Case Study AIRLINE DB

A S S S
LAX JFK
LHR
DEN
airports & flight connections ® AKL
September 03 Functional Programming for DB Case Study 1
Wal B S
-- airlines are abstract entities whose names are recorded
data Airline = BA | UA | NZ deriving ( Eq, Show)
allAirlines :: [Airline]
allAirlines = [BA, UA, NZ]
type AirlineName = String
airlineName :: Airline -> AirlineName
airlineName BA = “British Airways”
airlineName UA = “United Airlines”
airlineName NZ = “Air New Zealand”
September 03 Functional Programming for DB Case Study 2




September 03

-- airports are abstract entities, too

data Aiport =LHR|JFK | DEN | LAX| AKL
deriving ( Eq, Show)

allAirports :: [Airport]

allAirports = [LHR, JFK, DEN, LAX, AKL]

type AirportName = String
type Country = String
type Airportinfo = ( AirportName, Country )

airportinfo :: Airport -> Airportinfo

airportinfo LHR = (“London Heathrow”, “England”)
airportinfo JFK = (“J F Kennedy”, “United States”)
airportinfo DEN = (“Denver”, “United States”)
airportinfo LAX = (“Los Angeles Int”, “United States”)
airportinfo AKL = (“Auckland”, “New Zealand”)

airportName :: Airport -> AirportName
airportName x = firstOf2 (airportinfo x)

airportCountry :: Airport -> Country
airportCountry x =secondOf2 (airportinfo x)

Functional Programming for DB

Case Study 3

September 03

-- flights are abstract entities (airline, source, destination)

data Flight = BA1|UA1 | UA123 | UA987 | UA234 | UA842 | NZ2
deriving ( Eq, Show)

allFlights : [ Flight ]

allFlights = [BA1, UA1, UA123, UA987, UA234, UA842, NZ2]

flightinfo :: Flight -> (Airline, Airport, Airport)
flightinfo BA1 = (BA, LHR, JFK)
flightinfo UA1 = (UA, LHR, JFK)
flightinfo UA123 = (UA, JFK, DEN)
flightinfo UA987 = (UA, LHR, LAX)
flightinfo UA234 = (UA, DEN, LAX)
flightinfo UA842 = (UA, LAX, AKL)
flightinfo NZ2 = (NZ, LAX, AKL)

flightAirline :: Flight -> Airline
flightAirline f = firstOf3 (flightinfo f)

flightSource :: Flight -> Airport
flightSource f = secondOf3 (flightinfo f)

flightDest :: Flight -> Airport
flightDest f = thirdOf3 (flightinfo f)

Functional Programming for DB

Case Study 4




Wa S
-- codes of the airports located in the United States

[ p | p <- allAirports, airportCountry p = “United States”]

-- all airports flown to/from by a given airline

serves :: Airline -> [ Airport ]

serves x=
[flightSource f | f <-allFlights, flightAirline f==x] ++

[flightDest f | f <- allFlights, flightAirline f==x]

September 03 Functional Programming for DB

Case Study 5

-- names of the airlines serving a given country

countryAirlines :: Country -> [ AirlineName ]

countryAirlines y =[airlineName f |
f <- allAirlines,

p <-serves f,

airportCountry f==y]

September 03 Functional Programming for DB

Case Study

6




b

-- all airports from where an airline flies to more than one destination
hubs :: Airline -> [ Airport]
hubs x=
[p | p <- allAirports,
f1 <- allFlights,
flightAirline f1 ==x,

flightSource f1 == p,

f2 <- allFlights,

flightAirline f2 ==x,
flightSource f2 ==p,
flightDest f1 /= flightDest f2]

September 03 Functional Programming for DB Case Study

-- all airports reachable from a given airport on a given airline

Wal S
getthere :: Airline -> Airport ->[Airport]

getthere x y =
dests ++ [y’ | d <- dests, y’ <-getthere x d]
where dests = [ flightDest f | f <- allFlights,
flightAirline f==x, flightSource f==Yy]

LAX @ e JFK

LHR
® DEN

® AKL

Blue -> AKL -> [ LHR | JFK | LAX ]

September 03 Functional Programming for DB Case Study




Relational AIRLINE DB

LINE PORT
[1D | NAME \ | coDE | NAME | COUNTRY |
[ BA | British Airways | | LHR | Heathrow | England |

I I LINE (
CONNECT ID char(3) primary key

No | LD | ORIG | DEST | NAME varchar2(25))

704 | BA LHR VIE \ PORT (
CODE char (3) primary key
NAME varchar2(25)
COUNTRY varchar2925))

CONNECT (

No number primary key
L-ID char(3) ref LINE(ID)
ORIG char(3) ref PORT(CODE)
DEST char(3) ref PORT(CODE))

September 03 Functional Programming for DB Case Study 9

-- airport codes located in the United States

[p]|p <-allAirports,
airportCountry p = “United States”]

select ID from PORT
where COUNTRY = “United States”

TI (c PORT (COUNTRY =* United States”)) ID

September 03 Functional Programming for DB Case Study 10




-- airports served by a given airline
e B RNENatat
serves X =
[flightSource f | f <- allFlights, flightAirline f== x]

++ [flightDest f | f<-allFlights, flightAirline f==x]

select unique LINE.NAME

from LINE, PORT, CONNECT

where LINE.ID = CONNECT.L-ID

and (CODE = ORIG or CODE = DEST)
and LINE.NAME = x

II (o ((LINE »« PORT) »<« CONNECT)
(CODE = ORIG or CODE = DEST ))
NAME

September 03 Functional Programming for DB Case Study 11

-- airlines serving a given country
Wa! I
countryAirlines y = [airlineName f |
f <- allAirlines, p <- serves f,

airportCountry f==y]

select unique LINE.NAME

from LINE, PORT, CONNECT

where LINE.ID = CONNECT.L-ID

and (CODE = ORIG or CODE = DEST)
and PORT.COUNTRY =y

I1 (o ((LINE »« PORT) »« CONNECT)
(CODE = ORIG or CODE = DEST))
COUNTRY

September 03 Functional Programming for DB Case Study 12




-- airports from where an airline

flies to more than one destination

Wa! ks it

hubs :: Airline -> [ Airport ]

hubs x=[p |p <- allAirports,
f1 <- allFlights, flightAirline f1 == x, flightSource f1 == p,
f2 <- allFlights, flightAirline 2 == x, flightSource 2 == p,
flightDest f1 /= flightDest 2]

select ORIG from CONNECT
where L-ID =x A:=T1 CONNECT (L-ID = ORIG, DEST
group by ORIG n=II(o( (L-ID = x))) ( ) )

returns all connection pairs for x - but R/Algebra
does not provide for grouping, nor counting

if Q :: Relation — List (i.e. with repetitions) existed,
than

having count (*) > 1

Q A (ORIG) - IT A (ORIG)

would give the answer

September 03 Functional Programming for DB Case Study 13

---all airports reachable from a _
given airport on a given airline getthere x y =

dests ++ [y’ | d <- dests, y’ <-getthere x d]
where dests = [ flightDest f | f <- allFlights,
flightAirline f==x, flightSource f==y]

LAX @ o JFK

LHR
® DEN

® AKL

select DEST from CONNECT
where L-ID = x

and ORIG = y —» (Blue, AKL) -> LHR

September 03 Functional Programming for DB Case Study 14




SQL> select * from GRAPH;

ORIG DEST

AKL
LHR
LHR
JFK
VIE

LHR
JFK
LAX
VIE
WAW

SQL> get q1

1 select level, dest

2 from graph

3 connect by prior dest = orig
4* start with orig = "AKL'

sQL>/

LEVEL DEST

sQL>

LHR
JFK
VIE
WAW
LAX

September 03

getthere x y =
dests ++ [y’ | d <- dests, y’ <- getthere x d]
where dests = [ flightDest f | f <- allFlights,
flightAirline f==x, flightSource f==y]

Y WA
LAX JFK
.\ VIE

LHR

<

@ AKL

select LEVEL, ORIG, DEST

from CONNECT where L-ID = x
connect by prior DEST = ORIG
start with ORIG =y

Functional Programming for DB Case Study 15




