Extended Functional Data Model

October 2005

® structures

* single-valued
function (aruments) ; results

* multi-valued
base function stored data
derived function algorithm
f() defines new entity type

f(ay, a ...)
@ entity diagram
® operations
® constraints
® user views

® metadata

Functional Programming for DB

defines attributes & relationships

Extended FOM 1

subtype - supertype
base functions

derived functions

October 2005

R string <
field 4 [ qual
fn s sex
member
teacher
( ‘ tutor ¢
<— phone —]
student staff <
—>]
staff J
mark { course
course string
course —————b} — title
day| raom [slot
lecture —>> event
tutorial
tutorial staff

Functional Programming for DB

Extended FDM 2




declare

{ member () = entity
student () = member
staff() = member

base functions course() = entity
event () = entity
tutorial) = event
lecture() = event

fn (member) — string
sn (member) — string
sex (member) — string

course (student) = course
tutorial (student) — tutorial
mark (student, course) — integer
field (student) — string

title (course) —  string
lecture (course) = lecture

day (event) —  string
slot (event) — string
room (event) — string
course (stafff = course
phone (staff) — integer
qual (staf) —  string
staff (tutorial) —  staff
October 2005 } Extended FDM 3
derived functions
define
{ staff(course) = staff such that
some c in course (staff)
has ¢ = course -- inverse of
teacher (student) = staff (course (student))
tutor (student) — staff (tutorial (student))
} -- combinations of inverse, composition, recursion,
transitivity

derived functions are represented by algorithms accepting arguments to compute results

October 2005 Functional Programming for DB Extended FDM 4




retrievals

-- get the names of all members

for each m in member
get fn(m), sn(m)

-- get surnames of all female students
for each s in student

such that sex(s) = ‘F’
get sn(s)

October 2005 Functional Programming for DB Extended FDM 5

retrievals

-- get the names of those students that take a course on FDB

for each s in student

such that
some c in course (s)
has title (c) = ‘FDB’

get sn(s)

October 2005 Functional Programming for DB Extended FODM 6




retrievals

-- get the titles of courses taught by Stefan
for the s in staff
such that fn (s) = ‘Stefan’

for each c in course (s) get title(c)

-- error handling procedure is called if more than one Stefan exists

October 2005 Functional Programming for DB Extended FDM

updating - insertion

a new m in member

-- creates a new member entity, adds it to the extent of
member type, associates it with the variable m

a new s in student

-- creates a new entity, which is included in the extents
of both student and member entity types

October 2005 Functional Programming for DB Extended FDM




updating - new record

for a new s in student
let fn(s) = ‘Mary’
let sn(s) = ‘Jones’
let sex(s) = ‘F’
let field(s) = ‘Comp’

October 2005 Functional Programming for DB Extended FDM 9

updating - change values

for the s in student such that
fn(s) = ‘Mary’ and sn(s) = ‘Jones’
let tutorial(s) = the t in tutorial such that
day(t) = ‘Mon’ and slot(t) = ‘09,10’ and room(t) = ‘m101’

October 2005 Functional Programming for DB Extended FDM

10




updating - adding rules

October 2005

for the s in student such that
fn(s) = ‘Mary’ and sn(s) = ‘Jones’
include course(s) = {
the ¢1in course such that title(c1) = ‘Haskell’
the c2 in course such that title(c2) = ‘Prolog’ }

-- similarly exclude

Functional Programming for DB Extended FDM

1"

constraints

October 2005

constraint unique-id on
fn(member), sn(member) — unique

constraint must-be-supplied on
sex(member) — total -- i.e. not partial

constraint must-differ on
student, staff — disjoint

constraint non-upd-sex on
sex(member) — fixed

constraint ris on
mark (student, course) —
some c in course(student)
has ¢ = course

Functional Programming for DB Extended FDM

12




