
1

September 03 Functional Programming for DB Case Study 1

Case Study AIRLINE DB

JFK

LHR

AKL

LAX

DEN

airports & flight connections

September 03 Functional Programming for DB Case Study 2

-- airlines are abstract entities whose names are recorded

data Airline = BA | UA | NZ deriving (Eq, Show)

allAirlines :: [Airline]

allAirlines = [BA, UA, NZ]

type AirlineName = String

airlineName :: Airline -> AirlineName

airlineName BA = “British Airways”

airlineName UA = “United Airlines”

airlineName NZ = “Air New Zealand”

2

September 03 Functional Programming for DB Case Study 3

-- airports are abstract entities, too

data Aiport = LHR | JFK | DEN | LAX | AKL

 deriving (Eq, Show)

allAirports :: [Airport]

allAirports = [LHR, JFK, DEN, LAX, AKL]

type AirportName = String

type Country = String

type AirportInfo = (AirportName, Country)

airportInfo :: Airport -> AirportInfo

airportInfo LHR = (“London Heathrow”, “England”)

airportInfo JFK = (“J F Kennedy”, “United States”)

airportInfo DEN = (“Denver”, “United States”)

airportInfo LAX = (“Los Angeles Int”, “United States”)

airportInfo AKL = (“Auckland”, “New Zealand”)

airportName :: Airport -> AirportName

airportName x = firstOf2 (airportInfo x)

airportCountry :: Airport -> Country

airportCountry x = secondOf2 (airportInfo x)

September 03 Functional Programming for DB Case Study 4

-- flights are abstract entities (airline, source, destination)

data Flight = BA1 | UA1 | UA123 | UA987 | UA234 | UA842 | NZ2

 deriving (Eq, Show)

allFlights :: [Flight]

allFlights = [BA1, UA1, UA123, UA987, UA234, UA842, NZ2]

flightInfo :: Flight -> (Airline, Airport, Airport)
flightInfo BA1 = (BA, LHR, JFK)
flightInfo UA1 = (UA, LHR, JFK)
flightInfo UA123 = (UA, JFK, DEN)
flightInfo UA987 = (UA, LHR, LAX)
flightInfo UA234 = (UA, DEN , LAX)
flightInfo UA842 = (UA, LAX, AKL)
flightInfo NZ2 = (NZ, LAX, AKL)

flightAirline :: Flight -> Airline

flightAirline f = firstOf3 (flightInfo f)

flightSource :: Flight -> Airport

flightSource f = secondOf3 (flightInfo f)

flightDest :: Flight -> Airport

flightDest f = thirdOf3 (flightInfo f)

3

September 03 Functional Programming for DB Case Study 5

-- codes of the airports located in the United States

[p | p <- allAirports, airportCountry p = “United States”]

-- all airports flown to/from by a given airline

serves :: Airline -> [Airport]

serves x =

[flightSource f | f <- allFlights, flightAirline f == x] ++

[flightDest f | f <- allFlights, flightAirline f == x]

September 03 Functional Programming for DB Case Study 6

-- names of the airlines serving a given country

countryAirlines :: Country -> [AirlineName]

countryAirlines y = [airlineName f |

f <- allAirlines,

p <- serves f,

airportCountry f == y]

4

September 03 Functional Programming for DB Case Study 7

-- all airports from where an airline flies to more than one destination

hubs :: Airline -> [Airport]

hubs x =

[p | p <- allAirports,

 f1 <- allFlights,

flightAirline f1 == x,

flightSource f1 == p,

f2 <- allFlights,

flightAirline f2 == x,

flightSource f2 == p,

flightDest f1 /= flightDest f2]

September 03 Functional Programming for DB Case Study 8

-- all airports reachable from a given airport on a given airline

getthere :: Airline -> Airport -> [Airport]

getthere x y =

dests ++ [y’ | d <- dests, y’ <- getthere x d]

where dests = [flightDest f | f <- allFlights,

 flightAirline f == x, flightSource f == y]

JFK

LHR

LAX

DEN

Blue -> AKL -> [LHR | JFK | LAX] AKL

5

September 03 Functional Programming for DB Case Study 9

ID NAME CODE NAME COUNTRY

BA British Airways LHR Heathrow England

No L-ID ORIG DEST

704 BA LHR VIE

LINE PORT

CONNECT

Relational AIRLINE DB

LINE (
 ID char(3) primary key
 NAME varchar2(25))

PORT (
 CODE char (3) primary key
 NAME varchar2(25)
 COUNTRY varchar2925))

CONNECT (
 No number primary key
 L-ID char(3) ref LINE(ID)
 ORIG char(3) ref PORT(CODE)
 DEST char(3) ref PORT(CODE))

September 03 Functional Programming for DB Case Study 10

-- airport codes located in the United States

[p | p <- allAirports,
 airportCountry p = “United States”]

select ID from PORT
where COUNTRY = “United States”

P (s PORT (COUNTRY =‘ United States”)) ID

6

September 03 Functional Programming for DB Case Study 11

-- airports served by a given airline

serves x =

 [flightSource f | f <- allFlights, flightAirline f == x]

 ++ [flightDest f | f <- allFlights, flightAirline f == x]

select unique LINE.NAME

from LINE, PORT, CONNECT

where LINE.ID = CONNECT.L-ID

and (CODE = ORIG or CODE = DEST)

and LINE.NAME = x

 P (s ((LINE ut PORT) ut CONNECT)

 (CODE = ORIG or CODE = DEST))

 NAME

September 03 Functional Programming for DB Case Study 12

-- airlines serving a given country

select unique LINE.NAME

from LINE, PORT, CONNECT

where LINE.ID = CONNECT.L-ID

and (CODE = ORIG or CODE = DEST)

and PORT.COUNTRY = y

 P (s ((LINE ut PORT) ut CONNECT)

 (CODE = ORIG or CODE = DEST))

 COUNTRY

countryAirlines y = [airlineName f |

f <- allAirlines, p <- serves f,

airportCountry f == y]

7

September 03 Functional Programming for DB Case Study 13

-- airports from where an airline
flies to more than one destination

hubs :: Airline -> [Airport]

hubs x =[p | p <- allAirports,

 f1 <- allFlights, flightAirline f1 == x, flightSource f1 == p,

 f2 <- allFlights, flightAirline f2 == x, flightSource f2 == p,

 flightDest f1 /= flightDest f2]

select ORIG from CONNECT

where L-ID = x

group by ORIG

 having count (*) > 1

A ::= P (s (CONNECT (L-ID = x))) (ORIG, DEST)
 returns all connection pairs for x - but R/Algebra
 does not provide for grouping, nor counting

if W :: Relation Æ List (i.e. with repetitions) existed,

than
W A (ORIG) - P A (ORIG)

would give the answer

September 03 Functional Programming for DB Case Study 14

-- all airports reachable from a
given airport on a given airline getthere x y =

 dests ++ [y’ | d <- dests, y’ <- getthere x d]

 where dests = [flightDest f | f <- allFlights,

 flightAirline f == x, flightSource f == y]

JFK

LHR

LAX

DEN

select DEST from CONNECT

where L-ID = x

and ORIG = y (Blue, AKL) -> LHR

AKL

8

September 03 Functional Programming for DB Case Study 15

getthere x y =

 dests ++ [y’ | d <- dests, y’ <- getthere x d]

 where dests = [flightDest f | f <- allFlights,

 flightAirline f == x, flightSource f == y]

select LEVEL, ORIG, DEST

from CONNECT where L-ID = x

connect by prior DEST = ORIG

start with ORIG = y

SQL> select * from GRAPH;

ORIG DEST
--- ---
AKL LHR
LHR JFK
LHR LAX
JFK VIE
VIE WAW

SQL> get q1
 1 select level, dest
 2 from graph
 3 connect by prior dest = orig
 4* start with orig = 'AKL'
SQL> /

 LEVEL DEST
 ------ ----
 1 LHR
 2 JFK
 3 VIE
 4 WAW
 2 LAX

SQL>

JFK

LHR

LAX

AKL

VIE

WAV

