lists

 [n ..] = [n, n+1, n+2, ...]

 [n, m ..] = [n, n + (m - n), n + 2 * (m - n), ...]

 repeat n = n : repeat n

 fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

 iterate :: (a -> a) -> a -> [a]
 iterate f x = x : iterate f (f x)

 primes = [n | n <- [2 ..], divisors n == [1, n]
 where divisors n = [d | d <- [1 .. n], (mod d n) == 0]

 getNprimes n = takeWhile (<= n) primes

8

October 2005 Functional Programming for DB Xtras 15

more infinite lists

repeat :: a -> [a]
repeat n = n : repeat n

twos :: [Int]
twos = repeat 2

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

Main> take 20 twos
[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

Main>

Main> take 10 (iterate (+2) 0)
[0,2,4,6,8,10,12,14,16,18]
Main> take 10 (iterate (+2) 1)
[1,3,5,7,9,11,13,15,17,19]
Main> take 10 (iterate (+3) 1)
[1,4,7,10,13,16,19,22,25,28]
Main> take 10 (iterate (+3) 5)
[5,8,11,14,17,20,23,26,29,32]
Main>

October 2005 Functional Programming for DB Xtras 16

modules

module Abcd where

 types
 functions

 calculateA =

Abcd.hs

module Bxyz where
 import Abcd
 types
 functions

 computeB =

Bxyz.hs

visible definitions of Abcd
are visible now in Bxyz

module Cpqr where
 import Bxyz

Cpqr.hs
definitions of Abcd
not visible in Cpqr

9

October 2005 Functional Programming for DB Xtras 17

modules - EXPORT CONTROL

module Bxyz (computeSum, Abcd (..), calculateA) where ...

names of defined objects

constructors of the type are
 exported with the type itself

• stating explicitly which definitions are exported

• all visible definitions of the specified modules are exported

module Bxyz (module Bxyz, module Abcd) where ...

October 2005 Functional Programming for DB Xtras 18

modules - IMPORT CONTROL

import Abcd (specificaltion of what is to be imported)

• stating explicitly which definitions are to be imported

import Abcd hiding (specificaltion what is to be concealed)

• stating explicitly which definitions are to be hidden

import qualified Abcd

• stating explicitly the need for qualification of names from Abcd

means that objects defined in Abcd
must be used as Abcd.object-name

10

October 2005 Functional Programming for DB Xtras 19

ADTs as modules

module Queue (Queue, emptyQ, isEmptyQ, addQ, delQ) where
 emptyQ :: Queue a
 isEmptyQ :: Queue a -> Bool
 addQ :: a -> Queue a -> Queue a
 delQ :: Queue a -> Queue a

 newtype Queue a = Q [a]

 emptyQ = Q []

 isEmptyQ (Q []) = True
 isEmptyQ _ = False

addQ x (Q xs) = Q (xs ++ [x])

delQ (Q (_ :xs) = Q xs
delQ (Q []) = error “cannot remove from empty Q”

as data but will not
permit the use of the
Prelude list functions

signature

implementation

October 2005 Functional Programming for DB Xtras 20

queue via two lists

module Queue (Queue, emptyQ, isEmptyQ, addQ, delQ) where
 emptyQ :: Queue a
 isEmptyQ :: Queue a -> Bool
 addQ :: a -> Queue a -> Queue a
 delQ :: Queue a -> Queue a

 newtype Queue a = Q ([a], [a])

 emptyQ = Q ([], [])

 isEmptyQ (Q ([], []) = True
 isEmptyQ _ = False

addQ x (Q ([], [])) = Q ([x], [])
addQ y (Q (xs, ys)) = Q (xs, y:ys)

delQ (Q ([], [])) = error “cannot remove from empty Q”
delQ (Q ([], ys)) = Q (tail (reverse ys), [])
delQ (Q (x : xs, ys)) = Q (xs, ys)

same
 signature

different
implementation

first part second part

11

October 2005 Functional Programming for DB Xtras 21

addQ x (Q ([], [])) = Q ([x], [])

addQ y (Q (xs, ys)) = Q (xs, y:ys)

most recent addition

October 2005 Functional Programming for DB Xtras 22

delQ (Q ([], ys)) = Q (tail (reverse ys), [])

delQ (Q (x : xs, ys)) = Q (xs, ys)

first in the second
 part of the queue

12

October 2005 Functional Programming for DB Xtras 23

queue via two lists

module Queue (Queue, emptyQ, isEmptyQ, addQ, delQ) where
 emptyQ :: Queue a
 isEmptyQ :: Queue a -> Bool
 addQ :: a -> Queue a -> Queue a
 delQ :: Queue a -> Queue a

 newtype Queue a = Q ([a], [a])

 emptyQ = Q ([], [])

 isEmptyQ (Q ([], []) = True
 isEmptyQ _ = False

addQ x (Q ([], [])) = Q ([x], [])
addQ y (Q (xs, ys)) = Q (xs, y:ys)

delQ (Q ([], [])) = error “cannot remove from empty Q”
delQ (Q ([], ys)) = Q (tail (reverse ys), [])
delQ (Q (x : xs, ys)) = Q (xs, ys)

same
 signature

different
implementation

first part second part

October 2005 Functional Programming for DB Xtras 24

set as unordered list with duplicates

module Set (Set, emptyS, isEmptyQ, inS, addS, delS) where
 emptyS :: Set a
 isEmptyS :: Set a -> Bool
 inS :: (Eq a) => a -> Set a -> Bool
 addS :: (Eq a) => a -> Set a -> Set a
 delQ :: (Eq a) => a -> Set a -> Set a

 newtype Set a = S [a]

 emptyS = S []

 isEmptyS (S []) = True
 isEmptyS _ = False

inS x (S xs) = elem x xs

addS x (S a) = S (x : a)

delS x (S xs) = S (filter (/= x) xs)

elem x [] = False
elem x (y : ys)

| x == y = True
| otherwise = elem x ys

