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Extended Functional Data Model

 structures

      function (aruments)            results

      base function                stored data

      derived function                 algorithm

      f ( )                defines new entity type

      f (a1, a2, ...)               defines attributes & relationships

 entity diagram

 operations

 constraints

 user views

 metadata

→
⇒

single-valued

multi-valued
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subtype - supertype      

base functions

derived functions

string

member

student integer staff

course string

lecture event

tutorial
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declare
       { member ()  ⇒   entity

student ()  ⇒   member
staff()   ⇒   member
course()  ⇒   entity
event ()  ⇒   entity
tutorial()  ⇒   event
lecture()  ⇒   event

fn (member)      →   string
sn (member)     →   string
sex (member)   →   string

course (student)   ⇒   course
tutorial (student)   →   tutorial
mark (student, course) →   integer
field (student)   →   string

title (course)       → string
lecture (course)  ⇒ lecture

day (event)          → string
slot (event)          → string
room (event)       → string

course (staff)      ⇒ course
phone (staff)       → integer
qual (staf)           → string
staff (tutorial)     → staff

      }

base functions
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define
       { staff(course) ⇒   staff such that

 some c in course (staff)
 has c = course                 -- inverse of

teacher (student)   ⇒   staff (course (student))

tutor (student)   →   staff (tutorial (student))

      }     -- combinations of inverse, composition, recursion,
transitivity

derived functions

derived functions are represented by algorithms accepting arguments to compute results
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retrievals

-- get the names of all members          

for each m in member
get fn(m), sn(m)

-- get surnames of all female students

for each s in student
such that sex(s) = ‘F’
get sn(s)
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retrievals

-- get the names of those students that take a course on FDB

for each s in student
such that 

some c in course (s)
has title (c) = ‘FDB’

get sn(s)
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retrievals

-- get the titles of courses taught by Stefan

for the s in staff
such that  fn (s) = ‘Stefan’
for each c in course (s) get title(c)

-- error handling procedure is called if more than one Stefan exists
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updating - insertion

a new m in member

-- creates a new member entity,  adds it to the extent of 
              member type, associates it with the variable m

a new s in student

-- creates a new entity, which is included in the extents 
                         of both student and member entity types



5

October 2005 Functional Programming for DB Extended FDM     9

updating - new record

for a new s in student                                                          
  let fn(s) = ‘Mary’
  let sn(s) = ‘Jones’
  let sex(s) = ‘F’
  let field(s) = ‘Comp’
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updating - change values

for the s in student  such that
fn(s) = ‘Mary’ and sn(s) = ‘Jones’                                                         
  let tutorial(s) = the t in tutorial such that
  day(t) = ‘Mon’ and slot(t) = ‘09,10’ and room(t) = ‘m101’
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updating - adding rules

for the s in student  such that
fn(s) = ‘Mary’ and sn(s) = ‘Jones’                                                         
  include course(s) = {
  the c1 in course such that title(c1) = ‘Haskell’

the c2 in course such that title(c2) = ‘Prolog’ }

-- similarly exclude
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constraints

constraint unique-id  on
fn(member), sn(member) → unique

constraint must-be-supplied  on
sex(member) → total -- i.e. not partial

constraint must-differ  on
student, staff → disjoint

constraint non-upd-sex  on
sex(member) → fixed 

constraint ris  on
mark (student, course) → 
some c in course(student)
has c = course 


