
1

October 2005 Functional Programming for DB Extended FDM 1

Extended Functional Data Model

 structures

 function (aruments) results

 base function stored data

 derived function algorithm

 f () defines new entity type

 f (a1, a2, ...) defines attributes & relationships

 entity diagram

 operations

 constraints

 user views

 metadata

→
⇒

single-valued

multi-valued

October 2005 Functional Programming for DB Extended FDM 2

subtype - supertype

base functions

derived functions

string

member

student integer staff

course string

lecture event

tutorial

field qual
fn

teacher
tutor

mark

phone

sn sex

course

tutorial

staff
course

title

staff

day room slot

2

October 2005 Functional Programming for DB Extended FDM 3

declare
 { member () ⇒ entity

student () ⇒ member
staff() ⇒ member
course() ⇒ entity
event () ⇒ entity
tutorial() ⇒ event
lecture() ⇒ event

fn (member) → string
sn (member) → string
sex (member) → string

course (student) ⇒ course
tutorial (student) → tutorial
mark (student, course) → integer
field (student) → string

title (course) → string
lecture (course) ⇒ lecture

day (event) → string
slot (event) → string
room (event) → string

course (staff) ⇒ course
phone (staff) → integer
qual (staf) → string
staff (tutorial) → staff

 }

base functions

October 2005 Functional Programming for DB Extended FDM 4

define
 { staff(course) ⇒ staff such that

 some c in course (staff)
 has c = course -- inverse of

teacher (student) ⇒ staff (course (student))

tutor (student) → staff (tutorial (student))

 } -- combinations of inverse, composition, recursion,
transitivity

derived functions

derived functions are represented by algorithms accepting arguments to compute results

3

October 2005 Functional Programming for DB Extended FDM 5

retrievals

-- get the names of all members

for each m in member
get fn(m), sn(m)

-- get surnames of all female students

for each s in student
such that sex(s) = ‘F’
get sn(s)

October 2005 Functional Programming for DB Extended FDM 6

retrievals

-- get the names of those students that take a course on FDB

for each s in student
such that

some c in course (s)
has title (c) = ‘FDB’

get sn(s)

4

October 2005 Functional Programming for DB Extended FDM 7

retrievals

-- get the titles of courses taught by Stefan

for the s in staff
such that fn (s) = ‘Stefan’
for each c in course (s) get title(c)

-- error handling procedure is called if more than one Stefan exists

October 2005 Functional Programming for DB Extended FDM 8

updating - insertion

a new m in member

-- creates a new member entity, adds it to the extent of
 member type, associates it with the variable m

a new s in student

-- creates a new entity, which is included in the extents
 of both student and member entity types

5

October 2005 Functional Programming for DB Extended FDM 9

updating - new record

for a new s in student
 let fn(s) = ‘Mary’
 let sn(s) = ‘Jones’
 let sex(s) = ‘F’
 let field(s) = ‘Comp’

October 2005 Functional Programming for DB Extended FDM 10

updating - change values

for the s in student such that
fn(s) = ‘Mary’ and sn(s) = ‘Jones’
 let tutorial(s) = the t in tutorial such that
 day(t) = ‘Mon’ and slot(t) = ‘09,10’ and room(t) = ‘m101’

6

October 2005 Functional Programming for DB Extended FDM 11

updating - adding rules

for the s in student such that
fn(s) = ‘Mary’ and sn(s) = ‘Jones’
 include course(s) = {
 the c1 in course such that title(c1) = ‘Haskell’

the c2 in course such that title(c2) = ‘Prolog’ }

-- similarly exclude

October 2005 Functional Programming for DB Extended FDM 12

constraints

constraint unique-id on
fn(member), sn(member) → unique

constraint must-be-supplied on
sex(member) → total -- i.e. not partial

constraint must-differ on
student, staff → disjoint

constraint non-upd-sex on
sex(member) → fixed

constraint ris on
mark (student, course) →
some c in course(student)
has c = course

