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Abstract. Machine-learning techniques frequently predict the results of machining processes, based on pre-determined cutting
tool settings. By doing so, key parameters of a machined product can be predicted before production begins. Nevertheless, a
prediction model cannot capture all the features of interest under real-life industrial conditions. Moreover, careful assessment of
prediction credibility is necessary for accurate calibration; aspects that should be addressed through appropriate modeling and
visualization techniques. A machine process test problem is proposed to analyze data-visualization techniques, in which a real
data set is analyzed that describes deep-drilling under different cutting and cooling conditions. The main objective is the efficient
fusion of visualization techniques with the knowledge of industrial engineers. Common modeling and visualization techniques
were first surveyed, to contrast standard practice with our novel approach. A hybrid technique combining conditional inference
trees with dimensionality reduction was then examined. The results show that a process engineer will be able to estimate overall
model accuracy and to verify the extent to which accuracy depends on industrial process settings and the statistical significance
of model predictions. Moreover, evaluation of the data set in terms of its sufficiency for modeling purposes will help assess the
credibility of these decisions.
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1. Introduction

1.1. The modeling of machining processes

Industrial experts managing modern machining pro-
cesses have to maximize process productivity and they
simultaneously have to ensure appropriate final prod-
uct quality. Machine learning [20] models such as
neural networks can be used to model quality pa-
rameters [45]. The accuracy of such models is usu-
ally assessed with performance indicators such as
mean prediction error rates. Dimensionality reduc-
tion techniques such as Principal Component Analysis
(PCA) [40] are also frequently applied to reduce error
rates [23,56] and eliminate noisy data [1].
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Studies primarily emphasize the development of
novel data-processing and modeling techniques, which
results in a variety of approaches even for a single ma-
chining process. So, there are a large group of possible
models, depending on the most critical key features of
the machined workpiece [5]. Key features of the prod-
uct may be predicted on the basis of such models: sur-
face roughness and tool wear among others, as well as
geometrical errors, the most critical of which is surface
roughness, due to its influence on product performance
in many different industries, among which the produc-
tion of moulds and dies [5].

Machine learning techniques involved in process
modeling include neural networks, Bayesian networks,
fuzzy-logic, and ensembles of different kind of clas-
sifiers, etc. [11,13,61]. In all these examples, certain
principal conclusions may in all cases be applied: the
first is the inevitable development of a separate predic-
tion model for each cutting tool, as the list of measured
parameters varies between different industrial environ-
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ments and possible cutting processes. Moreover, even
similar tools from which data records are collected
under the same set of cutting conditions may require
their own prediction models, because the diameter and
general geometry of tool shapes and tool materials
could substantially vary their behavior [5]. As a con-
sequence, there is a need to use a significant group of
different models for the modeling of individual tools.

An important aspect for the development of a model
is the availability of experimental data. The develop-
ment of a process model with machine-learning tech-
niques requires data collection in real time when the in-
dustrial tool is in use. Data acquisition is done through
a series of experiments, such as deep drilling experi-
ments at different tool settings, which go beyond typi-
cal tool settings. In addition, the experiments should be
repeated to capture the variability of the experimental
results under the same tool settings. Furthermore, the
quality of the result such as borehole roughness has to
be measured. Not surprisingly, this results in substan-
tial experimental costs. Hence, a tradeoff is observed
between the collection of large data sets and the mini-
mization of the experimental costs. The number of ex-
perimental records has to be largely constrained, so as
not to diminish the potential for real use of the pro-
cess model. As stated before, this is largely because
of the fact that combining the data from different tools
is frequently impossible, due to differences in mea-
surements and tool characteristics. Hence, the data sets
composed of a limited number of records (i.e. up to 250
records) are frequently used. In particular, A. Çiçek et
al. used only 36 records to model thrust forces in the
drilling of AISI 316 stainless steel [12], Y.-H. Tsai et
al. used a data set composed of 48 records to develop a
surface recognition system with neural networks [62]
and Hashmi et al. [29] used 84 records to optimize feed
rate using fuzzy rules in the drilling of 4 different mate-
rials. One of the largest reported data sets is composed
of 250 records and was used in [54] to monitor surface
roughness in ball-end milling operations. A detailed
study of recent reviews in the application of machine-
learning modeling to machining processes [11,13,61]
would suggest that it is very rare to find data sets with
more than 250 instances Hence, for any solutions to be
applicable in real industrial settings, they have to be
developed and validated with data sets of limited size.
Importantly, such data sets require particular attention
when interpreting the data models. Ideally, a process
engineer using a model should not only be informed
of the predicted results of a process under planned tool
settings, but also of the confidence level related to such

predictions, which may vary over different tool set-
tings.

However, even very accurate models that predict
process results can not capture all features of interest,
such as tool wear and tool reconfiguration costs [42].
Moreover, measurement of every variable that con-
tributes to product quality is no easy task. Direct mea-
surement of certain variables-for instance, material in-
homogeneity and machine performance-is extremely
difficult. Relevant data may however be provided by
the measurement of other independent variables-such
as cutting vibrations-that indirectly provide us with in-
put data for the prediction model. What is even more
challenging is the fact that these very same features
also function as output features. For example, some
process settings outside the optimal range of produc-
tion parameters may increase tool wear and machine
vibrations. From this perspective, tool wear and ma-
chining vibrations can be treated as both input and out-
put features of the process, which contributes to the
complexity of prediction models and their develop-
ment.

Other real-life process-configuration-related vari-
ables that the process engineer has to consider include
tool cost and energy consumption per machined work-
piece. This illustrates the fact that the prediction mod-
els that only address some aspects of the process can
not be treated as black boxes under industrial condi-
tions, as they are not sufficient in themselves to control
the process. More precisely, such models have to be
merged with the expert knowledge of the process engi-
neer who will take the final decisions. One of the ways
to merge such knowledge is to use visualization tech-
niques, which show the mutual relation between the
measurable variables and the dependencies revealed by
the model. There is therefore a need for visualization of
the process data. For instance, as outlined in Section 2,
many authors plot 3D figures for different cutting pro-
cesses that show the impact of selected process settings
on the surface roughness of the machined workpiece.
This approach reflects the unprecedented opportunities
in this area owing to modern stationary and mobile de-
vices, the display capabilities of which are undergoing
constant improvement. So much so that on-site data vi-
sualization and investigation of various figures is now
an advantageous option.

However, a majority of works that deal with the ap-
plication of machine-learning models under industrial
conditions provide only limited visualization of the
models and the data used to develop them, as outlined
in Section 2. One possible reason for this lack of re-
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search into visualization techniques is the fact that the
data arising from machining processes is multidimen-
sional, which makes such visualization techniques all
the more challenging.

1.2. The transparency of prediction models

The visualization of interpretable prediction models
can satisfy the need of the process engineer for clearly
stated prediction rules. A process engineer should be
clearly informed of the dependencies observed in the
process data for a particular tool and the way in which
the predicted results at specific tool settings were de-
veloped. The latter expectation is not unique for the
modeling of machining processes and is directly re-
lated to model transparency.

Model transparency [50], also referred to as com-
prehensibility [50] or interpretability [21] can be de-
fined as the ability of a human user to understand
what the model consists of, leading ideally to the abil-
ity to apply it to new observations [50]. Another as-
pect, is the transparency of model development pro-
cess [17,55] i.e. the way the model was built, including
parameter settings and underlying assumptions. This
is vital for decision making in such domains as health
care [17,55], in relation to applications for epilepsy de-
tection [22], among others. In this study, we focus on
the ability of a human user to understand and to apply
prediction rules contained in the model. Hence, trans-
parency will be used in this context interchangeably
with interpretability.

Not all machine learning models exhibit trans-
parency. Many categories of models such as Support
Vector Machines [20] and neural networks [3] are ca-
pable of high accuracy modeling of the data. How-
ever, their interpretability is extremely limited, espe-
cially when even more complex models such as proba-
bilistic neural networks are applied [4].

Whether interpretability is a major concern de-
pends largely on the application domain. In domains
such as image processing, model transparency is dif-
ficult to attain. Image preprocessing, feature extrac-
tion, and image-data-based reasoning are inevitably
very complex. Hence, models of low interpretability
frequently involving the use of neural networks and
related techniques are applied in this domain. These
are used for tasks such as image classification [63].
Other application-oriented tasks, such as the analy-
sis of video images [33], emotion recognition [39] or
sound processing [16] share the same assumptions i.e.
they try to automate the tasks that can not be formal-

ized by human users, especially while using a limited
set of reasoning rules.

In some areas, such as financial applications, includ-
ing bankruptcy prediction [50], transparency is largely
desired. This is also a desirable feature when a physical
interpretation and inspection for validation purposes is
needed and possible, as observed in [66] in the case
of fault diagnosis. In these and similar cases, a domain
expert can compare the inference rules embedded in
interpretable process model with domain knowledge.
The objective is to validate the model, but also to dis-
cover new possible insights on the process that is of
interest.

The visualization of both process data and inter-
pretable process models is of particular interest when
machining processes are considered. Such visualiza-
tion promotes real-life adoption of models built with
machine-learning techniques. Hence, our primary ob-
jective is the investigation of the techniques that could
be used both to predict process results and to pro-
vide experts from industry with sufficient insight into
the inter-dependencies observed in the data. Moreover,
the degree of credibility attached to these predictions
should be made clear and the significance of individ-
ual predictions should be depicted for easy viewing
by industrial experts. In fact, the resulting product pa-
rameter for some tool settings may be predicted with
high accuracy, while for some other cases, the pre-
diction will be of low accuracy and low confidence:
facts that should also be clearly reported to the indus-
trial engineer. Finally, a frequent practice is to apply
dimensionality reduction techniques such as PCA to
the data in the preprocessing stage. One of the tech-
niques is the removal of some of the resulting compo-
nents based on the Proportion of Variance Explained
(PVE), as suggested in a review of machining moni-
toring systems based on artificial intelligence process
models [1]. At the same time, it follows from our previ-
ous works that a priori transformation of the data with
PCA combined with standard dimensionality selection
techniques such as PVE may in some cases be subop-
timal [24,25]. Thus, a method for making a decision
on whether to use PCA for data pre-processing is pro-
posed in this work.

Importantly, no error rates are investigated in this
study, unlike most works on modeling industrial pro-
cesses. Instead, the emphasis is placed on proposing
methods that can help assess other attributes of the pre-
diction model: its interpretability and the credibility
and the sufficiency of the data set (i.e. whether further
experiments are needed to increase its prediction cred-
ibility).
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The remainder of this work is organized as follows:
– A survey is first presented in Section 2 of the

state-of-the-art techniques applied to model ma-
chining processes and for visualization of input
features that impact on dependent features.

– Then, a reference industrial process, a deep drill-
ing process, is described in Section 3, together
with a data set collected expressly for that pur-
pose.

– Section 4 contains a discussion of the techniques
for easy investigation of the process data.

– The proposals in Section 5 are intended to show
the impact of tool settings on the output feature of
interest, while simultaneously revealing the cred-
ibility of individual predictions.

– The role of dimensionality reduction, its impact
on model interpretability and the search for a bal-
ance between model accuracy and interpretability
is discussed in Section 6.

– Finally, the conclusions are presented and future
lines of research are proposed.

2. Survey of visualization techniques applied to
machining processes

Most studies on machine-learning models running
under industrial conditions provide only limited vi-
sualization attributes. One reason for this lack of re-
search into visualization techniques is perhaps that the
machining processes generate multidimensional data,
which makes the visualization task much more chal-
lenging. Most research on modeling machining pro-
cesses, whether using analytical models or artificial in-
telligence techniques, only involves two dimensional
graphics, to illustrate the relationship between vari-
ables: an input variable of the machining process (X-
axis) and an output variable (Y-axis). The authors are
therefore seeking to demonstrate a clear relation be-
tween one pair of variables. However, although these
representations shed some light on the dynamics of the
cutting process, they provide a very limited panorama
of multivariable processes, creating specific sets of
rules (knowledge) that will be difficult to generalize
and to apply under alternative industrial conditions. So
as to include more information, the X-axis of the graph
in some examples is split into more than one region,
covering up to 4 inputs [35,57]. This inclusion of fur-
ther information makes it possible to discuss the re-
lation between 2–4 inputs and one output with only
one graph. However, this type of graph requires a less-

(a)

(b)

Fig. 1. Examples of 2D plots showing the influence on surface rough-
ness of feed rate per revolution and cutting speed in a drilling pro-
cess.

complex relation between variables and not very exten-
sive data sets, otherwise the graph is packed with too
much information [57]. A virtual experiment is there-
fore proposed to illustrate the different type of graphs
presented in the bibliography, where the surface rough-
ness of the machined workpiece (Ra) is measured af-
ter being machined under different cutting conditions
that include the variation of 2 of the main cutting set-
tings: feed rate per revolution and cutting speed. A
more detailed explanation of the physical meaning of
these settings will be done in Section 3. Figure 1(a)
shows an example of such graphs [35,57]: the feed rate
per revolution (av) and the cutting speed (Vc) are rep-
resented on the X axis and the surface roughness (Ra)
for a given cutting process on the Y axis. The result-
ing graph allows us to discuss the influence of these 2
process parameters on surface roughness.

Another common way of including further variables
in a 2D graph is to draw more than one line in each
graph [37,38,43]; each line representing the relation
between one input and one output for a certain values
of a second input. Different lines mean different val-
ues of the second input. Figure 1(b) shows an example:
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(a)

(b)

Fig. 2. Examples of surface plots, 2D (a) and 3D (b), showing the
influence of feed rate per revolution and cutting speed on surface
roughness in a drilling process.

the X-axis represents the feed rate per revolution, the
Y-axis represents the surface roughness and each line
represents a certain cutting speed. The use of color or
grey codes in Fig. 1(b) differentiates the data to facili-
tate an in-depth discussion of the influence of process
inputs on roughness quality. Finally, the most complex
2D graphs use both the X and the Y-axis for two inputs
and draw the predicted value of a given output on a col-
ored or grey scale [9,53]. This representation can only
be used to show the usability of a prediction model,
to provide information on the best cutting conditions
for the process engineer in an industrial setting. Fig-
ure 2(a) shows an example of these graphs: the X-axis
represents the feed rate per revolution, the Y-axis the
cutting speed, and the grey scale shows surface rough-
ness.

Although these last two examples of 2D graphs,
Figs 1(b) and 2(a), might provide a rough idea of the re-
lation between three variables, these relations are only
clearly shown in 3D graphs: two process inputs on
both the X and the Y-axes and one output on the Z-

axis. 3D graphs are mainly used in two ways in the
current literature. The first is to analyze the influence
of two cutting parameters on a process output, usu-
ally surface roughness [14,30,37,54,60]. This kind of
representation needs an extensive experimental test of
different cutting conditions to generate a homogenous
3D surface, which is a very expensive solution. The
second option is to show how a process engineer can
find the best combination of two process inputs for a
desired value of an output, because the 3D surface is
generated by a prediction model and not by real ex-
periments [7,10,26,51,59,60]. An example is shown in
Fig. 2.b: feed rate per revolution and cutting speed are
represented on the X and the Y-axes, respectively, and
surface roughness on the Z-axis. This graph is illustra-
tive in a discussion on the influence of these 2 process
parameters on roughness.

It can be seen that there is no difference between the
information shown in this graph and the information
shown in the last example of the 2D graphs: Figs 2.a
and 2.b respectively.

However, any cutting process is a complex multi-
variable process that depends on more than 4 inputs
with complex relationships between the variables [5].
Different authors have proposed different approaches
with no clear solution to the analysis of a cutting pro-
cess in which over 4 process parameters are simulta-
neously considered. Even more importantly, such plots
do not actually test the significance of the dependency
between input variable(s) and output variables, irre-
spective of the number of input variables under consid-
eration. 2D graphs have in some cases been drawn to
address both high dimensionality and the search for the
influence of input variables on output variable, where
the X axis represents all the process inputs and the Y
axis, the weight of each input in the variation of an out-
put [46]. The same conclusions can be obtained with
a table that shows the results of an ANOVA analy-
sis [59,65]. A similar solution is based on PCA and the
construction of a scree plot to analyze the number of
features that influence the Artificial Intelligence (AI)
model, although the authors of the study emphasized
that the analysis of such a plot is partly subjective [25].
Although these solutions might help to decide which
inputs are less significant and of negligible influence in
a study case, they do not illustrate the type of relation-
ship between inputs and output.

Although they have very seldom been used in ma-
chining processes so far, dimensionality reduction
techniques [56] involve more complex visualization
techniques than correlation plots and they are also
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promising avenues with which to develop and to an-
alyze prediction or diagnosis models for industrial
tasks in the manufacturing industry. For example, a di-
mensionality reduction technique, called t-Stochastic
Neighbor Embedding, has been proposed to detect a
chatter fault for the rolling process in the manufactur-
ing industry [52]; it projects all feature vectors on a vi-
sual 2D map that describes the vibrational states of the
rolling process. Decision trees have been used in fault
diagnostics for feature extraction or dimensionality re-
duction in the vibration analysis of roller bearings in
rotary machines [58]; in this case the reduction of di-
mensions is necessary, because the analysis of the vi-
brational spectrum of the machine provides too many
inputs. In the same way, a discrete wavelet decompo-
sition procedure has been used to reduce dimension-
ality in acoustic emission signals for grinding-wheel-
surface-condition diagnosis [44]. Finally, the use of
scatter plots has also been proposed for the design of
cellular manufacturing systems [28]. This proposal in-
volves the construction of a correlation matrix. It then
uses PCA to find the eigenvalues on the correlation
matrix and, finally, it creates a scatter plot for clus-
ter analysis creating machine groups and part families,
while maximizing the correlation between elements.
The only example of scatter plots used in machining
operations refers to the analysis of cutting forces and
torques that depend on cutting parameters, such as feed
rate and cutting speed for face-milling operations [37].
The scatter plot is very limited because the machining
tests use only 3 inputs and analyze up to 5 outputs;
an example that will be discussed later in Section 5 in
comparison with this work.

The conclusion that came after our survey was that
most of the existing research on prediction models for
machining processes used different types of correlation
plots to show the relationship between inputs and out-
puts in such processes [7,9,10,14,26,30,35,37,38,43,
51,53,54,57,59,60]. Only very few works used other
techniques rather than correlation plots, such as scatter
plots [37] and scree plots [25]. Nevertheless, recent re-
search projects on other tasks in the manufacturing in-
dustry have used complex visualization or dimension-
ality reduction techniques [28,37,44,52,58]. These pa-
pers are usually on vibrational or acoustic analysis, in
which many statistical variables can be defined, and di-
mensionality reduction is a critical and mandatory task.
On the other hand, due to the high cost of experimenta-
tion and the complex relation between inputs, most of
the existing works related to machining processes take
no more than 7 inputs into account [7,10,14,26,30,35,

37,43,51,53,54,57,59,60,65] and very few extend their
research to a broader group of process inputs [9,25,53].
It should be remarked, that, in most cases where the
research into machining processes involves vibrational
analysis, very few variables extracted from vibration
signals are considered [10,26,30]. Therefore, most of
the proposed prediction models for machining pro-
cesses use very few process inputs and visualization
techniques and little data analysis, concentrating their
efforts on the accuracy of prediction models. More-
over, it remains unclear whether to use dimensional-
ity reduction where there are several input variables.
Dimensionality reduction, if done, is used to replace
the original data with transformed data [25]. However,
whether there is actually any need for such transfor-
mation, which inevitably reduces interpretability of the
prediction models, is not addressed.

Finally, the figures relating one or many variables to
another variable do not respond to the need for an eval-
uation of the significance [9,30,35,37,38,43,54,55,60].
The question remains whether the trends observed in
the figures and, in all likelihood, based on a limited
number of experimental records are significant and if
so, whether they are equally significant. A further as-
pect of this issue is whether the collection of extra data
could increase the confidence of inference based on the
input variables and considering the expected result of
the process. This could provide a basis for iterative data
collection i.e. performing additional experiments aim-
ing to collect extra data records for only some of the
tool settings i.e. tool settings for which the confidence
of process result prediction is reported by a model to
be limited.

3. A survey of state-of-the-art deep drilling
techniques

Our data set in this research describes the deep
drilling of steel. Deep drilling of steel components is
an especially interesting industrial process, due to the
broad range of steel products with deep holes, such
as coolant circuits for the manufacture of moulds and
dies and boreholes for knockout pins. Drilling is a cut-
ting process, in which the cutting tool rotates at fixed
speeds while moving along the axis of the tool. Milling
is usually the main machining process to generate a
complex geometry, but drilling is necessary to cre-
ate channels or any cylindrical geometry in the com-
ponent. Drilling is in most cases more critical than
milling, because the chip removal process is aided by
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the vertical helices of the drill, a complex process that
requires fluids circulating under high pressure that dis-
place the chips from the open side of the cutting edge,
unlike when milling, where the waste moves away
from the trailing edge of the cutting tool. Deep drilling
is a critical drilling operation, because drill length fur-
ther complicates the chip removal process and the cool-
ing of the tool tip; it is usually defined by consider-
ing the length-to-diameter ratio of the drilled hole: drill
lengths longer than 3 times the drill diameter are con-
sidered deep drills with conventional cutting fluid, be-
cause almost no cutting fluid reaches the drill tip under
such conditions [36]. For instance, the limit for Min-
imum Quantity Lubrification (MQL), a cooling tech-
nique developed over the last 15 years, is at a depth no
greater than 4 times the diameter [26]. In this cutting
process, the cutting speed is the speed of the cutting
tool in the drilling direction (Vc), the feed rate per revo-
lution is the linear movement of the cutting tool in rela-
tion to the number of tool revolutions in the workpiece.
The hole length (L) is the distance from the workpiece
surface to the end of the hole, the hole diameter is the
same as the tool diameter (D) and the cutting fluid is
the fluid that is used to facilitate the chip and the heat
removal during the drilling process. Figure 3 illustrates
most of these parameters, which define the cutting con-
ditions in a drilling process that the process engineer
can set before the cutting process begins. In this case,
process variables such as vibrations cannot be easily
measured, due to the greater rigidity of the milling ma-
chine head on the Z-Axis along which drilling usually
takes place [8]. Therefore, real-time process monitor-
ing measures the axial force of the milling machine.
This variable might give information on all the cutting
parameters that the process engineer cannot establish,
when designing the cutting process, such as tool wear,
material heterogeneities, etc.

Different approaches have been considered to pre-
dict surface roughness in drilling operations [5], but
only AI approaches are considered in this research. The
most widespread AI technique is the Artificial Neu-
ral Network (ANN), although other techniques include
fuzzy logic, Bayesian networks, genetic algorithms
and support vector machines as outlined in some recent
reviews [11,13,61]. Most of these works refer to cut-
ting conditions that cannot be considered deep drilling
or do not use MQL techniques. The use of MQL in
deep drilling operations is fairly recent, which means
that most of the research on this topic is focused on
understanding the physical behavior of this process,
such as tool wear [30], tool life [19,31], chatter phe-

Fig. 3. Scheme of a drilling process.

nomena [47] and the effect of MQL and cutting con-
ditions on surface quality [15,64], rather than trying to
use AI techniques to model the process. Datasets re-
lated to deep drilling are therefore very seldom found.
Only a few study cases appear in the bibliography:
fuzzy logic has been used to predict surface quality
on MQL deep drilling of aluminum [49], evolution-
ary algorithms and Bayesian networks for deep drilling
of steel [10,26] and better cutting conditions in deep
drilling of steel with conventional flood cooling [29].
In the case of deep drilling of steel under MQL condi-
tions, accurate models for surface prediction have been
built with ANNs [26] and Bayesian networks [10], al-
though the tuning of the ANN parameters is a very sen-
sitive process [2,26,27]. The size of these data sets is
also small, in line with datasets describing other manu-
facturing processes like milling or turning as explained
before, and varies from 36 [12] to 170 [10], with some
examples in between [29,49].

The dataset used in this work has previously been
presented elsewhere [10]. The drilling tests were per-
formed on two different milling centers: one for MQL
tests and the other for traditional coolant tests. In both
cases, the blank material was F114 steel. In view of
the industrial application of knockout pins, two hole
diameters were chosen for testing: 5 and 10 mm. Two
hole lengths were tested for each diameter: 5 and 8
times the diameter (5xD and 8xD). Tools from two
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Table 1
Description of the variables used in the drilling data set

Variable (units) Range Relationship and nature
Tool (none) 1,2,3,4 Fixed by the process engineer
Diameter D (mm) 5,10 Fixed by the process engineer
Hole length L (mm) 25,40,50,80 Fixed by the process engineer
av (× 10−2 mm/rev) 10,12,14,15,20,25,30 Fixed by the process engineer
Vc (m/min) 70,80,90,100,125,130,156 Fixed by the process engineer
Coolant type (none) 1 (traditional), 2 (MQL) Fixed by the process engineer
Axial force AF (N) 502–3012 Measured during cutting process
Productivity (cm3/min) 8.7–93.7 Fixed by the process engineer
Roughness Ra (µm) 0.27–4.96 Output, measured after the cutting process

tool providers were tested to assure different geome-
tries within them: HAM and Mitsubishi. Three cut-
ting parameters were considered: cutting speed (Vc),
feed rate per revolution (av) and coolant type. A sec-
ond group of variables takes into account the differ-
ence in the cutting tools and the hole geometry: the
type of tool (Tool), tool and hole diameter (diame-
ter) and hole length (length). These variables define
the productivity as the material removal rate or the
quantity of metal cut by time unit. Finally, the axial
force measured in the milling head was included in the
dataset. As the tests were performed along the Z-Axis
of the milling centers, the Z-Axis feed motor consump-
tion provided the axial cutting force (AF) during the
drilling operation, because both variables were propor-
tional [10]. Once the drilling tests had been performed,
roughness was measured on the inner side of the holes
in accordance with ISO standard 4288:1996 [34] and
the Ra parameter was calculated. Surface properties
play an important role in the performance of a finished
part. They have an enormous influence on several rele-
vant characteristics of the final product such as dimen-
sional accuracy, friction coefficient, wear, thermal re-
sistance, electric resistance, fatigue limit and behav-
ior, corrosion, post-processing requirements, appear-
ance and cost [53]. The Ra parameter is the arithmetic
average of the vertical deviations (y) from the nominal
surface converted to an absolute value for a specified
distance over which the surface deviations are mea-
sured (Lm), as shown in Eq. (1). The Ra parameter,
used in academic testing and industrial production, is
the most common way of evaluating the roughness of
machined workpieces [5].

Ra =

Lm∫

0

|y|
Lm

dx (1)

All the cutting conditions used in the drilling tests be-
long to the cutting range proposed by the tool man-

ufacturer. The drilling tests included 90 different cut-
ting conditions and the tests were repeated to increase
the amount of data. Thus, a data set of 165 records
was obtained, less than foreseen because the acquisi-
tion procedure failed in 15 cases, delivering incomplete
records. Each record is composed of the 8 variables de-
scribed above. Table 1 shows the main information on
the variables: units, variation range and origin of the
data (measured or fixed by the process engineer be-
fore the cutting process). The output variable, surface
roughness, is shown in bold in Table 1. Although this
data set includes 8 inputs, one of them (productivity)
is calculated on the basis of other variables. Hence, it
can be considered redundant and will only be used in
the data analysis presented in Section 4 but not in fur-
ther research summarized in Sections 5 and 6, as will
be explained later on.

4. Visualization of independent variables

Visualization of multidimensional data is a challeng-
ing task. The investigation of individual independent
variables, frequently takes place followed by the selec-
tion of some of them, before generating the visualiza-
tion.

Hence, the first stage is the use of visualization to
augment data analysis and preprocessing. Even though
many variables are observed in the data, some tech-
niques can be applied at this stage to analyze multidi-
mensional data.

First of all, a star plot can be developed, which helps
to identify typical relations in the set and even more
importantly to identify possible outliers. An example
of a star plot for a selection of 50 records present in
the drilling data set and sorted by ascending roughness
values is shown in Fig. 4. This form of plot shows in-
dividual records in the data set. Each separate plot in
the figure shows the values of the individual indepen-
dent parameters in the form of separate sections of a
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Fig. 4. A star plot showing the experimental settings and their impact
on the roughness value. The interpretation of each section of individ-
ual pie charts is shown at the bottom of the plot. Vc denotes cutting
speed, av – feed rate per revolution and AF – axial cutting force.

pie chart. The size of each section reflects the relative
value of the parameter that is visualized. A larger sec-
tion means a relatively larger value of the parameter.
The meaning of each section is shown in the corner. In
addition, the corresponding roughness value is shown
below each plot.

Hence, this plot is particularly useful when the data
are scarce, which is frequently the case as experimental
data are difficult or very expensive to obtain. This form
of figure is particularly useful to analyze the data at the
level of individual records. In the case under analysis, it
clearly follows from the figure that larger diameter val-
ues and larger axial forces are associated with higher
roughness. Moreover, they are usually accompanied by
a deeper hole length.

Moreover, the combined impact of the values of all
independent variables on the feature of interest is seen.
In particular, this provides the basis for additional ver-
ification of the data and identification of possible out-
liers. For instance, we see that large diameter values in
general yield high roughness values.

However, the tool settings that produced the rough-
ness of 0.56 μm (upper plot marked with a circle) are
in fact very similar to the settings, typically result-
ing in a roughness of 1 μm or even more. In partic-
ular, the tool settings for the latter record are virtu-
ally identical to those present in the penultimate record
(lower plot marked with a circle), having a roughness
value of 1.361 μm. The record with an unlikely and
small roughness value of 0.56 μm could undergo ad-

ditional verification. The analysis of star plots is es-
pecially promising when a limited number of records
constitute the data set. However, the question regard-
ing possible approaches to larger data sets arises. Ob-
viously, these datasets will involve an aggregated visu-
alization of the data and their tendencies. Both correla-
tion plots and matrices of these plots can be developed
for both large and limited data sets. The informational
value of such matrices may be increased by combin-
ing them with histograms, and correlation coefficients.
An example of a matrix in the latter form is shown in
Fig. 5. First of all, the values of individual independent
variables are shown on the main diagonal histograms,
which improve their readability, especially when they
depict hundreds of experiments. More precisely, the
distribution of the values of each parameter becomes
clear. Moreover, linear regression is applied to individ-
ual variables to develop the best linear dependency be-
tween the paired variables under analysis. Finally, the
regression coefficients are shown above the main diag-
onal, clearly depicting the extent to which the value of
one variable explains the value of another variable.

Independent variables with the largest linear impact
on the feature of interest, which in this case is rough-
ness Ra, can be identified in Fig. 5. In addition, the re-
lation between pairs of independent variables can be
easily investigated. In this way, the relation between
the values of individual variables can be observed. This
includes typical clusters of values. Moreover, discrete
and continuous variables can be easily determined.
Some clear conclusions arise directly from this kind of
representation: there is strong dependency between av
and productivity (marked by a solid ellipse and a (1)
in the figure). Moreover, larger tool diameters mean
larger cutting forces (marked by ellipse (2)).

These results are expected by a process engineer
and their visualization would help to guarantee that
the experimentation is correct. Other results clearly
show that the drilling process is a complex task: in
many cases, smaller diameters imply higher productiv-
ities than larger tools, or the relation between Vc and
roughness Ra is not clear, apart from the fact that some
outliners can, in this way, be easily identified (ellipse
marked with (3)). In the case under analysis, it can be
observed that Tool is the variable with the largest im-
pact on Ra from among all those under analysis, which
is shown by the coefficient equal to 0.34. At the same
time, the correlation between diameter and axial force
is the largest of the other variable pairs and is equal
to 0.92. In other words, a very strong dependency be-
tween diameter and axial force is shown. However, the
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Fig. 5. A scatter plot matrix showing combinations of individual variables. Variable names and histograms of these variables are shown on the
main diagonal of the matrix. The correlation coefficients for each variable pair are shown above the main diagonal, while the correlation plots for
the same pairs are provided below. Vc denotes cutting speed, av - feed rate per revolution and AF – axial cutting force.

figure shows that only two diameter values were used
in the experiments. An observation that confirms the
merits of the visualization applied at this stage to the
data set.

It follows directly from the analysis depicted in
Fig. 5 that there is no single independent variable that
shows a strong linear impact on the feature of interest;
in this case, roughness. Should there be such an inde-
pendent feature, it would have a correlation coefficient
close to one, as shown in the Roughness column in the
matrix shown in Fig. 5. It is worth noting here that pro-
ductivity is calculated on the basis of other variables.
Hence, it can be considered redundant and will not be
included in the remainder of the analysis in this study.
Finally, it may be noted that other authors have found
similar, but more limited results with scatter plots [37],
because they consider smaller numbers of inputs in the
machining process.

5. Modeling and visualization of the roughness
prediction process performed with raw data

5.1. Development of prediction models

Questions arise over the extent of the combined
impact of the independent features on roughness and
which features are the most important from this per-
spective. Moreover, a further point is whether the data
that has been collected is sufficient for modeling pur-
poses and what the credibility of the predictions are
i.e. whether the scale of uncertainty regarding process
results is the same for all process settings.

Various machine learning techniques [20] can be
used to investigate this impact. These include neu-
ral networks [3] and most notably multilayer percep-
trons [24,25], decision trees [59] and random forests.
While neural networks enable nonlinear dependency
between the input signals and output signal(s), the vi-
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Fig. 6. A regression tree showing the prediction of roughness value
based on the values of independent variables. Vc denotes cutting
speed, av – feed rate per revolution and AF – axial cutting force. If
a condition in the node is satisfied, the left branch is selected. For
instance, if Tool is 1, then the condition AF<1780 is verified. Every
leaf of the tree contains the actual roughness value predicted for all
process settings represented by the sequence of conditions followed
from the tree root. As an example, if Tool = 1, AF >= 1780 and av
>= 0.275, Ra is predicted to be 0.6465 µm.

sualization of the mapping function that they represent
is a difficult task in a multidimensional space. Simi-
larly random forests – a technique using a group of re-
gression trees that can arrive at a decision concerning
roughness prediction, suffers from a similar inherent
complexity.

More precisely, visualization of a random forest
would be impractical as it would mean visualization of
100 individual regression trees. This complexity hin-
ders the visualization and understanding of the process
setting mappings on roughness value that random for-
est performs.

When the investigation of the impact of individual
independent features on the feature of interest is an
issue, regression trees can be considered [7,59]. Fre-
quently, they are constructed with the CART algorithm
proposed by Breiman et al. [6] or C4.5 proposed by
R. Quinlan and used, among others, by Elangovan et
al. for condition monitoring of a single point cutting
tool [18]. A sample regression tree constructed with
the CART algorithm is shown in Fig. 6.

It is important to note here that the tree yields the
roughness prediction for different Tool, AF, Coolant
and av values. Other independent variables were not
relevant enough to be included in the tree, even though
they were considered in the tree development process.
Each value in the terminating nodes (i.e. leaves of the
tree) is the roughness that is predicted under different
conditions. However, an inherent feature of the CART
algorithm is that it relies on the parameters controlling

the tree construction process. One example of such a
parameter is the minimum number of training records
needed to create a condition node i.e. an additional
split in a multidimensional space of independent vari-
ables. Moreover, the algorithm does not use the con-
cept of statistical significance [32]. The CART algo-
rithm is based on excessive tree construction followed
by tree pruning [48]. The ultimate structure of the tree
is usually selected in the cross-validation process. Sim-
ilarly, the selection of parameters for C4.5 requires the
experimental verification of various settings and their
impact on model accuracy [18].

This process makes the selection of the optimal
tree-the tree minimizing roughness prediction error-
possible, but provides no answer to the need for a more
thorough investigation of the data. First of all, the sta-
tistical significance of individual splits is not investi-
gated by the CART algorithm. In particular, it remains
unclear whether more accurate predictions could be
made, but with lower confidence settings. A positive
response to this doubt would suggest further data ac-
quisition to support more accurate and reliable rough-
ness prediction.

Hence, to answer these needs another approach is
proposed in this study: the use of conditional inference
trees [32]. Unlike CART trees, Conditional Inference
Trees (CIT) are created in one stage i.e. recursive par-
titioning of the input space is continued, as long as it
is significant in terms of the criteria it establishes. It
is not followed by a pruning process. In the case of
drilling data, a CIT was first developed using a uni-
variate test type and a minimum criterion set to 0.95.
This tree is shown in Fig. 7. A major difference, in
comparison with CART or C4.5 trees is that the sig-
nificance of individual splits made in each of the CIT
nodes is shown by p values. Lower p values clearly in-
dicate high confidence splits, which would provide an
industry expert with a better understanding of the pre-
diction process performed by the tree. In the case un-
der analysis, it also follows from the analysis of this
tree that it is only capable of distinguishing between
different roughness values for Tool 1, as all the data
for other tools is grouped in one node. More precisely,
the roughness prediction for other tools is based on re-
turning the same value, irrespective of the tool settings,
with a relatively large dispersion of values and some
outliers reaching a value of 5 μm. It was therefore im-
possible to make more accurate credible predictions
and the same average roughness value was predicted
under all conditions for Tools 2, 3, and 4. Besides, de-
tailed prediction was successfully made for Tool 1.
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Fig. 7. A conditional inference tree with the minimum criterion set to 0.95. At each node, an average roughness value is shown with a horizontal
line in the box. Moreover, the distribution of real records present in the training data and matched with each terminal node is also shown in the
node. For instance, it can be seen that there were n = 81 records at node 11 i.e. the node was used for all records of Tools 2, 3 and 4. The average
roughness value in this group was in excess of 1 µm, although the dispersion of values, which varied between 0.7 µm and 1.5 µm with some
outliers reaching the value of 5 µm, was quite significant.

What is even more important, is the fact that the
real roughness cases, behind each of the individual
leaves (4,5,8,9,10) of the tree shown in Fig. 7, show
relatively limited variability. Hence, the open issue is
whether more accurate predictions could also be at-
tained for other tools. In particular, the question arises
as to whether more accurate prediction could be at-
tained once the minimum criterion is reduced to 0.9.

Figure 8 shows the result of CIT construction with
the aforementioned minimum criterion setting. First of
all, it can be observed that the prediction for Tool 1,
represented by the left subtree, is identical, as shown
in Fig. 7. However, hitherto new dependencies, not
known before, were revealed for Tools 2–4. In particu-
lar, for AF values below 2233.9 N, a division was made
in node 12. As a consequence, roughness values were
predicted for Tools 3 and 4, treated together, that dif-
fered from the roughness value predicted for Tool 2.
While, all 81 records were grouped into one node for

Tools 2–4, in the tree shown in Fig. 7, with one aver-
age prediction assigned, 5 different nodes may be ob-
served with a high precision of roughness prediction
for the same experimental cases, in Fig. 8. Moreover,
in Fig. 8, significant dispersion of values is only ob-
served for AF values exceeding 2233.9 N. There are
only n = 12 cases in this category. All of which are
represented by node 19.

It should be emphasized that a number of objectives
may be reached by following this process for drilling
and other machining data sets. First of all the pre-
diction is made. Moreover, the credibility of individ-
ual predictions is revealed. Not only is the distribu-
tion of individual records mapped to each node shown,
but also the statistical significance of space partition-
ing can be controlled. In the case under analysis, it is
clear that the predictions made for Tool 1 are of greater
credibility, than predictions for Tools 2–4, with the tree
shown in Fig. 8. Simply put, these latter predictions
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Fig. 8. A conditional inference tree with the minimum criterion set to 0.9. Lower significance results in additional splits compared to the tree
shown in Fig. 7. These splits, represented by nodes 11 (p = 0.091), 12, 14 and 16, result in varied predictions of various roughness values for
Tools 2,3 and 4, depending on the values of AF, Tool, Coolant and Diameter. Hence, prediction for Tools 2, 3, and 4 is more precise than in Fig. 7.
However, the confidence level is lower for this part of the tree.

are only revealed when the statistical significance is
set to a lower value. Moreover, it may be seen that the
dispersion of actual roughness values was quite large
for large AF values. Finally, it can also be seen that
more accurate predictions of greater significance could
potentially be made for some tool settings. However,
more data would be needed for Tools 2–4, and espe-
cially for these tools and large AF values. A larger data
set might confirm these dependencies also at the sig-
nificance level of 0.95. Finally, such an analysis clearly
identifies the impact of individual process parameters
on roughness values, unlike the 2D and the 3D figures
described in Section 2. These figures include no con-
cept of significance and make no selection of actually
relevant features from among those measured for the
process of interest; a task that is usually entrusted to
the expertise of the process engineer.

An important outcome of the analysis performed
here is not only the selection of the features with a di-
rect impact on the roughness value, but also the anal-
ysis of the sufficiency of the experimental data. In the
case under study, it can be seen that some of the splits
in the tree are based on a Diameter � 5. However, it
follows directly from Table 1 that only two diameter
values were present in the experimental data provid-
ing the basis for tree development: 5 mm and 10 mm.
Hence, the split made at Diameter = 5 mm is quite ar-
bitrary. In particular, new experimental data are needed
for reliable use of the model with other diameter val-

ues e.g. 7 mm. It is important that the tree construction
results do not suggest that other variables are relevant
in terms of roughness prediction. For instance, hole
length was not used in prediction process. This sug-
gests that further experiments using new hole-length
settings would not be likely to contribute to improve-
ments in prediction accuracy and credibility. In partic-
ular, the figures that analyze the value of this variable
against roughness, such as these discussed in Section 2,
could be prepared, although they are not necessary, as
roughness variability is explained by other input vari-
ables. This simplifies the visualization of the machin-
ing process in the multidimensional space, by perform-
ing feature selection.

5.2. The automation of the planning of further
experiments

Importantly, further industrial experiments may be
guided by the investigation of conditional inference
trees. Let us propose Algorithm 1 to guide such a
process. It constructs a conditional inference tree, C,
based on available experimental data including tool
settings, D, and process output data, P . It then iden-
tifies problematic regions, S, of an input space parti-
tioned by the tree. Problematic regions refer to regions
linked to the decision nodes of low confidence i.e. con-
fidence lower than α. S also contains regions related to
leaf nodes that are identified on the basis of high confi-
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dence splits, but which have a significantly large stan-
dard deviation of the target feature, which in this case
is roughness.

Algorithm 1 The selection of tool settings to perform additional ex-
periments with. First, selection of regions of input space i.e. tool set-
tings is made. Next, T random samples are drawn from candidate
tool settings.

The identification of problematic regions is per-
formed in a recursive manner by the FindProblemati-
cRegions() procedure, defined in Algorithm 2. Impor-
tantly, leaf node and the region of input space to which
it is linked can be included in a list of problematic re-
gions, S, only when its cardinality is sufficient to ex-
ceed cmin. In other words, it is acceptable to have low
cardinality nodes that have a significant value of stan-
dard deviation, exceeding the threshold value of dmin

as long as the number of corresponding tool settings
is too limited to justify further experiments. Details of
problematic region selection are summarized in Algo-
rithm 2. Once all regions are identified, a number of
tool setting combination vectors is randomly generated
for each region. Next, T random samples are drawn
from candidate tool settings. In this way, a process en-
gineer can balance the cost of additional experiments
and the need for additional data by setting a T value.
Moreover, the process of generating tool settings with
which to perform additional experiments is automated.
Importantly this process can be repeated in an iterative
manner to minimize the cost of experiments.

6. The use of dimensionality reduction

Dimensionality reduction [41] is a frequent practice
when processing multivariate data, so as to use it to

Algorithm 2 FindProblematicRegions() procedure i.e. the procedure
performing the selection of regions of input space that require addi-
tional data based on a conditional inference tree or its subtree.

reduce data redundancy and by doing so, to improve
interpretability. The most frequently used technique
is PCA [23,40]. The use of PCA yields transformed
data composed of the set of variables that are uncor-
related with each other, yet based on linear combina-
tions of raw variables. Hence, another representation of
the same data set is attained. The data in transformed
form can be used as an input for various data process-
ing techniques, including the regression tree construc-
tion algorithm. Typically, the transformed data serve
to replace the original data. The use of PCA in this
way as a feature extraction technique in the context
of machining processes is described inter alia in [1].
Hence, the analysis will start from this option. How-
ever, the selection of features arising from dimension-
ality reduction including the selection of reduced di-
mensionality generally requires in-depth analysis. Ap-
propriate selection of reduced dimensionality, going
beyond the use of the scree plot [40] or a proportion of
explained variance [41] may yield substantial perfor-
mance gains [25,26].

The tree constructed with transformed data is shown
in Fig. 9, in which a more complex mapping of pro-
cess settings to their corresponding roughness values
may be observed. However, the interpretability of the
tree is largely reduced, when compared to the tree built
with raw data. In this case, conditions in individual
tree nodes are placed on components which are linear
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Table 2
Definition of components

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
Tool 0.000 0.000 0.000 0.705 0.527 −0.474 0.000
Diameter 0.000 0.000 0.000 −0.695 0.646 −0.312 0.000
Length 0.000 0.380 −0.923 0.000 0.000 0.000 0.000
Av 0.000 0.000 0.000 0.000 0.000 0.000 −0.999
Vc 0.000 −0.924 −0.381 0.000 0.000 0.000 0.000
Coolant 0.000 0.000 0.000 −0.142 −0.551 −0.822 0.000
AF −1.000 0.000 0.000 0.000 0.000 0.000 0.000

Fig. 9. A conditional inference tree built with the data arising from PCA transformation (minimum criterion set to 0.95). As the data were
transformed, original independent variables such as diameter or coolant were replaced with PCA-based components. Moreover, the precision of
the prediction in each leaf was improved. Unlike in Fig. 7, there were no nodes representing over 80 patterns i.e. predicting the same average
roughness for a large group of experiments.

transformations of raw data. Moreover, different com-
ponents are involved, namely Components 1, 2, 4, 5
and 6. Even though the definition of each component
can be investigated (see Table 2 for component defini-
tions), the interpretability of such a tree is obviously
largely reduced.

Rather than only transformed data, our proposal is
to use both raw and transformed data as an input for
tree development. In the general case, this means that
the raw data are replaced with transformed data that
are generated through the use of a vector of reduction
functions ci : Rn → Rki and a vector of feature se-
lection functions fi : Rki → Rji . This combined vec-
tor is of the form [c1, f1,, . . . , cn, fn]. Our proposal is
that this vector should include both f1(c1(x)) = x
i.e. the inclusion of a copy of raw attributes and the
use of c2 : Rn → Rn, which is Principal Compo-

nent Analysis. In this case, the data are transformed
without reducing dimensionality, as a priori dimen-
sionality reduction may diminish model performance.
In particular, f2(x) = x (i.e. no selection of com-
ponents before construction of the model). Moreover,
[c1, f1,, . . . , cn, fn] can include other dimensionality
reduction techniques such as kernel Principal Com-
ponent Analysis [41]. This means that the tree con-
struction process supplied with the data transformed
with [c1, f1,, . . . , cn, fn], will select some of the com-
ponents (i.e. transformed variables) and some of the
raw independent variables depending on which of them
yields the higher significance of splits made in the mul-
tidimensional space.

The result of this approach is shown in Fig. 10. It can
be seen that successful predictions are made for Tool 1.
This is based on the values of the variables Coolant, av
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Fig. 10. A conditional inference tree constructed with both raw variables and principal components (minimum criterion set to 0.95). The tree
construction algorithm selected raw variables, namely Tool (node 1), Diameter (node 2), av (node 6), and Coolant (node 7), but also some
principal components for space splits. Unfortunately, better interpretability of the tree is combined with lower prediction accuracy, as all patterns
belonging to Tools 2, 3 and 4 were grouped again into one leaf i.e. node 13.

and Diameter combined with the value of Components
6 and 7.

By using the approach proposed in this study, a pro-
cess engineer may let the tree construction algorithm
decide whether raw variables or components should be
used for the individual splits in the tree. Then, a de-
cision may be taken as to whether potential accuracy
benefits arising from the inclusion of dimensionality
reduction are sufficient compensation for the reduction
in model interpretability. This decision can be taken on
a case-by-case basis and may be different for different
tools.

The composition of individual components is shown
in Table 2. It can be observed that Component 6 is a
linear combination of a number of variables with the
most significant impact of Coolant, Diameter and Tool.
Since Tool remains constant in this subtree and is equal
to 1, the features having a significant impact on rough-
ness for Tool 1 are Diameter (node 2), av (node 6), and
Coolant. It is worth noting here that Component 7 is
in fact the av variable. This example shows the way
to attempt further improvements of roughness predic-
tion model accuracy. By including more complicated
transformation of an input, such as linear combinations
of independent variables or even nonlinear transfor-
mation performed by multilayer perceptrons, there is
a chance to improve roughness accuracy even further.
However, the interpretability of the model is compro-
mised.

7. Conclusions

Several issues have to be addressed before machine
learning models can be applied in real industrial envi-
ronments, such as machining processes in real work-
shops. Among them, investigation of the credibility of
the models and their interpretability are of particular
importance. Furthermore, the question of whether ad-
ditional data collection could improve model quality
and significance should be answered.

Many studies on machine learning model develop-
ment have concentrated on the calculation of error
rates. All too often, only limited attention is paid to
the investigation of the data on which the model is
based and its practical use. While such studies con-
tribute to machine learning development, there is a
need to combine them with the investigation of model
deployment aspects. Hence, various plots have been
developed in industrial studies to visualize data with
2D and 3D approaches. Some attempts have also ap-
proached higher dimensionality data. However, as our
survey reveals, the most frequently used visualization
techniques do not reveal the statistical significance of
the trends they observe. Moreover, the impact of pro-
cess settings on process results may be not clear. For
instance, this impact may only be significant for some
diameters or tool configurations. Finally, the visualiza-
tion techniques that are usually applied do not evaluate
the benefits of dimensionality reduction and its impact
on the interpretability of the models.
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Hence, the primary contribution of this work con-
sists of the techniques that investigate multidimen-
sional experimental data, upon which the prediction
models are based. First of all, the techniques used to
visualize both individual records and the relation be-
tween variables were selected. The use of conditional
inference trees was then proposed to develop rough-
ness prediction models for deep drilling processes.
This approach has made it possible to assess the sig-
nificance of predictions made for different tools and
even for individual tool settings. As a consequence, a
process engineer can differentiate between predictions
made with lower credibility and those attained with
higher levels of significance. In particular, this knowl-
edge can be used to decide whether further experi-
ments aimed at additional data collection are needed
and if so, what tool and process settings should be used
in these experiments to actually benefit from data ac-
quisition. In addition, a formal procedure used to gen-
erate tool settings for a requested number of experi-
ments has been proposed. Importantly, this approach
addresses the fact that experimental data sets of limited
size are the only feasible alternative, due to the cost of
these experiments.

Finally, proposals have been advanced on the way
a decision over the use of dimensionality reduction
can be taken. Both model accuracy and interpretability
can be taken into account in the proposed procedure.
Hence, the decisions on the use of dimensionality re-
duction can be taken in accordance with the needs of
the process engineer.

All these conclusions have been obtained from ex-
perimentation with a real data set that describes a
deep drilling process. Deep drilling is of significant in-
dustrial importance in the production of moulds and
dies for the automotive industry. The data set that was
used in this study is representative of the number of
records that can be reasonably acquired in industrial
settings. Future research may include the investigation
of various dimensionality reduction techniques, in the
context of industrial data processing. In particular the
problem might be related to the selection of the di-
mensionality reduction technique that best preserves
the information needed to predict process output and
model interpretability. Also, the implementation of the
proposed visualization techniques in micro-machining
processes of high industrial interest might also be ex-
plored, where current knowledge of the main cutting
parameters and the experience of process engineers in
such processes are still very limited.
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